JP2011118134A - 光走査装置およびそれを備えた画像形成装置 - Google Patents

光走査装置およびそれを備えた画像形成装置 Download PDF

Info

Publication number
JP2011118134A
JP2011118134A JP2009275145A JP2009275145A JP2011118134A JP 2011118134 A JP2011118134 A JP 2011118134A JP 2009275145 A JP2009275145 A JP 2009275145A JP 2009275145 A JP2009275145 A JP 2009275145A JP 2011118134 A JP2011118134 A JP 2011118134A
Authority
JP
Japan
Prior art keywords
optical
incident
polygon mirror
scanning
photosensitive drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009275145A
Other languages
English (en)
Inventor
Atsushi Ueda
篤 上田
Nobuhiro Shirai
伸弘 白井
Takahisa Narisei
隆久 成清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009275145A priority Critical patent/JP2011118134A/ja
Publication of JP2011118134A publication Critical patent/JP2011118134A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】回転多面鏡の反射面へのレーザビームの入射位置を調整しても、各光学部品の位置関係を変化させることなく、光学性能に対する影響を抑え、被走査体上に均一な光を照射することが可能となる。
【解決手段】このレーザ走査装置13は、走査光学系100の部品、すなわちLD101、コリメータレンズ102、アパーチャ103、エクスパンダレンズ107,108、シリンドリカルレンズ104を組み込んだユニット110を形成する。そして、そのユニット110を回転あるいは平行移動させて回転多面鏡106の反射面への入射位置を調整させることで、光学の位置関係を変化させることなく、また、光学性能に対する影響を少なくし、被走査体(感光体ドラム17)上に均一な光を照射することを可能とする。
【選択図】図6

