JP2011101863A - 複層塗膜及び複層塗膜の製造方法 - Google Patents

複層塗膜及び複層塗膜の製造方法 Download PDF

Info

Publication number
JP2011101863A
JP2011101863A JP2009258307A JP2009258307A JP2011101863A JP 2011101863 A JP2011101863 A JP 2011101863A JP 2009258307 A JP2009258307 A JP 2009258307A JP 2009258307 A JP2009258307 A JP 2009258307A JP 2011101863 A JP2011101863 A JP 2011101863A
Authority
JP
Japan
Prior art keywords
polymer emulsion
coating film
emulsion particles
particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258307A
Other languages
English (en)
Other versions
JP5650394B2 (ja
Inventor
Isao Kosako
勲 小迫
Naohisa Aoyanagi
尚久 青柳
Setsuo Yamamatsu
節男 山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009258307A priority Critical patent/JP5650394B2/ja
Publication of JP2011101863A publication Critical patent/JP2011101863A/ja
Application granted granted Critical
Publication of JP5650394B2 publication Critical patent/JP5650394B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】長期に亘る透明性、耐候性、防汚性に優れ、経時後の褪色や汚れを防止し、長期間初期の意匠を保持することが可能な複層塗膜を提供する。
【解決手段】下塗り層と当該下塗り層上に設けられた上塗り層とを有する複層塗膜であって、前記下塗り層が、有機高分子系塗膜であり、前記上塗り層が、数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積が1〜46%の範囲にあり、前記重合体エマルジョン粒子の最低造膜温度が10℃以上である、水系有機無機複合組成物から形成されている複層塗膜を提供する。
【選択図】なし

