JP2012043752A - Secondary battery and vehicle mounted with the same - Google Patents

Secondary battery and vehicle mounted with the same Download PDF

Info

Publication number
JP2012043752A
JP2012043752A JP2010186535A JP2010186535A JP2012043752A JP 2012043752 A JP2012043752 A JP 2012043752A JP 2010186535 A JP2010186535 A JP 2010186535A JP 2010186535 A JP2010186535 A JP 2010186535A JP 2012043752 A JP2012043752 A JP 2012043752A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
separator
secondary battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010186535A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Ueki
智善 上木
Yoshiyuki Ozaki
義幸 尾崎
Naoyuki Wada
直之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010186535A priority Critical patent/JP2012043752A/en
Publication of JP2012043752A publication Critical patent/JP2012043752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which can prevent a short circuit even if the temperature of the battery is raised by overcharge or the like in the secondary battery having portions where a collector is exposed at end parts of electrode plates and having an electrode body where the portions are protruded in a direction opposite to each other, and to provide a vehicle mounted with the secondary battery.SOLUTION: In a secondary battery 1, a first end part of a separator is protruded from a negative electrode plate, a positive electrode current collector is further protruded from the first end part of the separator, a second end part of the separator is protruded from a positive electrode plate, and a negative electrode current collector is further protruded from the second end part of the separator. The protrusion amount of the first end part of the separator from the negative electrode plate at a positive electrode non-coated portion side end part is two times or more of the protrusion amount of the second end part of the separator from the positive electrode plate at a negative electrode non-coated portion side end part of the electrode body, and the protrusion amount of the second end part of the separator from the positive electrode plate in the negative electrode non-coated portion side end part of the electrode body is 3 mm or more.

Description

本発明は,正極板と負極板とセパレータとを有する二次電池とそれを搭載する車両に関する。   The present invention relates to a secondary battery having a positive electrode plate, a negative electrode plate, and a separator, and a vehicle equipped with the same.

従来より,正極板と負極板とセパレータとを積層または捲回してなる電極体を有する二次電池が知られている。このようなものとして例えば,リチウムイオン二次電池等がある。この二次電池の正極板や負極板として,金属箔による集電体の両面に,活物質を含む電極合剤層を塗工したものが広く用いられている。また,セパレータとしては,ポリオレフィン系の微多孔膜が広く用いられている。特に,PP(ポリプロピレン)/PE(ポリエチレン)/PPの3層構成で,シャットダウン機能を有するものが好適に用いられている。   Conventionally, a secondary battery having an electrode body formed by laminating or winding a positive electrode plate, a negative electrode plate, and a separator is known. Examples of such a battery include a lithium ion secondary battery. As a positive electrode plate and a negative electrode plate of the secondary battery, those obtained by coating an electrode mixture layer containing an active material on both surfaces of a current collector made of metal foil are widely used. As the separator, a polyolefin microporous film is widely used. In particular, a PP (polypropylene) / PE (polyethylene) / PP three-layer structure having a shutdown function is preferably used.

セパレータに用いられているPP,PE等の材料は,熱によりある程度収縮する。つまり,電池が過充電等によって昇温した場合には,熱収縮によってセパレータの端部が後退する。そのため,セパレータの端部の配置は,セパレータが収縮した場合でも正負の電極板が短絡することのないように,余裕を持って決定されている。ただし,セパレータが大きいほどより安全ではあるものの,電池容量や外形寸法等の実用面の条件からは,過度に大きくしたくはない。そのため,安全を確保できる範囲内で必要最小限のセパレータの大きさを把握することが望まれていた。   Materials such as PP and PE used for the separator contract to some extent due to heat. That is, when the temperature of the battery is increased due to overcharging or the like, the end of the separator is retracted due to thermal contraction. For this reason, the arrangement of the end portions of the separator is determined with a margin so that the positive and negative electrode plates do not short-circuit even when the separator contracts. However, although the larger the separator, the safer it is, we do not want to make it excessively large from practical conditions such as battery capacity and external dimensions. Therefore, it has been desired to grasp the minimum size of the separator within a range that can ensure safety.

例えば,特許文献1には,集電体の端部から4mm以上を残して活物質が塗工されている電極板に対し,集電体の端部からセパレータの端部までの距離を3.5mm以上とした二次電池が開示されている。これにより,集電体の端部に電極端子を溶接する際の熱を受けても,絶縁不良が発生するほどにセパレータが収縮することはないとされている。また例えば,特許文献2には,電池における,セパレータの熱収縮率と正負の電極板の大きさとの関係について開示されている。この文献では,負極の電極板が縦横ともに正極の電極板より大きい電池において,熱収縮後のセパレータの大きさが正極の電極板の大きさより大きい状態が維持されるように,各部材の材質や大きさを選択するとされている。   For example, Patent Document 1 discloses that the distance from the end of the current collector to the end of the separator is 3 with respect to the electrode plate coated with the active material leaving at least 4 mm from the end of the current collector. A secondary battery of 5 mm or more is disclosed. Thereby, even if it receives the heat | fever at the time of welding an electrode terminal to the edge part of an electrical power collector, it is supposed that a separator will not shrink | contract so that an insulation defect may generate | occur | produce. Further, for example, Patent Document 2 discloses the relationship between the thermal contraction rate of the separator and the size of the positive and negative electrode plates in the battery. In this document, in a battery in which the negative electrode plate is larger than the positive electrode plate in both length and width, the material of each member or the like is maintained so that the size of the separator after heat shrinkage is maintained larger than the size of the positive electrode plate. It is supposed to select the size.

特開2004−253253号公報JP 2004-253253 A 特開2003−217674号公報JP 2003-217664 A

しかしながら,前記した特許文献1の技術では,一方の電極端子の溶接による熱のみが対象とされている。もう一方の電極端子とつながる電極板の端部とセパレータの端部との位置関係は規定されていない。そのため,電池として製造した後に,過充電等の原因によって使用中に発生する熱については対策されているとはいえない。つまり,完成した二次電池では,セパレータが過度に熱収縮した場合に,絶縁状態が不十分なものとなるおそれがあるという問題点があった。   However, in the technique of Patent Document 1 described above, only the heat due to welding of one electrode terminal is targeted. The positional relationship between the end of the electrode plate connected to the other electrode terminal and the end of the separator is not defined. For this reason, after manufacturing as a battery, it cannot be said that measures are taken against heat generated during use due to overcharge or the like. In other words, the completed secondary battery has a problem that the insulation state may be insufficient when the separator is excessively heat-shrinked.