Description

本発明は、レーザビームを画像情報に応じて被走査体上に走査露光することにより、画像を記録するレーザプリンタやディジタル複写機等に使用されるオーバーフィル走査型の光走査装置およびそれを備えた画像形成装置に関するものであり、より詳細には、被走査体の主走査方向に細長い形状のビームの異なる領域を回転多面鏡で反射して走査する光走査装置およびそれを備えた画像形成装置に関するものである。
回転方向に複数の反射面を有した回転多面鏡に向かって照射される光ビーム(以下「入射ビーム」と称する)を回転多面鏡の反射面で反射して形成した光ビーム(以下「出射ビーム」と称する)により被走査体を走査する光走査装置として、大別して、2種類の光走査装置が知られている。それらは、入射ビームを回転多面鏡の1つの反射面の一部分のみに照射する光走査装置(以下「アンダーフィル型光走査装置」と称する)と、回転多面鏡の1つの反射面の回転方向の幅より広く形成した入射ビームの一部を回転多面鏡の反射面により反射する光走査装置(以下「オーバーフィル型光走査装置」と称する)である。
アンダーフィル型光走査装置に比較して、オーバーフィル型光走査装置は、次のような特徴がある。
オーバーフィル型光走査装置は、光学系の透過光率の低さを補うためにより高出力のレーザダイオード等の光源が必要である。また、より高品質な走査を要するような場合に出射ビームが走査する被走査体上の主走査方向における光量が不均一であるというマイナス面もある。一方で、被走査体上に一定サイズのビームスポットを生じさせるのに必要な反射面の大きさを非常に小さくできるので、同一直径の回転多面鏡に、より多くの反射面を設けることが可能であり、これにより、回転多面鏡を比較的低い回転速度で動作させることが可能となり、よりパワーの小さいモータと駆動装置とを回転多面鏡を回転させる駆動系として利用することができるというプラス面も有している。
さて、高出力のレーザダイオード等の光源が必要であるという点は、昨今では、高出力のレーザダイオード等のレーザ光源が一般に用いられるようになってきており、大きな問題ではなくなっている。そこで、もう一つの光量の不均一の点に関して改善する手法として特許文献1に開示されている。特許文献1には、オーバーフィル光学系の光走査装置で、走査方向の光量分布の均一化のため、ポリゴンミラーまでの各光学素子、特に第2反射ミラーで調整することが記載されている。
図11は、特許文献1に記載のオーバーフィル光学系の光走査装置を示す図である。
レーザ光源510の出射側には、コリメータレンズ512、スリット514、及び副走査方向(サジタル方向)にパワーを有する第1シリンドリカルレンズ516が順に配置され、第1シリンドリカルレンズ516の出射側には第1反射ミラー518が設置されている。第1反射ミラー518の反射側には第2反射ミラー520が設けられており、第1反射ミラー518で反射されたレーザビームは、第2反射ミラー520に入射される。第2反射ミラー520の反射側には、主走査方向(タンジェンシャル方向)にパワーを有する第2シリンドリカルレンズ522、フィルター524、副走査方向(サジタル方向)にパワーを有する第3シリンドリカルレンズ526、及びポリゴンミラー528が順に配置されている。ポリゴンミラー528は、所定速度で回転する略正12角柱形状の各面に反射ミラー528Aが形成されており、第2反射ミラー520で反射されたレーザビームが第2シリンドリカルレンズ522、フィルター524、及び第3シリンドリカルレンズ526を介して入射される。
なお、ポリゴンミラー528へ向けたレーザビームは(主走査方向について)、ポリゴンミラー528の1つの反射ミラー528Aの範囲より大きな光束とされ、所謂オーバーフィルド光学系を構成している。レーザ光源510乃至ポリゴンミラー528までの光路を調整する調整素子は、第2反射ミラー520を保持または固定する部材520iである。
特開2006−58523号公報
一般には、オーバーフィル型光走査方式において、ポリゴンミラーに対して入射系レーザの使用部位が回転と共に異なり、ポリゴンミラーでの反射レーザ光の強度分布と使用部位の関係にて、レーザの被走査体に対する一走査全域にて一定の像面光量とすることは難しいとされてきた。そこで、特許文献1では、第2反射ミラー520により一走査全域にて一定の像面光量となるように調整しているが、第2反射ミラー520だけで反射ミラー528Aの入射位置を調整すると、光学の位置関係が悪くなり、また性能が落ち、ビーム系不良が発生する。
すなわち、特許文献1では、第2反射ミラー520を回転させることにより調整するが、反射レーザ光はシリンドリカルレンズ522,526に主走査方向で斜めに入り、被走査体(感光体)の像面上での波面収差が悪くなり、ビーム径が大きくなる。従って、レーザの被走査体に対する一走査範囲において、反射レーザ光のシリンドリカルレンズ522,526に対する入射角度によりビーム系が変動し、結局、像面光量を均一に保てない。
本発明は、斯かる実情に鑑み、回転多面鏡の反射面へのレーザビームの入射位置を調整しても、各光学部品の位置関係を変化させることなく、光学性能に対する影響を抑え、被走査体上に均一な光を照射することが可能となる光走査装置およびそれを備えた画像形成装置を提供することを目的とする。
本発明は、被走査体への走査領域外から回転多面鏡へ、光源からの光を入射させるオーバーフィル光学系の光走査装置において、
前記光源から前記回転多面鏡までの間に設けた入射光学系の全光学部材を組み込む調整部材と、前記調整部材を移動させて、前記回転多面鏡の反射面への入射位置を調整する調整手段と、を備えたことを特徴とするものである。
前記調整手段は、前記調整部材を入射光軸に対して垂直方向に移動調整することを特徴とする。
また、前記調整手段は、前記回転多面鏡の近傍に位置する点を中心に、前記調整部材を回転調整することを特徴とする。
