JP2011071052A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2011071052A
JP2011071052A JP2009223153A JP2009223153A JP2011071052A JP 2011071052 A JP2011071052 A JP 2011071052A JP 2009223153 A JP2009223153 A JP 2009223153A JP 2009223153 A JP2009223153 A JP 2009223153A JP 2011071052 A JP2011071052 A JP 2011071052A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
secondary battery
positive electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223153A
Other languages
Japanese (ja)
Other versions
JP5232751B2 (en
Inventor
Toshiyuki Ariga
稔之 有賀
Takenori Ishizu
竹規 石津
Yoshin Yagi
陽心 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009223153A priority Critical patent/JP5232751B2/en
Publication of JP2011071052A publication Critical patent/JP2011071052A/en
Application granted granted Critical
Publication of JP5232751B2 publication Critical patent/JP5232751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve safety of a flat lithium-ion secondary battery. <P>SOLUTION: A shaft core 10 is equipped with first and second conductor members 11 and 12, and a heat-contractable insulator 13 that is interposed between the conductor members to insulate the conductor members. Respective conductor members are respectively connected to a negative electrode plate and a positive electrode plate, and at a time of abnormal heat generation of the battery, the insulator is heat-contracted and both conductor members become contacted. By this, the negative electrode plate and the positive electrode plate are short-circuited via the shaft core, so that potential difference between the negative electrode plate and the positive electrode plate is eliminated, and the heat generation stops. When the abnormal heat generation occurs, by the heat contraction of the insulating material, a contact face is formed between the conductor members so that both become contactable, while at the time of high temperature, plasticity is elevated in the insulator, and furthermore, is fused. At this time, by tightening force of the separator, conductor members become approachable, and a gap is narrowed so that the conductor members are brought into contact. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極と負極とをセパレータを介して軸芯周りに捲回した電極群を扁平状の電池容器に収容したリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery in which an electrode group in which a positive electrode and a negative electrode are wound around an axis through a separator is accommodated in a flat battery container.

リチウムイオン二次電池は他の二次電池と比較してエネルギー密度が高いため、昨今では主にデジタルカメラやノート型パソコン、携帯電話などのポータブル機器に多く使用されている。
また近年は環境問題に対応すべく、電気自動車用や電力貯蔵用を目的とする、大型のリチウムイオン二次電池の研究開発が活発に行われている。特に、自動車産業界においては、動力源としてモータを用いる方式の電気自動車や内燃機関とモータとの両方を用いるハイブリッド方式の電気自動車の開発が進められており、その一部はすでに実用化されている。
Since lithium ion secondary batteries have a higher energy density than other secondary batteries, they are now mainly used in portable devices such as digital cameras, notebook computers and mobile phones.
In recent years, research and development of large-sized lithium ion secondary batteries for the purpose of electric vehicles and power storage have been actively conducted in order to cope with environmental problems. In particular, in the automobile industry, the development of electric vehicles using a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor are underway, some of which have already been put into practical use. Yes.

電気自動車用の電源にリチウムイオン二次電池を用いる場合には、所定容量を有する複数のリチウムイオン二次電池を直列に接続することで高電圧が確保される。しかしながらリチウムイオン二次電池は、過充電状態に陥ると、内部に収容された電解液が気化して電池圧力が高まり安全性が低下するので、これを避けるために、リチウムイオン二次電池は、充電時等の電池電圧を制御する電圧コントローラと共に電源システムとして用いられる。   When a lithium ion secondary battery is used as a power source for an electric vehicle, a high voltage is secured by connecting a plurality of lithium ion secondary batteries having a predetermined capacity in series. However, when the lithium ion secondary battery falls into an overcharged state, the electrolyte contained therein is vaporized and the battery pressure is increased and the safety is lowered.To avoid this, the lithium ion secondary battery is It is used as a power supply system together with a voltage controller that controls battery voltage during charging.

しかしながら、大型のリチウムイオン二次電池を、電気自動車用電源に使用する場合には、電圧コントローラが故障したときの過充電時や不慮の衝突事故によるクラッシュ時の外部短絡時等により電池が異常状態に陥ったときの挙動が、人体に被害を与えないことは当然のことながら、自動車への損害を最小限に抑えることが重要な課題となってきている。   However, when a large lithium ion secondary battery is used as a power source for an electric vehicle, the battery is in an abnormal state due to an overcharge when the voltage controller fails or an external short circuit due to a crash due to an accidental collision. As a matter of course, the behavior when it falls into a vehicle does not damage the human body, and minimizing damage to the automobile has become an important issue.

電気自動車用電源のためのリチウムイオン二次電池は、大電流充電、大電流放電がなされるので、小型民生用のリチウムイオン二次電池で一般的に採用されているような、電池の内部圧力上昇に応じて作動する電流遮断機構を電池容器の内部に設けることは技術的に難しい。   Lithium ion secondary batteries for electric vehicle power supplies are charged with large currents and discharged with large currents, so the internal pressure of the battery is generally used in small consumer lithium ion secondary batteries. It is technically difficult to provide a current interruption mechanism that operates in accordance with the rise inside the battery container.

また、小型民生用、特に携帯電話用のリチウムイオン二次電池で採用されているような、熱を感知して抵抗を増加させるいわゆるPTC素子などは、高出力・高入力を要求される電気自動車用のリチウムイオン二次電池の場合では、平常時において抵抗体となってしまうため不向きである。このため、リチウムイオン二次電池自体に対する構造上の安全性、すなわち、機構的な安全性の要求が高まっている。   In addition, so-called PTC elements that detect heat and increase resistance, such as those used in lithium-ion secondary batteries for small consumers, especially mobile phones, are electric vehicles that require high output and high input. In the case of a lithium ion secondary battery for use, it is not suitable because it becomes a resistor in normal times. For this reason, there is an increasing demand for structural safety, that is, mechanical safety for the lithium ion secondary battery itself.

そこで、特許文献1記載の扁平型リチウムイオン二次電池では、軸芯まわりに正極と負極とをセパレータを介し捲回された電極群の外周に安全機構を設け、異常発熱時の安全対策を講じている。この安全機構は、電極群の外周に、電極群のセパレータよりも融点の低いセパレータを介して銅箔とアルミ箔とで構成される電極対を設け、電池の異常発この電極対のセパレータが電極群のセパレータよりも早く溶融し、短絡することによって電極内部に電流が流れるのを遮断し、安全性を向上している。   Therefore, in the flat lithium ion secondary battery described in Patent Document 1, a safety mechanism is provided on the outer periphery of an electrode group in which a positive electrode and a negative electrode are wound around a shaft through a separator, and safety measures are taken when abnormal heat is generated. ing. In this safety mechanism, an electrode pair composed of copper foil and aluminum foil is provided on the outer periphery of the electrode group via a separator having a melting point lower than that of the electrode group separator. It melts faster than the separators of the group and short-circuits to block current from flowing inside the electrodes, thereby improving safety.

特開2003−243037JP2003-243037

しかしながら、特許文献1の扁平型リチウムイオン二次電池は、電極群の外周に安全機構を配置するため、体積エネルギー密度が不利になってしまう。   However, the flat lithium ion secondary battery of Patent Document 1 has a disadvantageous volume energy density because a safety mechanism is disposed on the outer periphery of the electrode group.