また,前記した特許文献2に記載されている技術は,負極の電極板が縦横ともに正極の電極板より大きい電池に特化されたものである。つまり,この文献の条件を,電極板の形状の異なる電池にそのまま当てはめることはできない。本願の対象としているのは,電極板の端部に非塗工部を残し,そこをそれぞれ別方向に突出させて電極端子に接続することによる電池である。そのため,このタイプの電池に適切なセパレータの大きさの条件が望まれていた。   Further, the technique described in Patent Document 2 described above is specialized in a battery in which the negative electrode plate is larger in both length and width than the positive electrode plate. In other words, the conditions of this document cannot be applied as they are to batteries having different electrode plate shapes. The object of the present application is a battery in which an uncoated portion is left at the end portion of the electrode plate, which protrudes in a different direction and is connected to the electrode terminal. Therefore, a separator size condition suitable for this type of battery has been desired.

本発明は,前記した従来の二次電池が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電極板の端部に集電体の露出されている箇所を残すとともに,それらの箇所を互いに反対向きに突出させた電極体を有する二次電池において,過充電等によって電池が昇温したとしても短絡することが防止されている二次電池とそれを搭載する車両を提供することにある。   The present invention has been made to solve the problems of the conventional secondary battery described above. That is, the problem is that in the secondary battery having the electrode body in which the current collector is left exposed at the end of the electrode plate and the parts are protruded in the opposite directions, overcharge, etc. Accordingly, it is an object of the present invention to provide a secondary battery that is prevented from being short-circuited even if the temperature of the battery is increased, and a vehicle equipped with the secondary battery.

この課題の解決を目的としてなされた本発明の二次電池は,正極集電体に正極合剤層を部分的に塗工してなるとともに,正極合剤層が塗工されていない正極非塗工部を一端側に有し,その余の部分が,正極合剤層が塗工されている正極塗工部である正極板と,負極集電体に負極合剤層を部分的に塗工してなるとともに,負極合剤層が塗工されていない負極非塗工部を他端側に有し,その余の部分が,負極合剤層が塗工されている負極塗工部である負極板と,正極板と負極板とを絶縁するセパレータとを有し,正極板と負極板とセパレータとを,正極非塗工部と負極非塗工部とが互いに反対向きに突出するように積み重ねまたは巻き重ねてなる電極積層体を有する二次電池であって,電極積層体の正極非塗工部側端部にて,セパレータの第1端部が,正極塗工部と正極非塗工部との境目と,負極塗工部の端部とのいずれよりも突出しているとともに,正極非塗工部の端部が,セパレータの第1端部よりもさらに突出しており,電極積層体の負極非塗工部側端部にて,セパレータの第2端部が,負極塗工部と負極非塗工部との境目と,正極塗工部の端部とのいずれよりも突出しているとともに,負極非塗工部の端部が,セパレータの第2端部よりもさらに突出しており,電極積層体の正極非塗工部側端部におけるセパレータの第1端部の負極塗工部の端部からの突出量が,電極積層体の負極非塗工部側端部におけるセパレータの第2端部の正極塗工部の端部からの突出量の2倍以上であり,電極積層体の負極非塗工部側端部におけるセパレータの第2端部の正極塗工部の端部からの突出量が3mm以上であるものである。   The secondary battery of the present invention, which has been made for the purpose of solving this problem, is obtained by partially coating the positive electrode current collector layer with the positive electrode mixture layer, and without applying the positive electrode mixture layer to the positive electrode non-coating layer. A part of the negative electrode mixture layer is applied to the negative electrode current collector and the positive electrode plate, which is the positive electrode coating part where the positive electrode mixture layer is applied. In addition, a negative electrode non-coated portion not coated with a negative electrode mixture layer is provided on the other end side, and the remaining portion is a negative electrode coated portion coated with a negative electrode mixture layer A negative electrode plate and a separator that insulates the positive electrode plate and the negative electrode plate, the positive electrode plate, the negative electrode plate, and the separator so that the positive electrode non-coated portion and the negative electrode non-coated portion protrude in opposite directions. A secondary battery having an electrode stack formed by stacking or winding, the first end of the separator at the positive electrode non-coating portion side end of the electrode stack Is protruded from both the boundary between the positive electrode coated portion and the positive electrode non-coated portion and the end portion of the negative electrode coated portion, and the end portion of the positive electrode non-coated portion is the first end portion of the separator. The second end of the separator at the end of the electrode laminate on the side of the negative electrode non-coating portion is the boundary between the negative electrode coating portion and the negative electrode non-coating portion, and the positive electrode coating portion. And the end of the negative electrode non-coated part further protrudes than the second end of the separator, and the separator has a positive electrode non-coated part side end of the electrode laminate. The amount of protrusion from the end of the negative electrode coating portion of the first end is the amount of protrusion from the end of the positive electrode coating portion of the second end of the separator at the negative electrode non-coating portion side end of the electrode laminate. 2 or more times, protruding from the end of the positive electrode coating portion of the second end of the separator at the negative electrode non-coating portion side end of the electrode laminate There are those is 3mm or more.

本発明の二次電池は,電極板の端部に集電体の露出されている箇所を残すとともに,それらの箇所を互いに反対向きに突出させた電極体を有する二次電池である。そして本発明によれば,正極集電体の露出している側にセパレータの第1端部が,負極集電体の露出している側にセパレータの第2端部が配置されている。そして,セパレータの第1端部の負極塗工部の端部からの突出量が正極端子側におけるセパレータの余裕分に相当し,セパレータの第2端部の正極塗工部の端部からの突出量が負極端子側におけるセパレータの余裕分に相当する。本発明者は,このような二次電池では正極端子側において負極端子側より昇温しがちであることを見出した。本発明の二次電池は,セパレータの第1端部側の突出量をセパレータの第2端部側の突出量の2倍以上としたので,たとえ昇温したとしても,適切に短絡が防止されている。さらに,セパレータの第2端部側の突出量を3mm以上とすることにより,さらに確実に短絡が防止できる。   The secondary battery of the present invention is a secondary battery having an electrode body in which the portions where the current collector is exposed are left at the end portions of the electrode plate and the portions are protruded in opposite directions. According to the present invention, the first end of the separator is disposed on the exposed side of the positive electrode current collector, and the second end of the separator is disposed on the exposed side of the negative electrode current collector. The amount of protrusion of the first end of the separator from the end of the negative electrode coating portion corresponds to the margin of the separator on the positive electrode terminal side, and the protrusion of the second end of the separator from the end of the positive electrode coating portion. The amount corresponds to the margin of the separator on the negative electrode terminal side. The present inventor has found that such a secondary battery tends to be heated from the negative electrode side on the positive electrode side. In the secondary battery of the present invention, since the protruding amount on the first end side of the separator is set to be twice or more the protruding amount on the second end side of the separator, even if the temperature rises, a short circuit is appropriately prevented. ing. Furthermore, when the protrusion amount on the second end side of the separator is 3 mm or more, a short circuit can be prevented more reliably.