Description

本発明は、複層塗膜及び複層塗膜の製造方法に関するものである。
近年、水性塗料等を用いることで、環境・人体への影響を抑えつつ、20〜30年という長期に亘る家屋の維持や、建材の保護を図る試みがなされている。
このような水性塗料を用いることにより、従来は数年〜10年という周期で外装の塗替え作業が必要とされていたものが、上記のように長期間に亘る維持や保護が可能となるため、手間やコストの大幅な低減化につながり、経済的なメリットは大きい。
しかし、より長期の曝露を屋外で受けることによる塗膜の劣化は依然として課題となっている。
具体的には、長期間の曝露を受けることにより、光、熱、雨等による変色や、艶の低下等の変質の問題、あるいは埃、煤煙、砂などの付着による塗膜の汚染の問題等が、より顕著に表れるようになっている。
上記のような水性塗料としては、例えば、コロイダルシリカと、ビニルシランとアクリル系単量体その他を乳化重合した水性エマルジョンとを、コロイダルシリカの固形分含量が、該水性エマルジョンの固形分100質量部に対して、500〜20000質量部とした無機質塗装材が提案されている(例えば、特許文献1参照。)。
また、ラジカル重合性ビニル化合物を乳化重合して得られる、アルデヒド基又はケト基に基づくカルボニル基を持つ重合体からなる水性エマルジョンと、有機ヒドラジン化合物、及びコロイダルシリカとを含有し、コロイダルシリカの固形分含量が、水性エマルジョン中の重合体成分100質量部に対して1〜300質量部である水性被覆組成物が開示されている(例えば、特許文献2参照。)。
上記無機質塗装材及び水性被覆組成物から形成される塗膜は、初期の密着性や塗材としての貯蔵安定性は良好であるが、長期に亘る耐候性や防汚性について十分ではなく、また上塗り層塗布後の意匠にも曇りが見られ透明性も十分ではない。
さらに、(A)共重合体エマルジョン、及び(B)特定の分子構造を有する重量平均分子量500〜30,000であるポリオルガノシロキサンを含有し、前記(B)成分の使用量が、前記(A)成分100質量部(固形分)に対して0.1〜50質量部(固形分)である上塗り塗料組成物が提案されている(例えば、特許文献3参照。)。
この塗料組成物から形成される塗膜は、長期に亘る耐候性は改善されてはいるが、防汚性や上塗り層塗布後の透明性については十分な特性が得られていない。
さらにまた、水性コロイダルシリカのSiO2固形分100質量部に対し、(ii)最低造膜温度15℃であるアクリル系樹脂エマルション30〜400質量部(固形分)を含有する低汚染性水性塗料組成物が提案されている(例えば、特許文献4参照。)。
またさらに、有機質樹脂及び平均一次粒子径1〜200nmであるシリカゾル由来のシリカを固形分重量比率100:50〜100:500の比率で配合したものを0.1〜50g/m2(固形分)の塗料で塗布してなる塗膜積層体が提案されている(例えば、特許文献5参照。)。
特公平1−41180号公報 特開平9−165533号公報 特開2004−244626号公報 特開平11−116885号公報 特開2007−118567号公報
しかしながら、上記従来提案されている各種塗装材等から形成される塗膜は、塗布後の透明性は良好であるが、長期に亘る透明性、耐候性や防汚性が十分ではない。
そこで本発明においては、長期に亘る透明性、耐候性、防汚性に優れ、経時後の褪色や汚れを防止し、長期間初期の意匠を保持することが可能な、密着性、耐候性、防汚性、透明性に優れる複層塗膜を提供することを目的とする。
本発明者らは、上記従来技術の課題を解決するべく鋭意検討した結果、有機塗膜上に金属酸化物粒子と重合体エマルジョン粒子とを特定組成比率で含有する水系有機無機複合組成物を塗布・乾燥させた塗膜を形成することにより、上記課題の解決が図られることを見出し、本発明に到達した。
すなわち、本発明は以下の通りである。
〔1〕
下塗り層と当該下塗り層上に設けられた上塗り層とを有する複層塗膜であって、前記下塗り層が、有機高分子系塗膜であり、前記上塗り層が、数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積が1〜46%の範囲にあり、前記重合体エマルジョン粒子の最低造膜温度が10℃以上である、水系有機無機複合組成物から形成されている複層塗膜。
〔2〕
前記重合体エマルジョン粒子が、水及び乳化剤の存在下で、加水分解性珪素化合物とビニル単量体とを、加水分解性珪素化合物/ビニル単量体=10/90〜95/5の質量比で、重合させることにより得られる重合体エマルジョン粒子である前記〔1〕に記載の複層塗膜。
〔3〕
有機高分子系塗膜よりなる下塗り層と当該下塗り層上に設けられた上塗り層とを有する複層塗膜の製造方法であって、
数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積が1〜46%の範囲にあり、前記重合体エマルジョン粒子の最低造膜温度が10℃以上である水系有機無機複合組成物を調製する工程と、
前記水系有機無機複合組成物を前記下塗り層上に塗布し、前記重合体エマルジョン粒子の最低造膜温度に30℃加えた値よりも低い温度にて乾燥させる工程と、
を、有する複層塗膜の製造方法。
本発明によれば、長期に亘る透明性、耐候性、防汚性に優れ、経時後の褪色や汚れを防止でき、初期の意匠を保持することが可能な、密着性、耐候性、防汚性、透明性に優れた複層塗膜を提供できる。
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、説明する。
本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔複層塗膜〕
本実施形態の複層塗膜は下塗り層と当該下塗り層上に設けられた上塗り層とを有する複層塗膜であって、前記下塗り層が、有機高分子系塗膜であり、前記上塗り層が、数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積の比率が1〜46%の範囲にあり、前記重合体エマルジョン粒子の最低造膜温度が10℃以上である水系有機無機複合組成物から形成されている複層塗膜である。
(上塗り層)
本実施形態の複層塗膜は、上記のように、下塗り層と上塗り層とにより構成されており、上塗り層は、その微細構造に特徴を有している。
すなわち、金属酸化物粒子と重合体エマルジョン粒子の数平均粒子径が特定範囲であり、かつ両者の総面積比が特定範囲にあるときに、極めて均質な微細構造を形成するため、密着性、耐候性、防汚性、透明性に代表される耐久性が特に優れたものとなる。
本実施形態の複層塗膜を構成する上塗り層の微細構造は、金属酸化物粒子、及び重合体エマルジョン粒子を含み、金属酸化物粒子の総表面積と重合体エマルジョン粒子の総表面積との合計に対して重合体エマルジョン粒子の総表面積の比率が1〜46%の範囲にある水系有機無機複合組成物から形成されている。
重合体エマルジョン粒子の総表面積比率が46%以下であるものとすることにより、重合体エマルジョン粒子による連続層の形成を抑制でき、1%以上であるものとすることにより、塗膜の形成を容易に行うことができる。
ここで「総表面積」とは、塗膜又は水系有機無機複合組成物中の全対象粒子の表面積の合計をいい、粒子の表面積は、電子顕微鏡や光学顕微鏡で粒子を観察した後にその画像を画像解析ソフトで解析することで求められる。
この粒子の表面積は、電子顕微鏡や光学顕微鏡で粒子を観察した後にその画像を画像解析ソフトで解析することで得られる表面積と、粒子径測定装置を用いて測定される粒子径から換算することで得られる表面積又はKozeny−Carmanの式に基づく空気透過法によって測定される表面積との間で検量線を作成し、その検量線を用いて、後者の方法により得られた表面積を前者の方法による表面積に換算することで決定してもよい。
本実施形態の複層塗膜を構成する上記微細構造を有する塗膜(上塗り層)は、上述の水系有機無機複合組成物を、各種基体(下塗り層)の表面に塗布し、乾燥させることにより得られるが、微細構造としては、重合体エマルジョン粒子の総表面積と金属酸化物粒子の総表面積との比率を上記数値範囲に制御することが重要な要素となる。
以下、本実施形態の複層塗膜の上塗り層の構成材料である水系有機無機複合組成物について説明する。
水系有機無機複合組成物(以下、単に「複合組成物」と言うこともある。)は、金属酸化物粒子と、重合体エマルジョン粒子とを含み、金属酸化物粒子の総表面積と重合体エマルジョン粒子の総表面積との合計に対して、重合体エマルジョン粒子の総表面積の比率が1〜46%の範囲にある複合組成物である。
複合組成物において、金属酸化物粒子は、重合体エマルジョン粒子と相互作用することにより、重合体エマルジョン粒子の硬化剤としても機能する。
上記のような水系有機無機複合組成物を用いることにより、耐候性、耐水性及び防汚性に優れた塗膜等の有機無機複合体を形成することができ、さらには、耐薬品性、光学特性、防曇性、帯電防止性等にも優れたものとなる。
また、例えば、特開平9−165554号公報に記載されている有機ヒドラジン化合物のような硬化剤を添加することなく有機無機複合体を形成できる点でも、上記水系有機無機複合組成物は優れている。
ここで、上記金属酸化物粒子と上記重合体エマルジョン粒子との相互作用は、化学的な相互作用であればよく、例えば、それらの粒子間の水素結合、共有結合、イオン結合、ファンデルワールス力が挙げられる。
水素結合としては、例えば、金属酸化物粒子が有する水酸基と重合体粒子が有する官能基(例えば、水酸基、アミノ基、アミド基)との間の水素結合が挙げられる。
共有結合としては、例えば、金属酸化物粒子が有する水酸基と重合体粒子が有する水酸基との間での縮合反応(脱水縮合反応)により生じる共有結合が挙げられる。
イオン結合としては、例えば、金属酸化物粒子が有する水酸基と重合体粒子中のカチオン性基(例えばアミノ基、イミノ基)との間のイオン結合が挙げられる。
<金属酸化物粒子>
上記金属酸化物粒子は、アナターゼ型酸化チタンやルチル型酸化チタンなどの光触媒活性を持つ金属酸化物以外の金属酸化物が好ましい。
例えば、二酸化ケイ素、酸化アルミニウム、酸化アンチモン、酸化インジウム、酸化スズ、酸化ジルコニウム、酸化鉛、酸化鉄、珪酸カルシウム、酸化マグネシウム、酸化ニオブ、酸化セリウム及びそれらの複合酸化物が挙げられる。
それらの中でも、表面水酸基の多い二酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化アンチモン及びそれらの複合酸化物が好ましく、二酸化ケイ素がより好ましい。
これらは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
光触媒活性を持つ金属酸化物を添加しないことで、下塗り層及びさらにその下層の材料の劣化が抑えられ、かつ透明性も損ねることがないという効果が得られる。
金属酸化物粒子の数平均粒子径は1〜400nmであるものとし、1〜100nmが好ましく、3〜50nmがより好ましい。
金属酸化物粒子の数平均粒子径が400nm以下であると、金属酸化物粒子の表面積が大きくなり、金属酸化物粒子と重合体エマルジョン粒子との相互作用が一層効率的に起こるという効果が得られる。
また、金属酸化物粒子の数平均粒子径が400nm以下であると、有機無機複合体を形成したときに最適な粒子間空隙を形成でき、有機物質の長所及び無機物質の長所の両立にも効果的である。また、金属酸化物粒子の数平均粒子径が1nm以上であると、有機無機複合組成物の貯蔵安定性が実用上良好なものとなる。
ここで、金属酸化物粒子の数平均粒子径は、動的光散乱方式の湿式粒子径測定装置(例えば、日機装社製の湿式粒度分布計、商品名「マイクロトラックUPA−9230」)によって測定できる。
この数平均粒子径は、動的光散乱方式の湿式粒子径測定装置によるものとレーザー回折/散乱式の湿式粒子径測定装置によるものとの間で検量線を作成し、その検量線を用いて、レーザー回折/散乱式の測定装置で測定した数平均粒子径を動的光散乱方式の測定装置で測定したものに換算することで決定してもよい。
<重合体エマルジョン粒子>
上記重合体エマルジョン粒子としては、乳化重合等の方法で得られた重合体エマルジョン粒子を用いることができる。
重合体エマルジョン粒子を構成するポリマーとしては、水性媒体中でのラジカル重合、アニオン重合、カチオン重合などによって得られる従来公知のポリ(メタ)アクリレート系、ポリビニルアセテート系、酢酸ビニル−アクリル系、エチレン酢酸ビニル系、シリコーン系、フッ素系、ポリブタジエン系、スチレンブタジエン系、NBR系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、塩化ビニリデン系、ポリスチレン−(メタ)アクリレート系、スチレン−無水マレイン酸系に代表される単重合体又は共重合体、シリコーン変性アクリル系、フッ素−アクリル系、アクリルシリコーン、エポキシ−アクリル系に代表される変性共重合体が挙げられる。
これらは水分散体の状態にあり、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
その好適な例としては、アクリルエマルジョン、アクリルシリコンエマルジョンが挙げられる。
重合体エマルジョン粒子は、例えば、(メタ)アクリル酸エステル等の単量体の乳化重合により得ることができ、下記の官能基を含有させることもできる。
例えば、アミド基、水酸基、カルボキシル基、カルボニル基、シラノール基、メルカプト基、アミノ基、イミノ基、ウレイド基等が挙げられる。これらの官能基を含有させることにより、重合体エマルジョン粒子自体の安定性を向上させられるとともに、架橋反応を積極的に起こさせることで上塗り層の塗膜強度の向上を図ることが可能である。
重合体エマルジョン粒子は、これらの官能基の1種又は2種以上を有するものであることが好ましい。
重合体エマルジョン粒子は、さらに、上記ポリマーに含まれる官能基と反応する官能基を有する化合物を含んでもよい。そのような化合物としては、例えば、(ポリ)イソシアネート化合物、(ポリ)エポキシ化合物、アミノ化合物、(ポリ)カルボキシ化合物、(ポリ)ヒドロキシ化合物、グリコール化合物、シラノール化合物、シリル化合物、アルコキシ化合物、(メタ)アクリレート類が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
重合体エマルジョン粒子は、水及び後述する第1の乳化剤の存在下で、少なくとも、後述する第1の加水分解性ケイ素化合物と、後述する第1のビニル単量体とを重合することにより作製することが好ましい。
第1の加水分解性ケイ素化合物としては、下記一般式(1)で表される化合物、その縮合生成物、シランカップリング剤を例示することができる。
SiWxRy ・・・(1)
ここで、上記式(1)中、Wは、炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、フェノキシ基、アミノキシ基、アミド基からなる群より選ばれる基を示す。
Rは、直鎖状若しくは分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、炭素数6〜20のアリール基からなる群より選ばれる炭化水素基を示す。
