JP2011129330A - 扁平形非水二次電池 - Google Patents

扁平形非水二次電池 Download PDF

Info

Publication number
JP2011129330A
JP2011129330A JP2009285884A JP2009285884A JP2011129330A JP 2011129330 A JP2011129330 A JP 2011129330A JP 2009285884 A JP2009285884 A JP 2009285884A JP 2009285884 A JP2009285884 A JP 2009285884A JP 2011129330 A JP2011129330 A JP 2011129330A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode
collecting tab
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009285884A
Other languages
English (en)
Inventor
Toku Takai
徳 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009285884A priority Critical patent/JP2011129330A/ja
Publication of JP2011129330A publication Critical patent/JP2011129330A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】 生産性が良好な扁平形非水二次電池を提供する。
【解決手段】 外装ケースと封口ケースとが絶縁ガスケットを介してカシメ封口されて形成された空間内に、複数の正極と複数の負極とをセパレータを介して積層した電極群および非水電解液を有している扁平形非水二次電池であって、正極および負極は、本体部と、本体部から突出した集電タブ部とを有しており、前記電極群では、正極の各集電タブ部および負極の各集電タブ部が、それぞれ纏められて溶接され、端部が平面視で電極群の外側へ向くように折り曲げられており、纏められた正極の集電タブ部の端部、および纏められた負極の集電タブ部の端部のうちの少なくとも一方は、角部が切り落とされた形状である扁平形非水二次電池により、前記課題を解決する。
【選択図】 図4

