JP2011090188A - 光走査装置及びこれを用いる画像形成装置 - Google Patents

光走査装置及びこれを用いる画像形成装置 Download PDF

Info

Publication number
JP2011090188A
JP2011090188A JP2009244282A JP2009244282A JP2011090188A JP 2011090188 A JP2011090188 A JP 2011090188A JP 2009244282 A JP2009244282 A JP 2009244282A JP 2009244282 A JP2009244282 A JP 2009244282A JP 2011090188 A JP2011090188 A JP 2011090188A
Authority
JP
Japan
Prior art keywords
polygon mirror
incident
laser beam
photosensitive drum
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009244282A
Other languages
English (en)
Inventor
Manabu Matsuo
学 松尾
Nobuhiro Shirai
伸弘 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009244282A priority Critical patent/JP2011090188A/ja
Publication of JP2011090188A publication Critical patent/JP2011090188A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】光走査装置において、簡単な構成で像面位置での走査開始位置と終了位置との光量分布の差を減少させて安定した走査を可能にした光走査装置及びこれを用いる画像形成装置を提供する。
【解決手段】レーザビームLBを照射するLD101と、複数の反射面106aを有するポリゴンミラー106と、入射光学系100と、出射光学系200とを備え、レーザビームLBの照射により静電潜像が形成される感光体ドラム17にレーザビームLBを偏向走査する光走査装置13であって、反射面106aをポリゴンミラー106の回転軸の軸線方向に対して傾斜して形成し、入射光学系100をポリゴンミラー106の回転軸の軸線方向側で反射面106aに向って配置され、反射面106aにおける出射光学系200の出射領域の中心位置にレーザビームLBを入射することを特徴とするものとする。
【選択図】図2

Description

本発明は、光走査装置及びこれを用いる画像形成装置に関し、特に、複写機やプリンタ、ファクシミリ等の電子写真方式の画像形成装置に用いられる光走査装置及びこれを用いる画像形成装置に関する。
光源から照射されたレーザ光を複数の反射面を有した回転多面鏡(以下、「ポリゴンミラー」と称する。)で反射させ、被走査体(感光体ドラム)を走査する光走査装置として、大別して2種類の光走査装置が知られている。1つは、ポリゴンミラーの1つの反射面より狭い幅のレーザ光を照射してレーザ光をポリゴンミラーで反射させる光走査装置(以下、アンダーフィル光学系の光走査装置と称する)である。もう1つは、ポリゴンミラーの1つの反射面よりも広い幅のレーザ光を照射してポリゴンミラーで反射させる光走査装置(以下、オーバーフィル光学系の光走査装置と称する。)である。
従来のオーバーフィル光学系の光走査装置において、斜め下方向より入射光をポリゴンミラーへ入射させ入射光軸と出射光軸を分離する方法や、横方向から大きな角度を持たせてポリゴンミラーに入射させる方法が実施されてきた。
ここで、従来の光走査装置について、図面を参照して説明する。
図10(a)〜(d)は従来の光走査装置の一構成を示す説明図であって、(a)はポリゴンミラーにより被走査体の走査開始位置へ向うレーザビームを示す説明図、(b)は前記被走査体の走査中央位置に向うレーザビームを示す説明図、(c)は前記被走査体の走査終了位置に向うレーザビームを示す説明図、(d)は前記ポリゴンミラーで反射したレーザビームの前記被走査体における反入射側、中央側及び入射側の像面パワー分布を示す説明図、図11はレーザビームの前記ポリゴンミラーに照射される照射位置に応じた照射状態を示す表である。
従来の光走査装置4013は、図10(a)〜(c)に示すように、ポリゴンミラー4106が、例えば、感光体ドラムなどの被走査体(図示省略)の略中央位置と対向する位置に配置され、ポリゴンミラー4106に対して光源(レーザーダイオード:LD)が被走査体への走査領域外に配置され、この光源(以下、「LD」と称する。)からポリゴンミラー4106への入射光(レーザ光)を該ポリゴンミラー4106で反射させて、被走査体へ出射するようにされている。
ここで、被走査体と該被走査体に対向するポリゴンミラー4106に対して、LDが配置される側(図中右側)を「入射側」として、LDが配置されない側(図中左側)を「反入射側」とする。
具体的には、光走査装置4013は、走査開始時には、図10(a)に示すように、入射側からポリゴンミラー4106の反射面4106aに入射して、反射面4106aで反射したレーザ光(以下、「レーザビーム」と称する。)LBが、ポリゴンミラー4106の反入射側に出射されて、図10(d)に示すように、被走査体の反入射側の走査開始位置S1より走査する。
そして、ポリゴンミラー4106が回転して、走査工程の略半分の時には、ポリゴンミラー4106の反射面4106aで反射したレーザビームLBは、図10(b)に示すように、前記被走査体に対して略垂直に出射されて、図10(d)に示すように、被走査体の走査中央位置S2に出射される。
さらに、ポリゴンミラー4106が回転して、走査終了時では、ポリゴンミラー4106の反射面4106aで反射したレーザビームLBは、図10(c)に示すように、ポリゴンミラー4106の入射側に出射されて、図10(d)に示すように、被走査体の入射側の走査終了位置S3まで走査する。
尚、上述した光走査装置4013は、オーバーフィル光学系により構成され、図10(a)〜(c)に示すように、LDからのレーザビームLBがポリゴンミラー4106の複数の反射面4106aに照射されるように、所定の入射ビーム幅W0をもってポリゴンミラー4106に入射するようになっている。