(1)請求項1の発明によるリチウムイオン二次電池は、正極板と、負極板と、前記正極板および負極板の間に介在して前記正極板と前記負極板とを絶縁するセパレータとを積層したシート層を軸芯の周りに捲回して構成される電極群と、前記電極群が収納され、外部正極端子および外部負極端子を有する電池容器とを備え、前記軸芯は、第1導体部材と、第2導体部材と、前記第1、第2導体部材の間に介在して前記第1、第2導体部材を絶縁する絶縁材とを備え、前記第1導体部材は前記負極板に接続され、前記第2導体部材は前記正極板に接続されることを特徴とする。
(2)請求項2の発明は、請求項1記載のリチウムイオン二次電池において、前記絶縁材は熱収縮性材料から作成され、基準温度以上に達したときの収縮量により前記第1導体部材と第2導体部材とが接触するようにしたことを特徴とする。
(3)請求項3の発明は、請求項1記載のリチウムイオン二次電池において、前記絶縁材は熱溶融性材料から作成され、基準温度以上に達したときの溶融により前記第1導体部材と第2導体部材とが接触するようにしたことを特徴とする。
(4)請求項4の発明は、請求項1記載のリチウムイオン二次電池において、前記軸芯は前記セパレータで1周以上先行して捲回され、前記セパレータは熱収縮性樹脂で構成されることを特徴とする。
(5)請求項5の発明は、請求項4に記載のリチウムイオン二次電池において、前記セパレータは、前記電極群の捲回周方向(MD方向)について、摂氏120度における熱収縮率が2%以上であることを特徴とする。
(6)請求項6の発明は、請求項1乃至5のいずれかに1項に記載のリチウムイオン二次電池において、前記絶縁材の厚さが、200μm〜500μmであることを特徴とする。
(7)請求項7の発明は、請求項1乃至6のいずれかに記載のリチウムイオン二次電池において、前記絶縁材は、摂氏120度における熱収縮率が50%以上であることを特徴とする。
(8)請求項8の発明は、請求項1乃至7のいずれか1項に記載のリチウムイオン二次電池において、前記絶縁材はポリエチレンにより形成されていることを特徴とする。
(9)請求項9の発明は、請求項1乃至8のいずれか1項に記載のリチウムイオン二次電池において、前記軸芯は平板状の第1および第2の導体部材で形成され、前記絶縁材は、前記第1および第2の導体部材が互いに対向する側面に接着されていることを特徴とする。
(10)請求項10の発明は、請求項1乃至9のいずれか1項に記載のリチウムイオン二次電池において、負極外部端子は前記軸芯の第1導体部材に接続され、正極外部端子は前記軸芯の第2導体部材に接続されていることを特徴とする。
(11)請求項11の発明は、請求項1乃至9のいずれか1項に記載のリチウムイオン二次電池において、第1導体部材は負極板の負極集電部に、第2導体部材は正極板の正極集電部にそれぞれ接続され、正極集電部は正極接続板を介して正極外部端子に接続され、負極集電部60は負極接続板を介して負極外部端子に接続されていることを特徴とする。
(12)請求項12の発明は、請求項1乃至11のいずれか1項に記載のリチウムイオン二次電池において、扁平形状に捲回された電極群を扁平形状の電池容器に収納したことを特徴とする。
(1) A lithium ion secondary battery according to the invention of claim 1 includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate to insulate the positive electrode plate and the negative electrode plate. An electrode group configured by winding a sheet layer around an axial core; and a battery container in which the electrode group is housed and having an external positive electrode terminal and an external negative electrode terminal. The axial core includes a first conductor member and A second conductor member and an insulating material interposed between the first and second conductor members to insulate the first and second conductor members, wherein the first conductor member is connected to the negative electrode plate. The second conductor member is connected to the positive electrode plate.
(2) The invention according to claim 2 is the lithium ion secondary battery according to claim 1, wherein the insulating material is made of a heat-shrinkable material, and the first conductor member depends on a shrinkage amount when the temperature reaches a reference temperature or higher. And the second conductor member are in contact with each other.
(3) The invention of claim 3 is the lithium ion secondary battery according to claim 1, wherein the insulating material is made of a heat-meltable material and melts when the temperature reaches a reference temperature or higher. The second conductor member is in contact with the second conductor member.
(4) The invention of claim 4 is the lithium ion secondary battery according to claim 1, wherein the shaft core is wound one or more times in advance by the separator, and the separator is made of a heat-shrinkable resin. It is characterized by that.
(5) A fifth aspect of the present invention is the lithium ion secondary battery according to the fourth aspect, wherein the separator has a thermal shrinkage rate of 2 at 120 degrees Celsius in the winding circumferential direction (MD direction) of the electrode group. % Or more.
(6) A sixth aspect of the present invention is the lithium ion secondary battery according to any one of the first to fifth aspects, wherein the insulating material has a thickness of 200 μm to 500 μm.
(7) The invention of claim 7 is the lithium ion secondary battery according to any one of claims 1 to 6, wherein the insulating material has a heat shrinkage rate of 120% or more at 120 degrees Celsius. To do.
(8) The invention of claim 8 is the lithium ion secondary battery according to any one of claims 1 to 7, wherein the insulating material is formed of polyethylene.
(9) The invention according to claim 9 is the lithium ion secondary battery according to any one of claims 1 to 8, wherein the shaft core is formed of flat first and second conductor members, The insulating material is characterized in that the first and second conductor members are bonded to the side surfaces facing each other.
(10) The invention of claim 10 is the lithium ion secondary battery according to any one of claims 1 to 9, wherein the negative external terminal is connected to the first conductor member of the shaft core, and the positive external terminal is It is connected to the second conductor member of the shaft core.
(11) The invention according to claim 11 is the lithium ion secondary battery according to any one of claims 1 to 9, wherein the first conductor member is a negative electrode current collector of the negative electrode plate, and the second conductor member is a positive electrode. The positive current collector is connected to the positive current collector of the plate, the positive current collector is connected to the positive external terminal via the positive connection plate, and the negative current collector 60 is connected to the negative external terminal via the negative connection plate It is characterized by.
(12) The invention of claim 12 is the lithium ion secondary battery according to any one of claims 1 to 11, wherein the electrode group wound in a flat shape is stored in a flat battery container. Features.

本発明によれば、互いに絶縁した第1および第2の導体部材により電極群の軸芯を形成したので、体積エネルギ密度が不利になることなく安全性が向上したリチウムイオン二次電池を提供できる。 According to the present invention, since the axial core of the electrode group is formed by the first and second conductor members insulated from each other, it is possible to provide a lithium ion secondary battery with improved safety without disadvantageous volume energy density. .

本発明による扁平形リチウムイオン二次電池の実施の形態における電極群の斜視図。The perspective view of the electrode group in embodiment of the flat lithium ion secondary battery by this invention. 図1の正極または負極の電極板の正面図。The front view of the electrode plate of the positive electrode of FIG. 1, or a negative electrode. 図1の軸芯の斜視図。The perspective view of the axial center of FIG. 実施例1〜20における電極群の構成を比較例1と比較する表(表1)。The table | surface which compares the structure of the electrode group in Examples 1-20 with the comparative example 1 (Table 1). 実施例1〜20と比較例1の性能を比較する表(表2)。The table | surface which compares the performance of Examples 1-20 and the comparative example 1 (Table 2). 実施例1〜5の、絶縁材熱収縮率に関する過充電試験の結果を示すグラフ。The graph which shows the result of the overcharge test regarding the insulating material heat shrinkage rate of Examples 1-5. 実施例1、6〜10の、絶縁材厚さに関する過充電試験結果を示すグラフ。The graph which shows the overcharge test result regarding Example 1 and 6-10 about the insulating material thickness. 実施例1、11および12の、セパレータ先行捲回捲数に関する過充電試験結果を示すグラフ。The graph which shows the overcharge test result regarding the separator preceding winding number of Examples 1, 11 and 12. 実施例1、13〜16の、絶縁材熱収縮率に関する過充電試験結果を示すグラフ。The graph which shows the overcharge test result regarding Example 1 and 13-16 about an insulating-material thermal contraction rate. 実施例1、17〜20の、絶縁材の材料に関する過充電試験結果を示すグラフ。The graph which shows the overcharge test result regarding the material of an insulating material of Example 1, 17-20. 軸芯の変形例を示す斜視図。The perspective view which shows the modification of an axial center. 軸芯の他の変形例を示す斜視図。The perspective view which shows the other modification of an axial center.

本発明をハイブリッド電気自動車、プラグインハイブリッド電気自動車および電気自動車に搭載される扁平形リチウムイオン二次電池に適用した実施の形態について説明する。
[実施の形態]
Embodiments in which the present invention is applied to a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a flat lithium ion secondary battery mounted on an electric vehicle will be described.
[Embodiment]

一実施の形態の扁平形リチウムイオン二次電池は、図1に示す発電要素である電極捲20を絶縁袋(不図示)で覆いつつ扁平形の電池缶(不図示)に収納して構成される。電極群20は、図1に示すように、負極板30と、セパレータ80と、正極板40とを順に積層したシート層を軸芯10の周りに扁平形状に捲回したものである。   A flat lithium ion secondary battery according to an embodiment is configured such that an electrode bag 20 as a power generation element shown in FIG. 1 is covered with an insulating bag (not shown) and accommodated in a flat battery can (not shown). The As illustrated in FIG. 1, the electrode group 20 is obtained by winding a sheet layer in which a negative electrode plate 30, a separator 80, and a positive electrode plate 40 are sequentially laminated around a shaft core 10 in a flat shape.