ここで、前記点とは、前記光源の光軸と、前記被走査体上の有効走査領域のセンターとを結んだ点である。
また、本発明は、レーザ光の照射により表面に静電潜像が形成される感光体ドラムと、回転多面鏡を用いて前記感光体ドラムにレーザ光を偏向走査する光走査装置と、前記感光体ドラム表面の静電潜像にトナーを供給してトナー像を形成する現像装置と、前記感光体ドラム表面のトナー像を記録媒体に転写する転写装置と、転写されたトナー像を記録媒体に定着させる定着装置とを備えた画像形成装置において、前記光走査装置として、前記光走査装置を用いることを特徴とするものである。
本発明によれば、入射光学系全体を一体的に調整することで、光学の位置関係を変化させることなく、レンズの設計通りの位置に光線があるため、波面収差が悪くなりにくく、ビーム径が安定している。更には、被走査体上に均一な光を照射することができるので、良好な画像を得ることが可能となる。
本発明に係る画像形成装置の全体構成を示す図である。 本発明に係る光走査装置の概略を示す図である。 ポリゴンミラーへのビームの斜め入射の場合、出射光量を説明する図である。 レーザビームによる走査領域を模式的に説明した図である。 被走査体上の光量分布を示すグラフである。 本発明の光走査装置を示す図であり、(a)は正面図、(b)はA−Aによる断面図である。 ユニットの第1実施例を示す図であり、(a)は平面図、(b)はB−Bによる断面図である。 第1実施例のユニットを入射光軸に対して垂直方向に移動させて光量調整を説明する図である。 ユニットの第2実施例を示す平面図である。 第2実施例のユニットを入射光軸に対して垂直方向に移動させて光量調整を説明する図である。 従来の光走査装置を示す図である。
以下、本発明の実施の形態を添付図面を参照して説明する。
〔画像形成装置の構成〕
本発明の画像形成装置の一実施形態について図に基づいて説明する。図1は、本実施形態の画像形成装置11の全体構成を示す図である。
画像形成装置11は、外部端末または画像形成装置11上部に設置されているスキャナ1から受信したディジタル画像データに基づいて用紙にモノクロ画像(単色且つ黒色画像)を形成する電子写真方式のプリンタである。
図1に示すように、画像形成装置11は、レーザ走査装置13、現像器15、感光体ドラム17、帯電器19、クリーナユニット21、定着ユニット23、給紙トレイ25、レジストローラ29、給紙搬送路27、用紙搬送路31、排紙トレイ33等より構成されている。
なお、給紙搬送路27は、給紙トレイ25からレジストローラ29の配置位置に至る範囲に形成されている経路である。用紙搬送路31は、レジストローラ29の配置位置から、画像転写部47、定着ユニット23を経て排紙トレイ33に至る範囲に形成されている経路である。
帯電器19は、感光体ドラム17の外周面を所定の電位に均一に帯電させるための帯電手段であり、図1の画像形成装置11ではチャージャー型の帯電器19が用いられているが、感光体ドラム17に接触する構成のローラ型の帯電器やブラシ型の帯電器が用いられてもよい。
レーザ走査装置(光走査装置)13は、レーザスキャニングユニット(LSU)である。レーザ走査装置13は、入力された画像データに応じて、帯電器19によって均一に帯電された感光体ドラム17の外周面を露光することによって、感光体ドラム17の外周面に上記入力画像データに応じた静電潜像を形成するものである。なお、レーザ走査装置13の構成については後で詳述する。
現像器15は感光体ドラム17の外周面に形成された静電潜像に対してトナーを供給することによって当該静電潜像を現像する(顕像化する)ものである。クリーナユニット21は、現像・画像転写後における感光体ドラム17の外周面に残留したトナーを除去または回収するものである。
感光体ドラム(感光材料)17の外周面にて顕像化されたトナー像(画像)は画像転写部47において用紙上に転写される。この転写を行うための転写機構39には、感光体ドラム17の外周面に付着しているトナーに帯電している電荷の極性とは逆極性の電界が印加されており、この電界によって感光体ドラム17の外周面に付着しているトナーが用紙に転写される。例えば、感光体ドラム17の外周面のトナーがマイナス極性の電荷を帯びている場合、転写機構39へ印加される電界の極性はプラス極性となる。
転写機構39は、駆動ローラ41と従動ローラ43と弾性導電性ローラ49と他のローラとこれらローラに架けられる転写ベルト45とを有する構成である。
転写ベルト45は、体積抵抗値が1×10Ω・cm〜1×1013Ω・cmのベルト部材である。また、感光体ドラム17と転写ベルト45とが接触している領域である画像転写部47の近傍には、転写電界を印加するための弾性導電性ローラ49が配置されている。
弾性導電性ローラ49は、転写ベルト45を感光体ドラム17に押し付けるように転写ベルト45および感光体ドラム17を押圧している。これによって、感光体ドラム17と転写ベルト45との接触領域である画像転写部47(転写ニップ部)は、線形状ではなく、所定幅を有する面形状になっている。それゆえ、搬送される用紙への転写効率の向上が図られる。
さらに、画像転写部47よりも用紙搬送方向下流側には、画像転写部47を通過する際に帯電した用紙に対して除電処理を行い、定着ユニット23へ向けて用紙をスムーズに搬送するための除電ローラ51が配置されている。除電ローラ51は、転写ベルト45の背面に配置されている。
また、転写機構39には、転写ベルト45のトナー汚れを除去するクリーニングユニット53と、転写ベルト45に対して除電処理を行う除電機構55とが配置されている。除電機構55による除電手法としては、装置を介して転写ベルト45を接地する手法、若しくは前記転写電界の極性とは逆極性の電界を転写ベルト45に印加する手法がある。なお、転写機構39によってトナー像(画像)の転写された用紙は定着ユニット23に搬送される。