また、入射ビームLB0は、図10(a)〜(c)に示すように、入射ビームパワー分布(入射ビーム光量分布)Dがビームの幅方向中央部では高くなり、ビームの幅方向両端部に向うに連れて低くなるような特性をもっている。そして、本例では、ポリゴンミラー4106の反射面4106aに入射したレーザビームLBが被走査体に向けて出射しており、他は被走査体以外の方向に向かって出射している。
そして、レーザビームLBのポリゴンミラー4106に照射される照射位置に応じた照射状態は、図11に示すような結果となる。
詳しくは、LDからポリゴンミラー4106に照射されるビームの入射ビームパワー(光量)D0は、走査開始位置S1では、図10(a)に示すように、入射ビームパワー分布Dの端部領域を使用するため小さくなる(パワー分布の面積がパワーとなる)。
走査開始位置S1における使用ビーム幅W1は、入射ビームの反射面4106aに対する入射角θ1が大きくなるため、使用ビーム幅W1が小さくなる。
また、走査中央位置S2では、図10(b)に示すように、入射ビームパワー分布Dの中央部領域を使用するため、入射ビームパワーD0は走査開始位置S1よりも大きくなる。
図10(b)に示すように、走査中央位置S2における使用ビーム幅W2は、入射ビームの反射面4106aに対する入射角θ2が走査開始位置S1の状態よりも小さくため、走査開始位置S1の使用ビーム幅W1よりも大きくなる。
また、走査終了位置S3では、図10(c)に示すように、入射ビームパワー分布Dの中央部及び端部領域を使用するため、入射ビームパワーD0はさらに大きくなる。
走査終了位置S3における使用ビーム幅W3は、入射ビームの反射面4106aに対する入射角θ3が走査中央位置S2の状態よりもさらに小さくため、走査中央位置S2の使用ビーム幅W2よりもさらに大きくなる。
すなわち、走査終了位置S3では、使用ビーム幅W3は、反入射側の走査開始位置S1及び走査中央位置S2の使用ビーム幅W1,W2に比べて大きくなる。また、走査終了位置S3では、入射角θ3が反入射側の走査開始位置S1及び走査中央位置S2の入射角θ1,θ2に比べて小さくなり、入射角θ3が小さいほど出射への反射率が高くなる。
上記の理由から、被走査体における走査領域の入射ビームパワーD0は、図10(d)に示すように、入射側の走査終了位置S3に反射する光の方が反入射側の走査開始位置S1に反射する光より強度が大きくなる。従って、被走査体における走査開始位置S1と走査終了位置S3とでは、入射ビームの光量分布に大きな差が生じてしまう。
また、従来の光走査装置のその他の構成として、軽量のポリゴンミラーの製作、モールド成型の際の金型との離形作業等の能率向上を図るために、ポリゴンミラーの反射面を傾斜させる構成を備えるものが開示されている(特許文献1を参照)。
特開昭61−170719号公報
しかしながら、回転多面鏡の反射面を傾斜させる構成とした場合、例えば、感光体ドラム上に静電潜像が形成される「像面位置」での光量分布が走査開始位置と終了位置とで大きな差が生じてしまうという問題があった。
本発明は、上記従来の問題に鑑みてなれたもので、光走査装置において、簡単な構成で像面位置での走査開始位置と終了位置との光量分布の差を減少させて安定した走査を可能にした光走査装置及びこれを用いる画像形成装置を提供することを目的とするものである。
上述した課題を解決するために本発明に係る本発明に係る光走査装置及びこれを用いる画像形成装置の各構成は、次の通りである。
本発明は、レーザ光を照射する光源と、前記光源からのレーザ光を反射偏向させる複数の反射面を有する回転多面鏡と、前記光源からのレーザ光を反射偏向させて前記回転多面鏡に入射するための入射光学系と、前記回転多面鏡によって反射偏向されたレーザ光を出射するための出射光学系と、を備え、前記回転多面鏡を用いてレーザ光の照射により静電潜像が形成される感光体ドラムにレーザ光を偏向走査する光走査装置であって、前記回転多面鏡として、前記反射面を前記回転多面鏡の回転軸の軸線方向に対して傾斜して形成し、前記入射光学系を、前記回転多面鏡の回転軸の軸線方向側(軸線の向かう側)で前記反射面に向って配置し、前記反射面における前記出射光学系の出射領域の中心位置に前記レーザ光を入射させることを特徴とするものである。
また、本発明は、前記入射光学系を、前記反射面に向かい前記回転軸の軸線方向に沿って前記レーザ光を入射することが好ましい。
また、本発明は、前記反射面を、入射されるレーザ光に対する傾斜角度が45度未満となるようにすることが好ましい。
また、本発明は、前記入射光学系を、前記反射面で反射して出射されるレーザ光の出射方向に対して前記反射面よりも反出射方向側に配置することが好ましい。
また、本発明は、前記出射光学系として、前記レーザ光を前記感光体ドラム上に結像させる結像レンズ(例えば、fθレンズ)を備え、前記結像レンズを、出射側のレンズ面が、前記感光体ドラムに向かって出射されるレーザ光の走査領域(出射領域)の中心線を基準に線対称(左右対称)に形成することが好ましい。
また、本発明は、レーザ光の照射により表面に静電潜像が形成される感光体ドラムと、回転多面鏡を用いて前記感光体ドラムにレーザ光を偏向走査する光走査装置と、前記感光体ドラム表面の静電潜像にトナーを供給してトナー像を形成する現像装置と、前記感光体ドラム表面のトナー像を記録媒体に転写する転写装置と、転写されたトナー像を記録媒体に定着させる定着装置とを備えた画像形成装置において、前記光走査装置として、請求項1乃至5のうちの何れか一項に記載の光走査装置を用いることを特徴とするものである。
本発明によれば、レーザ光を照射する光源と、前記光源からのレーザ光を反射偏向させる複数の反射面を有する回転多面鏡と、前記光源からのレーザ光を反射偏向させて前記回転多面鏡に入射するための入射光学系と、前記回転多面鏡によって反射偏向されたレーザ光を出射するための出射光学系と、を備え、前記回転多面鏡を用いてレーザ光の照射により静電潜像が形成される感光体ドラムにレーザ光を偏向走査する光走査装置であって、前記回転多面鏡として、前記反射面を前記回転多面鏡の回転軸の軸線方向に対して傾斜して形成し、前記入射光学系を、前記回転多面鏡の回転軸の軸線方向側で前記反射面に向って配置し、前記反射面における前記出射光学系の出射領域の中心位置に前記レーザ光を入射させることで、前記感光体ドラム上の走査開始位置と終了位置との光量分布の差を減少させて安定した走査を可能にできる。
また、走査開始位置、終了位置での回転多面鏡の反射面へのレーザ光の入射角度が略同等となるため、例えば、出射光学系を構成するfθレンズを左右同一形状とすることが可能となる。さらに、回転多面鏡の反射面を傾斜させて形成することで、前記回転多面鏡の回転時に発生する風切り音を軽減させることができる。