さらに本発明では,正極非塗工部の幅が,負極非塗工部の幅より大きいことが望ましい。このようになっていれば,それぞれの非塗工部にそれぞれ電極端子を適切に取り付けることができる。   Furthermore, in the present invention, it is desirable that the width of the positive electrode non-coated portion is larger than the width of the negative electrode non-coated portion. If it has become like this, an electrode terminal can be appropriately attached to each non-coating part, respectively.

さらに本発明は,上述の二次電池を搭載する車両にも及ぶ。   Furthermore, the present invention extends to a vehicle equipped with the above-described secondary battery.

本発明の二次電池とそれを搭載する車両によれば,電極板の端部に集電体の露出されている箇所を残すとともに,それらの箇所を互いに反対向きに突出させた電極体を有する二次電池において,過充電等によって電池が昇温したとしても短絡することが防止されている。   According to the secondary battery of the present invention and the vehicle on which the secondary battery is mounted, the electrode body has an electrode body in which the current collector is left exposed at the end of the electrode plate and the portions are protruded in opposite directions. In the secondary battery, even if the temperature of the battery is increased due to overcharge or the like, a short circuit is prevented.

本形態に係る二次電池を示す概略構成図である。It is a schematic block diagram which shows the secondary battery which concerns on this form. 正極板と負極板とセパレータとの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a positive electrode plate, a negative electrode plate, and a separator. 正極板と負極板とセパレータとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of a positive electrode plate, a negative electrode plate, and a separator. 本形態に係る二次電池を搭載した車両を示す説明図である。It is explanatory drawing which shows the vehicle carrying the secondary battery which concerns on this form.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,捲回型のリチウムイオン二次電池に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to a wound type lithium ion secondary battery.

本形態の二次電池1は,図1に示すように,アルミケース11に電極体12と電解液13とを封入してなるリチウムイオン二次電池である。電極体12は,後述するように,正極板と負極板とセパレータとを重ねて捲回したものである。本形態の二次電池1は,電極体12を捲回軸に垂直な方向に扁平な形状とし,扁平角型のアルミケース11に挿入したものである。   As shown in FIG. 1, the secondary battery 1 according to this embodiment is a lithium ion secondary battery in which an electrode body 12 and an electrolytic solution 13 are enclosed in an aluminum case 11. As will be described later, the electrode body 12 is formed by stacking a positive electrode plate, a negative electrode plate, and a separator. In the secondary battery 1 of the present embodiment, the electrode body 12 has a flat shape in a direction perpendicular to the winding axis, and is inserted into a flat rectangular aluminum case 11.

本形態の二次電池1の電極体12は,図2に示すように,正極板21と負極板22と2枚のセパレータ23とを有している。いずれも図中で上下方向(以下,長手方向という)に長い帯状の部材である。これらは,図示のように,図中で左右方向(以下,幅方向という)に少しずつずらして重ねられた状態で,幅方向に向いた捲回軸に沿ってまとめて捲回されている。   As shown in FIG. 2, the electrode body 12 of the secondary battery 1 of this embodiment includes a positive electrode plate 21, a negative electrode plate 22, and two separators 23. Both are strip-like members that are long in the vertical direction (hereinafter referred to as the longitudinal direction) in the drawing. As shown in the drawing, these are wound together along a winding axis facing in the width direction in a state where they are overlapped little by little in the left-right direction (hereinafter referred to as the width direction) in the figure.

本形態の電解液13は,有機溶媒に電解質を溶解させたものである。有機溶媒として例えば,プロピレンカーボネート(PC)やエチレンカーボネート(EC),ジメチルカーボネート(DMC),メチルエチルカーボネート(MEC)等のエステル系溶媒や,エステル系溶媒にγ−ブチラクトン(γ−BL),ジエトキシエタン(DEE)等のエーテル系溶媒等を配合した有機溶媒が挙げられる。また,電解質である塩としては,過塩素酸リチウム(LiClO4)やホウフッ化リチウム(LiBF4),六フッ化リン酸リチウム(LiPF6)などのリチウム塩を用いることができる。 The electrolyte solution 13 of this embodiment is obtained by dissolving an electrolyte in an organic solvent. Examples of organic solvents include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC), ester solvents such as γ-butylactone (γ-BL), An organic solvent containing an ether solvent such as ethoxyethane (DEE) can be used. In addition, as a salt that is an electrolyte, lithium salts such as lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), and lithium hexafluorophosphate (LiPF 6 ) can be used.

正極板21は,アルミ箔またはアルミ合金箔による正極集電体31の両面に,リチウムイオンを吸蔵・放出可能な正極活物質を含む正極合剤が塗布されたものである。正極活物質としては,例えば,ニッケル酸リチウム(LiNiO2),マンガン酸リチウム(LiMn24),コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物が用いられる。正極合剤が乾燥・プレスされることにより正極合剤層32が形成されている。正極合剤層32は,幅方向について,正極集電体31の全面にわたって設けられているわけではない。一方側(図中左側)は正極集電体31の端部まで設けられているが,他方側(図中右側)は,正極集電体31の端部を少し残して設けられている。すなわち,正極板21の図中右端には,一定の幅で正極集電体31が両面とも露出している。 The positive electrode plate 21 is obtained by applying a positive electrode mixture containing a positive electrode active material capable of inserting and extracting lithium ions on both surfaces of a positive electrode current collector 31 made of an aluminum foil or an aluminum alloy foil. As the positive electrode active material, for example, lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and lithium cobaltate (LiCoO 2 ) are used. The positive electrode mixture layer 32 is formed by drying and pressing the positive electrode mixture. The positive electrode mixture layer 32 is not provided over the entire surface of the positive electrode current collector 31 in the width direction. One side (left side in the figure) is provided up to the end of the positive electrode current collector 31, but the other side (right side in the figure) is provided leaving a little end part of the positive electrode current collector 31. That is, both sides of the positive electrode current collector 31 are exposed with a certain width at the right end of the positive electrode plate 21 in the drawing.