定着ユニット23は、加熱ローラ57、加圧ローラ59を備えており、加熱ローラ57の周囲には、用紙剥離爪61、サーミスタ63(ローラ表面温度検出部材)、ローラ表面クリーニング部材65が配置される。また、加熱ローラ57の内部には、ローラの外周面を所定温度(定着設定温度:概ね160〜200℃)に加熱するための熱源67が配置されている。
加圧ローラ59の軸方向両端部においては荷重バネ等の機構が備えられており、この機構によって加圧ローラ59は加熱ローラ57に対して所定の荷重で圧接されている。また、加圧ローラ59の周囲には、加熱ローラ57の周囲と同様に、用紙剥離爪、ローラ表面クリーニング部材が配置されている。
定着ユニット23においては、加熱ローラ57と加圧ローラ59との圧接部である定着処理部にて、加熱ローラ57表面の温度と加圧ローラ59による圧接力とによって用紙上の未定着トナー像が当該用紙に熱定着される。
給紙トレイ25は、印刷に使用するシート(記録用紙)を蓄積しておくためのトレイであり、本実施形態の画像形成装置11では、感光体ドラム17や転写機構39等から構成される画像形成部の下側に設けられている。なお、本実施形態の画像形成装置11では、極めて大量の用紙に対しても連続印刷を可能にすべく、定型サイズの用紙を500〜1500枚収納可能な給紙トレイ25を複数配置するようにしている。
さらに、装置の側面には、互いに異なる複数の種類の用紙を多量に収納可能な大容量給紙カセット73、並びに主に不定型サイズの用紙に対して印刷を行う際に用いられる手差しトレイ75が配置されている。
排紙トレイ33は、手差しトレイ75とは反対側の装置側面に配置されているが、排紙トレイ33を取り外し、排紙用紙の後処理装置(ステープル、パンチ処理等)や、複数段排紙トレイをオプションとして配置する事も可能な構成となっている。
また、画像形成装置11には、装置の動作を制御するための制御部(図示せず)が備えられる。制御部は、たとえば、マイクロコンピュータと、前記マイクロコンピュータが実行する処理の手順を示した制御プログラムを格納するROM(Read Only Memory)と、作業用のワークエリアを提供するRAM(Random Access Memory)と、制御に必要なデータをバックアップして保持する不揮発性メモリと、センサやスイッチからの信号を入力する回路であって入力バッファやA/D変換回路を含む入力回路と、モータやソレノイドまたはランプなどを駆動するドライバを含む出力回路とから構成される。
つぎに、画像形成装置11において実行される用紙搬送について詳細に説明する。まず、制御部が、給紙トレイ25を選択し、給紙搬送路27に沿って設けられている各ローラを制御することによって、前記選択した給紙トレイ25に収納されている用紙をレジストローラ29へ向けて搬送する。これにより、用紙はレジストローラ29の手前に到達し一旦停止する。
つぎに、制御部は、レジストローラ29を再回転させることによって、用紙の先端の位置と感光体ドラム17の外周に形成されている画像の先端の位置とが合致するように用紙を画像転写部47に搬送する。
そして、転写機構39によって用紙上に画像(トナー像)が転写され、その後、用紙は、定着ユニット23へ導かれ、用紙に転写されたトナーからなる画像は当該用紙に定着され、排紙トレイ33に排出される。
〔レーザ走査装置の構成〕
つぎに、図1に示したレーザ走査装置13の構成について詳細に説明する。図2は、レーザ走査装置13の構成を示した図である。
図2に示すレーザ走査装置13は、入力された画像データに応じてレーザビームを射出するレーザダイオード(光源)101と、レーザダイオード(LD)101から射出されたレーザビームを偏向することによって当該レーザビームを走査する回転多面鏡(ポリゴンミラー)106と、回転多面鏡106によって走査されたレーザビームを反射して感光体ドラム17の外周面に対して照射するための折り返しミラー205とを含む。
なお、本実施形態においては、LD101から回転多面鏡106までの光路を入射光路とし、回転多面鏡106から折り返しミラー205までの光路を出射光路と称する。また、図2に示すように、入射光路上に配置されている光学部品の総称を走査光学系100と称し、出射光路上に配置されている光学部品の総称を出射光学系200と称する。
走査光学系100においては、図2に示すように、入射光路における光の進行方向の上流から下流に向けて、LD101と、コリメータレンズ102と、アパーチャ103と、エクスパンダレンズ107と、エクスパンダレンズ108と、第1シリンドリカルレンズ104と、回転多面鏡106とがこの順に配されている。
コリメータレンズ102は、LD101から拡散するように射出される円錐状のレーザビームを平行状のレーザビームに整形する光学部品である。アパーチャ103は、中央部に矩形状の開口が形成された板状部材であり、レーザビームにおける光軸に垂直な断面が円形状から矩形状になるようにレーザビームを整形する光学部品である。第1シリンドリカルレンズ104は、回転多面鏡106の反射面に対してレーザビームを集束させるための光学部品である。
エクスパンダレンズ107と、エクスパンダレンズ108は平行光にするレンズである。
なお、レーザ走査装置13の走査光学系100ではオーバーフィルド方式が採用される。それゆえ、回転多面鏡106に集束されるレーザビームのスポットの面積が回転多面鏡106における一つの反射面の面積よりも大きくなるように、走査光学系100の各光学部品は設計されている。
回転多面鏡106は、複数の反射面が形成された回転体であり、図示しないドライバによって回転駆動される。そして、第1シリンドリカルレンズ104によって回転多面鏡106の反射面にレーザビームが集束されると、回転多面鏡106は、出射光学系200に向けて当該レーザビームを反射する。さらに、回転多面鏡106は、反射するレーザビームが主走査方向に沿って走査されるように回転駆動している。