また、本発明によれば、前記入射光学系を、前記反射面に向かい前記回転軸の軸線方向に沿って前記レーザ光を入射するようにすることで、像面位置での光量分布の補正ができ、シェーディング改善が可能となる。
また、本発明によれば、前記反射面を、入射されるレーザ光に対する傾斜角度が45度未満となるようにすることで、同じ回転多面鏡の厚さでも、回転軸の軸線方向に沿って(すなわち、垂直上方より)入射されるレーザ光に対する反射面の有効領域が従来の構成(すなわち、回転軸の軸線方向に沿って平行に形成された反射面)よりも広くなり、前記反射面でのレーザ光のケラレに対してマージンを大きくできる。
また、本発明によれば、前記入射光学系を、前記反射面で反射して出射されるレーザ光の出射方向に対して前記反射面よりも反出射方向側に配置することで、前記入射光学系の配置可能な領域を増やすことができるので、装置構成の自由度が増し、装置の小型化が可能となる。
また、本発明によれば、前記出射光学系として、前記レーザ光を前記感光体ドラム上に結像させる結像レンズ(fθレンズ)を備え、前記結像レンズを、出射側のレンズ面が前記出射光学系による前記感光体ドラムに対する有効走査領域の中心線を基準に線対称(左右対称)に形成することで、レンズ設計が容易となる。
また、本発明によれば、レーザ光の照射により表面に静電潜像が形成される感光体ドラムと、回転多面鏡を用いて前記感光体ドラムにレーザ光を偏向走査する光走査装置と、前記感光体ドラム表面の静電潜像にトナーを供給してトナー像を形成する現像装置と、前記感光体ドラム表面のトナー像を記録媒体に転写する転写装置と、転写されたトナー像を記録媒体に定着させる定着装置とを備えた画像形成装置において、前記光走査装置として、請求項1乃至5のうちの何れか一項に記載の光走査装置を用いることで、前記感光体ドラム上の走査開始位置と終了位置との光量分布の差を減少させて安定した走査を可能にできるので、安定した画像形成を実現できる。
本発明の実施形態に係る光走査装置を設けた画像形成装置の全体の構成を示す説明図である。 前記光走査装置の構成を示す説明図である。 (a)は前記光走査装置の第1実施例を構成するポリゴンミラーの平面視による説明図、(b)は前記ポリゴンミラーの側面視による説明図、(c)は(b)のA部の部分詳細図である。 (a)は前記ポリゴンミラーにより感光体ドラム上の走査開始位置へ向うレーザビームを示す説明図、(b)は前記感光体ドラム上の走査中央位置に向うレーザビームを示す説明図、(c)は前記感光体ドラム上の走査終了位置に向うレーザビームを示す説明図、(d)は、前記ポリゴンミラーで反射したレーザビームの前記感光体ドラムにおける反入射側、中央側及び入射側の像面パワー分布を示す説明図である。 レーザビームの前記ポリゴンミラーに照射される照射位置に応じた照射状態を示す表である。 (a)は従来のポリゴンミラーの平面視による説明図、(b)は従来のポリゴンミラーの側面視による説明図、(c)は(b)のB部の部分詳細図である。 (a)は前記光走査装置の第2実施例を構成するポリゴンミラーの平面視による説明図、(b)は前記ポリゴンミラーの側面視による説明図、(c)は(b)のC部の部分詳細図である。 (a)は従来のポリゴンミラーの平面視による説明図、(b)は従来のポリゴンミラーの側面視による説明図、(c)は(b)のD部の部分詳細図である。 前記光走査装置の第3実施例の出射光学系の構成を示す説明図である。 (a)は従来の光走査装置におけるポリゴンミラーにより被走査体の走査開始位置へ向うレーザビームを示す説明図、(b)は前記被走査体の走査中央位置に向うレーザビームを示す説明図、(c)は前記被走査体の走査終了位置に向うレーザビームを示す説明図、(d)は前記ポリゴンミラーで反射したレーザビームの前記被走査体における反入射側、中央側及び入射側の像面パワー分布を示す説明図である。 レーザビームの前記ポリゴンミラーに照射される照射位置に応じた照射状態を示す表である。
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
図1は本発明の実施形態に係る光走査装置を設けた画像形成装置の全体の構成を示す説明図である。
本実施形態は、図1に示すように、レーザビーム(レーザ光)の照射により表面に静電潜像が形成される感光体ドラム17と、感光体ドラム17にレーザビームを偏向走査する光走査装置13と、感光体ドラム17表面の静電潜像にトナーを供給してトナー像を形成する現像器(現像装置)15と、感光体ドラム17表面のトナー像を記録媒体に転写する転写機構(転写装置)39と、転写されたトナー像を記録媒体に定着させる定着ユニット(定着装置)23とを備えた画像形成装置11において、光走査装置13として、本発明に係る光走査装置の構成を採用したものである。
まず、画像形成装置11の全体構成について説明する。
画像形成装置11は、図1に示すように、外部端末または画像形成装置11上部に設置されているスキャナ1から受信したデジタル画像データに基づいて用紙にモノクロ画像(単色且つ黒色画像)を形成する電子写真方式のプリンタである。
画像形成装置11は、主に、光走査装置13、現像器15、感光体ドラム17、帯電器19、クリーナユニット21、定着ユニット23、給紙トレイ(給紙カセット)25、レジストローラ29、給紙搬送路27、用紙搬送路31、排紙トレイ33等より構成されている。
給紙搬送路27は、給紙トレイ25からレジストローラ29の配置位置に至る範囲に形成されている経路である。用紙搬送路31は、レジストローラ29の配置位置から、画像転写部47、定着ユニット23を経て排紙トレイ33に至る範囲に形成されている経路である。
帯電器19は、感光体ドラム17の外周面を所定の電位に均一に帯電させるための帯電手段である。帯電器19は、感光体ドラム17を挟んで転写機構39が配置する位置と略反対側で感光体ドラム17の外周面に接触するように配置されている。尚、本実施形態では、チャージャー型の帯電器19が用いられているが、感光体ドラム17に接触する構成のローラ型の帯電器やブラシ型の帯電器が用いられてもよい。
光走査装置13は、レーザスキャニングユニット(LSU)である。光走査装置13は、入力された画像データに応じて、帯電器19によって均一に帯電された感光体ドラム17の外周面を露光することによって、感光体ドラム17の外周面に上記入力画像データに応じた静電潜像を形成するものである。なお、光走査装置13の構成については後で詳述する。