本形態の負極板22は,銅箔または銅合金箔による負極集電体41の両面に,リチウムイオンを吸蔵・放出可能な負極活物質による負極合剤が塗布されたものである。負極活物質としては,例えば,非晶質炭素,難黒鉛化炭素,易黒鉛化炭素,黒鉛等の炭素系物質が用いられる。負極合剤が乾燥・プレスされることにより負極合剤層42が形成されている。負極合剤層42は,幅方向について全面に設けられているわけではない。負極板22の図中左端には,一定の幅で負極集電体41が両面とも露出している。   The negative electrode plate 22 of this embodiment is obtained by applying a negative electrode mixture of a negative electrode active material capable of occluding and releasing lithium ions to both surfaces of a negative electrode current collector 41 made of copper foil or copper alloy foil. Examples of the negative electrode active material include carbon-based materials such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite. The negative electrode mixture layer 42 is formed by drying and pressing the negative electrode mixture. The negative electrode mixture layer 42 is not provided on the entire surface in the width direction. At the left end of the negative electrode plate 22 in the figure, both sides of the negative electrode current collector 41 are exposed with a certain width.

また,セパレータ23は,適切な電気絶縁性,機械的強度,イオン透過度を有する樹脂製の微多孔膜である。例えば,PP/PE/PPの複合材料からなる,いわゆるシャットダウン機能を有するものが好適に用いられる。また例えば,厚さ10〜30μmのものを用いることが望ましい。2枚のセパレータ23は同じ材質のものであり,幅方向について互いに同位置に配置されている。   The separator 23 is a resin microporous film having appropriate electrical insulation, mechanical strength, and ion permeability. For example, a material having a so-called shutdown function made of a PP / PE / PP composite material is preferably used. For example, it is desirable to use a material having a thickness of 10 to 30 μm. The two separators 23 are made of the same material and are arranged at the same position in the width direction.

本形態の二次電池1の電極体12における,各部材の幅方向の位置関係を図3の断面図に示す。図中で左右方向が幅方向であり,図1や図2における左右方向に相当している。この図では,わかりやすさのために各部材の幅に対する厚さをかなり大きくし,また,各部材を少しずつ離して図示している。   The cross-sectional view of FIG. 3 shows the positional relationship in the width direction of each member in the electrode body 12 of the secondary battery 1 of this embodiment. In the drawing, the left-right direction is the width direction, which corresponds to the left-right direction in FIGS. In this figure, the thickness with respect to the width of each member is considerably increased for easy understanding, and each member is illustrated with a little separation.

正極板21は,幅(A+B)の正極集電体31に,幅Aの正極合剤層32が形成されたものである。従って,幅Aの正極合剤層32が正極塗工部であり,正極集電体31が幅Bにわたって露出して正極非塗工部33をなしている。また,負極板22は,幅(D+E)の負極集電体41に,幅Dの負極合剤層42が形成されたものである。従って,幅Dの負極合剤層42が負極塗工部であり,負極集電体41が幅Eにわたって露出して負極非塗工部43をなしている。   The positive electrode plate 21 is obtained by forming a positive electrode mixture layer 32 having a width A on a positive electrode current collector 31 having a width (A + B). Therefore, the positive electrode mixture layer 32 having the width A is the positive electrode coating portion, and the positive electrode current collector 31 is exposed over the width B to form the positive electrode non-coating portion 33. The negative electrode plate 22 is obtained by forming a negative electrode mixture layer 42 having a width D on a negative electrode current collector 41 having a width (D + E). Therefore, the negative electrode mixture layer 42 having a width D is a negative electrode coating portion, and the negative electrode current collector 41 is exposed over the width E to form a negative electrode non-coating portion 43.

ここにおいて,負極合剤層42の幅Dは,正極合剤層32の幅Aより大きい。そして,幅方向の両端側ともに,負極合剤層42の方が正極合剤層32より外側まで達している。セパレータ23の幅Cは,図3に示すように,負極合剤層42の幅Dよりも大きい。そして,幅方向について両側とも,セパレータ23が負極合剤層42よりさらに外側へ突出している。   Here, the width D of the negative electrode mixture layer 42 is larger than the width A of the positive electrode mixture layer 32. The negative electrode mixture layer 42 reaches the outside of the positive electrode mixture layer 32 at both ends in the width direction. The width C of the separator 23 is larger than the width D of the negative electrode mixture layer 42 as shown in FIG. The separators 23 protrude further outward than the negative electrode mixture layer 42 on both sides in the width direction.

これにより,セパレータ23は,正極板21の合剤層(正極塗工部)と負極板22の合剤層(負極塗工部)とのうちいずれかでも存在する範囲を完全にカバーしている。さらに,正極集電体31は,セパレータ23の図中右端より図中右方へ突出している。この突出部分が正極突出部34であり,この箇所に正極の電極端子が接続される。また,負極集電体41は,セパレータ23の図中左端より図中左方へ突出している。この突出部分が負極突出部44であり,この箇所に負極の電極端子が接続される。   Thereby, the separator 23 has completely covered the range which exists in either the mixture layer (positive electrode coating part) of the positive electrode plate 21, and the mixture layer (negative electrode coating part) of the negative electrode plate 22. . Further, the positive electrode current collector 31 protrudes from the right end of the separator 23 to the right in the drawing. This protruding portion is a positive electrode protruding portion 34, and a positive electrode terminal is connected to this portion. Further, the negative electrode current collector 41 protrudes from the left end of the separator 23 in the drawing to the left in the drawing. This protruding portion is a negative electrode protruding portion 44, and a negative electrode terminal is connected to this portion.