なお、図2に示すように、本実施形態においては、主走査方向での前記光線が走査される範囲を走査範囲と称する。また、主走査方向は、感光体ドラム17の回転軸と平行な方向である。
出射光学系200においては、図2に示すように、出射光路における光の進行方向の上流から下流に向けて、fθレンズ202,203、第2シリンドリカルレンズ204、折り返しミラー205がこの順に配されている。
fθレンズ202,203は、図2の走査範囲の端部付近に反射されるレーザビームの光路長と図2の走査範囲の中央付近に向けて反射されるレーザビームの光路長との相違に起因して生じる画像の歪みを補正するための光学部品である。第2シリンドリカルレンズ204は、第1シリンドリカルレンズ104との相互作用によって、回転多面鏡106の面倒れを補正するための光学部品である。折り返しミラー205は、ガラス板にアルミニウム蒸着を施して作成された光反射部材であり、第2シリンドリカルレンズ204を通過してきたレーザビームを反射して感光体ドラム17の外周面へ導くものである。
以上の構成により、LD101から射出したレーザビームは、回転多面鏡106の一つの反射面と当該反射面に隣接する反射面の一部領域とに跨るように、回転多面鏡106に照射される(オーバーフィル)。そして、回転多面鏡106からレーザビームが反射され、反射されたレーザビームは、反射位置に応じて異なる光路を通って感光体ドラム17に至る。
レーザビームは、感光体ドラム17上の主走査ラインを定期的に走査するが、感光体ドラム17は回転しているため、一定期間毎に感光体ドラム17上の異なる場所を走査することになる。レーザビームが感光体ドラム17を走査する毎に、主走査ラインの書き始め点Pr2が同一となるように、書き始め時点を各走査毎に同期させることが必要である。この同期を取るための信号として、主走査ビーム域以外のレーザビーム(以下この出射ビームを「同期検出ビーム」と称する)を検出している。この同期検出ビームは、fθレンズ202,203を通過した後に、同期ビーム折り返しミラー301により回転多面鏡106側に折り返されて、同期検出センサ302に導かれ、同期検出を行なう。
図2において、感光体ドラム17に対し主走査ラインの走査開始点はPr2、センター点はPc2、走査終了点はPf2となる。
次に、このレーザ走査装置13による被走査体(感光体ドラム17)に対する光量不均一について説明する。
図3は、回転多面鏡で反射したレーザビームの出射が、(a)入射逆側、(b)中央(センター)、(c)入射側の方向へ出射された場合の、出射パワー(光量)を説明する図である。即ち、ポリゴンミラーへのビームの斜め入射の場合、出射光量が一番高いのはどこかを説明する図である。
図3(a)〜(c)に示すような正規分布のパワー分布を有するレーザビームが回転多面鏡106に入射されるとする。図3(d)に示すように、正規分布のパワー分布において、入射ビーム幅における斜線部の面積が入射光量となる。
オーバーフィル光学系は、図3のように、回転多面鏡106の複数面に、LD101からのビームが、幅をもって入射するようになっている。この入射ビームは、図3のような入射ビームパワー分布(入射ビーム光量分布)をもっている。その内、本例では、ポリゴンミラー106の1面が、被走査体である感光体ドラム17に向けて出射しており、他は被走査体以外の方向に向かって出射している。入射パワー(光量)は、(a)入射逆側と(c)入射側では、入射ビームパワー分布端を使用するため小さい(パワー分布の面積がパワーとなる)。(b)センターでは、入射ビームパワー分布のセンターを使用するため最大となる。
入射ビーム幅は、(a)入射逆側、(b)センター、(c)入射側の順に大きくなる。入射角度は、(a)入射逆側、(b)センター、(c)入射側の順に小さくなり、角度が小さいほど、出射への反射率が高い。こうして、上記の理由から、入射側に反射する光の方が、入射逆側に反射する光より強度が大きくなる。従って、出射パワーは(a)入射逆側、(b)センター、(c)入射側の順に大きくなる。
図4は、レーザビームによる走査領域を模式的に説明した図である。光源(LD101)を走査領域外に設け、走査領域外から回転多面鏡106への入射を行った場合、回転多面鏡106の回転により出射ビームが走査する有効走査領域Pr2〜Pf2を示す。点Hは、入射光軸と有効走査領域のセンターPc2を結んだ点であり、設計上では点Hは、回転多面鏡106上に位置する。点Hと有効走査領域のセンターPc2を結ぶ線上を像高0とし、像高0から入射逆側(走査開始側)の方向を−方向、像高0から入射側(走査終了側)を+方向とし、両方向とも一定の光量に調節する。
図5は、被走査体上の光量分布を示すグラフであり、(a)は調整前の光量分布、(b)は調整後の光量分布を示す。図4のように、光源(LD101)を走査領域外に設け、走査領域外から回転多面鏡106への入射を行うと、図5(a)に示すように、被写体(像面)上でのLD101の出射パワー(光量)が、走査終了側の方が傾向的に大きくなる。すなわち、被写体(像面)上での入射側のほうが入射逆側よりも像面での光量が大きくなる。本発明は、図5(b)に示すように、回転多面鏡106への入射を調整することにより、被走査体(感光体ドラム17)上の有効走査領域における光量を均一化するように調整するものである。
図6は本発明の光走査装置を示しており、図6(a)は正面図、図6(b)はA−Aによる断面図である。