Description

本発明は、生産性が良好な扁平形非水二次電池に関するものである。
一般にコイン形電池やボタン形電池と称される扁平形の非水二次電池では、正極と負極とがセパレータを介して対向して構成された電極群と、非水電解液とを、外装ケースと封口ケースと絶縁ガスケットとで形成された空間内に収容した構造を有している(特許文献1など)。
前記のような扁平形非水二次電池では、正極および負極に、集電体の片面または両面に正極合剤層や負極剤層を形成し、かつ集電体の一部を、正極合剤層や負極剤層を形成せずに露出させ、これを集電タブとして利用し、この集電タブを折り曲げるなどして端子を兼ねる外装ケースや封口ケースとの電気的接続に利用しているものがある。
特開2003−142161号公報
扁平形非水二次電池は、例えば、外装ケース内に電極群を挿入し、これを、絶縁ガスケットを装着し非水電解液を注入した封口ケースに被せてかしめる方法や、絶縁ガスケットを装着し電極群および非水電解液を収容した封口ケースに、外装ケースを被せてかしめる方法などによって製造される。
例えば電池の高容量化を図るには、発電反応に関与し得る電極の体積をより大きくすることが求められるが、扁平形電池では、一般に電池ケースの内容積が小さいことから、例えば、電極群と、これを収容する封口ケースに装着された絶縁ガスケットの内壁との隙間を非常に小さくして、電池内での電極の占有体積を可及的に大きくするように設計されている。
通常は、電極群を封口ケースに挿入する際に、絶縁ガスケットと電極群とが当たらないように設定されているが、前記のように、絶遠ガスケットの内壁と電極群との隙間を非常に小さいと、振動などによって電極群の位置が僅かにずれた場合に、電極群と絶縁ガスケットの開口端とが接触して挿入が良好に進まず、電池の生産性が損なわれる虞もある。こうしたことから、電極群と絶縁ガスケットの内壁との隙間を大きくすることなく、電極群の多少の位置ずれが生じても封口ケースへ良好に挿入できるようにして、電池の生産性を高めることが求められる。
本発明は、前記事情に鑑みてなされたものであり、その目的は、生産性が良好な扁平形非水二次電池を提供することにある。
前記目的を達成し得た本発明の扁平形非水二次電池は、外装ケースと封口ケースとが絶縁ガスケットを介してカシメ封口されて形成された空間内に、複数の正極と複数の負極とがセパレータを介して交互に積層された電極群および非水電解液を有しており、平面視で円形の扁平形非水二次電池であって、前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、前記集電体に正極合剤層が形成されておらず、前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、前記集電体に負極剤層が形成されておらず、前記電極群では、前記正極の各集電タブ部が纏められて溶接され、端部が平面視で電極群の外側へ向くように折り曲げられており、かつ前記負極の各集電タブ部が纏められて溶接され、端部が平面視で電極群の外側へ向くように折り曲げられており、纏められた前記正極の集電タブ部の端部、および纏められた前記負極の集電タブ部の端部の少なくとも一方は、角部が切り落とされた形状をしていることを特徴とするものである。
なお、電池業界においては、高さより径の方が大きい扁平形電池をコイン形電池と呼んだり、ボタン形電池と呼んだりしているが、そのコイン形電池とボタン形電池との間に明確な差はなく、本発明の扁平形非水二次電池には、コイン形電池、ボタン形電池のいずれもが含まれる。
本発明によれば、生産性が良好な扁平形非水二次電池を提供することができる。
本発明の扁平形非水二次電池の一例を模式的に表す縦断面図である。 本発明の扁平形非水二次電池に係る正極の一例を模式的に表す平面図である。 扁平形非水二次電池の製造工程における絶縁ガスケットを装着した封口ケースと電極群との配置を模式的に表す要部拡大図である。 本発明の扁平形非水二次電池の一例の製造工程における絶縁ガスケットを装着した封口ケースと電極群との配置を模式的に表す要部拡大図である。 本発明の扁平形非水二次電池の他の例の製造工程における絶縁ガスケットを装着した封口ケースと電極群との配置を模式的に表す要部拡大図である。 本発明の扁平形非水二次電池の他の例を模式的に表す縦断面図である。 図6の要部断面拡大図である。 本発明の扁平形非水二次電池に係るセパレータの一例を模式的に表す平面図である。
図1に、本発明の扁平形非水二次電池の一例を模式的に示す。図1は、扁平形非水二次電池の縦断面図であり、図1に示すように、扁平形非水二次電池1は、複数の正極5および複数の負極6を、セパレータ7を介して、それらの平面が電池の扁平面に略平行(平行を含む)となるように積層した積層型の電極群と、非水電解液(図示しない)とが、外装ケース2、封口ケース3および絶縁ガスケット4により形成される空間(密閉空間)内に収容されている。封口ケース3は、外装ケース2の開口部に絶縁ガスケット4を介して嵌合しており、外装ケース2の開口端部が内方に締め付けられ、これにより絶縁ガスケット4が封口ケース3に当接することで、外装ケース2の開口部が封口されて電池内部が密閉構造となっている。外装ケース2および封口ケース3は、ステンレス鋼などの金属製であり、絶縁ガスケット4は、ナイロンなどの絶縁性を有する樹脂製である。
図2に正極5の平面図を模式的に示しているが、正極5は、本体部5aと、平面視で、本体部5aから突出した、本体部5aよりも幅(図3中上下方向の長さ)の狭い集電タブ部5bとを有している。
図1に示す電池では、正極5の本体部5aは、集電体52の両面に、正極合剤層51が形成されている。そして、正極5の集電タブ部5bは、集電体52表面に正極合剤層51が形成されておらず、集電体52が露出している。なお、図1に示す電池に係る電極群では、最外部(図中上下両端)の電極がいずれも負極(負極6B)であり、正極5は、全てが両側(両面)でセパレータ7を介して負極6と対向しているために、集電体52の両面に正極合剤層51を有しているが、例えば、電極群の最外部の電極が正極の場合には、その最外部の正極は、集電体の片面(電池内側の面)にのみ正極合剤層を有する構造であってもよい。
また、負極についても、正極5と同様に、本体部と、平面視で、本体部から突出した、本体部よりも幅の狭い集電タブとを有しており、図1に示すように、電極群の最外部に位置する負極6Bの本体部6aは、集電体62の片面(電池内側の面)にのみ負極剤層61が形成されており、それ以外の負極6Aの本体部6aは、集電体62の両面に負極剤層が形成されている。また、負極6A、6Bの集電タブ部6bは、集電体62表面に負極剤層61が形成されておらず、集電体が露出している。
本発明の電池では、図1に示すように、電極群を構成する全ての正極5の集電タブ部5bが纏められており、これらは溶接されて、端部が平面視で電極群の外側(図中左側)へ向くように折り曲げられている。また、電極群を構成する全ての負極6の集電タブ部6bが纏められており、これらは溶接されて、端部が平面視で電極群の外側(図中右側)へ向くように折り曲げられている。
そして、図1に示す電池では、纏められた正極5の集電タブ部5bが、外装ケース2の内面と溶接されるか、または溶接されずに直接接触することで、電気的に接続している。すなわち、図1に示す電池では、外装ケース2は正極端子を兼ねている。
また、図1に示す電池では、電極群の上下両端が、集電体の片面(電池内側の面)にのみ負極剤層を有する負極6B、6Bとなっており、そして、電極群における図中上側の負極6Bの集電体の露出面が、封口ケース3の内面と溶接されるか、または溶接されずに直接接することで、電気的に接続している。すなわち、図1に示す電池では、封口ケース3は負極端子を兼ねている。