図1、図2に示すように、正極板40は銅板に正極合剤41を塗布して構成され、負極板30はアルミニウム板に負極合剤31を塗布して構成されている。正極板40には、電極群20の捲回幅方向(TD方向)の一端部に、正極合剤41が塗布されない集電部70が形成されている。負極板30には、電極群20のTD方向の他端部に、負極合剤31が塗布されない集電部60が形成されている。   As shown in FIGS. 1 and 2, the positive electrode plate 40 is configured by applying a positive electrode mixture 41 to a copper plate, and the negative electrode plate 30 is configured by applying a negative electrode mixture 31 to an aluminum plate. In the positive electrode plate 40, a current collector 70 to which the positive electrode mixture 41 is not applied is formed at one end in the winding width direction (TD direction) of the electrode group 20. In the negative electrode plate 30, a current collector 60 to which the negative electrode mixture 31 is not applied is formed at the other end of the electrode group 20 in the TD direction.

図1に示すように、正極板40および負極板30にそれぞれ形成された集電部60,70が電極群20のTD方向の反対側に突出されるように、正極板40と負極板30を配置し、かつ、正極板40と負極板30を相互に絶縁するように、セパレータ80を正極板40と負極板30との間に介在させて、正極板40、負極板30、およびセパレータ80を積層した。このように積層した正極板40、負極板30、およびセパレータ80のシート層を軸芯10の周囲に捲回して電極群20を得た。なお、軸芯10には、セパレータ80が1周ないしは複数周、先行して捲回してもよいし、先行捲回巻数をゼロしてもよい。   As shown in FIG. 1, the positive electrode plate 40 and the negative electrode plate 30 are arranged so that the current collectors 60 and 70 formed respectively on the positive electrode plate 40 and the negative electrode plate 30 protrude to the opposite side of the electrode group 20 in the TD direction. The separator plate 80 is interposed between the positive electrode plate 40 and the negative electrode plate 30 so that the positive electrode plate 40 and the negative electrode plate 30 are insulated from each other. Laminated. The positive electrode plate 40, the negative electrode plate 30, and the sheet layer of the separator 80 thus laminated were wound around the shaft core 10 to obtain the electrode group 20. In addition, the separator 80 may be wound around the shaft core one or more times in advance, or the number of preceding winding turns may be zero.

図3に示すように、軸芯10は、銅を主材とする略L字状の第1の導体板(銅板)11と、アルミニウムを主材とする略L字状の第2の導体板(アルミニウム板)12と、導体板11と12の間隙に介在して導体板11と12を絶縁する熱収縮性の絶縁材13とを備える。第1の導体板11と第2の導体板12は、たとえば板厚1.5mm程度の薄い板材である。絶縁材13は、略L字状の導体板11および12を互いに逆向きに対向させた際に形成される折れ曲がり空間に対応した形状を呈している。絶縁材13の導体板11および12との接触面にアクリル樹脂系の粘着剤を塗布し、絶縁材13を介して導体板11と12とが張り合わされている。これによって、導体板11と12との間の絶縁を確保した3層構造の平板状の軸芯10を得た。   As shown in FIG. 3, the shaft core 10 includes a substantially L-shaped first conductor plate (copper plate) 11 mainly made of copper and a substantially L-shaped second conductor plate mainly made of aluminum. (Aluminum plate) 12 and a heat-shrinkable insulating material 13 interposed between the conductor plates 11 and 12 to insulate the conductor plates 11 and 12. The first conductor plate 11 and the second conductor plate 12 are thin plate members having a plate thickness of about 1.5 mm, for example. The insulating material 13 has a shape corresponding to a bent space formed when the substantially L-shaped conductor plates 11 and 12 are opposed to each other in opposite directions. An acrylic resin adhesive is applied to the contact surface of the insulating material 13 with the conductive plates 11 and 12, and the conductive plates 11 and 12 are bonded to each other through the insulating material 13. As a result, a plate-like shaft core 10 having a three-layer structure in which insulation between the conductor plates 11 and 12 was ensured was obtained.

第1の導体板11は負極板30の集電部60に、第2の導体板12は正極板40の集電部70にそれぞれ接続されている。電極群20の一端縁の正極集電部70を軸芯10の第2の導体板(アルミニウム板)12の端部に超音波溶接して接続し、電極群20の他端縁の負極集電部60を軸芯10の第1の導体板(銅板)11の端部に超音波溶接して接続する。   The first conductor plate 11 is connected to the current collector 60 of the negative electrode plate 30, and the second conductor plate 12 is connected to the current collector 70 of the positive electrode plate 40. The positive electrode current collector 70 at one end of the electrode group 20 is connected by ultrasonic welding to the end of the second conductor plate (aluminum plate) 12 of the shaft core 10, and the negative electrode current collector at the other end of the electrode group 20 is connected. The portion 60 is connected to the end of the first conductor plate (copper plate) 11 of the shaft core 10 by ultrasonic welding.

さらに、正極集電部70には正極接続板が超音波溶接にて接続され、正極接続板がリチウムイオン二次電池の正極外部端子(図示省略)に接続され、負極集電部60には、負極接続板が超音波溶接にて接続され、負極接続板がリチウムイオン二次電池の負極外部端子(図示省略)に接続される。したがって、正極外部端子は軸芯10を構成する第2の導体板12に接続され、負極外部端子は軸芯10を構成する第1の導体板11に接続される。換言すると、正極外部端子と負極外部端子は軸芯10の熱収縮性絶縁材13によって絶縁されている   Furthermore, a positive electrode connection plate is connected to the positive electrode current collector 70 by ultrasonic welding, a positive electrode connection plate is connected to a positive electrode external terminal (not shown) of the lithium ion secondary battery, The negative electrode connection plate is connected by ultrasonic welding, and the negative electrode connection plate is connected to a negative electrode external terminal (not shown) of the lithium ion secondary battery. Therefore, the positive external terminal is connected to the second conductor plate 12 constituting the shaft core 10, and the negative external terminal is connected to the first conductor plate 11 constituting the shaft core 10. In other words, the positive external terminal and the negative external terminal are insulated by the heat-shrinkable insulating material 13 of the shaft core 10.

このように外部端子が接続された電極群20を絶縁袋(不図示)に収納し、これを扁平形のアルミニウム製の缶外装電池容器(図示省略)に挿入して、蓋と電池容器とをレーザー溶接にて接合する。正極および負極の外部端子は、蓋との絶縁を確保しつつ、アルミニウム製の蓋(図示省略)の一面上において所定の距離をあけて配置され、電池蓋上方に突出している。   The electrode group 20 to which the external terminals are connected in this way is housed in an insulating bag (not shown), which is inserted into a flat aluminum can outer battery container (not shown), and the lid and the battery container are attached. Join by laser welding. The external terminals of the positive electrode and the negative electrode are arranged at a predetermined distance on one surface of an aluminum lid (not shown) while ensuring insulation from the lid, and protrude above the battery lid.

アルミニウム製の蓋には電解液を注液する注液口(図示省略)が設けられている。注液口から所定量の非水電解液を注液した後、注液口蓋で封口される。電解液としては、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)の体積比1:1:1の混合溶液中に六フッ化リン酸リチウムを1mol/Lとなるように溶解したものを用いる。   The aluminum lid is provided with a liquid injection port (not shown) for injecting an electrolytic solution. After pouring a predetermined amount of non-aqueous electrolyte from the pouring port, it is sealed with a pouring port lid. As the electrolytic solution, for example, lithium hexafluorophosphate is 1 mol / L in a mixed solution of ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC) in a volume ratio of 1: 1: 1. Use those dissolved in

このように構成された実施形態のリチウムイオン二次電池によれば次のような作用効果を奏することができる。
(1)電極群20が発熱して基準温度以上になり熱収縮性絶縁材13が収縮すると、導体板11と12が互いに接触する。その結果、正極外部端子と負極外部端子が導通し、電極群20の負極板30と正極板40との間に流れていた電流が遮断される。したがって、電極群20の発熱現象が解消される。
なお、絶縁材13の溶融により第1および第2の導体板11と12とが接触するように、絶縁材を選択してもよい。
According to the lithium ion secondary battery of the embodiment configured as described above, the following operational effects can be obtained.
(1) When the electrode group 20 generates heat and exceeds the reference temperature, and the heat-shrinkable insulating material 13 contracts, the conductor plates 11 and 12 come into contact with each other. As a result, the positive external terminal and the negative external terminal are conducted, and the current flowing between the negative electrode plate 30 and the positive electrode plate 40 of the electrode group 20 is interrupted. Therefore, the heat generation phenomenon of the electrode group 20 is eliminated.
The insulating material may be selected so that the first and second conductor plates 11 and 12 come into contact with each other by melting the insulating material 13.