なお、炭素数6〜20のアリール基は、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基又はハロゲン原子で置換されていてもよい。
また、xは1〜4の整数であり、yは0〜3の整数であり、x+y=4である。
さらに、xが2以上のとき、複数のWは互いに同一でも異なっていてもよく、yが2以上のとき、複数のRは互いに同一でも異なっていてもよい。
上記式(1)で表される化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシランに代表されるテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシランに代表されるトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシランに代表されるジアルコキシシラン類;トリメチルメトキシシラン、トリメチルエトキシシランに代表されるモノアルコキシシラン類が挙げられる。
これらは1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記シランカップリング剤としては、有機物質との反応性を有する官能基を分子内に有する加水分解性ケイ素化合物が好ましい。
上記官能基としては、例えば、ビニル重合性基、チオール基、エポキシ基(=グリシジル基)、アミノ基、メタクリル基、メルカプト基、イソシアネート基が挙げられる。これらの官能基の中では、ビニル単量体との共重合又は連鎖移動反応による化学結合生成の観点からビニル重合性基が好ましい。
ビニル重合性基を有する加水分解性珪素化合物としては、例えば、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、2−トリメトキシシリルエチルビニルエーテルが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記第1のビニル単量体としては、以下のものが例示される。
例えば、2級及び/又は3級アミド、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル類の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル系単量体、グリシジル基含有ビニル単量体、カルボニル基含有ビニル単量体のような官能基を含有する単量体が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記2級及び/又は3級アミドとしては、N−アルキル又はN−アルキレン置換(メタ)アクリルアミドを例示することができる。
より具体的には、N−メチルアクリルアミド、N−メチルメタアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタアクリルアミド、N,N−ジエチルアクリルアミド、N−エチルメタアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−エチルメタアクリルアミド、N−イソプロピルアクリルアミド、N−n−プロピルアクリルアミド、N−イソプロピルメタアクリルアミド、N−n−プロピルメタアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピロリジン、N−メタクリロイルピロリジン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルヘキサヒドロアゼピン、N−アクリロイルモルホリン、N−メタクリロイルモルホリン、N−ビニルピロリドン、N−ビニルカプロラクタム、N,N'−メチレンビスアクリルアミド、N,N'−メチレンビスメタクリルアミド、N−ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタアクリルアミドが挙げられる。これらの中では、3級アミド基を有するビニル単量体を用いると水素結合性が強まるので好ましい。
上記(メタ)アクリル酸エステルとしては、アルキル部の炭素数が1〜50の(メタ)アクリル酸アルキルエステル、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレートが挙げられる。
(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシルが挙げられる。
(ポリ)オキシエチレンジ(メタ)アクリレートの具体例としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコールが挙げられる。
なお、本明細書中で、「(メタ)アクリル」とは「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」を意味する。
上記芳香族ビニル化合物としては、例えば、スチレン、α−メチルスチレン、p−t−ブチルスチレン、クロロスチレン、ビニルトルエン等が挙げられる。
上記シアン化ビニル類としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル等が挙げられる。
上記カルボキシル基含有ビニル単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマール酸、無水マレイン酸、又はイタコン酸、マレイン酸、フマール酸に代表される2塩基酸のハーフエステルが挙げられる。
カルボキシル基含有ビニル単量体を用いることによって、重合体エマルジョン粒子にカルボキシル基を導入することができ、エマルジョンとしての安定性を向上させ、外部からの分散破壊作用に対する抵抗力を持たせることが可能となる。この際、重合体エマルジョン粒子に導入したカルボキシル基は、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミン等のアミン類やNaOH、KOH等の塩基で中和することもできる。その含有量は、ビニル単量体量を基準として0質量%超20質量%であることが耐水性の観点から好ましく、より好ましくは0.1〜10質量%、さらに好ましくは0.1〜5質量%である。
上記水酸基含有ビニル系単量体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートに代表される(メタ)アクリル酸のヒドロキシアルキルエステル、ジ−2−ヒドロキシエチルフマレート、モノ−2−ヒドロキシエチルモノブチルフマレート、アリルアルコール、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンモノ(メタ)アクリレート、プロピレンオキシド基の数が1〜100個の(ポリ)オキシプロピレンモノ(メタ)アクリレートが挙げられる。
さらには、「プラクセルFM、FAモノマー」(商品名、ダイセル化学(株)製、カプロラクトン付加モノマー)、その他のα,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類が挙げられる。
上記(ポリ)オキシエチレンモノ(メタ)アクリレートの具体例としては、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコールが挙げられる。
また、(ポリ)オキシプロピレンモノ(メタ)アクリレートの具体例としては、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコールが挙げられる。
上記水酸基含有ビニル単量体を用いることによって、重合体エマルジョン粒子の水分散安定性を向上させることができる。
これらは1種単独で用いてもよく、2種以上の混合物として使用してもよい。
その含有量は、ビニル単量体量を基準として0質量%超40質量%であることが好ましく、0.1〜30質量%であるとより好ましく、0.1〜10質量%であるとさらに好ましい。
上記グリシジル基含有ビニル単量体としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、アリルジメチルグリシジルエーテル、メチルグリシジル(メタ)アクリレートが挙げられる。
グリシジル基含有ビニル単量体や、カルボニル基含有ビニル単量体を使用すると、重合体エマルジョン粒子が良好な反応性を有するようになる。その結果、ヒドラジン誘導体やカルボン酸誘導体、イソシアネート誘導体等と架橋させて、耐溶剤性等に優れた塗膜の形成が可能となる。その含有量は、ビニル単量体量を基準として、0質量%超50質量%であることが好ましい。
上記カルボニル基含有ビニル単量体としては、例えばアクロレイン、ホルミルスチロール、ビニルメチルケトン、ビニルエチルケトン、ビニルイソブチルケトン、アクリルオキシアルキルプロパナール類、メタクリルオキシアルキルプロパナール類、ジアセトンアクリレート、ジアセトンメタクリレート、アセトニルアクリレート、2−ヒドロキシプロピルアクリレートアセチルアセテート、ブタンジオールアクリレートアセチルアセテート、ジヒドロキシアセトン、モノヒドロキシアセトン、ジヒドロキシベンズアルデヒド等が挙げられる。
また、上記以外のビニル単量体の具体例としては、(メタ)アクリルアミド、エチレン、プロピレン、イソブチレンに代表されるオレフィン類;ブタジエンに代表されるジエン類;塩化ビニル、塩化ビニリデンフッ化ビニル、テトラフルオロエチレン、クロロトリフルオロエチレンに代表されるハロオレフィン類;酢酸ビニル、プロピオン酸ビニル、n−酪酸ビニル、安息香酸ビニル、p−t−ブチル安息香酸ビニル、ピバリン酸ビニル、2−エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニルに代表されるカルボン酸ビニルエステル類;酢酸イソプロペニル、プロピオン酸イソプロペニルに代表されるカルボン酸イソプロペニルエステル類;エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテルに代表されるビニルエーテル類;酢酸アリル、安息香酸アリルに代表されるアリルエステル類;アリルエチルエーテル、アリルフェニルエーテルに代表されるアリルエーテル類;4−(メタ)アクリロイルオキシ−2,2,6,6,−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6,−ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロールプロパントリ(メタ)アクリレート、(メタ)アクリル酸アリルが挙げられる。
上記第1の乳化剤としては、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸に代表される酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸に代表されるアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートに代表される四級アンモニウム塩;ピリジニウム塩、イミダゾリニウム塩型などのカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルに代表されるノニオン型界面活性剤;ラジカル重合性の二重結合を有する反応性乳化剤や、後述の分散安定剤等が挙げられる。
これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中では、重合体エマルジョン粒子の水分散安定性及び形成された塗膜の機械強度、耐薬品性、耐水性の観点から、ラジカル重合性の二重結合を有する反応性乳化剤が好ましい。
上記ラジカル重合性の二重結合を有する反応性乳化剤としては、例えば、スルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体、それらビニル単量体のアルカリ金属塩及びアンモニウム塩、ポリオキシエチレンに代表されるノニオン基を有するビニル単量体;4級アンモニウム塩を有するビニル単量体が挙げられる。
上記反応性乳化剤のうち、スルホン酸基又はスルホネート基を有するビニル単量体の塩としては、例えば、ラジカル重合性の二重結合を有し、かつスルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基、炭素数6又は10のアリール基及びコハク酸基よりなる群から選ばれる置換基を有する化合物、並びに、スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物、スルホネート基より一部が置換されたアリール基を有する化合物が挙げられる。
硫酸エステル基を有するビニル単量体としては、ラジカル重合性の二重結合を有し、かつ硫酸エステル基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基及び炭素数6又は10のアリール基からなる群から選ばれる置換基を有する化合物が挙げられる。
上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換されたコハク酸基を有する化合物の具体例としては、アリルスルホコハク酸塩が挙げられる。
市販されているものとしては、例えば、エレミノールJS−2(商品名、三洋化成(株)製)、ラテムルS−120、S−180A又はS−180(商品名、花王(株)製)が挙げられる。
また、上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキルエーテル基を有する化合物の市販されているものとしては、例えば、アクアロンHS−10又はKH−1025(商品名、第一工業製薬(株)製)、アデカリアソープSE−1025N又はSR−1025(商品名、旭電化工業(株)製)が挙げられる。
その他、スルホネート基により一部が置換されたアリール基を有する化合物の具体例として、p−スチレンスルホン酸のアンモニウム塩、ナトリウム塩及びカリウム塩が挙げられる。
上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物としては、例えば、2−スルホエチルアクリレートに代表されるアルキルスルホン酸(メタ)アクリレート、メチルプロパンスルホン酸(メタ)アクリルアミド、アリルスルホン酸のアンモニウム塩、ナトリウム塩及びカリウム塩が挙げられる。
上記硫酸エステル基のアンモニウム塩、ナトリウム塩又はカリウム塩により一部が置換された炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキルエーテル基を有する化合物としては、例えばスルホネート基により一部が置換されたアルキルエーテル基を有する化合物が挙げられる。
また、ノニオン基を有するビニル単量体の具体例としては、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(商品名:アデカリアソープNE−20、NE−30、NE−40等、旭電化工業(株)製)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(商品名:アクアロンRN−10、RN−20、RN−30、RN−50等、第一製薬工業(株)製)が挙げられる。