更に、図1に示す電池では、電極群の最下部に位置する負極6Bと、正極端子を兼ねる外装ケース2とを絶縁する目的で、これらの間にポリエチレンテレフタレート(PET)やポリイミドなどで形成されたテープなどからなる絶縁シール8が配置されている。
なお、本発明の電池では、図1に示す態様とは異なり、電極群に係る上下両端の電極(最外部の2つの電極)のうち、一方または両方を正極としてもよい。また、電極群の最外部の電極のうち、正極端子を兼ねる電池ケース(例えば外装ケース)に近い側の電極を正極とした場合、この正極は、集電体の両面に正極合剤層を有し、集電タブ部のみで正極端子を兼ねる電池ケース(例えば外装ケース)と接していてもよく、集電体の片面(電池内側となる面)のみに正極合剤層を有し、集電体の露出面が、正極端子を兼ねる電池ケース(例えば外装ケース)の内面と溶接されるか、または溶接されずに直接接触することで、電気的に接続していてもよい。
また、電極群に係る上下両端の電極(最外部の2つの電極)の両方を正極とした場合、負極端子を兼ねる電池ケース(例えば封口ケース)と負極との接続は、各負極の集電タブ部を互いに電気的に接続し、かつこれらを、負極端子を兼ねる電池ケース(例えば封口ケース)の内面と溶接するか、または溶接せずに直接接触させる方法で行うことができる。
扁平形非水二次電池を製造するにあたっては、例えば、以下の(1)または(2)の方法が採用される。
(1)封口ケースの電池内側となる面を上に向け、そこに絶縁ガスケットを装着し、非水電解液を入れる。また、外装ケース内に電極群を装填し、必要に応じて外装ケースと電極群とを絶縁シールで仮止めし、外装ケース内面と電極群に係るいずれか一方の電極の本体部の集電体または集電タブ部とを接続する。そして、外装ケースを封口ケースに被せ、外装ケースの周縁部を内方に向けてかしめ、封口する。
(2)封口ケースの電池内側となる面を上に向け、そこに絶縁ガスケットを装着し、電極群を装填し、必要に応じて封口ケースと電極群とを絶縁シールで仮止めし、封口ケース内面と電極群に係るいずれか一方の電極の本体部の集電体または集電タブ部とを接続し、非水電解液を入れる。そして、この封口ケースに外装ケースを被せ、外装ケースの周縁部を内方に向けてかしめ、封口する。
図3に、扁平形非水二次電池の製造工程における絶縁ガスケットを装着した封口ケースと電極群との配置を模式的に表す要部拡大図を示している。
本発明の電池に係る電極群のように、各正極の集電タブおよび各負極の集電タブを、それぞれ纏めて溶接し、これらの端部が平面視で電極群の外側へ向くように折り曲げて構成した電極群では、その最外部のうち、纏められた正極の集電タブ部の端部および纏められた負極の集電タブ部の端部が、絶縁ガスケットの内壁とより近くなる。
前記の通り、扁平形非水二次電池では、通常、正極活物質や負極活物質の充填量を多くして容量を高めるために、発電反応に関与しない要素の占有体積を小さくすることが行われている。具体的には、例えば、絶縁ガスケットの内径をAとし、電極群の平面視で、纏められた正極の集電タブ部の端部から、纏められた負極の集電タブ部の端部までの最長距離をBとしたときに、AとBとの差A−Bが0.1〜1.5mmとなるようにして、絶縁ガスケットの内壁と、電極群の最外部との隙間が非常に小さくなるように設計している。
通常は、図3の(a)に示すように、電極群を封口ケース内に挿入する際に、正極の集電タブ部5bの端部や、負極の集電タブ部の端部が、封口ケース3に被せられた絶縁ガスケット4の開口端に当たらないように設定されているが、例えば電池製造中の振動などによって電極群の位置ずれが生じた場合、例えば図3の(b)に示すようになって、電極群を封口ケースに挿入する際に、正極の集電タブ部5bの端部や、負極の集電タブ部の端部が、絶縁ガスケット4の開口端に当たって、挿入が良好に進まない虞がある。
本発明者は検討を重ねた結果、前記のような電極群を封口ケースに挿入する際の問題の多くが、正極の集電タブ部の端部や負極の集電タブ部の端部の角部と、絶縁ガスケットとの接触により生じることを突き止めた。
そこで、本発明の電池では、纏められた正極の集電タブ部の端部および纏められた負極の集電タブ部の端部の少なくとも一方を、角部が切り落とされた形状として、絶縁ガスケットを装着した封口ケースに電極群を挿入する際における前記の問題の発生を可及的に抑制し、その生産性を高めている。
図4および図5に、本発明の扁平形非水二次電池の製造工程における絶縁ガスケットを装着した封口ケースと電極群との配置を模式的に表す要部拡大図を示している。図4は、纏められた正極の集電タブ部5bの角部を直線で切り落とした形状とした例であり、図5は、纏められた正極の集電タブ部5bの角部を曲線状に切り落とした形状とした例である。図4および図5に示すいずれの態様においても、通常は、例えば、(a)に示すように絶縁ガスケット4と纏められた正極の集電タブ部5bとが接触しないように、封口ケース3と電極群との配置が設定されるが、(b)に示すような電極群の位置ずれが生じても、纏められた正極の集電タブ部5bの角部が切り落とされた形状をしているため、封口ケース3に電極群を挿入する工程において、纏められた正極の集電タブ部5bと絶縁ガスケット4の開口端との接触が生じ難く、かかる工程を良好に進めることができる。
なお、図4および図5では、纏められた正極の集電タブ部の端部を、角部が切り落とされた形状としたものについて示しているが、本発明の電池では、纏められた正極の集電タブ部の端部のみを、角部が切り落とされた形状としてもよく、また、纏められた負極の集電タブ部の端部のみを、図4および図5に示す正極の集電タブ部の端部のように、角部が切り落とされた形状としてもよいが、纏められた正極の集電タブ部の端部と、纏められた負極の集電タブ部の端部の両方を、角部が切り落とされた形状とすることがより好ましい。
纏められた正極の集電タブ部の端部の形状や、纏められた負極の集電タブ部の端部の形状は、角部が切り落とされていれば特に制限はなく、図4に示す形状、図5に示す形状のいずれでもよく、更には他の形状とすることもできる。また、纏められた正極の集電タブ部の端部の形状と、纏められた負極の集電タブ部の端部の両者を、角部が切り落とされた形状とする場合、両者は同様の形状であってもよく、それぞれが異なる形状であってもよい。
なお、本発明の電池では、正極の両面に配置された2枚のセパレータについて、それらの周縁部の少なくとも一部において、互いに溶着して接合部を形成することができる。
図6および図7に、本発明の扁平形非水二次電池の他の例を模式的に示す。図6および図7に示す電池は、正極5の両面に配置された2枚のセパレータ7、7の周縁部に接合部を形成して構成した電極群を有するものであり、図6は、電池の電池ケース(外装ケース2および封口ケース3)および絶縁ガスケット4部分の断面を表す縦断面図であり、図7は図6の要部を拡大し、更に電極群の部分を断面にしたものである。
また、図8に、周縁部の一部に接合部を形成したセパレータの平面図を模式的に示す。なお、図8では、セパレータ7とともに、正極、負極およびセパレータが積層された積層型の電極群とした場合を想定して、セパレータ7の下に配置される正極5を点線で示し、それらの更に下側に配置される負極に係る集電タブ部6bを一点鎖線で示し、電極群に係る各構成要素の位置ずれを抑えるための結束テープ9を二点鎖線で示している。また、図8に示す正極5は、電極群において、その両側(両面)が負極と対向するものであり、図8では図示していないが、電極群とした場合、セパレータ7の上側(図中手前方向)には、少なくとも負極が配置される。