(2)電極群20の外周に発熱安全機構を設ける必要がなく、もともと必要な軸芯に安全機構を設けた。したがって、特許文献1の従来例に比べて、体積エネルギー密度を低下させず、製造が容易であり、かつ安全性を向上させた扁平形リチウムイオン二次電池を提供することができる。 (2) It is not necessary to provide a heat generating safety mechanism on the outer periphery of the electrode group 20, and a safety mechanism is provided on the originally required shaft core. Therefore, it is possible to provide a flat lithium ion secondary battery that is easy to manufacture and has improved safety without reducing the volume energy density as compared with the conventional example of Patent Document 1.

次に本発明による扁平形リチウムイオン二次電池の実施例について説明する。なお、比較のために作製した比較例1の電池についても併記する。   Next, examples of the flat lithium ion secondary battery according to the present invention will be described. In addition, it describes together about the battery of the comparative example 1 produced for the comparison.

実施例1〜20のリチウムイオン二次電池において、負極板30、正極板40はいずれも同一であり、次のように作製される。
負極板30は次のように作製した。負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN−メチルビロリドン(以下、NMPという。)を添加、混練した負極合剤31を作製した。この負極合剤31を厚さ10μmの銅箔(銅板)の両面に無地の集電部60を残して塗布した。その後、乾燥、プレス、裁断し、銅箔を含まない負極活物質塗布部厚さ70μmの負極板30を得た。
In the lithium ion secondary batteries of Examples 1 to 20, the negative electrode plate 30 and the positive electrode plate 40 are the same, and are manufactured as follows.
The negative electrode plate 30 was produced as follows. 10 parts by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) is added as a binder to 100 parts by weight of amorphous carbon powder as the negative electrode active material, and N-methylpyrrolidone (hereinafter referred to as NMP) as a dispersion solvent. A negative electrode mixture 31 was added and kneaded. This negative electrode mixture 31 was applied on both sides of a 10 μm thick copper foil (copper plate) leaving the solid current collecting portions 60. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate 30 having a thickness of 70 μm, which does not include a copper foil.

正極板40は次のように作製した。正極活物質としてマンガン酸リチウム(化学式LiMnO)100重量部に対し、導電材としての10重量部の鱗片状黒鉛、結着剤としての10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤41を作製した。正極合剤41を厚さ20μmのアルミニウム箔(アルミニウム板)の両面に無地の集電部70を残して塗布した。その後、乾燥、プレス、裁断し、アルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極板40を得た。 The positive electrode plate 40 was produced as follows. To 100 parts by weight of lithium manganate (chemical formula LiMnO 2 ) as a positive electrode active material, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added, and as a dispersion solvent A positive electrode mixture 41 in which NMP was added and kneaded was produced. The positive electrode mixture 41 was applied to both surfaces of an aluminum foil (aluminum plate) having a thickness of 20 μm, leaving a solid current collecting portion 70. Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode plate 40 having a thickness of 90 μm in the thickness of the positive electrode active material coating portion that does not include an aluminum foil.

次に、軸芯10を種々変形して製作した実施例1〜20のリチウムイオン二次電池について説明する。
[実施例1]
図4(表1)に示すように、軸芯10における絶縁材13を、厚さを300μm、摂氏120度における熱収縮率が50%のポリエチレンによって形成した。セパレータ80は、摂氏120度におけるMD方向の熱収縮率が4%とし、先行捲回捲数を2周とした。
Next, lithium ion secondary batteries of Examples 1 to 20 manufactured by variously modifying the shaft core 10 will be described.
[Example 1]
As shown in FIG. 4 (Table 1), the insulating material 13 in the shaft core 10 was formed of polyethylene having a thickness of 300 μm and a thermal shrinkage rate of 120% at 120 degrees Celsius. The separator 80 had a thermal shrinkage rate of 4% in the MD direction at 120 degrees Celsius, and the number of leading windings was two.

[実施例2〜5]
図4(表1)に示すように、実施例2〜5の絶縁材13は、全て厚さ300μmであり、摂氏120度における熱収縮率を、実施例2で29%、実施例3で38%、実施例4で62%、実施例5で72%と変化させた。なお、先行捲回捲数その他の条件は実施例1と同様である。実施例1では、摂氏120度における熱収縮率が50%である。
[Examples 2 to 5]
As shown in FIG. 4 (Table 1), the insulating materials 13 of Examples 2 to 5 are all 300 μm in thickness, and the thermal shrinkage rate at 120 degrees Celsius is 29% in Example 2 and 38 in Example 3. %, 62% in Example 4, and 72% in Example 5. The preceding number of winding times and other conditions are the same as in the first embodiment. In Example 1, the heat shrinkage rate at 120 degrees Celsius is 50%.

[実施例6〜10]
図4(表1)に示すように、実施例6〜10の絶縁材13は、摂氏120度における熱収縮率を50%とし、厚さを、実施例6で100μm、実施例7で200μm、実施例8で400μm、実施例9で500μm、実施例10で600μmと変化させた。なお、先行捲回捲数その他の条件は実施例1と同様である。実施例1では、絶縁材13の厚さを300μmとした。
[Examples 6 to 10]
As shown in FIG. 4 (Table 1), the insulating material 13 of Examples 6 to 10 has a heat shrinkage rate of 50% at 120 degrees Celsius, and the thickness is 100 μm in Example 6, 200 μm in Example 7, Example 8 was changed to 400 μm, Example 9 was changed to 500 μm, and Example 10 was changed to 600 μm. The preceding number of winding times and other conditions are the same as in the first embodiment. In Example 1, the thickness of the insulating material 13 was 300 μm.

[実施例11および12]
図4(表1)に示すように、実施例1の絶縁材13を使用し、先行捲回捲数を、実施例11で0周、実施例12で1周と変化させた。なお、実施例1の先行捲回捲数は2周であるが、その他の条件は実施例1と同様である。
[Examples 11 and 12]
As shown in FIG. 4 (Table 1), the insulating material 13 of Example 1 was used, and the number of leading windings was changed to 0 in Example 11 and 1 in Example 12. In addition, although the number of preceding winding turns of Example 1 is 2 rounds, other conditions are the same as that of Example 1.

[実施例13〜16]
図4(表1)に示すように、実施例1の絶縁材13を使用し、セパレータ80の摂氏120度におけるMD方向の熱収縮率を、実施例13で1%、実施例14で2%、実施例15で6%、実施例16で8%と変化させた。なお、その他の条件は実施例1と同様である。実施例1では、セパレータ80は、摂氏120度におけるMD方向の熱収縮率が4%である。
[Examples 13 to 16]
As shown in FIG. 4 (Table 1), using the insulating material 13 of Example 1, the thermal contraction rate in the MD direction at 120 degrees Celsius of the separator 80 is 1% in Example 13 and 2% in Example 14. , 6% in Example 15 and 8% in Example 16. The other conditions are the same as in Example 1. In Example 1, the separator 80 has a thermal shrinkage rate of 4% in the MD direction at 120 degrees Celsius.

[実施例17〜20]
図4(表1)に示すように、絶縁材13の材質を、実施例17でポリプロピレン(以下、PP)、実施例18でポリエチレンテレフタラート(以下、PET)、実施例19でポリフェニレンサルファイド(以下、PPS)、実施例20でテトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体からなる樹脂(以下、PFA)と変化させた。なお、その他の条件は実施例1と同様である。実施例1の絶縁材13はポリエチレンである。
[Examples 17 to 20]
As shown in FIG. 4 (Table 1), the insulating material 13 is made of polypropylene (hereinafter, PP) in Example 17, polyethylene terephthalate (hereinafter, PET) in Example 18, and polyphenylene sulfide (hereinafter, PET) in Example 19. , PPS), and a resin made of a copolymer of tetrafluoroethylene and perfluoroalkoxyethylene (hereinafter referred to as PFA) in Example 20. The other conditions are the same as in Example 1. The insulating material 13 of Example 1 is polyethylene.

[比較例1]
図4(表1)に示すように、軸芯10を図3の構成に替えて、厚さ1.5mmのポリプロピレン製の一枚の板によって形成した。これによって、絶縁材13の熱収縮による導体板11と12の短絡の効果は生じない。なお、その他の条件は実施例1と同様である。
[試験・評価結果]
[Comparative Example 1]
As shown in FIG. 4 (Table 1), the shaft core 10 was formed by a single plate made of polypropylene having a thickness of 1.5 mm, instead of the configuration of FIG. As a result, the effect of short-circuiting the conductor plates 11 and 12 due to the thermal contraction of the insulating material 13 does not occur. The other conditions are the same as in Example 1.
[Test and evaluation results]

以上の実施例1〜20、比較例1の各リチウムイオン二次電池について、3時間率(3CA)の電流値で電池に異常現象が生じるまで充電する過充電試験を実施し、試験中の電池容器表面の最高到達温度を測定した。   For each of the lithium ion secondary batteries of Examples 1 to 20 and Comparative Example 1 described above, an overcharge test in which charging is performed until an abnormal phenomenon occurs in the battery at a current value of 3 hours rate (3CA) is performed. The highest temperature reached on the container surface was measured.