分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群より選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、水溶性若しくは水分散性アクリル樹脂に代表される合成若しくは天然の水溶性又は水分散性の各種の水溶性高分子物質が挙げられる。
上述した各種乳化剤、分散安定剤は、1種を単独で用いてよく、2種以上を混合して用いてもよい。
重合体エマルジョン粒子は、上述のものを用いる他は、公知の乳化重合により調製してもよく、その際、過硫酸アンモニウム等の重合開始剤やドデシルベンゼンスルホン酸等の界面活性剤等の公知のものを用いてもよい。
重合体エマルジョン粒子は、コア部とそのコア部を被覆する1層又は2層以上のシェル部とを含むコア/シェル構造を有していてもよい。
例えば、重合体エマルジョン粒子がコア部と1層のシェル部とを含む場合、その重合体エマルジョン粒子は、水、上述した第1の乳化剤及びシード粒子の存在下で、少なくとも、上述した第1の加水分解性ケイ素化合物と、上述した第1のビニル単量体とを重合して得られるものとすることができる。この場合、シード粒子は、水及び第2の乳化剤の存在下で、少なくとも、第2のビニル単量体と、第2の加水分解性ケイ素化合物とからなる群より選ばれる1種以上の化合物を重合して得られるものであってもよい。すなわちシード粒子としては、ビニル単量体のみを重合したもの、加水分解性ケイ素化合物のみを重合したもの、ビニル単量体と加水分解性ケイ素化合物とを重合したもの、のいずれであってもよい。
コア部を構成するシード粒子を得るための第2の加水分解性ケイ素化合物は、第1の加水分解性ケイ素化合物と同様のものが用いられる。ここで、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2の加水分解性ケイ素化合物は、互いに同一でも異なっていてもよい。
また、シード粒子を得るための第2のビニル重合体は、第1のビニル単量体と同様のものが用いられる。ここで、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2のビニル重合体は、互いに同一でも異なっていてもよい。
さらに、シード粒子を得るための第2の乳化剤は、第1の乳化剤と同様のものが用いられる。ここで、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2の乳化剤は、互いに同一でも異なっていてもよい。
上記シード粒子は、第2の加水分解性ケイ素化合物を重合して得られるものが好ましい。これにより、塗膜に高い柔軟性を付与することができる上、更に高い耐候性が認められる。
コア/シェル構造を有する重合体エマルジョン粒子は、上述の材料を用いる他は、公知の2段階以上の乳化重合により調製することができる。得られた重合体エマルジョン粒子において、上記シード粒子がコア部となる。
重合体の重合温度、すなわちコア/シェル構造を有する重合体エマルジョン粒子の製造工程における温度は、全工程を通して75〜85℃とすることが好ましい。75℃以上で重合化率(=単量体から重合体への転化率)が良好となり、85℃以下で重合時の凝集物の発生が抑えられる。また重合時のpHは4以下で行うことで重合時の凝集物の発生が抑えられる。
上塗り層に含有されている重合体エマルジョン粒子は、上述したように、コア/シェル構造を有しているものであっても有していないものであってもよいが、その数平均粒子径は、10〜800nmであるものとし、30〜800nmであると好ましく、30〜200nmであるとより好ましく、50〜150nmであるとさらに好ましい。
重合体エマルジョン粒子の数平均粒子径が上記範囲内であると、金属酸化物粒子との相互作用が高まると共に、形成された有機無機複合体における粒子間の空隙を好適なものにすることができる。
上記数平均粒子径は、前述の金属酸化物粒子の場合と同様の方法により測定することができる。
なお、金属酸化物粒子の数平均粒子径よりも重合体エマルジョン粒子の数平均粒子径の方が大きいことが好ましい。これにより有機物質の長所である、柔軟性や密着性が更に効果的に示されることとなる。
重合体エマルジョン粒子の最低造膜温度は、10℃以上であり、好ましくは46℃以上であり、さらに好ましくは50℃以上である。
この範囲に重合体エマルジョン粒子の最低造膜温度があるときに、本実施形態の複層塗膜の上塗り層を構成する有機無機複合体における粒子間の空隙を好適なものにすることができ、結果として透明性が良好となる。
重合体エマルジョン粒子の最低造膜温度は、後述する実施例において記載の方法により測定できる。
なお、上記「粒子間」とは、「重合体エマルジョン粒子と金属酸化物粒子との間」を意味する。
最低造膜温度が低い重合体エマルジョンを使用すると、柔らかく接着しやすいために、周囲の金属酸化物(二酸化ケイ素)をより多く集めてしまい、粒子間の空隙にムラを作って白っぽい部分ができ、透明性が低下する。
最低造膜温度が高いものを用いると、良好な強度を維持しつつ、粒子間の空隙が相対的により均一になるため、白化がおきにくくより良好な透明性が発現する。
重合体エマルジョン粒子は、水及び乳化剤の存在下で、加水分解性珪素化合物とビニル単量体とを、加水分解性珪素化合物/ビニル単量体=10/90〜95/5の質量比で、重合させることにより作製することが好ましい。
加水分解性珪素化合物の割合が10以上の時に耐候性、透明性が良好となり、また95以下の時に防汚性、透明性、及び重合時の製造安定性が良好となる。
本実施形態の複層塗膜の上塗り層を構成する水系有機無機複合組成物においては、金属酸化物粒子の総表面積と重合体エマルジョン粒子の総表面積との合計に対して、重合体エマルジョン粒子の総表面積の比率が1〜46%の範囲にあるものとする。
上記範囲にあるときに、塗膜は極めて均質な微細構造を形成し、無機物質である金属酸化物粒子の長所である耐候性、耐水性、耐溶剤性、防汚性等を十分良好に示すことができる。
金属酸化物粒子の総表面積と重合体エマルジョン粒子の総表面積との合計に対する 重合体エマルジョン粒子の総表面積の割合は、1〜30%が好ましく、1〜25%がより好ましい。
<その他の成分>
本実施形態の複層塗膜の上塗り層を構成する水系有機無機複合組成物には、所定の乳化剤及び/又は分散安定剤を含有させてもよい。
乳化剤としては、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸に代表される酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸に代表されるアニオン性界面活性剤;アルキルトリメチルアンモニウムブロマイド、アルキルピリジニウムブロマイド、イミダゾリニウムラウレートに代表される4級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルに代表されるノニオン型界面活性剤;ラジカル重合性の二重結合を有する反応性乳化剤等が挙げられる。
前記ラジカル重合性の二重結合を有する反応性乳化剤としては、例えば、スルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体やそれらのアルカリ金属塩、アンモニウム塩、ポリオキシエチレンに代表されるノニオン基を有するビニル単量体、4級アンモニウム塩を有するビニル単量体が挙げられる。
前記分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群より選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、水溶性若しくは水分散性アクリル樹脂に代表される合成若しくは天然の水溶性又は水分散性の各種の水溶性高分子物質が挙げられる。
上述した乳化剤、分散安定剤は、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
上記のように、水系有機無機複合組成物に乳化剤、分散安定剤を含有させることにより、凝集物の発生防止が図られ、貯蔵安定性を付与でき、濡れ性、塗膜空隙の均一性等が良好となり、優れた塗装性が得られるようになる。
本実施形態の複層塗膜の上塗り層を構成する水系有機無機複合組成物は、本発明の目的の達成を阻害しない範囲において、その他の成分を含んでもよい。
例えば、この水系有機無機複合組成物を塗布した下塗り層との相互作用を制御する目的で、アルコール類等の有機溶剤を少量添加することもできる。
また、用途に応じて、通常の塗料や成型用樹脂に添加配合される成分、例えば、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調整剤等を選択し組み合わせて配合してもよい。
また、下塗り層の劣化を誘発せず、透明性を損ねない範囲において、光触媒活性を持つ金属酸化物を添加してもよい。
その場合、より下塗り層の劣化を誘発しにくいことから、光触媒活性を持つ金属酸化物としては、アナターゼ型酸化チタンよりもルチル型酸化チタンの方が好ましい。
本実施形態の複層塗膜の上塗り層を構成する水系有機無機複合組成物は、有機物質を多く含んでも無機物質の優れた耐候性、耐水性、防汚性を示す有機無機複合体を形成可能なものである。
それに加えて、防曇性、帯電防止性、耐薬品性、光学特性にも優れた有機無機複合体を形成することができる。
この水系有機無機複合組成物を用いることにより、特殊な装置を用いずに、簡単に、少ない環境負荷で有機無機複合体を形成することができ、成膜性や成形性にも優れている。
(下塗り層)
水系有機無機複合組成物を塗布する下塗り層は、有機高分子系であることが密着性の観点から必須である。
有機高分子系塗膜を形成する材料としては、例えば合成樹脂、天然樹脂や、それらの組み合わせが挙げられる。
上記合成樹脂としては、熱可塑性樹脂及び硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)が挙げられる。
例えば、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルフォン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂が挙げられる。
また、上記天然樹脂としては、例えば、セルロース系樹脂、天然ゴムに代表されるイソプレン系樹脂、カゼインに代表されるタンパク質系樹脂が挙げられる。
〔複層塗膜の製造方法〕
本実施形態の複層塗膜は、所定の基体上に、下塗り層と上塗り層とを塗布形成し、固形化し膜を形成することにより得られる。
複層塗膜を形成する基体の表面は、コロナ放電処理やフレーム処理、プラズマ処理等の表面処理が施されていてもよいが、これらの表面処理は必須ではない。
下塗り層は、上述した有機高分子材料を、後述する公知の方法により塗工し、乾燥することにより形成できる。
上塗り層は、重合体エマルジョン粒子と金属酸化物粒子とを攪拌することにより調製した水系有機無機複合組成物を上記下塗り層上に塗工し、乾燥させることにより形成できる。
下塗り層、及び上塗り層を形成する際、水系有機無機複合組成物は、その用途等に応じて、任意の方法で塗布され得る。
塗布方法としては、例えば、スプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法が挙げられる。
水系有機無機複合組成物を塗布した後、常温にて乾燥して揮発分を除去することにより硬化させ、塗膜が得られる。
また目的に応じ、40℃〜120℃程度の温度で加熱処理を行ってもよく、紫外線照射等を行ってもよい。
水系有機無機複合組成物を塗布した後の乾燥時の温度については、特に制限はないが、重合体エマルジョン粒子の最低造膜温度に30℃加えた値よりも低い温度で乾燥させることが好ましい。これによりさらに透明性が向上する。最低造膜温度以下で乾燥させるとさらに好ましい。
水系有機無機複合組成物は、上塗り層の塗膜の厚さが0.1〜10μmになるように塗布することが好ましい。上塗り層の膜厚は、より好ましくは0.5〜5μmである。
この厚さが10μm以下であることにより、良好な透明性を確保することができ、0.1μm以上であることにより、防汚性、光触媒活性等の機能をより高いレベルで発現することができる。
本実施形態の複層塗膜は、下塗り層(基体)の表面に、上述した水系有機無機複合組成物を塗布し、乾燥することによって得られるが、このような製造方法に限定されるものではない。その他の方法としては例えば、下塗り層(基体)と上塗り層とを同時に成形してもよく、一体成形してもよい。また、所定の基体上に上述した水系有機無機複合組成物を成膜し、塗膜を成形した後、この塗膜を上記所定の基体から剥離し、又はこの所定の基体と密着させた状態で、他の所定の基体(下塗り層に相当)に接着、あるいは融着させてもよい。
〔複層塗膜の用途〕
本実施形態の複層塗膜は、下塗り層と、その下塗り層上に形成された上塗り層とを備える複層塗膜であり、密着性、耐候性、耐水性、防汚性、透明性などの耐久性に優れており、建築物の外装塗料・塗膜などを含む広い用途に用いることができる。
例えば、建材、建物外装、建物内装、窓枠、窓ガラス、各種レンズ、構造部材、住宅等建築設備、車両用照明灯のカバー及び窓ガラス、機械装置や物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用及び鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装が挙げられる。
以上、本実施形態について説明したが、本発明はこの実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な応用が可能である。
以下、実施例により本発明を具体的に説明するが、本発明は、後述する実施例に限定されるものではない。
先ず、実施例及び比較例における各種物性の測定方法を示す。
〔1.表面積〕
各粒子の総表面積を、透過型電子顕微鏡で観察し、その画像を画像解析ソフト(旭化成エンジニアリング株式会社製の画像解析ソフト、商品名「A像くん」)で解析することで導出した。
〔2.数平均粒子径〕
湿式粒度分析計(日機装社製、商品名「マイクロトラックUPA−9230」)を用いて測定した。
ローディングインデッスクが2±0.2となるように、セル内の試料に水を加えて濃度を調製し、測定を行った。
〔3.固形分濃度〕
試料約2gをアルミ皿にとり、130℃で1時間加熱した。
加熱前後の試料の質量を測定し、その差から固形分濃度(=加熱残分)を計算した。
〔4.最低造膜温度(MFT)〕
JIS−K−6828の試験方法に準じて測定した。
一方の端を高温に、他の端を低温にして温度勾配をつけた熱板上に、重合体エマルジョン粒子を、アプリケーターを用いて塗布し、均一な乾燥塗膜を形成し得る最低の温度を最低造膜温度とした。
〔5.塗膜厚さ〕
塗膜の厚さを、ハロゲン光源装置(MORITEX社製、商品名「MHF−D100LR」)を装着した膜厚測定装置(SPECTRA・COOP社製、商品名「HandyLambda II THICKNESS」)を用いて測定した。
〔6.外観(色差)〕
カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。
〔7.接触角〕
20℃での水の接触角を、接触角計(協和界面科学社製、商品名「DROP MASTER 500」)を用いて測定した。