図8に示すセパレータ7は、正極5(図中点線で表示)を介してその下側(図中奥行き方向)に配置される他のセパレータと、その周縁部において互いに溶着した接合部7c(図中、格子模様で表示)を有している。すなわち、セパレータ7と、その下側に配置されたセパレータとは、周縁部で互いに溶着されて袋状となっており、その内部に正極5を収容している。
なお、図8に示すセパレータ7は、正極5の本体部5a全面を覆う主体部7a(すなわち、正極5の本体部5aよりも平面視での面積が大きな主体部7a)と、主体部7aから突出し、正極5の集電タブ部5bの、本体部5aとの境界部を少なくとも含む部分を覆う張り出し部7bとを有している。そして、セパレータ7の主体部7aの周縁部の少なくとも一部に、正極5の両面に配置された2枚のセパレータ(セパレータ7と、正極5の下側に配置されたセパレータ)同士を互いに溶着した接合部7cを設けている。
非水二次電池のセパレータには、高温下で熱収縮しやすい熱可塑性樹脂製の微多孔膜が使用されることが一般的であるが、このように、正極の両面に配置された2枚のセパレータにおいて、その周縁部を互いに溶着して接合部を形成することで、例えば、電池内が高温となっても、セパレータの熱収縮が抑制されるため、より安全性の高い電池を構成することができる。
なお、図8に示すように、主体部と張り出し部とを有するセパレータを使用する場合、正極の両面に配置された2枚のセパレータを接合するための接合部は、セパレータの主体部の周縁部に設ければよいが、セパレータの張り出し部の周縁部(セパレータの張り出し部の周縁部のうち、主体部からの突出方向に沿う部分)にも接合部を設けてもよい。
接合部は、2枚のセパレータの周縁部同士を直接溶着して形成してもよいが、2枚のセパレータの間に熱可塑性樹脂で構成される層を介在させ、この層を介して2枚のセパレータを溶着することにより形成してもよい。ただし、後者の場合、セパレータ間に介在させる層を構成する熱可塑性樹脂の種類と、セパレータを構成する熱可塑性樹脂の種類によっては、接合部の強度が小さくなる場合があるため、セパレータ間に介在させる層は、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成されたものを使用することが好ましい。すなわち、セパレータ同士を直接溶着したり、セパレータを構成する熱可塑性樹脂と同種の樹脂で構成される層を介してセパレータ同士を溶着したりした場合には、接合部の強度がセパレータ自身の強度とほぼ同等となるため、例えば、電池の使用時に振動などによって生じる虞のある接合部での剥離が良好に抑制でき、更に信頼性の高い電池とすることができる。
なお、図8に示すように主体部と張り出し部とを有するセパレータを使用する場合、セパレータの主体部に係る周縁部は、全てが接合部となっていてもよいが、例えば、図8に示すように、周縁部の一部を、セパレータ同士を溶着せずに非溶着部7d、7dとして残してもよい。2枚のセパレータを溶着して袋状とした後に、その中に正極を収容したり、1枚のセパレータの上に正極を配置し、その正極の上に更にセパレータを配置して、セパレータの周縁部を溶着して袋状としたセパレータの中に正極を収容したりした場合、セパレータ内に空気が残留することがある。しかし、このような正極を用いて電池を製造する場合、外装ケースと封口ケースとをかしめる際に、前記の残留空気が、非溶着部7d、7dを通じてセパレータ外へ良好に排出されるため、セパレータ内の残留空気による問題(発電時の反応が不均一になって容量が低下するなどの問題)の発生を防止できる。
セパレータの周縁部に非溶着部を設ける場合、電池の生産性の低下を抑える観点から、その個数は1〜5個程度とすることが好ましい。また、セパレータの周縁部に非溶着部を設ける場合、セパレータの主体部に係る非溶着部の外縁の長さが、セパレータの主体部に係る外縁の全長さ(張り出し部を除く外縁の全長さ)の15〜60%程度することが好ましい。すなわち、セパレータの主体部においては、その外縁の全長さのうちの40%以上(好ましくは70%以上)が接合部であることが好ましく、これにより、セパレータ同士の接合強度を良好に確保することができる。
2枚のセパレータの周縁部に接合部を形成するとともに、これらのセパレータの間に正極を収容するには、2枚のセパレータ同士を直接溶着して接合部を形成する場合では、例えば、1枚のセパレータ上に正極を重ね、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、2枚のセパレータを重ね、これらの周縁部を溶着してセパレータ同士を接合し、その後、これらのセパレータ間に正極を挿入する方法を採用することもできる。
一方、2枚のセパレータ同士の間にセパレータの構成樹脂と同種の樹脂で構成された層を介在させ、これらを溶着して接合部を形成する場合では、例えば、1枚のセパレータ上の接合部となることが予定される箇所に前記層となるフィルムを置き、かつこのセパレータ上に正極を配置し、更にその上にセパレータを重ねた後、これらのセパレータの周縁部を溶着する方法が採用できる。また、1枚のセパレータ上の接合部となることが予定されている箇所に前記層となるフィルムを置き、このセパレータとフィルムとを予め溶着しておき、その後、このセパレータに正極、セパレータの順に重ねて周縁部を溶着する方法や、2枚のセパレータの間に前記層となるフィルムを介在させて溶着して接合部を形成した後に、これらのセパレータ間に正極を挿入する方法を採用することもできる。
セパレータの周縁部の溶着は、例えば、加熱プレスにより行うことができる。この場合、加熱温度は、セパレータを構成する熱可塑性樹脂の融点よりも高い温度であればよいが、例えば、融点より10〜50℃高い温度で行うことが好ましい。また、加熱プレスの時間については、良好に接合部が形成できれば特に制限はないが、通常は、1〜10秒程度とする。
なお、本発明の電池に使用するセパレータの平面形状は、例えば、前記のようにセパレータの周縁部の少なくとも一部に接合部(正極の両面に配置された2枚のセパレータに係る周縁部の少なくとも一部を、互いに溶着することにより形成する接合部)を形成する場合には、図8に示す形状であることが好ましいが、前記接合部を形成しない場合でも、図8に示す形状とすることが好ましい。
本発明の電池では、電極群の形成にあたり、少なくとも両側が負極と対向している正極の両面にはセパレータを配置するが、電極群の最外部に配置される正極、すなわち片側(片面)のみが負極と対向している正極については、その両面にセパレータを配置してもよく(更に、これらの2枚のセパレータに接合部を形成してもよい)、負極と対向する面にのみセパレータを配置しても構わない。更に、電極群に係る最外部の電極の両方を正極とし、これらの正極の両面にセパレータを配置しない場合には、負極端子を兼ねる電池ケースと電極群の最外部の正極との間には、ポリエチレンテレフタレート(PET)やポリイミドなどで形成されたテープなどからなる絶縁シールなどの絶縁体を配置する。
本発明の電池に係る正極の正極合剤層は、正極活物質、導電助剤、バインダなどを含有する層である。
本発明の電池に係る正極活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1−y、LiCo1−y、LiNi1−y、LiMnNiCo1−y−z、LiMn、LiMn2−yなどのリチウム遷移金属複合酸化物などが挙げられる(ただし、前記の各リチウム遷移金属複合酸化物において、Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも1種の金属元素であり、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2である。)。これらの正極活物質は1種単独で使用してもよく、2種以上を併用しても構わない。