感光体ドラム17は、外周面の一部が用紙搬送路31の表面に接触するように配置されるとともに、ドラムの外周面に沿って電界発生部としての帯電器19、現像器15、及びクリーナユニット21が近接配置されている。
現像器15は、感光体ドラム17の外周面に形成された静電潜像に対してトナーを供給することによって当該静電潜像を現像する(顕像化する)ものである。現像器15は、ブラック(K)のトナーが収納されており、感光体ドラム回転方向で帯電器19より下流側に配置されている。そして感光体ドラム17の外周面に形成された静電潜像にトナーを供給して顕著化するように構成されている。
クリーナユニット21は、現像・画像転写後における感光体ドラム17の外周面に残留したトナーを除去または回収するものである。クリーナユニット21は、クリーニングブレードを備え、該クリーニングブレードを感光体ドラム17の外周面に沿って当接(または摺接)するように配置されている。
帯電された感光体ドラム17は、図2に示すように矢印方向に回転駆動され、レーザビームによって照射され主走査方向に繰り返し走査される。これにより感光体ドラム17の表面に、静電潜像が形成される。現像器15によってトナーが供給され、感光体ドラム17上に形成された静電潜像は顕著化しトナー像(画像)となる。
感光体ドラム17の外周面にて顕像化されたトナー像は画像転写部47において用紙上に転写される。この転写を行うための転写機構39には、感光体ドラム17の外周面に付着しているトナーに帯電している電荷の極性とは逆極性の電界が印加されており、この電界によって感光体ドラム17の外周面に付着しているトナーが用紙に転写される。
例えば、感光体ドラム17の外周面のトナーがマイナス極性の電荷を帯びている場合、転写機構39へ印加される電界の極性はプラス極性となる。
転写機構39は、主に、駆動ローラ41、従動ローラ43、弾性導電性ローラ49及びその他のローラと、これらローラに架けられる転写ベルト45とを有して構成されている。そして、この転写機構39は、感光体ドラム17の下方向に配置されている。
転写ベルト45は、体積抵抗値が1×109Ω・cm〜1×1013Ω・cmのベルト部材で構成されている。また、感光体ドラム17と転写ベルト45とが接触している領域である画像転写部47の近傍には、転写電界を印加するための弾性導電性ローラ49が配置されている。
弾性導電性ローラ49は、転写ベルト45を感光体ドラム17に押し付けるように転写ベルト45および感光体ドラム17を押圧している。これによって、感光体ドラム17と転写ベルト45との接触領域(転写ニップ部)である画像転写部47は、線形状ではなく、所定幅を有する面形状になっている。それゆえ、搬送される用紙への転写効率の向上が図られる。
さらに、画像転写部47よりも用紙搬送方向下流側には、画像転写部47を通過する際に帯電した用紙に対して除電処理を行い、定着ユニット23へ向けて用紙をスムーズに搬送するための除電ローラ51が配置されている。除電ローラ51は、転写ベルト45の背面に配置されている。
また、転写機構39には、転写ベルト45のトナー汚れを除去するクリーニングユニット53と、転写ベルト45に対して除電処理を行う除電機構55とが配置されている。除電機構55による除電手法としては、装置を介して転写ベルト45を接地する手法、若しくは前記転写電界の極性とは逆極性の電界を転写ベルト45に印加する手法がある。
なお、転写機構39によってトナー像(画像)の転写された用紙は定着ユニット23に搬送される。
定着ユニット23は、加熱ローラ57、加圧ローラ59を備えて構成され、加熱ローラ57と加圧ローラ59とにより記録用紙を挟んで回転搬送するような構成となっている。
加熱ローラ57の周囲には、用紙剥離爪61、サーミスタ63(ローラ表面温度検出部材)、ローラ表面クリーニング部材65が配置される。また、加熱ローラ57の内部には、ローラの外周面を所定温度(定着設定温度:概ね160〜200℃)に加熱するための熱源67が配置されている。
加圧ローラ59の軸方向両端部においては荷重バネ等の機構が備えられており、この機構によって加圧ローラ59は加熱ローラ57に対して所定の荷重で圧接されている。また、加圧ローラ59の周囲には、加熱ローラ57の周囲と同様に、用紙剥離爪、ローラ表面クリーニング部材(図示省略)が配置されている。
定着ユニット23においては、加熱ローラ57と加圧ローラ59との圧接部である定着処理部にて、加熱ローラ57表面の温度と加圧ローラ59による圧接力とによって用紙上の未定着トナー像が当該用紙に熱定着される。
給紙トレイ25は、印刷に使用するシート(記録用紙)を蓄積しておくためのトレイであり、本実施形態の画像形成装置11では、感光体ドラム17や転写機構39等から構成される画像形成部の下側に設けられている。なお、本実施形態の画像形成装置11では、極めて大量の用紙に対しても連続印刷を可能にすべく、定型サイズの用紙を500〜1500枚収納可能な給紙トレイ25を複数配置するようにしている。
さらに、装置の側面には、互いに異なる複数の種類の用紙を多量に収納可能な大容量給紙カセット73、並びに主に不定型サイズの用紙に対して印刷を行う際に用いられる手差しトレイ75が配置されている。
画像形成装置11本体の側面には、排紙トレイ33が設けられ、印刷済みの記録用紙がフェイスダウンで排出されて積載されるようになっている。
排紙トレイ33は、手差しトレイ75とは反対側の装置側面に配置されているが、排紙トレイ33を取り外し、排紙用紙の後処理装置(ステープル、パンチ処理等)や、複数段排紙トレイをオプションとして配置する事も可能な構成となっている。
また、画像形成装置11には、装置の動作を制御するための制御部(図示省略)が備えられる。制御部は、たとえば、マイクロコンピュータと、前記マイクロコンピュータが実行する処理の手順を示した制御プログラムを格納するROM(Read Only Memory)と、作業用のワークエリアを提供するRAM(Random Access Memory)と、制御に必要なデータをバックアップして保持する不揮発性メモリと、センサやスイッチからの信号を入力する回路であって入力バッファやA/D変換回路を含む入力回路と、モータやソレノイドまたはランプなどを駆動するドライバを含む出力回路とから構成される。
次に、画像形成装置11において実行される用紙搬送について詳細に説明する。
まず、制御部が、給紙トレイ25を選択し、給紙搬送路27に沿って設けられている各ローラを制御することによって、前記選択した給紙トレイ25に収納されている用紙をレジストローラ29へ向けて搬送する。これにより、用紙はレジストローラ29の手前に到達し一旦停止する。