図5は、実施例1〜20と比較例1の評価一覧表である。図5(表2)における総合評価は以下のとおりである。
(1)試験数(n=5)内での最高到達温度が摂氏150度未満であり、最高到達温度のバラつきが摂氏10度未満であり、かつ不良率が0%のものを「◎」(優良)と評価した。
(2)試験数内での最高到達温度が摂氏150度未満、あるいは、最高到達温度のバラつきが摂氏10度未満のいずれかの一方を満たし、かつ不良率が0%のものを「○」(良)と評価した。
FIG. 5 is an evaluation list of Examples 1 to 20 and Comparative Example 1. The overall evaluation in FIG. 5 (Table 2) is as follows.
(1) When the maximum temperature reached within the number of tests (n = 5) is less than 150 degrees Celsius, the variation in the maximum temperature reached is less than 10 degrees Celsius, and the defect rate is 0%, “◎” ( Excellent).
(2) If the maximum temperature reached less than 150 degrees Celsius within the number of tests or the variation in maximum temperature reached less than 10 degrees Celsius and the defect rate is 0%, It was evaluated as “good”.

(3)試験数内での最高到達温度が摂氏150度以上であり、最高到達温度のバラつきが摂氏10度以上であり、かつ不良率が0%以上のものを「△」(問題有)と評価した。
(4)試験数内での最高到達温度が測定限界の摂氏400度を越え、大量の煙を放出したものを「×」(不良)と評価した。
(3) “△” (problem) means that the highest temperature achieved within the number of tests is 150 degrees Celsius or higher, the variation in maximum temperature reached is 10 degrees Celsius, and the defect rate is 0% or higher. evaluated.
(4) When the maximum temperature reached within the number of tests exceeded the measurement limit of 400 degrees Celsius and a large amount of smoke was emitted, it was evaluated as “x” (bad).

上述した過充電試験を行ったところ、図5(表2)に示すように、軸芯をポリプロピレン製の一枚の板によって形成した比較例1のリチウムイオン二次電池は激しく煙を噴出し、最高温度摂氏400度を超えた。   When the above-described overcharge test was performed, as shown in FIG. 5 (Table 2), the lithium ion secondary battery of Comparative Example 1 in which the shaft core was formed by a single plate made of polypropylene violently ejected smoke. The maximum temperature exceeded 400 degrees Celsius.

これに対して、図3に示すように第1および第2の導体板11,12を絶縁材13を介在させて構成した軸芯10を使用した実施例1〜20の電池では、発熱により軸芯10内の絶縁材13が熱収縮して第1の導体板11および第2の導体板12が接触、短絡する。これにより、正極外部端子→正極接続板→第2の導体板12→第1の導体板11→負極接続板→負極外部端子と電流が流れて、正極板40から負極板30へ流れる電流が遮断される。これによって発熱は止まり、最高到達温度も摂氏190度以下となり、発煙の量も少なく、安全性の高いことが分かる。   On the other hand, in the batteries of Examples 1 to 20 using the shaft core 10 in which the first and second conductor plates 11 and 12 are configured with the insulating material 13 interposed as shown in FIG. The insulating material 13 in the core 10 is thermally contracted, and the first conductor plate 11 and the second conductor plate 12 are contacted and short-circuited. As a result, current flows from the positive electrode external terminal → the positive electrode connection plate → the second conductor plate 12 → the first conductor plate 11 → the negative electrode connection plate → the negative electrode external terminal, and the current flowing from the positive electrode plate 40 to the negative electrode plate 30 is cut off. Is done. As a result, the heat generation stopped, the maximum temperature reached 190 degrees Celsius or less, the amount of smoke generation was small, and it was found that the safety was high.

図6〜図10は、各実施例における過充電試験の結果をグラフにしたものをそれぞれ示す。
図6のグラフに示すように、熱収縮率が50%未満の実施例2、3のリチウムイオン二次電池においては、最高到達温度がそれぞれ摂氏183度、摂氏150度であった。これに対し、熱収縮が50%以上の実施例1、4、5は、最高到達温度がそれぞれ摂氏119度、摂氏113度、摂氏108度と低い。
6 to 10 are graphs showing the results of the overcharge test in each example.
As shown in the graph of FIG. 6, in the lithium ion secondary batteries of Examples 2 and 3 having a thermal shrinkage rate of less than 50%, the maximum reached temperatures were 183 degrees Celsius and 150 degrees Celsius, respectively. On the other hand, Examples 1, 4, and 5 having thermal shrinkage of 50% or more have low maximum temperatures of 119 degrees Celsius, 113 degrees Celsius, and 108 degrees Celsius, respectively.

また、実施例2、3のリチウムイオン二次電池は、最高到達温度のバラつきが15.4%、11.8%であったのに対し、実施例1、4、5のリチウムイオン二次電池では、バラつきは3.7%〜4.1%と小さい。   Further, the lithium ion secondary batteries of Examples 2 and 3 had variations in the maximum temperature reached of 15.4% and 11.8%, whereas the lithium ion secondary batteries of Examples 1, 4 and 5 Then, the variation is as small as 3.7% to 4.1%.

これは実施例2、3のリチウムイオン二次電池が、絶縁材13の熱収縮率が低いことにより導体板11および12の接触が遅くなり、あるいは十分な収縮が起こらなかったことに起因する。すなわち、軸芯10を熱収縮率がある程度高い素材の絶縁材料を用いることにより、発熱時に絶縁材13が収縮し、短時間で第1および第2の導体板11,12が接触して温度上昇を抑制できることがわかる。   This is because the lithium ion secondary batteries of Examples 2 and 3 were slow in contact with the conductor plates 11 and 12 due to the low thermal contraction rate of the insulating material 13, or were not sufficiently contracted. That is, by using the insulating material made of a material having a somewhat high thermal contraction rate for the shaft core 10, the insulating material 13 contracts during heat generation, and the first and second conductor plates 11 and 12 come into contact with each other in a short time to increase the temperature. It can be seen that this can be suppressed.

図7のグラフに示すように、絶縁材13の厚さが600μmと厚い実施例10のリチウムイオン二次電池では、厚さ500μm以下の実施例1、6〜9のリチウムイオン二次電池に比較して最高到達温度が高く、そのバラつきも大きい。
これは、絶縁材13が厚いために、実施例10のリチウムイオン二次電池では導体板11および12の接触が遅くなったことに起因する。すなわち、絶縁材13の熱収縮性を考慮した設計を行うことにより、発熱時の絶縁材13の熱収縮により、短時間で第1および第2の導体板11,12を接触させることにより、温度上昇を抑制できることがわかる。
As shown in the graph of FIG. 7, the lithium ion secondary battery of Example 10 having a thick insulating material 13 of 600 μm is compared with the lithium ion secondary batteries of Examples 1 and 6 to 9 having a thickness of 500 μm or less. The maximum temperature reached is high, and the variation is large.
This is because the contact between the conductor plates 11 and 12 is delayed in the lithium ion secondary battery of Example 10 because the insulating material 13 is thick. That is, by designing in consideration of the heat shrinkability of the insulating material 13, the first and second conductor plates 11 and 12 are brought into contact with each other in a short time due to the heat shrinkage of the insulating material 13 during heat generation. It can be seen that the rise can be suppressed.

なお、絶縁材13の厚さが100μmと薄い実施例6のリチウムイオン二次電池は、安全性は高い反面、不良率が52%と高かった。これは絶縁材13が薄すぎたため、組立時に絶縁層が破損し短絡を生じたことに起因する。   The lithium ion secondary battery of Example 6 having a thin insulating material 13 of 100 μm was high in safety but had a high defect rate of 52%. This is because the insulating material 13 was too thin and the insulating layer was damaged during the assembly, resulting in a short circuit.