〔8.耐候性〕
スガ試験機社製のサンシャインウエザーメーターを用いて、曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行い、曝露前と曝露開始500時間、6000時間後との間での色差を、上記〔6.外観(色差)〕の方法で測定し、接触角を上記〔7.接触角〕の方法で測定した。曝露前の色差を標準とし、曝露前後の状態変化をΔEにて評価した。
上記色差ΔEは、0に近いほど曝露前の色合いに近いということであり、耐候性が優れているということである。
ΔEが2以下であるものを合格とした。
上記接触角は、小さいほど防汚性(耐候性)が良好であるものと判断した。
また、接触角が35°以下であるものを合格とした。
〔9.耐水性試験後の透明性〕
試験板を23℃の水中に10日間浸漬した後、大気中、23℃で1日乾燥させ、透明性の度合いを目視にて下記のように評価した。
◎:透明。
○:透明だがわずかに不透明。
△:やや不透明。
×:白く不透明。
〔10.防汚性〕
試験板を一般道路(トラック通行量500〜1000台/日程度)に面したフェンスに1年間貼りつけて汚染させた後、汚染の度合いを目視にて下記のように評価した。
○:汚れなし。
○〜△:全体的に少し汚れている。
△:やや雨スジ汚れ有り。
×:著しい雨スジ汚れあり。
〔11.密着性〕
JIS−K−5400に準拠し評価を行った。
試験板に直交する縦横11本ずつの平行線を、1mmの間隔で引いて、1cm2の中に100個のマス目ができるように碁盤目状の切り傷をつけた。
その後、セロテープ(登録商標)を用いた剥離試験を行った。
マス目100個のうち、剥離しないマス目の数で評価した。
〔製造例1〕
(重合体エマルジョン粒子(B−1)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水410g、反応性乳化剤SR(商品名「アデカリアソープSR−1025」、アデカ(株)製、商品の固形分(加熱残分)25質量%)17gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート122g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート84g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテル(商品名「エマルゲン150」、花王(株)製)の20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート62g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート10g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、水129gの混合物の乳化液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート86g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート36g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、冷却した。
pHは2.6であった。#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。
数平均粒子径は130nm、最低造膜温度(MFT)は60℃であった。
〔製造例2〕
(重合体エマルジョン粒子(B−2)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水202g、反応性乳化剤SR 295gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート122g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート84g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、メチルメタクリレート62g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート10g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後2時間80℃を保持した後、メチルメタクリレート86g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート36g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、冷却した。
pHは2.6であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。
数平均粒子径は43nm、MFTは57℃であった。
〔製造例3〕
(重合体エマルジョン粒子(B−3)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水416g、反応性乳化剤SR 9gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート122g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート84g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、メチルメタクリレート62g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート10g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート86g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート36g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、冷却した。pHは2.7であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。
数平均粒子径は161nm、MFTは59℃であった。
〔製造例4〕
(重合体エマルジョン粒子(B−4)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水419g、反応性乳化剤SR 5gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート122g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート84g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート62g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート10g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート86g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート36g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、冷却した。pHは2.9であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加えpH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は204nm、MFTは63℃であった。
〔製造例5〕
(重合体エマルジョン粒子(B−5)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水410g、反応性乳化剤SR 17gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート84g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート123g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、メチルメタクリレート50g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート22g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート65g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート56g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後2時間80℃を保持した後、冷却した。pHは2.4であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は129nm、MFTは42℃であった。
〔製造例6〕
(重合体エマルジョン粒子(B−6)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水410g、反応性乳化剤SR 17gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート171g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート35g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート72g、シクロヘキシルメタクリレート36g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート113g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート9g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、冷却した。pHは2.5であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は128nm、MFTは91℃であった。
〔製造例7〕
(重合体エマルジョン粒子(B−7)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水165g、ドデシルベンゼンスルホン酸の10質量%水溶液1.3gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、ジメチルジメトキシシラン27.5g、フェニルトリメトキシシラン17.3g、メチルトリメトキシシラン0.5gからなる混合液と、過硫酸アンモニウムの2質量%水溶液15.0gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
その後、反応器中の温度を80℃に維持して約1時間撹拌を続けた。
次に、アクリル酸n−ブチル12.3g、フェニルトリメトキシシラン6.8g、テトラエトキシシラン15.8g、3−メタクリロキシプロピルトリメトキシシラン0.6gからなる混合液と、ジエチルアクリルアミド24.6g、アクリル酸1g、反応性乳化剤SR 1.9g、過硫酸アンモニウムの2質量%水溶液8.5g、イオン交換水255gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却した。pHは2.5であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は132nm、MFTは95℃以上であった。
〔製造例8〕
(重合体エマルジョン粒子(B−8)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水666g、ドデシルベンゼンスルホン酸の10質量%水溶液5.2gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、ジメチルジメトキシシラン110.2g、フェニルトリメトキシシラン69.5g、メチルトリメトキシシラン2.0gからなる混合液と、過硫酸アンモニウムの2質量%水溶液15.0gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
その後、反応器中の温度を80℃に維持して約1時間撹拌を続けた。
次に、アクリル酸n−ブチル12.3g、フェニルトリメトキシシラン27.3g、テトラエトキシシラン63.5g、3−メタクリロキシプロピルトリメトキシシラン2.4gからなる混合液と、ジエチルアクリルアミド24.6g、アクリル酸1g、反応性乳化剤SR 1.9g、過硫酸アンモニウムの2質量%水溶液8.5g、イオン交換水255gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却した。pHは2.7であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は135nm、MFTは95℃以上であった。
〔製造例9〕
(重合体エマルジョン粒子(B−9)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水1907g、ドデシルベンゼンスルホン酸の10質量%水溶液14.9gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、ジメチルジメトキシシラン314.8g、フェニルトリメトキシシラン69.5g、メチルトリメトキシシラン2.0gからなる混合液と、過硫酸アンモニウムの2質量%水溶液15.0gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
その後、反応器中の温度を80℃に維持して約1時間撹拌を続けた。
次に、アクリル酸n−ブチル12.3g、フェニルトリメトキシシラン78.0g、テトラエトキシシラン181.4g、3−メタクリロキシプロピルトリメトキシシラン6.9gからなる混合液と、ジエチルアクリルアミド24.6g、アクリル酸1g、反応性乳化剤SR 1.9g、過硫酸アンモニウムの2質量%水溶液8.5g、イオン交換水255gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。
さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却した。pHは2.9であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は140nm、MFTは95℃以上であった。
〔実施例1〕
上記〔製造例1〕で作製した重合体エマルジョン粒子(B−1)水分散体100g(固形分10.0質量%)に、数平均粒子径12nmの水分散コロイダルシリカS−O(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)89.1gを混合し、攪拌することにより水系有機無機複合組成物(C−1)を得た。