こうしたものにおいて,図3に示すように,セパレータ23のうち,図中右端が負極板22の図中右端よりも図中右側へ突出する幅が第1突出幅W1である。また,セパレータ23のうち,図中左端が正極板21の図中左端よりも図中左側へ突出する幅が第2突出幅W2である。これらの突出幅W1,W2は,セパレータ23のうち,正極板21と負極板22との重なり合う範囲W3より,それぞれ外側に突出している部分の幅である。   In such a case, as shown in FIG. 3, the width of the separator 23 in which the right end in the drawing protrudes to the right in the drawing from the right end in the drawing of the negative electrode plate 22 is the first protruding width W <b> 1. Further, the width of the separator 23 that protrudes from the left end of the positive electrode plate 21 to the left side of the drawing in the drawing is the second protruding width W2. These protrusion widths W1 and W2 are the widths of portions of the separator 23 that protrude outward from the overlapping range W3 of the positive electrode plate 21 and the negative electrode plate 22, respectively.

そして,本形態では,第1突出幅W1は,第2突出幅W2の2倍以上である。またさらに,安全を見込んだ幅として,第2突出幅W2は3.0mm以上であることが好ましい。このようになっていることにより,電池が昇温しても,正負の電極板21,22の間の絶縁状態を確実に保つことができる。   In this embodiment, the first protrusion width W1 is twice or more the second protrusion width W2. Furthermore, as a width allowing for safety, the second protrusion width W2 is preferably 3.0 mm or more. In this way, the insulation state between the positive and negative electrode plates 21 and 22 can be reliably maintained even when the battery is heated.

本形態の二次電池1と同じタイプの電池では,例えば過充電等により内部で発熱することがある。この発生した熱は,捲回の内周側に特に溜まりやすいことがわかっている。さらに,発明者らは,正極集電体31が露出している側(図3で右側)において,負極集電体41が露出している側(図3で左側)よりも,温度が高くなりがちであることを見出した。セパレータ23の熱による収縮量は,到達温度が高いほど大きい。従って,このような発熱が生じた場合には,セパレータ23は,図中右側の端部(以下,第1端部23Rという)において,図中左側の端部(以下,第2端部23Lという)より大きく縮むことになる。   In a battery of the same type as the secondary battery 1 of the present embodiment, heat may be generated inside due to overcharge, for example. It has been found that this generated heat is particularly likely to accumulate on the inner peripheral side of the winding. Further, the inventors have a higher temperature on the side where the positive electrode current collector 31 is exposed (right side in FIG. 3) than on the side where the negative electrode current collector 41 is exposed (left side in FIG. 3). I found that it is prone. The amount of shrinkage due to heat of the separator 23 increases as the ultimate temperature increases. Therefore, when such heat generation occurs, the separator 23 has an end portion on the right side in the drawing (hereinafter referred to as the second end portion 23L) at the right end portion in the drawing (hereinafter referred to as the first end portion 23R). ) It will shrink more greatly.

そのため,同程度の安全幅を見込むためには,第1端部23R側の第1突出幅W1を,第2端部23L側の第2突出幅W2の2倍以上とすることが必要であることが分かった。逆に言えば,第2突出幅W2は,第1突出幅W1の半分程度とできる。ただし,それぞれの電極端子を接続するために,正極突出部34と負極突出部44とはいずれも同程度必要である。そのため,正極集電体31の正極非塗工部33の幅Bは,負極集電体41の負極非塗工部43の幅Eより大きいものとする必要がある。   Therefore, in order to expect the same safety width, the first protrusion width W1 on the first end portion 23R side needs to be equal to or more than twice the second protrusion width W2 on the second end portion 23L side. I understood that. In other words, the second protrusion width W2 can be about half of the first protrusion width W1. However, in order to connect the respective electrode terminals, the positive electrode protruding portion 34 and the negative electrode protruding portion 44 are required to have the same degree. Therefore, the width B of the positive electrode uncoated portion 33 of the positive electrode current collector 31 needs to be larger than the width E of the negative electrode uncoated portion 43 of the negative electrode current collector 41.

本発明者らは,本形態の二次電池1において,第1突出幅W1および第2突出幅W2として最低限必要な長さを得るための実験を行った。この実験では,以下の正極板21,負極板22,セパレータ23を使用し,図3に示したように配置して,実施例および比較例1〜3の各二次電池を製造した。ただし,各例において,正極板21と負極板22の大きさや配置は固定し,セパレータ23の幅Cとその配置(W1とW2)を変えた。なお,これらの二次電池の定格容量は,4.6Ahであった。   The present inventors conducted an experiment to obtain the minimum necessary length as the first protrusion width W1 and the second protrusion width W2 in the secondary battery 1 of the present embodiment. In this experiment, the following positive electrode plate 21, negative electrode plate 22, and separator 23 were used and arranged as shown in FIG. 3, and the secondary batteries of Examples and Comparative Examples 1 to 3 were manufactured. However, in each example, the size and arrangement of the positive electrode plate 21 and the negative electrode plate 22 were fixed, and the width C of the separator 23 and its arrangement (W1 and W2) were changed. The rated capacity of these secondary batteries was 4.6 Ah.

本実験の正極板21を以下のように製造した。正極活物質としてLiNiCoAlO2複合酸化物を用い,導電材AB(アセチレンブラック)と結着剤PVdF(ポリフッ化ビニリデン)とをそれぞれ活物質100重量部に対して5重量部ずつ加えて正極合剤とした。集電体31として15μm厚,幅68mmのアルミ箔を用いた。一方の端部から幅50mmの範囲に正極合剤層32を形成した。従って,露出している正極集電体31は,幅18mmである。このようにして,厚み100μm,長さ3000mmの正極板21を製造した。 The positive electrode plate 21 of this experiment was manufactured as follows. LiNiCoAlO 2 composite oxide was used as the positive electrode active material, and 5 parts by weight of the conductive material AB (acetylene black) and the binder PVdF (polyvinylidene fluoride) were added to 100 parts by weight of the active material, respectively. did. An aluminum foil having a thickness of 15 μm and a width of 68 mm was used as the current collector 31. The positive electrode mixture layer 32 was formed in the range of a width of 50 mm from one end. Therefore, the exposed positive electrode current collector 31 has a width of 18 mm. In this way, a positive electrode plate 21 having a thickness of 100 μm and a length of 3000 mm was manufactured.