このレーザ走査装置13は、走査光学系100の部品、すなわちLD101、コリメータレンズ102、アパーチャ103、エクスパンダレンズ107,108、シリンドリカルレンズ104を組み込んだユニット110を形成する。そして、調整部材としてのユニット110を回転あるいは平行移動させる調整手段を設けて回転多面鏡106の反射面への入射位置を調整させることで、光学の位置関係を変化させることなく、また、光学性能に対する影響を少なくし、被走査体(感光体ドラム17)上に均一な光を照射することを可能とする。
〔ユニット110の第1実施例〕
ユニット110の第1実施例は、入射光軸に対して垂直方向に移動させて、回転多面鏡106への入射位置を変え、感光体ドラム17上での光量分布を均一に調整するものである。
図7は、ユニット110の第1実施例を示す図であり、(a)は平面図、(b)はB−Bによる断面図である。
この調整部材であるユニットを110Aとする。ユニット110Aは、入射ベース(入射ブラケット)111に、走査光学系100の部品を組み込んだ構成である。組み込む走査光学系100は、LD101、コリメータレンズ102、アパーチャ103、エクスパンダレンズ107,108、シリンドリカルレンズ104であり、これらが光軸など予め調整されて入射ベース111に組み込まれ固定されている。
入射ベース111は、入射光軸に垂直な方向に長い長穴112が2つ両サイドに形成され、さらにレーザ走査装置13の本体にビス固定する穴113が3箇所設けられている。レーザ走査装置13の本体には入射ベース111の移動調整用のボス114が設けられている。
調整手段である入射ベース111の長穴112にボス114を差し込み、長穴112に沿ってボス114を移動することにより、入射ベース111を入射光軸に対して垂直方向に移動させて、光量調整を行なう。調整が完了後、穴113にビスを通してレーザ走査装置13の本体にビス固定する。
図8は、ユニット110Aを入射光軸に対して垂直方向に移動させて光量調整を説明する図である。同図の(a)はユニット110Aを備えたレーザ走査装置の平面図、(b)、(c)は光量の分布を示す図である。
図8(a)に示すように、ユニット110Aは、入射光軸に対して垂直方向であるA方向及びB方向に移動して、光量が有効走査領域で均一となるように、回転多面鏡106への入射位置を調整する。
図8(b)に示すように、入射逆側(走査開始側)の−方向から入射側(走査終了側)の+方向へ光量が増加する場合は、ユニット110AをA方向に移動する。また、図8(c)に示すように、入射逆側(走査開始側)の−方向から入射側(走査終了側)の+方向へ光量が減少する場合は、ユニット110AをB方向に移動する。こうして、有効走査領域の光量を均一化できる。
〔ユニット110の第2実施例〕
調整部材であるユニット110の第2実施例は、回転多面鏡106の近傍に位置する点を中心に、すなわち、光源(LD101)の光軸と、有効走査領域のセンターとを結んだ点を中心に調整部材を回転させて感光体ドラム17上での光量分布を均一に調整するものである。
図9は、ユニット110の第2実施例を示す平面図である。
このユニットを110Bとする。ユニット110Bは、入射ベース(入射ブラケット)115に、走査光学系100の部品を組み込んだ構成である。組み込む走査光学系100は、LD101、コリメータレンズ102、アパーチャ103、エクスパンダレンズ107,108、シリンドリカルレンズ104であり、これらが光軸など予め調整されて入射ベース115に組み込まれ固定されている。入射ベース115は、入射光軸に沿ってレーザビームの出射方向に回転多面鏡106の近傍まで延びる形状であり、その先端部に穴116が形成される。一方、レーザ走査装置13の本体には、穴116に差し込むボスが形成されている。
ボスを調整手段である穴116に差し込むことにより、ここを中心にユニット110Bを回転することができ、光量調整を行なう。調整完了後、穴113にビスを通してレーザ走査装置13の本体に固定する。
図10は、ユニット110Bを入射光軸に対して垂直方向に移動させて光量調整を説明する図である。同図の(a)はユニット110Bを備えたレーザ走査装置の平面図、(b)、(c)は光量の分布を示す図である。
図10(a)に示すように、ユニット110Bを、光源(LD101)の光軸と、有効走査領域のセンターとを結んだ点を中心にA方向あるいはB方向に回転させて、光量が有効走査領域で均一となるように、回転多面鏡106への入射位置を調整する。
図10(b)に示すように、入射逆側(走査開始側)の−方向から入射側(走査終了側)の+方向へ光量が増加する場合は、ユニット110BをB方向に回転移動する。また、図10(c)に示すように、入射逆側(走査開始側)の−方向から入射側(走査終了側)の+方向へ光量が減少する場合は、ユニット110BをA方向に回転移動する。
こうして、光源(LD)の光軸と、有効走査領域のセンターとを結んだ点を中心に回転調整させることで、光量を像高0を中心に調整できるので、+と−方向の同じ像高では同じ光量を理論的には調整できる。
こうして、この発明では、オーバーフィル光学系の光走査装置において、光源から回転多面鏡までの間に設けた入射光学系の全光学部材を調整部材とユニット化し、そのユニットを回転あるいは平行移動させて、回転多面鏡の反射面への入射位置を調整させることで、光学の位置関係を変化させることなく、また、光学性能に影響が少なくし、被走査体上に均一な光を照射することが可能となる。
11 画像形成装置
13 レーザ走査装置
100 走査光学系
102 コリメータレンズ
103 アパーチャ
104 第1シリンドリカルレンズ
106 ポリゴンミラー(回転多面鏡)
107,108 エクスパンダレンズ
110,110A,110B ユニット
111 入射ベース
112 長穴
113 穴
114 ボス
115 入射ベース
116 穴
200 出射光学系
202,203 fθレンズ
204 第2シリンドリカルレンズ
205 折り返しミラー
301 同期ビーム折り返しミラー
302 同期検出センサ

Claims (5)

  1. 被走査体への走査領域外から回転多面鏡へ、光源からの光を入射させるオーバーフィル光学系の光走査装置において、
    前記光源から前記回転多面鏡までの間に設けた入射光学系の全光学部材を組み込む調整部材と、
    前記調整部材を移動させて、前記回転多面鏡の反射面への入射位置を調整する調整手段と、
    を備えたことを特徴とする光走査装置。
  2. 前記調整手段は、前記調整部材を入射光軸に対して垂直方向に移動調整することを特徴とする請求項1に記載の光走査装置。
  3. 前記調整手段は、前記回転多面鏡の近傍に位置する点を中心に、前記調整部材を回転調整することを特徴とする請求項1に記載の光走査装置。
  4. 前記点とは、前記光源の光軸と、前記被走査体上の有効走査領域のセンターとを結んだ点であることを特徴とする請求項3に記載の光走査装置。
  5. レーザ光の照射により表面に静電潜像が形成される感光体ドラムと、回転多面鏡を用いて前記感光体ドラムにレーザ光を偏向走査する光走査装置と、前記感光体ドラム表面の静電潜像にトナーを供給してトナー像を形成する現像装置と、前記感光体ドラム表面のトナー像を記録媒体に転写する転写装置と、転写されたトナー像を記録媒体に定着させる定着装置とを備えた画像形成装置において、
    前記光走査装置として、請求項1乃至4のうちの何れか一項に記載の光走査装置を用いることを特徴とする画像形成装置。
JP2009275145A 2009-12-03 2009-12-03 光走査装置およびそれを備えた画像形成装置 Pending JP2011118134A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275145A JP2011118134A (ja) 2009-12-03 2009-12-03 光走査装置およびそれを備えた画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275145A JP2011118134A (ja) 2009-12-03 2009-12-03 光走査装置およびそれを備えた画像形成装置

Publications (1)

Publication Number Publication Date
JP2011118134A true JP2011118134A (ja) 2011-06-16

Family

ID=44283551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275145A Pending JP2011118134A (ja) 2009-12-03 2009-12-03 光走査装置およびそれを備えた画像形成装置

Country Status (1)

Country Link
JP (1) JP2011118134A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183086A1 (ja) * 2016-04-18 2017-10-26 株式会社島津製作所 質量分析装置
CN110031965A (zh) * 2016-05-06 2019-07-19 株式会社尼康 描绘装置
US11460790B2 (en) 2019-12-10 2022-10-04 Sharp Kabushiki Kaisha Optical scanning device and image forming apparatus including same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183086A1 (ja) * 2016-04-18 2017-10-26 株式会社島津製作所 質量分析装置
JPWO2017183086A1 (ja) * 2016-04-18 2018-11-08 株式会社島津製作所 質量分析装置
CN110031965A (zh) * 2016-05-06 2019-07-19 株式会社尼康 描绘装置
US11460790B2 (en) 2019-12-10 2022-10-04 Sharp Kabushiki Kaisha Optical scanning device and image forming apparatus including same

Similar Documents

Publication Publication Date Title
JP3671025B2 (ja) 光走査装置及び画像形成装置
JP6147042B2 (ja) 画像形成装置
JP2006267398A (ja) 走査光学装置及び画像形成装置
JP2006323159A (ja) 光走査装置及び画像形成装置
JP2007171851A (ja) レーザ走査光学系及び画像形成装置
JP2011118224A (ja) 光学走査装置及びそれを備えた画像形成装置
JP4799138B2 (ja) 光学部品固定機構、光走査装置、及び画像形成装置
JP2011118134A (ja) 光走査装置およびそれを備えた画像形成装置
JP2010008605A (ja) 光走査装置及び画像形成装置
JP2007047748A (ja) 光走査装置及び画像形成装置
JP2006337514A (ja) 光走査装置及び画像形成装置
US5018806A (en) Image forming apparatus
JP4430143B2 (ja) 光学装置
JP2011081233A (ja) 光走査装置及びこれを備えた画像形成装置
JP2007047749A (ja) 光走査装置、画像形成装置及びレンズ
JP2006106735A (ja) 光走査装置
JP2011090188A (ja) 光走査装置及びこれを用いる画像形成装置
JP5494281B2 (ja) 光走査装置及び画像形成装置
JP2005049509A (ja) 光走査装置及び画像形成装置
JP4534577B2 (ja) 光走査装置および画像形成装置
JP2006337515A (ja) 光走査装置及び画像形成装置
JP2005049506A (ja) 光走査装置及び画像形成装置
JP5793471B2 (ja) 露光装置及び画像形成装置
JP5079060B2 (ja) 光走査装置および画像形成装置
JP2009025738A (ja) 光走査装置、画像形成装置