図8のグラフに示すように、先行捲回捲数が0周の実施例11のリチウムイオン二次電池では、最高到達温度が摂氏175度と高く、バラつきも12.7%と大きかった。
一方、先行捲回捲数が1周(セパレータ合計4枚)、2周(セパレータ合計8枚)の実施例12、13のリチウムイオン二次電池は、それぞれ、最高到達温度摂氏132度、摂氏144度、バラつき4.7%、10.2%であり、実施例11のリチウムイオン二次電池に比較し、最高到達温度が低く、バラつきは小さかった。
As shown in the graph of FIG. 8, in the lithium ion secondary battery of Example 11 in which the number of leading windings was 0, the maximum temperature reached was as high as 175 degrees Celsius and the variation was as large as 12.7%.
On the other hand, the lithium ion secondary batteries of Examples 12 and 13 in which the number of leading windings is 1 turn (4 separators in total) and 2 turns (8 separators in total) are the maximum attained temperatures of 132 degrees Celsius and 144 degrees Celsius, respectively. The variation was 4.7% and 10.2%, and the maximum temperature reached was low and the variation was small as compared with the lithium ion secondary battery of Example 11.

これは、セパレータ80の、摂氏120度におけるMD方向熱収縮性能により、先行捲回された部分が導体板11および12を締め付け、絶縁材13の熱収縮時に導体板11と12を密着させ、確実に接触を実現したことに起因する。すなわち、熱収縮率がある程度高い素材のセパレータを軸芯10の周りに1周以上捲回することにより、発熱時にセパレータ80が収縮し、絶縁材13の熱収縮、ならびに溶融とあいまって、短時間で第1および第2の導体板11,12が接触して温度上昇を抑制できることがわかる。   This is because, due to the heat shrinkability of the separator 80 in the MD direction at 120 degrees Celsius, the previously wound portions fasten the conductor plates 11 and 12, and the conductor plates 11 and 12 are brought into close contact with each other when the insulating material 13 is thermally shrunk. This is due to the realization of contact. That is, by winding a separator made of a material having a somewhat high heat shrinkage rate around the shaft core 10 or more around the shaft core 10, the separator 80 is shrunk during heat generation. Thus, it can be seen that the first and second conductor plates 11 and 12 can come into contact with each other to suppress the temperature rise.

図9のグラフに示すように、セパレータ80の摂氏120度における熱収縮率が1%の実施例11のリチウムイオン二次電池では、最高到達温度摂氏175度と高く、バラつきも12.7%と大きい。
一方、セパレータの熱収縮率が2%以上の実施例1、14〜16のリチウムイオン二次電池では、最高到達温度摂氏119〜125度と低く、バラつきは2.0〜4.7%と小さい。
As shown in the graph of FIG. 9, in the lithium ion secondary battery of Example 11 in which the thermal shrinkage rate of the separator 80 at 120 degrees Celsius is 1%, the maximum temperature reached 175 degrees Celsius is high, and the variation is 12.7%. large.
On the other hand, in the lithium ion secondary batteries of Examples 1 and 14 to 16 in which the thermal contraction rate of the separator is 2% or more, the maximum temperature reached is as low as 119 to 125 degrees Celsius, and the variation is as small as 2.0 to 4.7%. .

これはセパレータ80の熱収縮率が高いほど、導体板11および12に対する締め付け力が大きく、絶縁材13が発熱時に収縮する際、導体板11と12を確実に密着させることにより、最高温度を確実に抑制できることを示している。   The higher the thermal contraction rate of the separator 80, the greater the tightening force with respect to the conductor plates 11 and 12, and when the insulating material 13 contracts during heat generation, the conductor plates 11 and 12 are brought into close contact with each other, thereby ensuring the maximum temperature. It can be suppressed to.

図10のグラフに示すように、実施例1、17〜20のリチウムイオン二次電池の絶縁材13の材質を、それぞれPE、PP、PET、PPS、PFAと変化させ、最高到達温度を比較したところ、PE製絶縁材13を用いた実施例1のリチウムイオン二次電池が摂氏119度と低く、実施例17〜20のリチウムイオン二次電池は摂氏153度〜摂氏195度と高かった。   As shown in the graph of FIG. 10, the materials of the insulating material 13 of the lithium ion secondary batteries of Examples 1 and 17 to 20 were changed to PE, PP, PET, PPS, and PFA, respectively, and the maximum temperature reached was compared. However, the lithium ion secondary battery of Example 1 using the PE insulating material 13 was as low as 119 degrees Celsius, and the lithium ion secondary batteries of Examples 17 to 20 were as high as 153 degrees Celsius to 195 degrees Celsius.

これは、PEの融点がPP、PET、PPS、PFAの融点よりも低く、最も早く熱収縮を生じて、最も早く導体板11と12を短絡させたことに起因する。すなわち、絶縁材13の溶融温度を考慮した設計を行うことにより、発熱時の絶縁材13の溶融により、短時間で第1および第2の導体板11,12を接触させることにより、温度上昇を抑制できることがわかる。   This is because the melting point of PE is lower than the melting points of PP, PET, PPS, and PFA, and heat shrinkage occurs first, and the conductor plates 11 and 12 are short-circuited first. That is, by designing in consideration of the melting temperature of the insulating material 13, the first and second conductor plates 11 and 12 are brought into contact with each other in a short time due to the melting of the insulating material 13 during heat generation. It turns out that it can suppress.

以上の試験結果から、実施例1、4〜9、12〜20のリチウムイオン二次電池については以下の効果を奏する。
(1)実施例1〜20のリチウムイオン二次電池は、導体板11と12との間に、摂氏120度における熱収縮率が50%以上で、厚さが200〜500μmのPEからなる絶縁材13を配置した3層構造からなる軸芯10を有し、摂氏120度におけるMD方向の熱収縮率が2%以上のセパレータ80を先行捲回捲数1周以上で軸芯10周りに捲回している。比較例1のリチウムイオン二次電池に比べ安全性が大きく向上し、なおかつ過充電における最高到達温度を確実に低くすることができ、製造工程での不良も無いことが分った。
From the above test results, the lithium ion secondary batteries of Examples 1, 4 to 9, and 12 to 20 have the following effects.
(1) In the lithium ion secondary batteries of Examples 1 to 20, the insulating plate made of PE having a heat shrinkage rate of not less than 50% at 120 degrees Celsius and a thickness of 200 to 500 μm between the conductor plates 11 and 12. A separator 80 having a shaft core 10 having a three-layer structure in which a material 13 is arranged and having a heat shrinkage rate of 2% or more in the MD direction at 120 degrees Celsius is wound around the shaft core 10 with a preceding winding number of turns of 1 or more. It is turning. It was found that the safety was greatly improved as compared with the lithium ion secondary battery of Comparative Example 1, and the maximum temperature reached in overcharging could be reliably lowered, and there was no defect in the manufacturing process.

以上説明した実施例1〜20を以下のように変形して実施することができる。
(1)本実施の形態では、量論組成のマンガン酸リチウム(LiMn)を正極活物質として例示した。本発明によるリチウムイオン二次電池は、スピネル結晶構造を有する他のマンガン酸リチウム(例えば、Li+xMn−xO)やマンガン酸リチウムの一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物(例えば、Li1+xMyMn−x−yO,MはCo、Ni、Fe、Cu、Al、Cr、Mg、Zn、V、Ga、B、Fの少なくとも1種)や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。
Embodiments 1 to 20 described above can be modified as follows.
(1) In this embodiment, stoichiometric lithium manganate (LiMn 2 O 4 ) is exemplified as the positive electrode active material. The lithium ion secondary battery according to the present invention includes a lithium manganese composite oxide in which another lithium manganate having a spinel crystal structure (for example, Li 1 + xMn 2 -xO 4 ) or a part of lithium manganate is substituted or doped with a metal element. objects (e.g., Li1 + xMyMn 2 -x-yO 4, M is Co, Ni, Fe, Cu, Al, Cr, Mg, Zn, V, Ga, B, at least one of F) cobalt having a or layered crystal structure Lithium oxide, lithium titanate, or a lithium-metal composite oxide obtained by substituting or doping a part thereof with a metal element may be used.

(2)本実施の形態では、負極活物質に非晶質炭素を例示したが、これに限定されるものではなく、リチウムイオンを脱挿入可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。 (2) In the present embodiment, amorphous carbon is exemplified as the negative electrode active material. However, the present invention is not limited to this. Natural graphite capable of removing and inserting lithium ions, various artificial graphite materials, coke, etc. The carbonaceous material or the like may be used, and the particle shape is not particularly limited to a scaly shape, a spherical shape, a fibrous shape, a massive shape, or the like.