また,本実験の負極板22を以下のように製造した。負極活物質として黒鉛を用い,結着剤PVdFを活物質100重量部に対して7重量部を加えて負極合剤とした。負極集電体41として10μm厚,幅65mmの銅箔を用いた。一方の端部から幅54mmの範囲に負極合剤層42を形成した。このようにして,厚み120μm,長さ3300mmの負極板22を製造した。さらに,セパレータ23として,PP/PE/PP3層の厚み20μmのポリオレフィン系セパレータを用いた。   Moreover, the negative electrode plate 22 of this experiment was manufactured as follows. Graphite was used as the negative electrode active material, and 7 parts by weight of binder PVdF was added to 100 parts by weight of the active material to obtain a negative electrode mixture. A copper foil having a thickness of 10 μm and a width of 65 mm was used as the negative electrode current collector 41. The negative electrode mixture layer 42 was formed in a range of 54 mm in width from one end. Thus, a negative electrode plate 22 having a thickness of 120 μm and a length of 3300 mm was manufactured. Further, as the separator 23, a polyolefin separator having a PP / PE / PP3 layer thickness of 20 μm was used.

上記のように製造した正極板21,負極板22,セパレータ23を,それぞれ重ね,捲回して成形し,電池ケースに封入した。このとき,第1突出幅W1,第2突出幅W2がそれぞれ以下に示した値となるようにそれぞれ重ねた。なお,ケースには,内圧が一定以上に上昇した場合に破壊されて,ガスを外部に放出するための安全弁が形成されているものを用いた。   The positive electrode plate 21, the negative electrode plate 22, and the separator 23 manufactured as described above were stacked, wound and molded, and sealed in a battery case. At this time, the first protrusion width W1 and the second protrusion width W2 were overlapped so as to have the values shown below. The case used was a case that was destroyed when the internal pressure rose above a certain level and was provided with a safety valve to release the gas to the outside.

この実験では,実施例のみがW1≧W2×2,かつ,W2≧3mmの条件を満たしているものとした。比較例1,2は,W2≧3mmであるが,W1<W2×2である。また,比較例3は,W1≧W2×2であるが,W2<3mmである。具体的には以下の通りとした。
実施例 : W1=6mm,W2=3mm
比較例1 : W1=3mm,W2=3mm
比較例2 : W1=5mm,W2=3mm
比較例3 : W1=4mm,W2=2mm
In this experiment, it was assumed that only the example satisfied the conditions of W1 ≧ W2 × 2, and W2 ≧ 3 mm. In Comparative Examples 1 and 2, W2 ≧ 3 mm, but W1 <W2 × 2. In Comparative Example 3, W1 ≧ W2 × 2 but W2 <3 mm. Specifically, it was as follows.
Example: W1 = 6 mm, W2 = 3 mm
Comparative Example 1: W1 = 3 mm, W2 = 3 mm
Comparative Example 2: W1 = 5 mm, W2 = 3 mm
Comparative Example 3: W1 = 4 mm, W2 = 2 mm

これらの実施例および比較例1〜3に対し,以下の条件で過充電試験を実施した。SOC30%の状態とした電池に46A(10Cに相当)の定電流で連続充電した。上限電圧20Vとして,過充電状態まで充電した。環境温度は60℃とした。充電中における電池ケース側面中央部の表面温度および電池電圧をモニターした。また,安全弁の開弁,発煙等の現象の有無を観察した。   An overcharge test was performed on these examples and comparative examples 1 to 3 under the following conditions. The battery in an SOC of 30% was continuously charged with a constant current of 46 A (corresponding to 10 C). The battery was charged to an overcharged state with an upper limit voltage of 20V. The environmental temperature was 60 ° C. The surface temperature and battery voltage at the center of the side surface of the battery case during charging were monitored. We also observed the presence of phenomena such as opening of the safety valve and smoke.

実施例での結果は以下の通りであった。SOC140%付近まで充電したとき,安全弁が開弁した。さらに充電を続けると,SOC160%付近でセパレータのシャットダウンが起こり,上限の20Vに到達するとともに電流値はほぼ0Aとなった。電池表面の最高到達温度は102℃であった。シャットダウン後は,徐々に温度低下した。また,発煙現象は見られなかった。   The results in the examples were as follows. When the SOC was charged to around 140%, the safety valve opened. When the battery was further charged, the separator was shut down at around SOC 160%, reaching the upper limit of 20V, and the current value was almost 0A. The maximum temperature reached on the battery surface was 102 ° C. The temperature gradually decreased after the shutdown. In addition, no smoke was observed.

さらに,実施例の電池を,試験終了後に解体し,内部の様子を観察した。セパレータ23は熱によって収縮しており,電極体12の捲回の内周側において特に大きく収縮していた。最も大きいところで,第1突出幅W1が約3mm,第2突出幅W2が約1mm収縮していた。正負極の短絡箇所は見当たらなかった。   Furthermore, the batteries of the examples were disassembled after the test was completed, and the internal state was observed. The separator 23 was contracted by heat and contracted particularly greatly on the inner peripheral side of the wound electrode body 12. At the largest point, the first protrusion width W1 contracted by about 3 mm and the second protrusion width W2 contracted by about 1 mm. There was no short circuit between the positive and negative electrodes.

これに対し,比較例1〜3に対して実施例と同様の連続充電を行った結果はいずれも以下の通りであった。安全弁の開弁とセパレータのシャットダウンまでは,実施例と同様であった。しかし,電流値がほぼ0Aとなったさらにその数秒後に電池の表面温度は急激に上昇して300℃を超えた。実施例では102℃までであったことと比較して約200℃さらに高くまで到達した。さらに,安全弁の開弁部分から煙状の排気が見られた。すなわち,セパレータの収縮によって,シャットダウン後に短絡が発生した。   On the other hand, the results of performing continuous charging similar to the example for Comparative Examples 1 to 3 were as follows. The process from the opening of the safety valve to the shutdown of the separator was the same as in the example. However, a few seconds after the current value became almost 0 A, the surface temperature of the battery increased rapidly and exceeded 300 ° C. In the examples, it reached about 200 ° C. even higher than that up to 102 ° C. In addition, smoke-like exhaust was seen from the opening of the safety valve. In other words, a short circuit occurred after shutdown due to the shrinkage of the separator.

この実験から分かるように,第1突出幅W1は,第2突出幅W2の2倍以上であることが望ましい。さらに,この材質や大きさの二次電池では,第2突出幅W2が3mm以上であることが望ましい。従って,この二次電池では,第1突出幅W1は,6mm以上であることが望ましい。   As can be seen from this experiment, the first protrusion width W1 is preferably at least twice the second protrusion width W2. Further, in the secondary battery of this material and size, it is desirable that the second protrusion width W2 is 3 mm or more. Therefore, in this secondary battery, the first protrusion width W1 is preferably 6 mm or more.