また、正極の導電助剤としては、例えば、カーボンブラック、鱗片状黒鉛、ケッチェンブラック、アセチレンブラック、繊維状炭素などが挙げられる。更に、正極のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース、スチレンブタジエンラバーなどが挙げられる。
正極は、例えば、正極活物質と導電助剤とバインダとを混合して得られる正極合剤を水または有機溶剤に分散させて正極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを正極活物質などと混合して正極合剤含有ペーストを調製してもよい)、その正極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体の片面または両面に塗布し、乾燥した後、加圧成形することによって正極合剤層を形成して作製される。ただし、正極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。
正極の組成としては、例えば、正極を構成する正極合剤100質量%中、正極活物質を75〜90質量%、導電助剤を5〜20質量%、バインダを3〜15質量%とすることが好ましい。また、正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。
正極の集電体の素材としては、アルミニウムやアルミニウム合金が好ましい。なお、正極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、8〜20μmであることが好ましい。
本発明の電池に係る負極としては、活物質に、リチウム、リチウム合金、リチウムイオンを吸蔵放出可能な炭素材料、チタン酸リチウムなどを有する負極が挙げられる。
負極活物質に用い得るリチウム合金としては、例えば、リチウム−アルミニウム、リチウム−ガリウムなどのリチウムと可逆的に合金化するリチウム合金が挙げられ、リチウム含有量が、例えば1〜15原子%であることが好ましい。また、負極活物質に用い得る炭素材料としては、例えば、人造黒鉛、天然黒鉛、低結晶性カーボン、コークス、無煙炭などが挙げられる。
負極活物質に用い得るチタン酸リチウムとしては、一般式LiTiで表され、xとyがそれぞれ、0.8≦x≦1.4、1.6≦y≦2.2の化学量論数を持つチタン酸リチウムが好ましく、特にx=1.33、y=1.67の化学量論数を持つチタン酸リチウムが好ましい。前記一般式LiTiで表されるチタン酸リチウムは、例えば、酸化チタンとリチウム化合物とを760〜1100℃で熱処理することによって得ることができる。前記酸化チタンとしては、アナターゼ型、ルチル型のいずれも使用可能であり、リチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウムなどが用いられる。
負極は、負極活物質がリチウムやリチウム合金の場合は、リチウムやリチウム合金を金属網などの集電体に圧着することで、集電体の表面にリチウムやリチウム合金などからなる負極剤層を形成して得ることができる。他方、負極活物質として炭素材料やチタン酸リチウムを用いる場合は、例えば、負極活物質としての炭素材料やチタン酸リチウムとバインダ、更には必要に応じて導電助剤を混合して得られる負極合剤を水または有機溶剤に分散させて負極合剤含有ペーストを調製し(この場合、バインダは予め水または溶剤に溶解または分散させておき、それを負極活物質などと混合して負極合剤含有ペーストを調製してもよい)、その負極合剤含有ペーストを金属箔、エキスパンドメタル、平織り金網などからなる集電体に塗布し、乾燥した後、加圧成形することによって負極剤層(負極合剤層)を形成して負極を作製することができる。ただし、負極の作製方法は、前記例示の方法のみに限られることなく、他の方法によってもよい。
なお、負極に係るバインダおよび導電助剤としては、正極に用い得るものとして先に例示した各種バインダおよび導電助剤を用いることができる。
負極活物質に炭素材料を用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、炭素材料を80〜95質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。他方、負極活物質にチタン酸リチウムを用いる場合の負極の組成としては、例えば、負極を構成する負極合剤100質量%中、チタン酸リチウムを75〜90質量%、バインダを3〜15質量%とすることが好ましく、また、導電助剤を併用する場合には、導電助剤を5〜20質量%とすることが好ましい。
負極における負極剤層(負極合剤層を含む)の厚みは、例えば、40〜200μmであることが好ましい。
負極の集電体の素材としては、銅や銅合金が好ましい。なお、負極の総厚みを小さくし、電池内における正極および負極の積層数を増やすことで正極合剤層と負極剤層との対向面積を大きくして、電池の負荷特性を高める観点からは、集電体には金属箔を使用することが好ましい。また、集電体の厚みは、例えば、5〜30μmであることが好ましい。
セパレータには、熱可塑性樹脂製の微多孔膜で構成されたものを使用する。セパレータを構成する熱可塑性樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、ポリメチルペンテンなどのポリオレフィンが好ましく、セパレータ同士を溶着したり、セパレータ間にセパレータの構成樹脂と同種の樹脂を配置して溶着したりする観点からは、その融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜180℃のポリオレフィンがより好ましい。
セパレータを構成する熱可塑性樹脂製の微多孔膜の形態としては、必要な電池特性が得られるだけのイオン伝導度を有していればどのような形態でもよいが、従来から知られている乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の微多孔膜(電池のセパレータとして汎用されている微多孔フィルム)が好ましい。
セパレータの厚みは、例えば、5〜25μmであることが好ましく、また、空孔率は、例えば、30〜70%であることが好ましい。
前記の正極、負極およびセパレータは、図1や図6、図7に示すように積層して積層型の電極群として使用するが、その際、各正極の集電タブ部が、電極群の平面視で同一方向を向くように配置され、かつ各負極の集電タブ部が、電極群の平面視で同一方向を向くように配置されていることが好ましい。これにより、正極および負極の集電がより容易となる。
更に、各正極の集電タブ部と、各負極の集電タブ部とは、電極群の平面視で互いに接触しないように配置されていればよいが、これらの接触をより良好に抑制し、かつ電池の生産をより良好にする観点からは、図8に示しているように、各正極の集電タブ部5bと各負極の集電タブ部6bとは、電極群の平面視で互いに対向する位置に配されていることがより好ましい。
また、正極、負極およびセパレータを積層して構成した電極群は、図8に示すように、その外周を、耐薬品性を有するポリプロピレンなどで構成された結束テープ9で結束して、各構成要素(セパレータに包まれた正極、および負極)の位置ずれを抑制することが好ましい。
電極群に係る正極および負極は、いずれも複数であり、電極の合計層数は、少なくとも4層であるが、それ以上(5層、6層、7層、8層など)とすることも可能である。ただし、正極および負極の積層数をあまり多くすると、扁平状電池としてのメリットが小さくなる虞があることから、通常は、40層以下とすることが好ましい。