この水系有機無機複合組成物(C−1)中の重合体エマルジョン粒子(B−1)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して9%であった(下記表1中、「面積比」と表記した。)。
次に、片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmの基板を準備した。
この基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(C−1)をバーコート法にて塗布した。
その後、塗布した水系有機無機複合組成物(C−1)を、25℃で2日養生(乾燥)させ、基板上に塗膜が形成された試験板(D−1)を得た。
この試験板(D−1)から塗膜を一部剥離し、その断面を透過型電子顕微鏡にて観察したところ、二酸化ケイ素粒子により連続相が形成され、その連続相中に重合体エマルジョン粒子(B−1)が均一に分散している様子が確認できた。
この試験板(D−1)の各種評価結果を、下記表1に示す。
〔実施例2〕
上記〔製造例1〕で作製した重合体エマルジョン粒子(B−1)水分散体100gに、水分散コロイダルシリカS−Oを281g混合し、攪拌することにより水系有機無機複合組成物(C−2)を得た。
この水系有機無機複合組成物(C−2)中の重合体エマルジョン粒子(B−1)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して3%であった(下記表1中、「面積比」と表記した。)。
次に、実施例1と同様にしてシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に上記水系有機無機複合組成物(C−2)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(D−2)を得た。
この試験板(D−2)から塗膜を一部剥離し、その断面を透過型電子顕微鏡にて観察したところ、二酸化ケイ素粒子により連続相が形成され、その連続相中に重合体エマルジョン粒子(B−1)が均一に分散している様子が確認できた。
この試験板(D−2)の各種評価結果を、下記表1に示す。
〔実施例3〜14〕
上記〔製造例1〕〜〔製造例9〕で作製した重合体エマルジョン粒子水分散体(B−1)〜(B−9)と、水分散コロイダルシリカS−O,S−OXS,S−OXLとを、下記表1に従ってそれぞれ混合し、攪拌することにより、水系有機無機複合組成物(C−3)〜(C−14)を得た。
これらの水系有機無機複合組成物(C−3)〜(C−14)中の二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対する重合体エマルジョン粒子の総表面積を計測した結果を、下記表1中、「面積比」の欄に示した。
次に、実施例1と同様にしてアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物をそれぞれバーコート法にて塗布し養生することにより、基板上に塗膜が形成された試験板(D−3)〜(D−14)を得た。
これらの試験板(D−3)〜(D−14)から塗膜を一部剥離し、その断面を透過型電子顕微鏡にて観察したところ、全ての塗膜にて二酸化ケイ素粒子により連続相が形成され、その連続相中に重合体エマルジョン粒子が均一に分散している様子が確認できた。
これらの試験板(D−3)〜(D−14)の各種評価結果を、下記表1に示す。
〔実施例15〕
あらかじめ80℃に10分静置しておいたアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記実施例1で得られた水系有機無機複合組成物(C−1)をバーコート法にて塗布した後、80℃にて10分加熱・乾燥させた後、一晩養生することにより、基板上に塗膜が形成された試験板(D−15)を得た。
この試験板に形成された塗膜においても、二酸化ケイ素粒子による連続相の形成と重合体エマルジョン粒子の均一分散が確認できた。
この試験板(D−15)の各種評価結果を、下記表1に示す。
〔実施例16〕
あらかじめ65℃に10分静置しておいたアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記実施例10で得られた水系有機無機複合組成物(C−10)をバーコート法にて塗布した後、65℃にて10分加熱・乾燥させた後、一晩養生することにより、基板上に塗膜が形成された試験板(D−16)を得た。
この試験板に形成された塗膜においても、二酸化ケイ素粒子による連続相の形成と重合体エマルジョン粒子の均一分散が確認できた。
この試験板(D−16)の各種評価結果を、下記表1に示す。
〔実施例17〕
あらかじめ100℃に10分静置しておいたアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記実施例1で得られた水系有機無機複合組成物(C−1)をバーコート法にて塗布した後、100℃にて10分加熱・乾燥させた後、一晩養生することにより、基板上に塗膜が形成された試験板(D−17)を得た。
この試験板に形成された塗膜においても、二酸化ケイ素粒子による連続相の形成と重合体エマルジョン粒子の均一分散が確認できた。
この試験板(D−17)の各種評価結果を、下記表1に示す。
〔比較例1〕
上記〔製造例1〕で作製した重合体エマルジョン粒子(B−1)水分散体10gに、水分散コロイダルシリカS−Oを161.7g混合し、攪拌することにより水系有機無機複合組成物(CH−1)を得た。
この水系有機無機複合組成物(CH−1)中の重合体エマルジョン粒子(B−1)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して0.5%であった(下記表2中「面積比」と表記した。)。
次に、実施例1と同様にして、アクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(CH−1)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(DH−1)を得た。
この試験板(DH−1)に形成された塗膜においても、二酸化ケイ素粒子による連続相の形成と重合体エマルジョン粒子の均一分散が確認できた。
しかしながらこの塗膜は、全体にひび割れが多く発生しており、強度が低下し、暴露試験や透明性などを評価できる状態ではなかったため、評価は行わなかった。
〔比較例2〕
上記〔製造例1〕で作製した重合体エマルジョン粒子(B−1)水分散体100gに、水分散コロイダルシリカS−Oを8.8g混合し、攪拌することにより水系有機無機複合組成物(CH−2)を得た。
この水系有機無機複合組成物(CH−2)中の重合体エマルジョン粒子(B−1)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して50%であった(下記表2中「面積比」と表記した。)。
次に、実施例1と同様にして、アクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(CH−2)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(DH−2)を得た。
この試験板(DH−2)に形成された塗膜においては二酸化ケイ素粒子による連続相は形成されてはいるものの重合体エマルジョン粒子同士の二次凝集が散見され、分散性が低下しているのが確認された。
この試験板(DH−2)の各種評価結果を下記表2に示した。
〔比較例3〕
上記〔製造例1〕で作製した重合体エマルジョン粒子(B−1)水分散体10gに、水分散コロイダルシリカS−M(商品名「スノーテックスMP−4540M」、日産化学工業(株)製、固形分40質量%)を166.7g混合し、攪拌することにより水系有機無機複合組成物(CH−3)を得た。
この複合組成物(CH−3)中の重合体エマルジョン粒子(B−1)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して9%であった(下記表2中「面積比」と表記した。)。
次に、実施例1と同様にして、アクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(CH−3)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(DH−3)を得た。
得られた塗膜は均一ではあったものの、強度、平滑性に著しく劣る塗膜となったため評価は行わなかった。
〔製造例10〕
(重合体エマルジョン粒子(B−10)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水410gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート122g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート84g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート62g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート10g、メタクリル酸12g、反応性乳化剤SR 12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート86g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート36g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、冷却した。pHは3.0であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は1010nm、MFTは59℃であった。
〔製造例11〕
(重合体エマルジョン粒子(B−11)の合成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水410g、反応性乳化剤SR 17gを投入した後、撹拌下で反応器中の温度を80℃に加温した。
この反応器中に、過硫酸アンモニウムの2質量%水溶液9gを投入し、5分後に、メチルメタクリレート20g、シクロヘキシルメタクリレート90g、n−ブチルアクリレート204g、メタクリル酸4g、反応性乳化剤SR 43g、ポリオキシエチレンラウリルエーテルの20質量%水溶液12g、過硫酸アンモニウムの2質量%水溶液15g、及び水244gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン4g、メチルトリメトキシシラン152g、ジメチルジメトキシシラン61gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート24g、シクロヘキシルメタクリレート36g、n−ブチルアクリレート48g、メタクリル酸12g、反応性乳化剤SR:12g、ポリオキシエチレンラウリルエーテルの20質量%水溶液5g、過硫酸アンモニウムの2質量%水溶液6g、及び水129gの混合物を乳化した液を2時間かけて投入した。
その後、2時間80℃を保持した後、メチルメタクリレート14g、シクロヘキシルメタクリレート54g、n−ブチルアクリレート108g、メタクリル酸5g、反応性乳化剤SR 14g、ポリオキシエチレンラウリルエーテルの20質量%水溶液7g、過硫酸アンモニウムの2質量%水溶液9g、及び水137gの混合物を乳化した液と、3−メタクリロキシプロピルトリメトキシシラン1g、メチルトリメトキシシラン91g、ジメチルジメトキシシラン36gからなる混合液とを、反応器中に別々に2時間かけて投入した。
その後、2時間80℃を保持した後、冷却した。pHは2.5であった。
#200のステンレス網を用いて濾過を行って凝集物を除去した後、攪拌しながらこれに25質量%アンモニア水溶液と水とを加え、pH7、固形分10.0質量%に調製し、重合体エマルジョン粒子を得た。数平均粒子径は130nm、MFTは0℃であった。
〔比較例4〕
上記製造例10で作製した重合体エマルジョン粒子(B−10)水分散体100g(固形分10.0質量%)に、水分散コロイダルシリカS−Oを11.6g混合し、攪拌することにより水系有機無機複合組成物(CH−4)を得た。
この水系有機無機複合組成物(CH−4)中の重合体エマルジョン粒子(B−10)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して9%であった。
次に、実施例1と同様にしてアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(CH−4)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(DH−4)を得た。
得られた塗膜は均一ではあったものの、強度、平滑性に著しく劣る塗膜となったため評価は行わなかった。
〔比較例5〕
上記製造例11で作製した重合体エマルジョン粒子(B−11)水分散体100g(固形分10.0質量%)に、水分散コロイダルシリカS−Oを89.1g混合し、攪拌することにより、水系有機無機複合組成物(CH−5)を得た。
この水系有機無機複合組成物(CH−5)中の重合体エマルジョン粒子(B−11)の総表面積は、二酸化ケイ素粒子及び重合体エマルジョン粒子の合計総表面積(100%)に対して9%であった。
次に、実施例1と同様にしてアクリルシリコーン樹脂が塗工された基板の片面(アクリルシリコーン樹脂側の面)に、上記水系有機無機複合組成物(CH−5)をバーコート法にて塗布し、25℃で2日養生させ、基板上に塗膜が形成された試験板(DH−5)を得た。
この試験板に形成された塗膜においては、二酸化ケイ素粒子による連続相の形成と重合体エマルジョン粒子の均一分散が確認できた。
この試験板(DH−5)の各種評価結果を下記表2に示す。
Figure 2011101863
Figure 2011101863
表1、表2中、「使用した金属酸化物」は、下記材料を示す。
S−O:日産化学工業製 スノーテックスO 数平均粒子径12nm、固形分20質量%
S−OXS:日産化学工業製 スノーテックスOXS 数平均粒子径3nm、固形分10質量%
S−OXL:日産化学工業製 スノーテックスOXL 数平均粒子径45nm、固形分20質量%
S−M:日産化学工業製 スノーテックスMP−4540M 数平均粒子径450nm、固形分40質量%
表1、表2から明らかなように、実施例1〜17の複層塗膜は、いずれにおいても密着性に優れており、長時間に亘り高い透明性、耐候性、防汚性を有し、初期の意匠を維持できるという効果が得られた。
本発明の複層塗膜は、建築物の外装塗料・塗膜などを含む広い用途に用いることができ、例えば、建材、建物外装、建物内装、窓枠、窓ガラス、各種レンズ、構造部材、住宅等建築設備、車両用照明灯のカバー及び窓ガラス、機械装置や物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用及び鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装として産業上の利用可能性がある。