なお,本形態の二次電池1は,ハイブリッド自動車その他の車両に搭載することができる。図4に本形態の二次電池1を搭載したハイブリッド自動車100を示す。このハイブリッド自動車100は,車体2に,エンジン3,モータ4,電池パック5,コントローラ6を搭載したものである。電池パック5とモータ4とコントローラ6とは,ケーブル7により接続されている。電池パック5には,複数個の二次電池1が内蔵されている。   Note that the secondary battery 1 of the present embodiment can be mounted on a hybrid vehicle or other vehicles. FIG. 4 shows a hybrid vehicle 100 equipped with the secondary battery 1 of this embodiment. In this hybrid vehicle 100, an engine 3, a motor 4, a battery pack 5, and a controller 6 are mounted on a vehicle body 2. The battery pack 5, the motor 4 and the controller 6 are connected by a cable 7. A plurality of secondary batteries 1 are built in the battery pack 5.

ハイブリッド自動車100は,エンジン3とモータ4とを併用して車輪を駆動するようになっている。本形態のハイブリッド自動車100では,電池パック5からモータ4へ電池の放電電流が供給され,モータ4が動力を発生するようになっている。また,ハイブリッド自動車100の走行状況によっては,モータ4で回生起電力が発生することがある。これにより電池パック5の電池へ充電電流が供給され,電池が充電されるようになっている。ここにおいて,コントローラ6が,電池パック5とモータ4との間の電流のやりとりを制御している。   The hybrid vehicle 100 uses the engine 3 and the motor 4 together to drive the wheels. In the hybrid vehicle 100 of the present embodiment, a battery discharge current is supplied from the battery pack 5 to the motor 4 so that the motor 4 generates power. Depending on the traveling state of the hybrid vehicle 100, regenerative electric power may be generated by the motor 4. Thereby, a charging current is supplied to the battery of the battery pack 5, and the battery is charged. Here, the controller 6 controls the exchange of current between the battery pack 5 and the motor 4.

なお本形態の車両としては,その動力源の全部あるいは一部に電池による電気エネルギを使用している車両であれば良く,ハイブリッド自動車に限られない。例えば,電気自動車,プラグインハイブリッド自動車,ハイブリッド鉄道車両,フォークリフト,電気車椅子,電動アシスト自転車,電動スクータ等であってもよい。   The vehicle of the present embodiment is not limited to a hybrid vehicle as long as the vehicle uses electric energy from a battery for all or a part of its power source. For example, an electric vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, an electric assist bicycle, an electric scooter, etc. may be used.

以上詳細に説明したように,本形態の二次電池1は,正極集電体31の両面に正極合剤層32が形成された正極板21と,負極集電体41の両面に負極合剤層42が形成された負極板22とを有している。それぞれの電極板には,その幅方向の一端に集電体の露出されている箇所が残されている。さらに,正極板21と負極板22とは,集電体の露出箇所を互いに反対向きに突出させて重ねられ,捲回されている。さらに,正極板21と負極板22との間には,セパレータ23が挟まれている。このようなものにおいて,セパレータ23の第1端部23Rが幅方向に負極板22の端部より突出している第1突出幅W1が,セパレータ23の第2端部23Lが幅方向に正極板21より突出している第2突出幅W2の2倍以上である。これにより,過充電等によって電池が昇温したとしても短絡することが防止されている。   As described above in detail, the secondary battery 1 of the present embodiment includes the positive electrode plate 21 in which the positive electrode mixture layer 32 is formed on both surfaces of the positive electrode current collector 31 and the negative electrode mixture on both surfaces of the negative electrode current collector 41. A negative electrode plate 22 on which a layer 42 is formed. Each electrode plate has a portion where the current collector is exposed at one end in the width direction. Further, the positive electrode plate 21 and the negative electrode plate 22 are overlapped and wound with the exposed portions of the current collector protruding in opposite directions. Further, a separator 23 is sandwiched between the positive electrode plate 21 and the negative electrode plate 22. In such a configuration, the first protruding width W1 in which the first end 23R of the separator 23 protrudes from the end of the negative electrode plate 22 in the width direction is the first protruding width W1 and the second end 23L of the separator 23 is in the width direction of the positive electrode plate 21. It is 2 times or more of the 2nd protrusion width W2 which protrudes more. This prevents a short circuit even if the battery is heated due to overcharging or the like.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,本形態では捲回型の二次電池としたが,積層型でも,両側に集電体を突出させて積層するものであれば適用可能である。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, although a wound type secondary battery is used in this embodiment, a stacked type battery can be applied as long as a current collector is protruded on both sides and stacked.

1 二次電池
12 電極体
21 正極板
22 負極板
23 セパレータ
23R 第1端部
23L 第2端部
31 正極集電体
32 正極合剤層
41 負極集電体
42 負極合剤層
DESCRIPTION OF SYMBOLS 1 Secondary battery 12 Electrode body 21 Positive electrode plate 22 Negative electrode plate 23 Separator 23R 1st edge part 23L 2nd edge part 31 Positive electrode collector 32 Positive electrode mixture layer 41 Negative electrode collector 42 Negative electrode mixture layer

Claims (3)