次に、制御部は、レジストローラ29を再回転させることによって、用紙の先端の位置と感光体ドラム17の外周に形成されている画像の先端の位置とが合致するように用紙を画像転写部47に搬送する。
そして、転写機構39によって用紙上に画像(トナー像)が転写され、その後、用紙は、定着ユニット23へ導かれ、用紙に転写されたトナーからなる画像は当該用紙に定着され、排紙トレイ33に排出される。
さらに、制御部は、印刷モード(コピアモード、プリンタモードもしくはFAXモードなど)および印刷処理手法(片面印刷/両面印刷)の相違に応じて、定着ユニット23から排紙トレイ33までの搬送経路を切り換える。
通常、コピアモードでは、ユーザーが装置の近傍で操作を行う事から、印刷面を上側にして用紙を排出することが多い。これは、「フェースアップ排出」と呼ばれる。一方、プリンタ、FAXの各モードでは、ユーザーが装置の近傍にいない事から、排出用紙のページ順を揃える「フェイスダウン排出」手法が多く用いられている。
画像形成装置11では、印刷モードに応じてフェースアップ排出とフェイスダウン排出とを切り換え得る機構を有している。この切り換え機構は、定着ユニット23と排紙トレイ33との間に配置されている複数の搬送路と複数の分岐爪とから構成され、印刷モードに応じた用紙排出を行うようになっている。
次に、本実施形態に係る特徴的な光走査装置13の構成について図面を参照して詳細に説明する。
図2は、本実施形態に係る画像形成装置の光走査装置の構成を示す説明図である。
本実施形態の光走査装置13は、図2に示すように、入力された画像データに応じてレーザビームLBを射出するレーザダイオード(光源)101と、レーザダイオード101から射出されたレーザビームを偏向することによって当該レーザビームを走査するポリゴンミラー(回転多面鏡)106と、ポリゴンミラー106によって走査されたレーザビームを反射して感光体ドラム17の外周面に対して照射するための折り返しミラー205とを備えている。
尚、本実施形態においては、レーザダイオード101からポリゴンミラー106までの光路を入射光路とし、ポリゴンミラー106から折り返しミラー205までの光路を出射光路と称する。また、入射光路上に配置されている光学部品の総称を入射光学系100と称し、出射光路上に配置されている光学部品の総称を出射光学系200と称する。
入射光学系100においては、図2に示すように、入射光路における光の進行方向の上流から下流に向けて、レーザダイオード101と、コリメータレンズ102と、アパーチャ103と、第1シリンドリカルレンズ104と、ミラー105と、ポリゴンミラー106とがこの順に配されている。
コリメータレンズ102は、レーザダイオード101から拡散するように射出される円錐状のレーザビームを平行状のレーザビームに整形する光学部品である。
アパーチャ103は、中央部に矩形状の開口が形成された板状部材であり、レーザビームにおける光軸に垂直な断面が円形状から矩形状になるようにレーザビームを整形する光学部品である。
第1シリンドリカルレンズ104およびミラー105は、ポリゴンミラー106の反射面106aに対してレーザビームを集束させるための光学部品である。
ミラー105は、ポリゴンミラー106の回転軸(図示省略)の軸線CL1方向側で反射面106aに向って配置され、反射面106aにおける出射光学系200の出射領域の中心位置にレーザビームLBを入射するようにされている。また、ミラー105は、ポリゴンミラー106の反射面106aに向かい回転軸の軸線CL1方向に沿ってレーザビームLBを入射するように配置されている。
尚、本実施形態の光走査装置13の入射光学系100ではオーバーフィルド方式が採用される。それゆえ、ポリゴンミラー106に集束されるレーザビームLBのスポットの面積が、ポリゴンミラー106における一つの反射面106aの面積よりも大きくなるように、入射光学系100の各光学部品は設計されている。
ポリゴンミラー106は、複数の反射面106aが形成された回転体であり、図示しないドライバ(ポリゴンモータ)によって高速回転駆動される。そして、第1シリンドリカルレンズ104およびミラー105によってポリゴンミラー106の反射面106aにレーザビームが集束されると、ポリゴンミラー106は、出射光学系200に向けて当該レーザビームLBを反射する。さらに、ポリゴンミラー106は、反射するレーザビームLBが主走査方向(矢印X方向)に沿って走査されるように回転駆動される。
反射面106aは、ポリゴンミラー106の回転軸の軸線CL1方向に対して傾斜して形成されている。
尚、本実施形態においては、図2に示すように、主走査方向でのレーザビームLBが走査される範囲を走査範囲(走査領域)と称する。また、主走査方向は、感光体ドラム17の軸線方向と平行な方向である。
また、本実施形態では、説明の便宜上、図2に示すように、走査範囲の中央に走査されるレーザビームを「レーザビームLBc」とし、走査範囲の一方の端部(フロント側)に走査されるレーザビームを「レーザビームLBf」とし、走査範囲の他方の端部(リア側)に走査されるレーザビームを「レーザビームLBr」と称すこととする。
出射光学系200においては、図2に示すように、出射光路における光の進行方向の上流から下流に向けて、第1fθレンズ202、第2fθレンズ203、第2シリンドリカルレンズ204、折り返しミラー205がこの順に配されている。
第1fθレンズ202、第2fθレンズ203は、走査範囲の端部付近に反射されるレーザビームLBf,LBrの光路長と走査範囲の中央付近に向けて反射されるレーザビームLBcの光路長との相違に起因して生じる画像の歪みを補正するための光学部品である。
第2シリンドリカルレンズ204は、第1シリンドリカルレンズ104との相互作用によって、ポリゴンミラー106の面倒れを補正するための光学部品である。
折り返しミラー205は、折り返しミラー205は、ガラス板にアルミニウム蒸着を施して作成された光反射部材であり、第2シリンドリカルレンズ204を通過してきたレーザビームLBc,LBf,LBrを反射して感光体ドラム17の外周面へ導くものである。
ミラー206は、入射したレーザビームを反射してBDセンサ209に入射するものである。
尚、本実施形態の光源においてLD101が使用されているが、代わりにEL(Electro Luminescence)、LED(Light Emitting Diode)等の発光素子をアレイ状に並べた書込ヘッドを用いる構成であっても良い。