Claims (3)

  1. 下塗り層と当該下塗り層上に設けられた上塗り層とを有する複層塗膜であって、
    前記下塗り層が、有機高分子系塗膜であり、
    前記上塗り層が、
    数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、
    前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積が1〜46%の範囲にあり、
    前記重合体エマルジョン粒子の最低造膜温度が10℃以上である、水系有機無機複合組成物から形成されている複層塗膜。
  2. 前記重合体エマルジョン粒子が、
    水及び乳化剤の存在下で、加水分解性珪素化合物とビニル単量体とを、加水分解性珪素化合物/ビニル単量体=10/90〜95/5の質量比で、重合させることにより得られる重合体エマルジョン粒子である請求項1に記載の複層塗膜。
  3. 有機高分子系塗膜よりなる下塗り層と、当該下塗り層上に設けられた上塗り層と、を有する複層塗膜の製造方法であって、
    数平均粒子径が1〜400nmである金属酸化物粒子と、数平均粒子径が10〜800nmである重合体エマルジョン粒子とを含み、前記金属酸化物粒子の総表面積と前記重合体エマルジョン粒子の総表面積との合計に対して、前記重合体エマルジョン粒子の総表面積が1〜46%の範囲にあり、前記重合体エマルジョン粒子の最低造膜温度が10℃以上である水系有機無機複合組成物を調製する工程と、
    前記水系有機無機複合組成物を前記下塗り層上に塗布し、前記重合体エマルジョン粒子の最低造膜温度に30℃加えた値よりも低い温度にて乾燥させる工程と、
    を、有する複層塗膜の製造方法。
JP2009258307A 2009-11-11 2009-11-11 複層塗膜及び複層塗膜の製造方法 Active JP5650394B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258307A JP5650394B2 (ja) 2009-11-11 2009-11-11 複層塗膜及び複層塗膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258307A JP5650394B2 (ja) 2009-11-11 2009-11-11 複層塗膜及び複層塗膜の製造方法