電池に係る非水電解液としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネートなどの鎖状炭酸エステル;1,2−ジメトキシエタン、ジグライム(ジエチレングリコールメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、1,2−ジメトキシエタン、1,2−ジエトキシメタン、テトラヒドロフランなどのエーテル;などの有機溶媒に、電解質(リチウム塩)を0.3〜2.0mol/L程度の濃度に溶解させることによって調製した電解液を用いることができる。前記の有機溶媒は、それぞれ1種単独で用いてもよく、2種以上を併用しても構わない。
前記電解質としては、例えば、LiBF、LiPF、LiAsF、LiSbF、LiClO、LiCFSO、LiCSO、LiN(CFSO、LiN(CSOなどのリチウム塩が挙げられる。
本発明の扁平形非水二次電池の平面形状は円形である。他方、正極および負極の本体部の平面形状は、略円形としたり、長方形や正方形などの四角形などの多角形とすることもできるが、例えば、略円形とする場合には、対極の集電タブ部が配置される箇所に相当する部分は、対極の集電タブ部との接触を防止するために、図2に示すように切り落とした形状としておくことが好ましい。
図1や図6、図7では、外装ケースを正極ケースとし、封口ケースを負極ケースとした例を示したが、本発明の電池はこれに限定されず、必要に応じて、外装ケースを負極ケースとし、封口ケースを正極ケースとすることもできる。
本発明の扁平形非水二次電池は、従来から知られている扁平形非水二次電池と同様の用途に適用することができる。
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<正極の作製>
正極活物質としてLiCoOを、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて正極を作製した。まず、LiCoO:93部とカーボンブラック:3部とを混合し、得られた混合物とPVDF:4部を予めN−メチル−2−ピロリドン(NMP)に溶解させておいたバインダ溶液とを混合して正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストを厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布した。なお、正極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した正極合剤含有ペーストを乾燥して正極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の正極を得た。なお、この正極は、幅を40mmとし、正極合剤層形成部の厚みを140μmとなるようにした。
前記の帯状の正極を、正極合剤層形成部が本体部(円弧の部分の直径15.1mm)とし、正極合剤層未形成部が集電タブ部(幅3.5mm)となるように、図2に示す形状に打ち抜いて、電池用正極を得た。
<電池用正極とセパレータとの一体化>
前記の電池用正極の両面に、図8に示す形状のPE製微多孔膜セパレータ(厚み16μm)を配置し、図4に示す箇所を加熱プレス(温度170℃、プレス時間2秒)により溶着し、2枚のセパレータに係る主体部の周縁部の一部および張り出し部の周縁部の一部に接合部を形成して、電池用正極とセパレータとを一体化した。なお、2枚のセパレータに係る接合部の幅は、主体部、張り出し部とも0.3mmとし、張り出し部の周縁部における主体部からの突出方向の長さは0.5mmとした。また、2枚のセパレータの主体部の外縁のうち、90%の長さ部分を接合部とした。
<負極の作製>
負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて負極を作製した。前記黒鉛:94部とPVDF:6部と予めNMPに溶解させておいたバインダ溶液とを混合して、負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを厚さ10μmの銅箔からなる負極集電体の片面または両面にアプリケータにより塗布した。なお、負極合剤含有ペーストの塗布に際しては、塗布部と未塗布部とが5cmおきに連続するように、かつ集電体の両面に塗布したものでは、表面で塗布部とした箇所は、裏面でも塗布部となるようにした。続いて、塗布した負極合剤含有ペーストを乾燥して負極合剤層を形成し、その後、ロールプレスし、所定の大きさに切断して、帯状の負極を得た。なお、この負極は、幅を40mmとし、負極合剤層形成部の厚みを、集電体の両面に形成したものでは190μm、集電体の片面に形成したものでは100μmとなるようにした。
前記の帯状の負極を、負極合剤層形成部が本体部(円弧の部分の直径16.3mm)とし、負極合剤層未形成部が集電タブ部となるように、正極と同様の形状に打ち抜いて、集電体の片面に負極合剤層を有する電池用負極と、集電体の両面に負極合剤層を有する電池用負極とを得た。なお、集電体の片面の負極合剤層を有する電池用負極の一部については、前記の帯状の負極の集電体の露出面に、厚みが100μmのPETフィルムを貼り付けた後に打ち抜いた。
<電池の組み立て>
前記のセパレータと一体化した電池用正極7枚と、集電体の両面に負極合剤層を形成した電池用負極6枚と、集電体の片面に負極合剤層を形成した電池用負極2枚(このうち1枚は、集電体の露出面にPETフィルムを貼り付けたもの)とを用い、集電体の片面に負極合剤層を形成した電池用負極が最外部の電極になるように、電池用正極と電池用負極とを交互に重ねた。そして、各電池用正極の集電タブ部を纏めて溶接し、また、各電池用負極の集電タブ部を纏めて溶接して、電極群を形成した。なお、纏めた電池用正極の集電タブ部の端部は、その両角部を、曲率半径1.5mmの曲線状に切り落とした形状とした。
外装ケース内に前記の電極群を、PETフィルムが外装ケース内面と対向するように入れ、纏められた正極の集電タブ部を外装ケース内面に溶接した。また、封口ケースに絶縁ガスケットを装着し、非水電解液(LiPFをエチレンカーボネートとメチルエチルカーボネートとの体積比1:2の混合溶媒に、1.2mol/lの濃度で溶解した溶液)200mgを入れた後、電極群を収容した外装ケースを被せ、周囲をかしめて、直径20mm、厚み3.2mmの扁平形非水二次電池を得た。なお、前記の扁平形非水二次電池は、前記のA−B値を1.0mmに設定しており、電流値14mAでの放電で、放電容量が70mAhとなるように設計したものである。
比較例1
電極群において、纏められた正極の集電タブ部の端部の角部を切り落とした形状としなかった以外は、実施例1と同様にして扁平形非水二次電池を作製した。
実施例1および比較例1の扁平形非水二次電池を、それぞれ1250個作製し、その後に電池を分解して、電極群を収容した外装ケースを、絶縁ガスケットを装着した封口ケースに被せる際に、電極群に係る正極の集電タブ部の端部が絶縁ガスケットの開口端より外側に当たった痕跡(キズ)の有無を確認した。その結果、前記痕跡のあったものが、実施例1の電池では0個であったのに対し、比較例1の電池では6個であった。
1 扁平形非水二次電池
2 外装ケース
3 封口ケース
4 絶縁ガスケット
5 正極
5a 正極の本体部
5b 正極の集電タブ部
6 負極
6a 負極の本体部
6b 負極の集電タブ部
7 セパレータ
7a セパレータの主体部
7b セパレータの張り出し部
7c 接合部