(3)本実施の形態では、電解質としてLiPFを使用した例を示したが、これに限定されるものではなく、例えば、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLiなどやこれらの混合物を用いることができる。また、本実施形態では、非水電解液の溶媒にECとDMCとの混合溶媒を用いた例を示したが、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ―ブチルラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、プロピオニトリルなど少なくとも1種以上の混合溶媒を用いるようにしてもよく、また混合配合比についても限定されるものではない。 (3) In this embodiment mode shows an example of using LiPF 6 as an electrolyte, it is not limited thereto, for example, LiClO 4, LiAsF 6, LiBF 4, LiB (C 6 H 5) 4 CH 3 SO 3 Li, CF 3 SOLi, or a mixture thereof can be used. Moreover, in this embodiment, although the example which used the mixed solvent of EC and DMC was shown as the solvent of nonaqueous electrolyte solution, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1, 2- dimethoxyethane, , 2-diethoxyethane, γ-butyllactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, propionitrile, etc. A mixed solvent of seeds or more may be used, and the mixing ratio is not limited.

(4)本実施の形態では、結着材にPVDFを用いた例を示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体及びこれらの混合体などを用いることができる。 (4) In the present embodiment, an example in which PVDF is used as the binder is shown, but polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber Polymers such as nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.

(5)本実施の形態では、軸芯にアルミミウム板12と銅板11を使用したが、これに限定されるものではなく、例えばアルミニウム合金板や銅合金板・ニッケル板等、各極の電池電位によって腐食されること無く、導電性を持つものであれば特に限定されない。 (5) In this embodiment, the aluminum plate 12 and the copper plate 11 are used for the shaft core. However, the present invention is not limited to this. For example, the battery potential of each electrode such as an aluminum alloy plate, a copper alloy plate, or a nickel plate is used. There is no particular limitation as long as it has electrical conductivity without being corroded by.

(6)軸芯10は、図3の構成に限定されるものではない。熱によって絶縁層13が収縮するもの、溶融するものなど、電極群20の発熱により変形して導体板11と12も接触を許容する素材であれば、どのような材料でもよい。 (6) The shaft core 10 is not limited to the configuration shown in FIG. Any material may be used as long as it is a material that deforms due to heat generated by the electrode group 20 and allows the conductor plates 11 and 12 to contact, such as a material that contracts or melts the insulating layer 13 due to heat.

(7)軸芯10の構造、機構も実施形態に限定されず、いかなる形態の構成も採用できる。たとえば、図11のように、導体板11と12が間隙をあけて互いに対向する面に突起13Pのようなものを形成した構成によって、粘着剤の塗布スペースを確保できる。 (7) The structure and mechanism of the shaft core 10 are not limited to the embodiment, and any configuration can be adopted. For example, as shown in FIG. 11, a space for applying the adhesive can be secured by a configuration in which the conductor plates 11 and 12 are formed with protrusions 13P on the surfaces facing each other with a gap therebetween.

(8)金属製正極用軸芯電極である第1および第2の導体板11と12との間の絶縁材の配置は、実施形態のような端面同士を対向させる方式に代え、面同士を絶縁材を介して対向するようにしてもよい。このような軸芯の一例を図12に示す。導体板11、12を厚さ方向についてL字状の段差を設け、厚さ方向に絶縁材13を介して接合した構成である。軸芯は、その他、種々の構成を採用することができる。 (8) The arrangement of the insulating material between the first and second conductor plates 11 and 12 which are metal positive electrode core electrodes is replaced with a method in which the end faces are opposed to each other as in the embodiment. You may make it oppose through an insulating material. An example of such an axis is shown in FIG. In this configuration, the conductor plates 11 and 12 are provided with an L-shaped step in the thickness direction and are joined via an insulating material 13 in the thickness direction. Various other configurations can be employed for the shaft core.

(9)絶縁材は、発熱によりゲル状になる素材を使用してもよい。この場合、互いに絶縁材を介して対向する金属端子の対向面には、ゲルが逃げ込む溝、あるいは凹部を形成しておくと良い。 (9) As the insulating material, a material that becomes a gel by heat generation may be used. In this case, it is preferable to form grooves or recesses into which the gel escapes on the opposing surfaces of the metal terminals facing each other with an insulating material interposed therebetween.

(10)板状の軸芯に代えて、導電性ある棒状、軸状の導電部材からなる軸芯を用いても良い。この場合、長手方向両端部をそれぞれ正極集電部70と負極集電部60に接続し、両端部を構成する部材の間を種々の形態で絶縁すればよい。 (10) Instead of the plate-shaped shaft core, a shaft core made of a conductive rod-shaped or shaft-shaped conductive member may be used. In this case, both ends in the longitudinal direction may be connected to the positive electrode current collector 70 and the negative electrode current collector 60, respectively, and the members constituting the both ends may be insulated in various forms.

(11)負極板30と正極板40を絶縁するセパレータを軸芯10に先行捲回するようにしたが、このセパレータとは別の絶縁性、かつ熱収縮性樹脂から形成されたセパレータを軸芯10に捲回しても良い。 (11) A separator that insulates the negative electrode plate 30 and the positive electrode plate 40 is wound around the shaft core 10 in advance, but a separator made of an insulating and heat-shrinkable resin different from this separator is used as the shaft core. 10 may be wound.

(12)熱収縮しない絶縁材やゲル状化しない絶縁材で絶縁させた正極軸芯電極と負極軸芯電極により軸芯を構成しても良い。すなわち、発熱時に、正極軸芯電極と負極軸芯電極とが短絡しない軸芯でもよい。これは、金属軸芯による冷却性能の向上を図ることを目的とする。したがって、発熱による安全対策に対する効果は実施例1〜20に比べて低いが、ある程度の冷却効果は期待できる。 (12) The shaft core may be constituted by a positive electrode core electrode and a negative electrode core electrode which are insulated with an insulating material that does not shrink by heat or an insulating material that does not gelate. That is, a shaft core in which the positive electrode core electrode and the negative electrode core electrode are not short-circuited during heat generation may be used. This is intended to improve the cooling performance by the metal shaft core. Therefore, although the effect with respect to the safety measure by heat_generation | fever is low compared with Examples 1-20, a certain amount of cooling effect can be anticipated.

10 軸芯 11 第1の導体板(銅板)
12 第2の導体板(アルミニウム板) 13 絶縁材
20 電極群 30 負極板
31 負極合剤層 40 正極板
41 正極合剤層 60 負極集電部
70 正極集電部 80 セパレータ
10 shaft core 11 first conductor plate (copper plate)
12 Second conductor plate (aluminum plate) 13 Insulating material 20 Electrode group 30 Negative electrode plate 31 Negative electrode mixture layer 40 Positive electrode plate 41 Positive electrode mixture layer 60 Negative electrode current collector 70 Positive electrode current collector 80 Separator

Claims (12)