Publications (2)

Publication Number Publication Date
JP2011101863A true JP2011101863A (ja) 2011-05-26
JP5650394B2 JP5650394B2 (ja) 2015-01-07

Family

ID=44192460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258307A Active JP5650394B2 (ja) 2009-11-11 2009-11-11 複層塗膜及び複層塗膜の製造方法

Country Status (1)

Country Link
JP (1) JP5650394B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053237A (ja) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd 複合微粒子
JP2015093246A (ja) * 2013-11-12 2015-05-18 旭化成株式会社 積層体の製造方法、積層体、太陽電池用カバーガラス、及び太陽熱発電用ミラー
JP2018002865A (ja) * 2016-06-30 2018-01-11 富士フイルム株式会社 防曇層形成用組成物、積層体、及び積層体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186900A (ja) * 2000-12-22 2002-07-02 Asia Kogyo Kk 超低汚染性塗膜及びその製造方法
JP2003003030A (ja) * 2001-06-20 2003-01-08 Jsr Corp 水系分散体
JP2007084742A (ja) * 2005-09-26 2007-04-05 Chuo Rika Kogyo Corp 水分散性低汚染型塗料用樹脂組成物及びこれを用いた水分散性低汚染型塗料
JP2008284408A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 防汚層の形成方法
JP2009007513A (ja) * 2007-06-29 2009-01-15 Asahi Kasei Chemicals Corp コーティング組成物
JP2009249595A (ja) * 2008-04-10 2009-10-29 Asahi Kasei E-Materials Corp コーティング組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186900A (ja) * 2000-12-22 2002-07-02 Asia Kogyo Kk 超低汚染性塗膜及びその製造方法
JP2003003030A (ja) * 2001-06-20 2003-01-08 Jsr Corp 水系分散体
JP2007084742A (ja) * 2005-09-26 2007-04-05 Chuo Rika Kogyo Corp 水分散性低汚染型塗料用樹脂組成物及びこれを用いた水分散性低汚染型塗料
JP2008284408A (ja) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp 防汚層の形成方法
JP2009007513A (ja) * 2007-06-29 2009-01-15 Asahi Kasei Chemicals Corp コーティング組成物
JP2009249595A (ja) * 2008-04-10 2009-10-29 Asahi Kasei E-Materials Corp コーティング組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053237A (ja) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd 複合微粒子
JP2015093246A (ja) * 2013-11-12 2015-05-18 旭化成株式会社 積層体の製造方法、積層体、太陽電池用カバーガラス、及び太陽熱発電用ミラー
JP2018002865A (ja) * 2016-06-30 2018-01-11 富士フイルム株式会社 防曇層形成用組成物、積層体、及び積層体の製造方法

Also Published As

Publication number Publication date
JP5650394B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP6086879B2 (ja) 水性コーティング剤組成物、水性塗料、塗膜、及び塗装製品
JP6483822B2 (ja) 塗膜
JP4964021B2 (ja) 防汚層の形成方法
US11041076B2 (en) Highly durable antifogging coating film and coating composition
JP6210478B2 (ja) 水系組成物、水系塗料、塗膜、及び塗装製品
JP6343065B2 (ja) 塗膜、水性組成物、及び塗装製品
JP2008031297A (ja) 水系汚染防止用組成物および塗装物
JP5368720B2 (ja) 光触媒塗膜及び光触媒組成物
JP2018145429A (ja) 塗膜、複合塗膜、及び塗装製品
JP2010235676A (ja) ハードコート用コーティング組成物
JP5692892B2 (ja) 塗膜及び水系有機無機複合組成物
JP2011111485A (ja) 組成物、塗膜、及び塗装製品
JP2008222887A (ja) 水系有機・無機複合組成物
JP5650394B2 (ja) 複層塗膜及び複層塗膜の製造方法
JP5514463B2 (ja) 耐熱用コーティング組成物
JP2011131211A (ja) 光触媒用金属化合物、光触媒組成物及び光触媒塗膜
JP5899106B2 (ja) 水性組成物、塗膜、及び塗装製品
JP5280120B2 (ja) 複層塗膜
JP2009280770A (ja) 有機・無機複合組成物、これを用いた有機無機複合体、及び機能性複合体
JP2011110455A (ja) 塗膜及び組成物
JP6509977B2 (ja) 水系組成物、水系塗料、塗膜、及び塗装製品
JP5539700B2 (ja) リコート方法及び複層塗膜
JP2011092880A (ja) 光触媒塗膜
JP6794151B2 (ja) コーティング膜、コーティング膜の製造方法、及びコーティング組成物
JP2012086104A (ja) 光触媒組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350