Claims (5)

  1. 外装ケースと封口ケースとが絶縁ガスケットを介してカシメ封口されて形成された空間内に、複数の正極と複数の負極とがセパレータを介して交互に積層された電極群および非水電解液を有しており、平面視で円形の扁平形非水二次電池であって、
    前記正極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記正極の本体部には、集電体の片面または両面に正極活物質を含む正極合剤層が形成されており、前記正極の集電タブ部では、前記集電体に正極合剤層が形成されておらず、
    前記負極は、本体部と、平面視で、前記本体部から突出した、前記本体部よりも幅の狭い集電タブ部とを有しており、前記負極の本体部には、集電体の片面または両面に負極活物質を含む負極剤層が形成されており、前記負極の集電タブ部では、前記集電体に負極剤層が形成されておらず、
    前記電極群では、前記正極の各集電タブ部が纏められて溶接され、端部が平面視で電極群の外側へ向くように折り曲げられており、かつ前記負極の各集電タブ部が纏められて溶接され、端部が平面視で電極群の外側へ向くように折り曲げられており、
    纏められた前記正極の集電タブ部の端部、および纏められた前記負極の集電タブ部の端部の少なくとも一方は、角部が切り落とされた形状をしていることを特徴とする扁平形非水二次電池。
  2. 絶縁ガスケットの内径をAとし、電極群の平面視で、纏められた正極の集電タブ部の端部から、纏められた負極の集電タブ部の端部までの最長距離をBとしたとき、AとBとの差A−Bが0.1〜1.5mmである請求項1に記載の扁平形非水二次電池。
  3. 外装ケースおよび封口ケースのいずれか一方が、纏められた各正極の集電タブ部または電極群の最外部に配置された正極の本体部における集電体の露出部と接続し、外装ケースおよび封口ケースの他方が、纏められた各負極の集電タブ部または電極群の最外部に配置された負極の本体部における集電体の露出部と接続している請求項1または2に記載の扁平形非水二次電池。
  4. 少なくとも両側が負極と対向している正極の両面には、熱可塑性樹脂製の微多孔膜からなるセパレータが配置されており、かつ前記2枚のセパレータは、その周縁部の少なくとも一部において、互いに溶着された接合部を有している請求項1〜3のいずれかに記載の扁平形非水二次電池。
  5. セパレータを構成する熱可塑性樹脂が、ポリオレフィンである請求項4に記載の扁平形非水二次電池。
JP2009285884A 2009-12-17 2009-12-17 扁平形非水二次電池 Pending JP2011129330A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285884A JP2011129330A (ja) 2009-12-17 2009-12-17 扁平形非水二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285884A JP2011129330A (ja) 2009-12-17 2009-12-17 扁平形非水二次電池

Publications (1)

Publication Number Publication Date
JP2011129330A true JP2011129330A (ja) 2011-06-30

Family

ID=44291710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285884A Pending JP2011129330A (ja) 2009-12-17 2009-12-17 扁平形非水二次電池

Country Status (1)

Country Link
JP (1) JP2011129330A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187265A (ja) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd 扁平形非水二次電池およびその製造方法
JP2011187392A (ja) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd 扁平形非水二次電池
CN110663133A (zh) * 2018-02-20 2020-01-07 株式会社Lg化学 制造电极组件的设备和方法
WO2021088221A1 (zh) * 2019-11-05 2021-05-14 广东微电新能源有限公司 纽扣电池以及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187265A (ja) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd 扁平形非水二次電池およびその製造方法
JP2011187392A (ja) * 2010-03-11 2011-09-22 Hitachi Maxell Energy Ltd 扁平形非水二次電池
CN110663133A (zh) * 2018-02-20 2020-01-07 株式会社Lg化学 制造电极组件的设备和方法
WO2021088221A1 (zh) * 2019-11-05 2021-05-14 广东微电新能源有限公司 纽扣电池以及电子设备

Similar Documents

Publication Publication Date Title
JP5735096B2 (ja) 非水二次電池用電極の製造方法、および非水二次電池の製造方法
WO2011065345A1 (ja) 扁平形非水二次電池
JP6081745B2 (ja) 扁平形非水二次電池
JP5483587B2 (ja) 電池およびその製造方法
JP2011159491A (ja) 扁平形非水二次電池
JP5348720B2 (ja) 扁平形非水二次電池
JP2014049371A (ja) 扁平形非水二次電池およびその製造方法
JP5495270B2 (ja) 電池
JP2012064366A (ja) 扁平形非水二次電池およびその製造方法
JP5562655B2 (ja) 扁平形非水二次電池
JP6283288B2 (ja) 扁平形非水二次電池
JP5377249B2 (ja) 扁平形非水二次電池
JP2011129330A (ja) 扁平形非水二次電池
JP5528304B2 (ja) 扁平形非水二次電池
JP5528305B2 (ja) 扁平形非水二次電池
JP6240265B2 (ja) 扁平形非水二次電池の製造方法
JP5681358B2 (ja) 扁平形非水二次電池
JP2011154784A (ja) 扁平形非水二次電池
JP5562654B2 (ja) 扁平形非水二次電池
JP5473063B2 (ja) 扁平形非水二次電池およびその製造方法
JP5566671B2 (ja) 扁平形非水二次電池
JP2011187266A (ja) 扁平形非水二次電池
JP5377250B2 (ja) 扁平形非水二次電池
JP2011187392A (ja) 扁平形非水二次電池
JP2009043424A (ja) 扁平形非水電解液二次電池

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526