正極集電体に正極合剤層を部分的に塗工してなるとともに,正極合剤層が塗工されていない正極非塗工部を一端側に有し,その余の部分が,正極合剤層が塗工されている正極塗工部である正極板と,負極集電体に負極合剤層を部分的に塗工してなるとともに,負極合剤層が塗工されていない負極非塗工部を他端側に有し,その余の部分が,負極合剤層が塗工されている負極塗工部である負極板と,前記正極板と前記負極板とを絶縁するセパレータとを有し,前記正極板と前記負極板と前記セパレータとを,前記正極非塗工部と前記負極非塗工部とが互いに反対向きに突出するように積み重ねまたは巻き重ねてなる電極積層体を有する二次電池において,
前記電極積層体の前記正極非塗工部側端部にて,
前記セパレータの第1端部が,前記正極塗工部と前記正極非塗工部との境目と,前記負極塗工部の端部とのいずれよりも突出しているとともに,
前記正極非塗工部の端部が,前記セパレータの第1端部よりもさらに突出しており,
前記電極積層体の前記負極非塗工部側端部にて,
前記セパレータの第2端部が,前記負極塗工部と前記負極非塗工部との境目と,前記正極塗工部の端部とのいずれよりも突出しているとともに,
前記負極非塗工部の端部が,前記セパレータの第2端部よりもさらに突出しており,
前記電極積層体の前記正極非塗工部側端部における前記セパレータの第1端部の前記負極塗工部の端部からの突出量が,前記電極積層体の前記負極非塗工部側端部における前記セパレータの第2端部の前記正極塗工部の端部からの突出量の2倍以上であり,
前記電極積層体の前記負極非塗工部側端部における前記セパレータの前記第2端部の前記正極塗工部の端部からの突出量が3mm以上であることを特徴とする二次電池。
A positive electrode mixture layer is partially coated on the positive electrode current collector, and has a positive electrode non-coated portion on which the positive electrode mixture layer is not coated on one end side. A positive electrode plate, which is a positive electrode coating portion coated with a material layer, and a negative electrode mixture layer partially coated on a negative electrode current collector and a negative electrode non-coated with no negative electrode material mixture layer A negative electrode plate that is a negative electrode coating part having a negative electrode coating layer coated with a negative electrode mixture layer, and a separator that insulates the positive electrode plate and the negative electrode plate; An electrode laminate in which the positive electrode plate, the negative electrode plate, and the separator are stacked or wound so that the positive electrode non-coated portion and the negative electrode non-coated portion protrude in opposite directions to each other. A secondary battery having
At the positive electrode non-coated part side end of the electrode laminate,
The first end portion of the separator protrudes from both the boundary between the positive electrode coating portion and the positive electrode non-coating portion and the end portion of the negative electrode coating portion,
The end of the positive electrode non-coating portion protrudes further than the first end of the separator;
At the negative electrode non-coated part side end of the electrode laminate,
The second end of the separator protrudes from both the boundary between the negative electrode coating part and the negative electrode non-coating part and the end of the positive electrode coating part,
An end of the negative electrode non-coating portion protrudes further than a second end of the separator;
The protruding amount of the first end of the separator from the end of the negative electrode coating portion at the positive electrode non-coating portion side end of the electrode laminate is the negative electrode non-coating portion side end of the electrode laminate. More than twice the amount of protrusion of the second end of the separator in the part from the end of the positive electrode coating part,
A secondary battery, wherein a protruding amount of the second end portion of the separator from an end portion of the positive electrode coating portion at the negative electrode non-coating portion side end portion of the electrode laminate is 3 mm or more.
請求項1に記載の二次電池において,
前記正極非塗工部の幅が,前記負極非塗工部の幅より大きいことを特徴とする二次電池。
The secondary battery according to claim 1,
A secondary battery, wherein a width of the positive electrode non-coated portion is larger than a width of the negative electrode non-coated portion.
請求項1または請求項2に記載の二次電池を搭載する車両。 A vehicle equipped with the secondary battery according to claim 1.
JP2010186535A 2010-08-23 2010-08-23 Secondary battery and vehicle mounted with the same Pending JP2012043752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186535A JP2012043752A (en) 2010-08-23 2010-08-23 Secondary battery and vehicle mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186535A JP2012043752A (en) 2010-08-23 2010-08-23 Secondary battery and vehicle mounted with the same

Publications (1)

Publication Number Publication Date
JP2012043752A true JP2012043752A (en) 2012-03-01

Family

ID=45899808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186535A Pending JP2012043752A (en) 2010-08-23 2010-08-23 Secondary battery and vehicle mounted with the same

Country Status (1)

Country Link
JP (1) JP2012043752A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147958A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
JP2015022833A (en) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 Nonaqueous-electrolyte secondary battery
WO2018230029A1 (en) * 2017-06-14 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
JP2019071283A (en) * 2018-12-27 2019-05-09 株式会社Gsユアサ Power storage element
US10505229B2 (en) 2015-02-17 2019-12-10 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, and automobile
US11050120B2 (en) 2015-10-09 2021-06-29 Gs Yuasa International Ltd. Energy storage device
WO2021192666A1 (en) 2020-03-26 2021-09-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147958A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and power system
US10862093B2 (en) 2013-03-19 2020-12-08 Murata Manufacturing Co., Ltd. Separator, battery, battery pack, electronic apparatus, electric vehicle, power storage device, and electric power system
JP2015022833A (en) * 2013-07-17 2015-02-02 トヨタ自動車株式会社 Nonaqueous-electrolyte secondary battery
US10505229B2 (en) 2015-02-17 2019-12-10 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, and automobile
CN111769241A (en) * 2015-02-17 2020-10-13 株式会社杰士汤浅国际 Power storage element, power storage device, and automobile
US11050120B2 (en) 2015-10-09 2021-06-29 Gs Yuasa International Ltd. Energy storage device
WO2018230029A1 (en) * 2017-06-14 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
JPWO2018230029A1 (en) * 2017-06-14 2020-03-19 日立オートモティブシステムズ株式会社 Rechargeable battery
JP2019071283A (en) * 2018-12-27 2019-05-09 株式会社Gsユアサ Power storage element
WO2021192666A1 (en) 2020-03-26 2021-09-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
CN102035028B (en) Nonaqueous electrolyte battery, battery pack and vehicle
CN102742059B (en) Rectangular cell
JP2011181485A (en) Square battery, method of manufacturing the sane, and battery pack using the same
US20160254569A1 (en) Assembled battery
US9520588B2 (en) Nonaqueous electrolyte secondary cell
US9859534B2 (en) Secondary battery
WO2013038677A1 (en) Nonaqueous electrolyte secondary cell
JP5552398B2 (en) Lithium ion battery
JP2012043752A (en) Secondary battery and vehicle mounted with the same
JP4382557B2 (en) Non-aqueous secondary battery
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
CN112018447A (en) Lithium ion secondary battery element, battery, and method for manufacturing the battery element
JP4218792B2 (en) Non-aqueous secondary battery
JP6620943B2 (en) Manufacturing method of laminated electrode body
WO2012111712A1 (en) Lithium-ion battery
CN107026281B (en) Lithium ion secondary battery
JP2011210549A (en) Nonaqueous electrolyte secondary battery, vehicle, and device using the battery
JP2011071052A (en) Lithium-ion secondary battery
JP2013211156A (en) Lithium ion secondary battery
US20140023915A1 (en) Non-aqueous electrolyte secondary cell
JPWO2013137285A1 (en) Nonaqueous electrolyte secondary battery
JP2017212075A (en) Lithium ion secondary battery
WO2015029084A1 (en) Electrode structure and secondary battery
KR101722662B1 (en) Pouch-Type Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708