以上の構成により、レーザダイオード101から射出したレーザビームLBは、ポリゴンミラー106の一つの反射面106aと当該反射面106aに隣接する反射面の一部領域とに跨るように、ポリゴンミラー106に照射される。そして、ポリゴンミラー106からレーザビームLBが反射され、反射されたレーザビームLBは、反射位置に応じて異なる光路を通って感光体ドラム17に至る。
なお、前記レーザビームLBは、感光体ドラム17の外周において一定期間内に同一ライン上に走査される一方で(図2参照)、レーザビームLBが走査されるラインは感光体ドラム17が回転することによって一定期間毎に変更されることになる。
(第1実施例)
次に、本実施形態に係る光走査装置13の第1実施例について図面を参照して詳細に説明する。
図3(a)〜(c)は本実施形態に係る光走査装置の第1実施例の構成を示す説明図であって、(a)は前記光走査装置を構成するポリゴンミラーの平面視による説明図、(b)は前記ポリゴンミラーの側面視による説明図、(c)は(b)のA部の部分詳細図、図4(a)〜(d)は前記光走査装置による照射状態を示す説明図であって、(a)は前記ポリゴンミラーにより感光体ドラム上の走査開始位置へ向うレーザビームを示す説明図、(b)は前記感光体ドラム上の走査中央位置に向うレーザビームを示す説明図、(c)は前記感光体ドラム上の走査終了位置に向うレーザビームを示す説明図、(d)は、前記ポリゴンミラーで反射したレーザビームの前記感光体ドラムにおける反入射側、中央側及び入射側の像面パワー分布を示す説明図、図5はレーザビームの前記ポリゴンミラーに照射される照射位置に応じた照射状態を示す表、図6(a)〜(c)は第1実施例の比較例であって、(a)は従来のポリゴンミラーの平面視による説明図、(b)は従来のポリゴンミラーの側面視による説明図、(c)は(b)のB部の部分詳細図である。
第1実施例に係る光走査装置は、図3(a)〜(c)に示すように、LD(図示省略)から照射されたレーザビームLBが、ポリゴンミラー1106の回転軸の軸線CL1方向に沿って、すなわち、ポリゴンミラー1106に対して垂直上方から反射面1106aに入射して、水平方向に出射するように構成されている。図中の符号LB0は入射ビームを示す。
すなわち、反射面1106aは、図3(b)に示すように、入射されるレーザビームLBに対する傾斜角度θ11が45度になるように形成されている。
このように、第1実施例では、オーバーフィル光学系を用いて、ポリゴンミラー1106の垂直上方よりレーザビームLBを入射し、傾斜させた反射面1106aにて反射、走査させる。
レーザビームLBは、図4(a)〜(c)に示すように、ポリゴンミラー1106の中心線(出射光学系の中心線)CL2に対して両端側の反射角θa1が左右対称となるように走査される。そのため、入射ビームパワー分布Dは左右対称となり、図4(d)に示すように、感光体ドラム17における像面パワー分布は、走査開始位置Sfとなるフロント側及び走査終了位置Srとなるリア側では同じとなる。そして、走査中央位置Scにて像面パワーは最大となる。
ここで、レーザビームLBのポリゴンミラー1106に照射される照射位置に応じた照射状態を図5に示す。
図5に示すように、LDからポリゴンミラー1106に照射されるビームの入射ビームパワー(光量)D0は、走査開始位置Sfでは、図4(a)に示すように入射ビームパワー分布Dの端部領域を使用するため小さくなる(パワー分布の面積がパワーとなる)。
また、走査終了位置Srでは、図4(c)に示すように走査開始位置Sfと同様に入射ビームパワー分布Dの端部領域を使用するため小さくなる。
すなわち、レーザビームLBの入射ビームパワーD0は、走査中央位置Scで最大となり、走査開始位置Sf及び走査終了位置Srでは同様に走査中央位置Scよりも小さくなる。
また、ポリゴンミラー1106の走査開始位置Sf、走査中央位置Sc、走査終了位置SrにおけるレーザビームLBのそれぞれの使用ビーム幅W11,W12,W13は、ほぼ同等となる。
また、ポリゴンミラー1106に入射するレーザビームLBの反射面1106aに対する入射角θaは、図3(b)に示すように、全ての位置において同じとなる。
また、感光体ドラム17における像面パワーは、図5に示す像面パワー分布より、走査中央位置Scで最大となり、走査開始位置Sf及び走査終了位置Srでは同様に走査中央位置Scよりも小さくなる。
尚、走査中央位置Scのパワー値が走査開始位置Sf及び走査終了位置Srよりも高い値になるが、若干高くとも、印刷画像上、十分許容できるレベルである。例えば、走査中央位置Scの値を100とすると走査開始位置Sf及び走査終了位置Srにおける値は85以上であれば問題はない。
また、現状で像面パワー分布が良いとされるアンダーフィル光学系においても、走査中央位置のパワーが大きい傾向があるため、像面パワー分布は同等レベルとなるものと考えられる。
以上のように構成したので、第1実施例によれば、図6(a)〜(c)に示すように、ポリゴンミラー4106の回転方向に沿ってレーザビームLBを照射することなく、図3(a)〜(c)に示すように、ポリゴンミラー1106の傾斜した反射面1106aに向かいポリゴンミラー1106の回転軸の軸線CL1方向に沿ってレーザビームLBを照射することで、感光体ドラム17上の走査開始位置Sfと走査終了位置Srとの光量分布の差を減少させて安定した走査を可能にできる。
また、第1実施例によれば、ポリゴンミラー1106の反射面1106aに向かいポリゴンミラー1106の回転軸の軸線CL1方向に沿ってレーザビームLBを入射することで、レーザビームLBの入射角θaが変動しないため、感光体ドラム17の像面位置での光量分布の補正ができ、シェーディング改善が可能となる。
また、第1実施例によれば、ポリゴンミラー1106による走査開始位置Sf、走査終了位置Srでの反射面1106aへのレーザビームLBの入射角θaが同等となり、ポリゴンミラー1106の中心線(出射光学系の中心線)CL2に対してその両端側の反射角θa1が左右対称となるため、第1fθレンズ202、第2fθレンズ203の左右同一形状が可能となる。
(第2実施例)
次に、本実施形態に係る光走査装置13の第2実施例について図面を参照して詳細に説明する。
図7(a)〜(c)は本実施形態に係る光走査装置の第2実施例の構成を示す説明図であって、(a)は前記光走査装置を構成するポリゴンミラーの平面視による説明図、(b)は前記ポリゴンミラーの側面視による説明図、(c)は(b)のC部の部分詳細図、図8(a)〜(b)は第2実施例の比較例であって、(a)は従来のポリゴンミラーの平面視による説明図、(b)は従来のポリゴンミラーの側面視による説明図、(c)は(b)のD部の部分詳細図である。
第2実施例に係る光走査装置は、図7(a)〜(c)に示すように、入射光学系2105が、ポリゴンミラー2106の反射面2106aで反射して出射されるレーザビームLBの出射方向(像面側)に対して反射面2106aよりも反出射方向側(反像面側)に配置され、すなわち、LD(図示省略)から照射されたレーザビームLBが、ポリゴンミラー2106の上方で、反射面2106aよりも反出射方向側から反射面2106aに入射して、水平方向に出射するように構成されている。
反射面2106aは、図7(c)に示すように、入射されるレーザビームLBに対する傾斜角度θ21を45度未満とし、第2実施例では傾斜角度θ21を30度としている。
以上のように構成したので、第2実施例によれば、ポリゴンミラー2106の反射面2106aの傾斜角度θ21を45度未満にすることで、図7(c)、図8(c)に示すように、従来のポリゴンミラー4106の厚さTと同じであっても、上方より入射されるレーザビームLBに対する反射面2106aの有効範囲Rが従来よりも広くなる。すなわち、従来のポリゴンミラー4106の場合は、厚さTが有効領域となるが、第2実施例のポリゴンミラー2106の場合は、厚さTよりも広い範囲の反射面2106aの正面視の範囲が有効範囲Rとなる。
従って、第2実施例のポリゴンミラー2106によれば、レーザビームLBにより照射される反射面2106aの有効範囲Rが広くなるため、反射面2106aにおけるレーザビームLBのケラレに対してマージンが増加する。
具体的には、第2実施例によれば、例えば、図8(a)〜(c)に示す従来方式によるポリゴンミラー4106の反射面4106aの厚さ(有効範囲)Tを3mmとした場合、図7(c)に示すように、ポリゴンミラー2106の反射面2106aの傾斜角度θ21を30度とすると、反射面2106aの有効範囲Rが約5.2mmと大きくなり、従来の有効範囲(厚さT)と比較して約2.2mm広い有効範囲Rを確保出来る。
また、第2実施例によれば、従来では、図8(a),(b)に示すように、従来のポリゴンミラー4106に対して入射光学系4105を像面側にしか配置出来なかったが、図7(b)に示すように、ポリゴンミラー2106の反射面2106aに角度を付けることで、ポリゴンミラー2106に対して入射光学系2105を反像面側に配置可能となり、ポリゴンミラー2106に入射させるレーザビームLBを反像面側から入射させることが可能となる。これにより、図7(a)に示すように、入射光学系2105の配置可能な領域が広がり設計の自由度が増すため、装置の小型化が可能となる。
(第3実施例)
次に、本実施形態に係る光走査装置13の第3実施例について図面を参照して詳細に説明する。
図9は本実施形態に係る光走査装置の第3実施例の構成を示す説明図であって、前記光走査装置を構成する出射光学系の構成を示す説明図である。
第3実施例に係る光走査装置は、図9に示すように、第1fθレンズ202及び第2fθレンズ203の出射側のレンズ面202a,203aが、図示しない感光体ドラムの走査開始位置に向かって出射されるレーザビームLBfと走査終了位置に向って出射されるレーザビームLBrの走査領域の中心線CL3を基準に、線対称に形成されている。
詳しくは、レーザビームLBf,LBrの感光体ドラムの走査開始位置、走査終了位置でのポリゴンミラー3106の反射面3106aへの入射角度が同等となり、レーザビームLBの感光体ドラムの走査開始位置、走査終了位置への反射角、すなわち、ポリゴンミラー3106の反射面3106aの中心線CL3を基準としたレーザビームLBf,LBrの反射角θ3f,θ3rが同等となるため、第1fθレンズ202と第2fθレンズ203の左右同一形状が可能となる。
以上のように構成したので、第3実施例によれば、図9に示すように、第1fθレンズ202のL1f区間のレンズ曲率とL1r区間のレンズ曲率を等しく構成でき、且つ、第2fθレンズ203のL2f区間のレンズ曲率とL2r区間のレンズ曲率を等しく構成することができる。これにより、レンズ形状がレンズセンター(走査領域の中心線CL3)に対して左右対称となるため、レンズ設計が容易となる。
尚、上述した実施形態及び実施例では、本発明に係る光走査装置の構成を図1に示すような画像形成装置11に適用した例について説明したが、感光体ドラム17にレーザビームLBを偏向走査して静電潜像を形成する光走査装置を用いるものであれば、上述したような構成の画像形成装置や複写機に限定されるものではなく、その他の画像形成装置等に展開が可能である。
以上のように、本発明は、上述した実施形態及び実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、本発明の要旨を逸脱しない範囲内において適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
11 画像形成装置
13 光走査装置
17 感光体ドラム
100,1105,2105 入射光学系
101 レーザダイオード(LD)
106,1106,2106、3106 ポリゴンミラー
106a,1106a,2106a、3106a 反射面
200 出射光学系
202 第1fθレンズ
202a,203a レンズ面
203 第2fθレンズ
CL1 軸線
CL3 中心線
D 入射ビームパワー分布
D0 入射ビームパワー
LB レーザビーム
LB0 入射ビーム
LBc レーザビーム(走査中央位置)
LBf レーザビーム(走査開始位置、フロント側)
LBr レーザビーム(走査終了位置、リア側)
R 有効範囲
Sf 走査開始位置
Sc 走査中央位置
Sr 走査終了位置
θ11,θ21 傾斜角度
θa 入射角
θa1 反射角

Claims (6)

  1. レーザ光を照射する光源と、前記光源からのレーザ光を反射偏向させる複数の反射面を有する回転多面鏡と、前記光源からのレーザ光を反射偏向させて前記回転多面鏡に入射するための入射光学系と、前記回転多面鏡によって反射偏向されたレーザ光を出射するための出射光学系と、を備え、前記回転多面鏡を用いてレーザ光の照射により静電潜像が形成される感光体ドラムにレーザ光を偏向走査する光走査装置であって、
    前記回転多面鏡は、前記反射面が前記回転多面鏡の回転軸の軸線方向に対して傾斜して形成され、
    前記入射光学系は、前記回転多面鏡の回転軸の軸線方向側で前記反射面に向って配置され、前記反射面における前記出射光学系の出射領域の中心位置に前記レーザ光を入射することを特徴とする光走査装置。
  2. 前記入射光学系は、前記反射面に向かい前記回転軸の軸線方向に沿って前記レーザ光を入射することを特徴とする請求項1に記載の光走査装置。
  3. 前記反射面は、入射されるレーザ光に対する傾斜角度を45度未満とすることを特徴とする請求項1に記載の光走査装置。
  4. 前記入射光学系は、前記反射面で反射して出射されるレーザ光の出射方向に対して前記反射面よりも反出射方向側に配置されることを特徴とする請求項1または3に記載の光走査装置。
  5. 前記出射光学系は、前記レーザ光を前記感光体ドラム上に結像させる結像レンズを備え、
    前記結像レンズは、出射側のレンズ面が、前記感光体ドラムに向かって出射されるレーザ光の走査領域の中心線を基準に線対称に形成されていることを特徴とする請求項1乃至4のうちの何れか一項に記載の光走査装置。
  6. レーザ光の照射により表面に静電潜像が形成される感光体ドラムと、回転多面鏡を用いて前記感光体ドラムにレーザ光を偏向走査する光走査装置と、前記感光体ドラム表面の静電潜像にトナーを供給してトナー像を形成する現像装置と、前記感光体ドラム表面のトナー像を記録媒体に転写する転写装置と、転写されたトナー像を記録媒体に定着させる定着装置とを備えた画像形成装置において、
    前記光走査装置として、請求項1乃至5のうちの何れか一項に記載の光走査装置を用いることを特徴とする画像形成装置。
JP2009244282A 2009-10-23 2009-10-23 光走査装置及びこれを用いる画像形成装置 Pending JP2011090188A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244282A JP2011090188A (ja) 2009-10-23 2009-10-23 光走査装置及びこれを用いる画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244282A JP2011090188A (ja) 2009-10-23 2009-10-23 光走査装置及びこれを用いる画像形成装置

Publications (1)

Publication Number Publication Date
JP2011090188A true JP2011090188A (ja) 2011-05-06

Family

ID=44108487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244282A Pending JP2011090188A (ja) 2009-10-23 2009-10-23 光走査装置及びこれを用いる画像形成装置

Country Status (1)

Country Link
JP (1) JP2011090188A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204267A1 (ja) * 2015-06-17 2016-12-22 株式会社ニコン パターン描画装置およびパターン描画方法
JP7443176B2 (ja) 2020-07-15 2024-03-05 シャープ株式会社 光走査装置および画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204267A1 (ja) * 2015-06-17 2016-12-22 株式会社ニコン パターン描画装置およびパターン描画方法
JP7443176B2 (ja) 2020-07-15 2024-03-05 シャープ株式会社 光走査装置および画像形成装置
US11933964B2 (en) 2020-07-15 2024-03-19 Sharp Kabushiki Kaisha Optical scanning apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
US8988751B2 (en) Optical scanning device and image forming apparatus including the same
JP2006267398A (ja) 走査光学装置及び画像形成装置
JP2007171851A (ja) レーザ走査光学系及び画像形成装置
US20070013763A1 (en) Laser scanning unit and image forming apparatus having the same
US20060103716A1 (en) Image forming apparatus
US9288366B2 (en) Optical scanning device and image forming apparatus
JP2007047748A (ja) 光走査装置及び画像形成装置
JP2011090188A (ja) 光走査装置及びこれを用いる画像形成装置
JP2011081233A (ja) 光走査装置及びこれを備えた画像形成装置
JP2011118134A (ja) 光走査装置およびそれを備えた画像形成装置
JP2006106735A (ja) 光走査装置
JP2007047749A (ja) 光走査装置、画像形成装置及びレンズ
JP2011107403A (ja) 光走査装置、画像形成装置
JP2005091966A (ja) 光走査装置およびそれを用いたカラー画像形成装置
JP4266700B2 (ja) 走査光学装置及びそれを用いた画像形成装置
JP5494281B2 (ja) 光走査装置及び画像形成装置
JP2005049509A (ja) 光走査装置及び画像形成装置
JP2011154115A (ja) 光学走査装置及びそれを備えた画像形成装置
JP2006227350A (ja) 光ビーム走査装置
US10901337B1 (en) Optical scanning device and image forming apparatus
JP5877818B2 (ja) 光走査装置、及び画像形成装置
US10831122B2 (en) Optical scanning device and image forming apparatus
JP2010281869A (ja) 光ビーム走査光学系及び光学走査装置並びに画像形成装置
JP2002139688A (ja) レーザビームスキャナ
JP5079060B2 (ja) 光走査装置および画像形成装置