正極板と、負極板と、前記正極板および負極板の間に介在して前記正極板と前記負極板とを絶縁するセパレータとを積層したシート層を軸芯の周りに捲回して構成される電極群と、
前記電極群が収納され、外部正極端子および外部負極端子を有する電池容器とを備え、
前記軸芯は、第1導体部材と、第2導体部材と、前記第1、第2導体部材の間に介在して前記第1、第2導体部材を絶縁する絶縁材とを備え、
前記第1導体部材は前記負極板に接続され、前記第2導体部材は前記正極板に接続されることを特徴とするリチウムイオン二次電池。
An electrode group comprising a positive electrode plate, a negative electrode plate, and a sheet layer that is interposed between the positive electrode plate and the negative electrode plate and laminated with a separator that insulates the positive electrode plate from the negative electrode plate, and is wound around an axis. When,
The electrode group is housed, and comprises a battery container having an external positive terminal and an external negative terminal,
The shaft core includes a first conductor member, a second conductor member, and an insulating material interposed between the first and second conductor members to insulate the first and second conductor members;
The lithium ion secondary battery, wherein the first conductor member is connected to the negative electrode plate, and the second conductor member is connected to the positive electrode plate.
請求項1記載のリチウムイオン二次電池において、
前記絶縁材は熱収縮性材料から作成され、基準温度以上に達したときの収縮量により前記第1導体部材と第2導体部材とが接触するようにしたことを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1,
The insulating material is made of a heat-shrinkable material, and the first conductor member and the second conductor member are brought into contact with each other by the amount of shrinkage when the temperature exceeds a reference temperature. .
請求項1記載のリチウムイオン二次電池において、
前記絶縁材は熱溶融性材料から作成され、基準温度以上に達したときの溶融により前記第1導体部材と第2導体部材とが接触するようにしたことを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1,
The lithium ion secondary battery is characterized in that the insulating material is made from a heat-meltable material, and the first conductor member and the second conductor member are brought into contact with each other by melting when the temperature reaches a reference temperature or higher.
請求項1記載のリチウムイオン二次電池において、
前記軸芯は前記セパレータで1周以上先行して捲回され、前記セパレータは熱収縮性樹脂で構成されることを特徴とするリチウムイオン二次電池。
In the lithium ion secondary battery according to claim 1,
The lithium ion secondary battery is characterized in that the shaft core is wound one or more times in advance by the separator, and the separator is made of a heat-shrinkable resin.
請求項4に記載のリチウムイオン二次電池において、
前記セパレータは、前記電極群の捲回周方向(MD方向)について、摂氏120度における熱収縮率が2%以上であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to claim 4,
The separator is a lithium ion secondary battery, wherein a thermal shrinkage rate at 120 degrees Celsius is 2% or more in a winding circumferential direction (MD direction) of the electrode group.
請求項1乃至5のいずれかに1項に記載のリチウムイオン二次電池において、
前記絶縁材の厚さが、200μm〜500μmであることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 5,
The lithium ion secondary battery, wherein the insulating material has a thickness of 200 μm to 500 μm.
請求項1乃至6のいずれかに記載のリチウムイオン二次電池において、
前記絶縁材は、摂氏120度における熱収縮率が50%以上であることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 6,
The lithium ion secondary battery, wherein the insulating material has a thermal shrinkage rate of 120% or more at 120 degrees Celsius.
請求項1乃至7のいずれか1項に記載のリチウムイオン二次電池において、
前記絶縁材はポリエチレンにより形成されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 7,
The lithium ion secondary battery, wherein the insulating material is made of polyethylene.
請求項1乃至8のいずれか1項に記載のリチウムイオン二次電池において、
前記軸芯は平板状の第1および第2の導体部材で形成され、前記絶縁材は、前記第1および第2の導体部材が互いに対向する側面に接着されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 8,
The shaft core is formed of flat first and second conductor members, and the insulating material is bonded to side surfaces of the first and second conductor members facing each other. Secondary battery.
請求項1乃至9のいずれか1項に記載のリチウムイオン二次電池において、
負極外部端子は前記軸芯の第1導体部材に接続され、正極外部端子は前記軸芯の第2導体部材に接続されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 9,
A lithium ion secondary battery, wherein a negative electrode external terminal is connected to the first conductor member of the shaft core, and a positive electrode external terminal is connected to the second conductor member of the shaft core.
請求項1乃至9のいずれか1項に記載のリチウムイオン二次電池において、
第1導体部材は負極板の負極集電部に、第2導体部材は正極板の正極集電部にそれぞれ接続され、正極集電部は正極接続板を介して正極外部端子に接続され、負極集電部60は負極接続板を介して負極外部端子に接続されていることを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 9,
The first conductor member is connected to the negative electrode current collector of the negative electrode plate, the second conductor member is connected to the positive electrode current collector of the positive electrode plate, and the positive electrode current collector is connected to the positive electrode external terminal via the positive electrode connection plate. The current collector 60 is connected to a negative electrode external terminal through a negative electrode connecting plate, and is a lithium ion secondary battery characterized by the above.
請求項1乃至11のいずれか1項に記載のリチウムイオン二次電池において、
扁平形状に捲回された電極群を扁平形状の電池容器に収納したことを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 11,
A lithium ion secondary battery, wherein an electrode group wound in a flat shape is stored in a flat battery container.
JP2009223153A 2009-09-28 2009-09-28 Lithium ion secondary battery Expired - Fee Related JP5232751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223153A JP5232751B2 (en) 2009-09-28 2009-09-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223153A JP5232751B2 (en) 2009-09-28 2009-09-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011071052A true JP2011071052A (en) 2011-04-07
JP5232751B2 JP5232751B2 (en) 2013-07-10

Family

ID=44016127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223153A Expired - Fee Related JP5232751B2 (en) 2009-09-28 2009-09-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5232751B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139340A (en) * 2011-12-07 2013-07-18 Toray Battery Separator Film Co Ltd Microporous membrane roll body and method of manufacturing same
KR20140072794A (en) * 2012-12-05 2014-06-13 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
JPWO2013046349A1 (en) * 2011-09-28 2015-03-26 日立オートモティブシステムズ株式会社 Square battery
JP2016015349A (en) * 2015-10-29 2016-01-28 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN112467264A (en) * 2020-11-17 2021-03-09 昆山兴能能源科技有限公司 Self-pressure-relief button lithium secondary battery
JP2022546329A (en) * 2019-10-24 2022-11-04 エルジー エナジー ソリューション リミテッド Secondary battery and battery pack containing the secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JPH07320714A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode
JPH09306545A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Secondary battery
JPH1064588A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JPH10247488A (en) * 1997-02-28 1998-09-14 Nikkiso Co Ltd Nonaqueous electrolyte secondary battery
JP2000277176A (en) * 1999-03-24 2000-10-06 Ngk Insulators Ltd Lithium secondary battery and method for using the same
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2002222666A (en) * 2001-01-25 2002-08-09 Ngk Insulators Ltd Lithium secondary cell
JP2004111186A (en) * 2002-09-18 2004-04-08 Maxell Hokuriku Seiki Kk Nonaqueous secondary battery
JP2008204920A (en) * 2007-02-22 2008-09-04 Sony Corp Nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192753A (en) * 1993-12-27 1995-07-28 Sanyo Electric Co Ltd Lithium secondary battery
JPH07320714A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode
JPH09306545A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Secondary battery
JPH1064588A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JPH10247488A (en) * 1997-02-28 1998-09-14 Nikkiso Co Ltd Nonaqueous electrolyte secondary battery
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2000277176A (en) * 1999-03-24 2000-10-06 Ngk Insulators Ltd Lithium secondary battery and method for using the same
JP2002222666A (en) * 2001-01-25 2002-08-09 Ngk Insulators Ltd Lithium secondary cell
JP2004111186A (en) * 2002-09-18 2004-04-08 Maxell Hokuriku Seiki Kk Nonaqueous secondary battery
JP2008204920A (en) * 2007-02-22 2008-09-04 Sony Corp Nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013046349A1 (en) * 2011-09-28 2015-03-26 日立オートモティブシステムズ株式会社 Square battery
JP2013139340A (en) * 2011-12-07 2013-07-18 Toray Battery Separator Film Co Ltd Microporous membrane roll body and method of manufacturing same
KR20140072794A (en) * 2012-12-05 2014-06-13 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
JP2014112478A (en) * 2012-12-05 2014-06-19 Samsung Sdi Co Ltd Nonaqueous electrolyte secondary battery pack
KR102119050B1 (en) * 2012-12-05 2020-06-29 삼성에스디아이 주식회사 Non-aqueous electrolyte rechargeable battery pack
JP2016015349A (en) * 2015-10-29 2016-01-28 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2022546329A (en) * 2019-10-24 2022-11-04 エルジー エナジー ソリューション リミテッド Secondary battery and battery pack containing the secondary battery
JP7275453B2 (en) 2019-10-24 2023-05-18 エルジー エナジー ソリューション リミテッド Secondary battery and battery pack containing the secondary battery
CN112467264A (en) * 2020-11-17 2021-03-09 昆山兴能能源科技有限公司 Self-pressure-relief button lithium secondary battery
CN112467264B (en) * 2020-11-17 2023-04-07 昆山兴能能源科技有限公司 Self-pressure-release button lithium secondary battery

Also Published As

Publication number Publication date
JP5232751B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
US8389153B2 (en) Battery
JP5257700B2 (en) Lithium secondary battery
JP5525551B2 (en) Square battery
JP5420888B2 (en) battery
JP5334894B2 (en) Lithium ion secondary battery
JP2007250299A (en) Nonaqueous electrolyte solution secondary battery
WO2014142078A1 (en) Battery system
JP5232751B2 (en) Lithium ion secondary battery
WO2013176183A1 (en) Lithium ion battery
JP4382557B2 (en) Non-aqueous secondary battery
JP2004006264A (en) Lithium secondary battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP2012043752A (en) Secondary battery and vehicle mounted with the same
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2000277176A (en) Lithium secondary battery and method for using the same
WO2012111712A1 (en) Lithium-ion battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP2003243037A (en) Lithium ion battery
JP2006040772A (en) Lithium ion battery
JP2005063776A (en) Bipolar battery, battery pack, composite battery pack, and vehicle using battery pack or composite battery pack
JP4026587B2 (en) Lithium ion battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees