JP2007250299A - Nonaqueous electrolyte solution secondary battery - Google Patents

Nonaqueous electrolyte solution secondary battery Download PDF

Info

Publication number
JP2007250299A
JP2007250299A JP2006070510A JP2006070510A JP2007250299A JP 2007250299 A JP2007250299 A JP 2007250299A JP 2006070510 A JP2006070510 A JP 2006070510A JP 2006070510 A JP2006070510 A JP 2006070510A JP 2007250299 A JP2007250299 A JP 2007250299A
Authority
JP
Japan
Prior art keywords
battery
lithium
crystal structure
positive electrode
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070510A
Other languages
Japanese (ja)
Inventor
Akira Kojima
亮 小島
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2006070510A priority Critical patent/JP2007250299A/en
Publication of JP2007250299A publication Critical patent/JP2007250299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary battery capable of easily detecting a charging state without the use of a complicated electronic circuit. <P>SOLUTION: A laminated-film-sheathed battery 1 has two or more kinds of cathode active materials mixed in a cathode. A charge and discharge curve with a battery residual capacity as a horizontal axis and a battery voltage as a vertical axis at the charging and discharging of the sheathed battery 1 has both a quasi-flat part in the vicinity of 3.7 V of lithium-containing transition metal complex oxide with a lamellar crystal structure and a spinel crystal structure and a quasi-flat part in the vicinity of 3.4 V of lithium-containing transition metal complex oxide with an olivine crystal structure. Between the quasi-flat parts, there is a variable part in which the battery voltage varies against the change of the battery residual capacity by a portion equivalent to a difference of battery voltages of the two quasi-flat parts. By detecting changes of battery voltages at the variable part, a battery residual voltage equivalent to the variable part can be detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非水電解液二次電池に係り、特に、リチウムイオンを挿入離脱可能な正極と負極とを備えた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode capable of inserting and removing lithium ions.

従来、非水電解液二次電池は、高エネルギ密度を有することから、家電製品等の電源として小型民生用に広く用いられている。また、電気自動車用電源等として大型の非水電解液二次電池も実用化されている。これらの用途では、単独の非水電解液二次電池が使用される場合や、複数の非水電解液二次電池が組み込まれた電池システム等として使用される場合がある。   Conventionally, non-aqueous electrolyte secondary batteries have a high energy density and are therefore widely used for small consumer applications as power sources for home appliances and the like. Large non-aqueous electrolyte secondary batteries have also been put into practical use as power sources for electric vehicles. In these applications, a single non-aqueous electrolyte secondary battery may be used, or a battery system incorporating a plurality of non-aqueous electrolyte secondary batteries may be used.

このような非水電解液二次電池や電池システムでは、過充電や過放電の状態を避けるために充電状態(非水電解液二次電池の満充電容量に対する電池残容量の割合)を検知することが重要である。一般に、非水電解液二次電池の充電状態の検知には複雑な電子回路が使用されている。例えば、記憶素子に予め記憶させた充電状態と電池電圧との関係を表すテーブルを使用して実際に検出した電池電圧から充電状態を検知する技術が開示されている(特許文献1参照)。また、内部インピーダンスを検出するための回路と記憶素子とを備え、記憶素子に予め記憶させたインピーダンス値と、実際に検出した電池の電流、電圧から演算したインピーダンス値とを比較して充電状態を検知する技術が開示されている(例えば、特許文献2参照)。   In such a non-aqueous electrolyte secondary battery or battery system, the state of charge (the ratio of the remaining battery capacity to the full charge capacity of the non-aqueous electrolyte secondary battery) is detected in order to avoid overcharge or overdischarge. This is very important. In general, a complicated electronic circuit is used to detect the state of charge of a nonaqueous electrolyte secondary battery. For example, a technique for detecting a charge state from a battery voltage actually detected using a table representing a relationship between a charge state and a battery voltage stored in advance in a storage element is disclosed (see Patent Document 1). It also has a circuit and memory element for detecting internal impedance, and compares the impedance value stored in advance in the memory element with the impedance value calculated from the actually detected battery current and voltage to determine the state of charge. A technique for detection is disclosed (for example, see Patent Document 2).

特開2000−78769号公報JP 2000-78769 A 特開2004−138586号公報JP 2004-138586 A

しかしながら、上述した特許文献1、2の技術では、いずれも複雑な電子回路を必要としており、電池ごとに電池電圧や内部抵抗を検出して充電状態を検知するため、電池システム等を個別に設計することが必要となることから、コスト高を招き、汎用性も低くなる。また、充放電時には、充電状態の変化、すなわち電池残容量の変化に対して電池電圧が緩やかに変化するため、電池電圧から充電状態を検知すると検知精度を低下させることがある。この点、放電終期には電池残容量の変化に対して電池電圧が大きく低下するため、検出した電池電圧からの充電状態の検知精度を高めることができるが、この状態では充電状態が低下しており、速やかに放電を停止させて充電操作に移行せざるを得なくなる。   However, the above-described techniques of Patent Documents 1 and 2 both require a complicated electronic circuit, and in order to detect the battery voltage and internal resistance for each battery and detect the state of charge, the battery system and the like are individually designed. Since it is necessary to do this, the cost increases and the versatility also decreases. Further, at the time of charging / discharging, since the battery voltage changes gradually with respect to the change of the charging state, that is, the change of the remaining battery capacity, detection accuracy may be lowered when the charging state is detected from the battery voltage. In this regard, since the battery voltage greatly decreases with respect to the change in the remaining battery capacity at the end of discharge, the detection accuracy of the charged state from the detected battery voltage can be improved, but in this state the charged state decreases. Therefore, it is unavoidable to immediately stop discharging and shift to a charging operation.

本発明は上記事案に鑑み、複雑な電子回路を使用することなく充電状態を容易に検知することができる非水電解液二次電池を提供することを課題とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can easily detect the state of charge without using a complicated electronic circuit.

上記課題を解決するために、本発明は、リチウムイオンを挿入離脱可能な正極と負極とを備えた非水電解液二次電池において、前記正極は2種以上の正極活物質を含み、かつ、前記非水電解液二次電池を充放電したときの電池残容量と電池電圧との関係を表す充放電曲線が、前記電池残容量を横軸にとり前記電池電圧を縦軸にとったときに前記電池電圧が略フラットとなり前記電池残容量の変化に対する前記電池電圧の変化の小さい2つ以上のフラット部を有し、前記フラット部間には、前記フラット部より前記電池残容量の変化に対する前記電池電圧の変化の大きいスロープ部が介在していることを特徴とする。   In order to solve the above problems, the present invention provides a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode capable of inserting and releasing lithium ions, the positive electrode including two or more positive electrode active materials, and The charge / discharge curve representing the relationship between the battery remaining capacity and the battery voltage when charging / discharging the non-aqueous electrolyte secondary battery has the battery remaining capacity on the horizontal axis and the battery voltage on the vertical axis. The battery voltage is substantially flat, and has two or more flat portions in which the change in the battery voltage is small with respect to the change in the remaining battery capacity, and the battery with respect to the change in the remaining battery capacity from the flat portion is between the flat portions. A slope portion with a large voltage change is interposed.

本発明では、正極が2種以上の正極活物質を含むことで、非水電解液二次電池を充放電したときの電池残容量と電池電圧との関係を表す充放電曲線が、電池残容量を横軸にとり電池電圧を縦軸にとったときに電池電圧が略フラットとなり電池残容量の変化に対する電池電圧の変化の小さい2つ以上のフラット部を有するため、フラット部間に介在しているスロープ部では一方のフラット部から他方のフラット部に移るときに両フラット部の電池電圧の差に相当しフラット部より大きい電池電圧の変化が生じることから、電池電圧の変化を検出しやすくなり、この電池電圧の変化を検出する回路のみでスロープ部に相当する電池残容量が検出されるので、複雑な電子回路を使用することなく非水電解液二次電池の充電状態を容易に検知することができる。   In the present invention, since the positive electrode contains two or more positive electrode active materials, the charge / discharge curve representing the relationship between the remaining battery capacity and the battery voltage when the nonaqueous electrolyte secondary battery is charged / discharged is the remaining battery capacity. When the horizontal axis is taken and the battery voltage is taken on the vertical axis, the battery voltage is substantially flat and has two or more flat portions with small changes in the battery voltage with respect to changes in the remaining battery capacity. In the slope part, when changing from one flat part to the other flat part, it corresponds to the difference in battery voltage between the two flat parts, and the change in the battery voltage is larger than the flat part. Since the remaining battery capacity corresponding to the slope is detected only by the circuit that detects the change in battery voltage, the state of charge of the non-aqueous electrolyte secondary battery can be easily detected without using a complicated electronic circuit. It can be.

この場合において、正極活物質が、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方とを含んでいてもよい。このとき、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物を化学式Li1+y1−yPO(Mは、Mn、Co、Ni、Cr、Al、Mg、Feから選択される1種以上の遷移金属元素である。)で表される化合物及び化学式Li1+y1−yPOで表される化合物に炭素を担持させた化合物の少なくとも1種とし、層状結晶構造を有するリチウム含有遷移金属複合酸化物を化学式Li1+x1−xで表される化合物とし、スピネル結晶構造を有するリチウム含有遷移金属複合酸化物を化学式Li1+x2−xで表される化合物としてもよい。 In this case, the positive electrode active material is at least one of a lithium-containing transition metal composite oxide having an olivine crystal structure, a lithium-containing transition metal composite oxide having a layered crystal structure, and a lithium-containing transition metal composite oxide having a spinel crystal structure. One of them may be included. At this time, the lithium-containing transition metal composite oxide having an olivine crystal structure is represented by the chemical formula Li 1 + y M 1-y PO 4 (M is one or more selected from Mn, Co, Ni, Cr, Al, Mg, Fe). A lithium-containing transition metal composite having a layered crystal structure, which is at least one of a compound represented by formula ( 1 ) and a compound represented by the chemical formula Li 1 + y M 1-y PO 4. The oxide may be a compound represented by the chemical formula Li 1 + x M 1-x O 2 , and the lithium-containing transition metal composite oxide having a spinel crystal structure may be the compound represented by the chemical formula Li 1 + x M 2-x O 4 .

本発明によれば、正極が2種以上の正極活物質を含むことで、非水電解液二次電池を充放電したときの充放電曲線が、電池残容量を横軸にとり電池電圧を縦軸にとったときに電池電圧が略フラットとなり電池残容量の変化に対する電池電圧の変化の小さい2つ以上のフラット部を有するため、フラット部間のスロープ部ではフラット部より大きい電池電圧の変化が生じることから、この電池電圧の変化を検出する回路のみでスロープ部に相当する電池残容量が検出されるので、複雑な電子回路を使用することなく非水電解液二次電池の充電状態を容易に検知することができる、という効果を得ることができる。   According to the present invention, since the positive electrode includes two or more positive electrode active materials, the charge / discharge curve when the non-aqueous electrolyte secondary battery is charged / discharged has the remaining battery capacity on the horizontal axis and the battery voltage on the vertical axis. Since the battery voltage becomes substantially flat when it is taken, and there are two or more flat portions in which the change in the battery voltage is small with respect to the change in the remaining battery capacity, the slope voltage between the flat portions causes a change in the battery voltage larger than the flat portion. Therefore, since the remaining battery capacity corresponding to the slope portion is detected only by the circuit that detects the change in the battery voltage, the state of charge of the nonaqueous electrolyte secondary battery can be easily achieved without using a complicated electronic circuit. The effect that it can detect can be acquired.

以下、図面を参照して、本発明を適用可能な、電池外装にラミネートフィルムを使用したリチウムイオン二次電池(以下、ラミネートフィルム外装電池という。)の実施の形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a lithium ion secondary battery (hereinafter referred to as a laminate film exterior battery) using a laminate film as a battery exterior to which the present invention can be applied will be described with reference to the drawings.

(ラミネートフィルム外装電池)
図1に示すように、ラミネートフィルム外装電池1は、2枚の矩形状のラミネートフィルム2が電池外装に使用されている。2枚のラミネートフィルム2間には、図示を省略した積層電極群が封入されている。上側のラミネートフィルム2が図示を省略した積層電極群に沿うように凸状に形成されており、下側のラミネートフィルム2が略平坦に形成されている。2枚のラミネートフィルム2の外縁部同士は熱溶着されており、ラミネートフィルム外装電池1は密閉構造とされている。ラミネートフィルム外装電池1の外縁部の一辺には、一側に正極端子3が、他側に負極端子4がそれぞれ先端部を外側に突出させて、2枚のラミネートフィルム2間に挟み込まれている。
(Laminated film battery)
As shown in FIG. 1, the laminated film exterior battery 1 has two rectangular laminate films 2 used for the battery exterior. A laminated electrode group (not shown) is enclosed between the two laminated films 2. The upper laminate film 2 is formed in a convex shape along a laminated electrode group not shown, and the lower laminate film 2 is formed substantially flat. The outer edges of the two laminated films 2 are heat-welded to each other, and the laminated film exterior battery 1 has a sealed structure. On one side of the outer edge portion of the laminated film-clad battery 1, a positive electrode terminal 3 is sandwiched between two laminate films 2 with a positive electrode terminal 3 projecting on one side and a negative electrode terminal 4 projecting on the other side. .

ラミネートフィルム2には、基材としてアルミニウム箔が使用されている。ラミネートフィルム2は、絶縁保護用のナイロン製フィルムと、基材のアルミニウム箔と、熱溶着樹脂層のポリプロピレン(以下、PPと略記する。)製フィルムとが、この順に接着剤を介して積層されプレス加工されている。このため、ラミネートフィルム2は三層構造となる。   The laminate film 2 uses an aluminum foil as a base material. The laminate film 2 includes a nylon film for insulation protection, an aluminum foil as a base material, and a polypropylene (hereinafter abbreviated as PP) film as a heat-welded resin layer in this order through an adhesive. It is pressed. For this reason, the laminate film 2 has a three-layer structure.

正極端子3にはアルミニウム板が使用されており、アルミニウム板の外周にはシールテープとしてPP製テープが貼り付けられている。負極端子4にはニッケル板が使用されており、ニッケル板の外周にはシールテープとしてPP製テープが貼り付けられている。正極端子3及び負極端子4の周囲には、ラミネートフィルム2の熱溶着時に軟化したPP製フィルムのPP樹脂が隙間なく密着している。   An aluminum plate is used for the positive electrode terminal 3, and a tape made of PP is attached to the outer periphery of the aluminum plate as a seal tape. A nickel plate is used for the negative electrode terminal 4, and a PP tape is attached to the outer periphery of the nickel plate as a seal tape. Around the positive electrode terminal 3 and the negative electrode terminal 4, the PP resin of the PP film softened at the time of heat welding of the laminate film 2 is in close contact with the gap.

積層電極群を構成する正極には、2種以上の正極活物質が混合された混合系正極活物質が使用されている。混合される正極活物質は、いずれも後述する同一の負極、非水電解液を構成する電解質及びその溶媒に対してリチウムイオンの挿入離脱が可能(作動可能)であり、かつ、リチウムイオンの挿入離脱に伴い生じる電池電圧の範囲(以下、作動電圧範囲という。)が異なるものである。この混合系正極活物質には、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方とが含まれている。   A mixed positive electrode active material in which two or more positive electrode active materials are mixed is used for the positive electrode constituting the laminated electrode group. The positive electrode active material to be mixed is capable of inserting and removing lithium ions from the same negative electrode described later, the electrolyte constituting the nonaqueous electrolyte and its solvent (operable), and the insertion of lithium ions. The battery voltage range that accompanies the separation (hereinafter referred to as the operating voltage range) is different. The mixed positive electrode active material includes at least lithium-containing transition metal composite oxide having an olivine crystal structure, lithium-containing transition metal composite oxide having a layered crystal structure, and lithium-containing transition metal composite oxide having a spinel crystal structure. One and the other are included.

オリビン結晶構造を有するリチウム含有遷移金属複合酸化物には、化学式Li1+y1−yPO(Mは、Mn、Co、Ni、Cr、Al、Mg、Feから選択される1種以上の遷移金属元素である。)で表される化合物及びこの化学式Li1+y1−yPOで表される化合物に炭素を担持させた化合物の少なくとも1種を使用することができる。このオリビン結晶構造を有するリチウム含有遷移金属複合酸化物を正極活物質に使用した場合には、3.4V付近に作動電圧範囲を有している。また、充放電時の電池残容量と電池電圧との関係を表す充放電曲線が、電池残容量を横軸に電池電圧を縦軸にそれぞれとったときに電池残容量の変化に対して電池電圧が3.4V付近でほぼ一定(略フラット)となる準平坦部(フラット部)を有している。 The lithium-containing transition metal composite oxide having an olivine crystal structure includes a chemical formula Li 1 + y M 1-y PO 4 (M is one or more transitions selected from Mn, Co, Ni, Cr, Al, Mg, Fe) And a compound represented by the chemical formula Li 1 + y M 1-y PO 4 and at least one compound in which carbon is supported can be used. When the lithium-containing transition metal composite oxide having this olivine crystal structure is used as the positive electrode active material, the operating voltage range is around 3.4V. In addition, when the charge / discharge curve representing the relationship between the remaining battery capacity and the battery voltage during charging / discharging takes the remaining battery capacity on the horizontal axis and the battery voltage on the vertical axis, the battery voltage with respect to the change in the remaining battery capacity Has a quasi-flat portion (flat portion) that is substantially constant (substantially flat) around 3.4V.

一方、層状結晶構造を有するリチウム含有遷移金属複合酸化物には化学式Li1+x1−xで表される化合物を使用することができ、スピネル結晶構造を有するリチウム含有遷移金属複合酸化物には化学式Li1+x2−xで表される化合物を使用することができる。層状結晶構造またはスピネル結晶構造を有するリチウム遷移金属複合酸化物を正極活物質に使用した場合には、4V付近に作動電圧範囲を有している。また、充放電曲線が、電池残容量に対して電池電圧が作動電圧範囲の下限付近、すなわち、3.7V付近でほぼ一定となる準平坦部を有している。 On the other hand, a compound represented by the chemical formula Li 1 + x M 1-x O 2 can be used for the lithium-containing transition metal composite oxide having a layered crystal structure, and the lithium-containing transition metal composite oxide having a spinel crystal structure can be used. May be a compound represented by the chemical formula Li 1 + x M 2-x O 4 . When a lithium transition metal composite oxide having a layered crystal structure or a spinel crystal structure is used as the positive electrode active material, the operating voltage range is around 4V. Further, the charge / discharge curve has a quasi-flat portion where the battery voltage is substantially constant near the lower limit of the operating voltage range, that is, near 3.7 V with respect to the remaining battery capacity.

このような混合系正極活物質を使用することで、充放電時には混合された正極活物質がそれぞれの作動電圧範囲でリチウムイオンを挿入離脱する。ラミネートフィルム外装電池1では、充放電曲線が、層状結晶構造やスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の3.7V付近の準平坦部と、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物の3.4V付近の準平坦部との2つの準平坦部を有している。また、ラミネートフィルム外装電池1の充放電曲線では、2つの準平坦部間に、電池残容量の変化に対して電池電圧が2つの準平坦部の電池電圧の差に相当する分で変化する変化部(スロープ部)を有している。変化部での電池電圧の変化は、電池電圧がほぼ一定な準平坦部より大きくなる。   By using such a mixed positive electrode active material, the mixed positive electrode active material inserts and desorbs lithium ions in each operating voltage range during charging and discharging. In the laminated film exterior battery 1, the charge / discharge curve has a quasi-flat portion near 3.7 V of the lithium-containing transition metal composite oxide having a layered crystal structure or a spinel crystal structure, and a lithium-containing transition metal composite oxide having an olivine crystal structure. It has two quasi-flat parts with a quasi-flat part near 3.4V of the object. Further, in the charge / discharge curve of the laminated film-clad battery 1, a change in which the battery voltage changes between two quasi-flat portions corresponding to the difference in battery voltage between the two quasi-flat portions with respect to the change in the remaining battery capacity. Part (slope part). The change in the battery voltage at the changing portion is larger than that in the quasi-flat portion where the battery voltage is substantially constant.

混合した正極活物質粉末、導電剤の炭素材料及び予め溶媒のノルマルメチルピロリドン(以下、NMPと略記する。)に溶解した結着剤のポリフッ化ビニリデン(以下、PVDFと略記する。)を、NMPと共によく攪拌混合して正極合剤スラリを作製した。得られた正極合剤スラリをアルミニウム箔(正極集電体)の両面に略均一に塗布し乾燥させた。これを、例えば、厚さ90μmとなるようにプレス成形し、矩形状に切り出して正極を得た。なお、正極の一辺の一側には集電のために正極合剤スラリを塗布しない無地部が残されており、この無地部で正極リード片が形成されている。   The mixed positive electrode active material powder, the carbon material of the conductive agent, and the binder polyvinylidene fluoride (hereinafter abbreviated as PVDF) previously dissolved in the solvent normal methylpyrrolidone (hereinafter abbreviated as NMP). A positive electrode mixture slurry was prepared by stirring and mixing together. The obtained positive electrode mixture slurry was applied almost uniformly on both sides of an aluminum foil (positive electrode current collector) and dried. This was press-molded so as to have a thickness of 90 μm, for example, and cut into a rectangular shape to obtain a positive electrode. In addition, a plain portion where no positive electrode mixture slurry is applied for current collection is left on one side of the positive electrode, and a positive electrode lead piece is formed in this plain portion.

一方、負極には、負極活物質として非晶質炭素粉末が使用されている。この非晶質炭素粉末を結着剤のPVDF、溶媒のNMPと共によく攪拌混合して負極合剤スラリを作製した。得られた負極合剤スラリを銅箔(負極集電体)の両面に略均一に塗布し乾燥させた。これを、例えば、厚さ70μmとなるようにプレス成形し、矩形状に切り出して負極を得た。なお、負極の一辺の一側には集電のために負極合剤スラリを塗布しない無地部が残されており、この無地部で負極リード片が形成されている。   On the other hand, amorphous carbon powder is used for the negative electrode as a negative electrode active material. The amorphous carbon powder was thoroughly stirred and mixed with PVDF as a binder and NMP as a solvent to prepare a negative electrode mixture slurry. The obtained negative electrode mixture slurry was applied almost uniformly on both sides of a copper foil (negative electrode current collector) and dried. This was press-molded so as to have a thickness of 70 μm, for example, and cut into a rectangular shape to obtain a negative electrode. Note that a plain portion where no negative electrode mixture slurry is applied for current collection is left on one side of the negative electrode, and a negative electrode lead piece is formed on this plain portion.

作製した正極の4枚と負極の5枚とを、例えば、厚さ40μmのポリエチレン製微多孔膜のセパレータを介して、1枚ずつ交互に積層して積層電極群を作製した。このとき、積層電極群の積層した両端が負極となるようにし、正極と負極との間にそれぞれ1枚ずつのセパレータを積層した。また、積層電極群の一辺の一側に正極リード片が位置し、他側に負極リード片が位置するように積層した。4枚分の正極リード片及び5枚分の負極リード片をそれぞれ集合させて正極端子3及び負極端子4にそれぞれ超音波溶接で取り付けた。   Four sheets of the prepared positive electrode and five sheets of the negative electrode were alternately laminated one by one through, for example, a polyethylene microporous membrane separator having a thickness of 40 μm to produce a laminated electrode group. At this time, both ends of the laminated electrode group were made negative, and one separator was laminated between the positive electrode and the negative electrode. Moreover, it laminated | stacked so that the positive electrode lead piece may be located in the one side of the laminated electrode group, and the negative electrode lead piece may be located in the other side. Four positive electrode lead pieces and five negative electrode lead pieces were assembled and attached to the positive electrode terminal 3 and the negative electrode terminal 4 by ultrasonic welding, respectively.

2枚のラミネートフィルム2間に作製した積層電極群を挟み、ラミネートフィルム2の外縁部同士を重ね合わせた。このとき、正極端子3及び負極端子4の先端部がラミネートフィルム2の外縁部から外側に突出するようにした。重ね合わせたラミネートフィルム2の外縁部をPP製フィルムの溶融温度に加熱した金属板で熱プレスして、2枚のラミネートフィルム2の外縁部同士を熱溶着させた。正極端子3及び負極端子4間に予め配置された図示を省略した注液口から非水電解液を注液した後、注液口を封口し、ラミネートフィルム外装電池1の組立を完成させた。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒にリチウム塩(電解質)として6フッ化リン酸リチウム(LiPF)を、例えば、1モル/リットル(1M)で溶解させて使用した。 The laminated electrode group produced between the two laminate films 2 was sandwiched, and the outer edge portions of the laminate film 2 were overlapped. At this time, the leading end portions of the positive electrode terminal 3 and the negative electrode terminal 4 protrude outward from the outer edge portion of the laminate film 2. The outer edge of the laminated film 2 was heat-pressed with a metal plate heated to the melting temperature of the PP film, and the outer edges of the two laminated films 2 were heat-welded. After injecting a non-aqueous electrolyte from an injection port (not shown) arranged in advance between the positive electrode terminal 3 and the negative electrode terminal 4, the injection port was sealed to complete the assembly of the laminated film-clad battery 1. For the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) as a lithium salt (electrolyte) in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC), for example, 1 mol / liter (1M) It was dissolved in and used.

(作用等)
次に本実施形態のラミネートフィルム外装電池1の作用等について説明する。
(Action etc.)
Next, the operation and the like of the laminated film-clad battery 1 of this embodiment will be described.

本実施形態のラミネートフィルム外装電池1では、正極活物質に作動電圧範囲の異なる2種以上の正極活物質を含む混合系正極活物質が使用されている。このため、充放電時には、それぞれの作動電圧範囲で電池電圧が変化し、作動電圧範囲の下限付近で電池電圧がほぼ一定となる。充放電曲線では、横軸の電池残容量の変化に対して、縦軸の電池電圧がほぼ一定となるため、略平坦となり準平坦部を形成する。準平坦部間に介在する変化部に相当する電池残容量は、それぞれの正極活物質の混合比率により定まる。従って、混合系正極活物質を使用することで、混合した2つ以上の正極活物質による準平坦部を充放電曲線に反映させることができる。   In the laminated film-clad battery 1 of this embodiment, a mixed positive electrode active material containing two or more positive electrode active materials having different operating voltage ranges is used as the positive electrode active material. For this reason, at the time of charging / discharging, the battery voltage changes in each operating voltage range, and the battery voltage becomes substantially constant near the lower limit of the operating voltage range. In the charge / discharge curve, the battery voltage on the vertical axis becomes substantially constant with respect to the change in the remaining battery capacity on the horizontal axis, so that it becomes substantially flat and forms a quasi-flat portion. The remaining battery capacity corresponding to the changing portion interposed between the quasi-flat portions is determined by the mixing ratio of the respective positive electrode active materials. Therefore, by using a mixed positive electrode active material, a quasi-flat portion due to two or more mixed positive electrode active materials can be reflected in the charge / discharge curve.

また、本実施形態のラミネートフィルム外装電池1では、充放電曲線が充電時、放電時のいずれについても2つの準平坦部を有している。これらの準平坦部及び準平坦部間に介在する変化部以外では、電池残容量の変化に対して電池電圧が緩やかに変化する。このため、充放電時には1つの準平坦部から別の準平坦部に移る際の変化部でそれぞれの準平坦部の電池電圧の差に相当する分の比較的大きな電圧変化が短時間で生じる。このときの電池電圧の変化を検出することで、準平坦部の境界(変化部)に相当する電池残容量を検知することができる。従って、高精度な電圧検出装置を使用することなく簡便に準平坦部間の電池電圧の変化を検出することができるので、電池の充電状態を容易に検知することができる。換言すれば、充電状態を検知するために複雑な電子回路等を使用することなく、準平坦部間の電池電圧の変化を検知する回路のみでおおよその充電状態を検知することができる。   Moreover, in the laminate film exterior battery 1 of this embodiment, the charge / discharge curve has two quasi-flat portions for both charging and discharging. Except for these quasi-flat portions and the changing portions interposed between the quasi-flat portions, the battery voltage gradually changes with respect to the change in the remaining battery capacity. For this reason, at the time of charging / discharging, a relatively large voltage change corresponding to the difference in battery voltage between the quasi-flat portions occurs in a short time at the changing portion when moving from one quasi-flat portion to another quasi-flat portion. By detecting the change in battery voltage at this time, the remaining battery capacity corresponding to the boundary (change part) of the quasi-flat part can be detected. Therefore, since the change of the battery voltage between the quasi-flat portions can be easily detected without using a high-accuracy voltage detection device, the state of charge of the battery can be easily detected. In other words, an approximate charge state can be detected only by a circuit that detects a change in battery voltage between the quasi-flat portions without using a complicated electronic circuit or the like to detect the charge state.

更に、本実施形態のラミネートフィルム外装電池1では、正極活物質に、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方とが混合されている。このオリビン結晶構造を有するリチウム含有遷移金属複合酸化物では、作動電圧範囲が電池電圧3.4V付近であり、この3.4V付近に準平坦部を有している。一方、層状結晶構造やスピネル結晶構造を有するリチウム含有遷移金属複合酸化物では、作動電圧範囲が電池電圧4V付近であり、この作動電圧範囲の下限となる3.7V付近に準平坦部を有している。このため、ラミネートフィルム外装電池1の充放電曲線には、充電時、放電時のいずれも電池電圧3.4V付近及び3.7V付近に2つの準平坦部を形成させることができる。   Furthermore, in the laminated film-clad battery 1 of this embodiment, the positive electrode active material has a lithium-containing transition metal composite oxide having an olivine crystal structure, a lithium-containing transition metal composite oxide having a layered crystal structure, and a spinel crystal structure. At least one of the lithium-containing transition metal composite oxides is mixed. In the lithium-containing transition metal composite oxide having this olivine crystal structure, the operating voltage range is around a battery voltage of 3.4 V, and a quasi-flat portion is present near this 3.4 V. On the other hand, in the lithium-containing transition metal composite oxide having a layered crystal structure or a spinel crystal structure, the operating voltage range is around the battery voltage of 4 V, and has a quasi-flat portion around 3.7 V that is the lower limit of the operating voltage range. ing. For this reason, two quasi-flat portions can be formed in the charging / discharging curve of the laminated film-covered battery 1 in the vicinity of the battery voltage of 3.4 V and in the vicinity of 3.7 V both during charging and discharging.

また更に、本実施形態のラミネートフィルム外装電池1では、混合系正極活物質を使用しており、準平坦部に相当する電池残容量の範囲が混合系正極活物質の混合比率により定まるため、混合比率を調整することで、所望の電池残容量、すなわち、検知したい充電状態付近に準平坦部の境界を設定することが可能である。   Furthermore, in the laminated film-clad battery 1 of this embodiment, a mixed positive electrode active material is used, and the range of the remaining battery capacity corresponding to the quasi-flat portion is determined by the mixing ratio of the mixed positive electrode active material. By adjusting the ratio, it is possible to set the boundary of the quasi-flat portion near the desired remaining battery capacity, that is, in the vicinity of the charged state to be detected.

従来リチウムイオン二次電池に代表される非水電解液二次電池の充電状態の検知では、電池ごとに電池電圧や内部抵抗を検出して充電状態を検知するため、複雑な電子回路が使用されている。このため、電池システム等を個別に設計することが必要となることから、コスト高を招き、汎用性も低くなっている。また、非水電解液二次電池の充放電時には、放電終期を除いて、充電状態、すなわち電池残容量の変化に対して電池電圧が緩やかに変化する。このため、電池電圧から充電状態を検知すると、電池電圧に対して電池残容量に幅があるので、検知精度を低下させることがある。放電終期では電池残容量の変化に対して電池電圧が大きく低下するため、検出した電池電圧から充電状態を検知するときに検知精度を高めることができるが、この状態では充電状態が低下しており、速やかに放電を停止させて充電操作に移行せざるを得なくなる。本実施形態は、これらの問題を解決することができる非水電解液二次電池である。   In the detection of the state of charge of a non-aqueous electrolyte secondary battery typified by a conventional lithium ion secondary battery, a complicated electronic circuit is used to detect the state of charge by detecting the battery voltage and internal resistance for each battery. ing. For this reason, since it is necessary to design a battery system etc. separately, cost increase is caused and versatility is also lowered. Further, at the time of charging / discharging of the nonaqueous electrolyte secondary battery, the battery voltage gradually changes with respect to the state of charge, that is, the remaining battery capacity, except at the end of discharge. For this reason, when the state of charge is detected from the battery voltage, the battery remaining capacity has a width with respect to the battery voltage, and thus the detection accuracy may be reduced. At the end of discharge, the battery voltage greatly decreases with respect to changes in the remaining battery capacity, so the detection accuracy can be increased when detecting the charged state from the detected battery voltage, but in this state the charged state has decreased. Therefore, it is necessary to immediately stop discharging and shift to a charging operation. The present embodiment is a non-aqueous electrolyte secondary battery that can solve these problems.

なお、本実施形態では、正極活物質として、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方とを配合する例を示したが、本発明はこれらの結晶構造に制限されるものではなく、充放電曲線が2つ以上の準平坦部を有するようにすれば、いかなる結晶構造の正極活物質を使用してもよい。また、本実施形態では、充放電曲線が2つの準平坦部を有する例を示したが、本発明はこれに制限されるものではなく、2つ以上の準平坦部、例えば、3つの準平坦部を有してもよい。このようにすれば、充電状態を容易に検知可能な変化部を増加させることができる。更に、充放電曲線が2つ以上の準平坦部を有するためには、使用する正極活物質がいずれも同一の負極、非水電解液を構成する電解質及びその溶媒に対して作動可能であることが好ましい。   In this embodiment, as the positive electrode active material, a lithium-containing transition metal composite oxide having an olivine crystal structure, a lithium-containing transition metal composite oxide having a layered crystal structure, and a lithium-containing transition metal composite oxide having a spinel crystal structure are used. Although an example in which at least one of the compounds is blended is shown, the present invention is not limited to these crystal structures, and any crystal structure can be used as long as the charge / discharge curve has two or more quasi-flat portions. The positive electrode active material may be used. In the present embodiment, an example in which the charge / discharge curve has two quasi-flat portions has been described. However, the present invention is not limited to this, and two or more quasi-flat portions, for example, three quasi-flat portions. You may have a part. If it does in this way, the change part which can detect a charge condition easily can be increased. Furthermore, in order for the charge / discharge curve to have two or more quasi-flat portions, the positive electrode active material used must be operable with the same negative electrode, the electrolyte constituting the non-aqueous electrolyte, and the solvent thereof. Is preferred.

また、本実施形態では、負極活物質に非晶質炭素を例示したが、本発明はこれに限定されるものではなく、例えば、黒鉛等の炭素材を使用してもよい。負極活物質としては、使用する電圧範囲において充放電曲線が比較的一定の勾配を有するものを使用することが好ましい。これは、使用する電圧範囲で負極の充放電曲線の傾きが不均一に変化すると、電池の充放電曲線で正極の準平坦部間の移行を不明瞭にするからである。この点では、中間的な充電状態において平坦な電圧変化を示し、充放電末期に急激な電圧変化を示す黒鉛などの材料よりも、充電状態に対して一様な電圧変化を示す非晶質炭素などの材料を使用することが好ましい。   In the present embodiment, amorphous carbon is exemplified as the negative electrode active material, but the present invention is not limited to this, and for example, a carbon material such as graphite may be used. As the negative electrode active material, it is preferable to use a material whose charge / discharge curve has a relatively constant gradient in the voltage range to be used. This is because, if the slope of the charge / discharge curve of the negative electrode changes non-uniformly in the voltage range used, the transition between the quasi-flat portions of the positive electrode is obscured in the battery charge / discharge curve. In this regard, amorphous carbon that exhibits a flat voltage change in an intermediate charge state and a uniform voltage change with respect to the charge state, rather than a material such as graphite that exhibits a rapid voltage change at the end of charge and discharge. It is preferable to use a material such as

更に、本実施形態では、ラミネートフィルム外装電池を例示したが、本発明はこれに限定されるものではない。例えば、電池形状については円筒型や角形としてもよく、電池容量や大きさについても特に制限されるものではない。また、本実施形態では、正極及び負極を積層した積層電極群を例示したが、本発明は帯状の正極及び負極を捲回した捲回電極群を使用する電池に適用することも可能である。   Furthermore, in this embodiment, although the laminated film exterior battery was illustrated, this invention is not limited to this. For example, the battery shape may be cylindrical or square, and the battery capacity and size are not particularly limited. Further, in the present embodiment, the laminated electrode group in which the positive electrode and the negative electrode are laminated is illustrated, but the present invention can also be applied to a battery using a wound electrode group in which a belt-like positive electrode and a negative electrode are wound.

次に、本実施形態に従い作製したラミネートフィルム外装電池1の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, examples of the laminated film-clad battery 1 manufactured according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例)
実施例では、化学式LiCo0.33Mn0.33Ni0.34で表される層状結晶構造を有するリチウム含有遷移金属複合酸化物と、化学式LiFePOで表されるオリビン結晶構造を有するリチウム含有遷移金属複合酸化物に重量比で10%の炭素を担持させた化合物とを2:1の重量比で混合した混合系正極活物質を使用しラミネートフィルム外装電池1を作製した。
(Example)
In the examples, a lithium-containing transition metal composite oxide having a layered crystal structure represented by the chemical formula LiCo 0.33 Mn 0.33 Ni 0.34 O 2 and lithium having an olivine crystal structure represented by the chemical formula LiFePO 4 are used. A laminated film-covered battery 1 was produced using a mixed positive electrode active material obtained by mixing a transition metal composite oxide with a compound supporting 10% carbon by weight in a weight ratio of 2: 1.

(比較例)
比較例では、正極活物質に化学式LiCo0.33Mn0.33Ni0.34で表される層状結晶構造を有するリチウム含有遷移金属複合酸化物を用いる以外は実施例と同様にしてラミネートフィルム外装電池を作製した。
(Comparative example)
In the comparative example, lamination was performed in the same manner as in the example except that a lithium-containing transition metal composite oxide having a layered crystal structure represented by the chemical formula LiCo 0.33 Mn 0.33 Ni 0.34 O 2 was used as the positive electrode active material. A film-clad battery was produced.

(評価)
作製した実施例及び比較例のラミネートフィルム外装電池について、それぞれ充放電を行い、電池残容量の変化に対する電池電圧の変化を測定した。電池残容量の変化に対する電池電圧の変化を表す充放電曲線の結果を図2に示す。なお、図2において、放電時の曲線では、横軸の電池残容量が放電容量を示している。
(Evaluation)
About the produced laminate film exterior battery of the Example and the comparative example, it charged / discharged, respectively, and the change of the battery voltage with respect to the change of battery remaining capacity was measured. The result of the charge / discharge curve showing the change in the battery voltage with respect to the change in the remaining battery capacity is shown in FIG. In FIG. 2, the remaining battery capacity on the horizontal axis indicates the discharge capacity in the discharge curve.

図2に示すように、比較例のラミネートフィルム外装電池では、電池残容量の変化に対する電池電圧の変化は、電池残容量780mAh程度以上の放電終期(放電時のため電池残容量が放電容量を示している。)を除いて、放電時、充電時ともに緩やかな変化を示した。このことから、電池電圧を測定して電池残容量、すなわち充電状態を検知すると、電池電圧に対して電池残容量に幅があるため、充電状態の検知精度が低くなることがある。この点を改善するには、電池電圧が大きく変化するときに充電状態を検知することが望ましい。充放電曲線で急激な電池電圧の変化を示したのは、放電終期のほぼ放電しきる寸前である。この部分で充電状態を検知してもその後に放電できる電池残容量がほとんどないので、機器に組み込んで使用した場合などでは負荷を直ちに停止させなければならず、速やかに充電操作を行うことが必要となる。   As shown in FIG. 2, in the laminated film exterior battery of the comparative example, the change of the battery voltage with respect to the change of the remaining battery capacity is the end of discharge of about 780 mAh or more of the remaining battery capacity. Except for the above)), there was a gradual change during both discharging and charging. From this, when the battery voltage is measured and the remaining battery capacity, that is, the state of charge, is detected, the battery remaining capacity has a width with respect to the battery voltage, so the detection accuracy of the state of charge may be lowered. In order to improve this point, it is desirable to detect the state of charge when the battery voltage changes greatly. The sudden change in the battery voltage in the charge / discharge curve is almost immediately before the end of the discharge. Even if the state of charge is detected at this part, there is almost no remaining battery capacity that can be discharged after that, so the load must be stopped immediately when it is installed in a device, etc., and it is necessary to perform the charging operation promptly It becomes.

これに対して、実施例のラミネートフィルム外装電池1では、作動電圧範囲の異なる2種の正極活物質が混合されているため、充電時には作動電圧範囲の低い正極活物質が充電された後、作動電圧範囲の高い正極活物質が充電される。反対に、放電時には作動電圧範囲の高い正極活物質が放電された後、作動電圧範囲の低い正極活物質が放電される。すなわち、放電時では、化学式LiCo0.33Mn0.33Ni0.34で表される層状結晶構造を有するリチウム含有遷移金属複合酸化物が放電し終えた後の電池残容量450mAh付近で電池電圧が急激に変化する変化部が観察されている。その後、化学式LiFePOで表されるオリビン結晶構造を有するリチウム含有遷移金属複合酸化物の放電領域に移り、電池残容量650mAh程度以上で放電終止となった。このため、放電曲線には、電池残容量350〜450mAh程度の範囲の準平坦部と、電池残容量500〜600mAh程度の範囲の準平坦部とが認められる。この2つの準平坦部間で生じる電池電圧の変化を検出することで、準平坦部の境界に相当する電池残容量450〜500mAhを検知することができる。本例では、電池の全容量約700mAhに対して、電池残容量(放電時のため放電容量)約450mAhのため、充電状態はおよそ36%となる。準平坦部間の電池電圧の変化が生じる電池残容量は、混合系正極活物質の混合比率で定まるため、ある程度の電池残容量を確保した状態で充電状態を検知することができることが判明した。従って、電池電圧の変化が起こった時点(変化部)を検出すれば、電池残容量に余力がある段階で電池の充電状態を検知することができるので、機器を直ちに停止させずにすむ。すなわち、精度の低い電圧検出でも充電状態を検知しやすく、検知した後でも機器の動作を確保することができる。 On the other hand, in the laminated film-covered battery 1 of the example, since two types of positive electrode active materials having different operating voltage ranges are mixed, the positive electrode active material having a low operating voltage range is charged at the time of charging. A positive electrode active material having a high voltage range is charged. On the contrary, at the time of discharging, the positive electrode active material having a high operating voltage range is discharged, and then the positive electrode active material having a low operating voltage range is discharged. That is, at the time of discharging, the battery remaining capacity is around 450 mAh after the lithium-containing transition metal composite oxide having a layered crystal structure represented by the chemical formula LiCo 0.33 Mn 0.33 Ni 0.34 O 2 has been discharged. A change part where the battery voltage changes rapidly is observed. Thereafter, the lithium-containing transition metal composite oxide having an olivine crystal structure represented by the chemical formula LiFePO 4 was transferred to the discharge region, and the discharge was terminated when the remaining battery capacity was about 650 mAh or more. For this reason, in the discharge curve, a quasi-flat portion in the range of about 350 to 450 mAh remaining battery capacity and a quasi-flat portion in the range of about 500 to 600 mAh remaining battery capacity are recognized. By detecting a change in battery voltage that occurs between the two quasi-flat portions, it is possible to detect a remaining battery capacity of 450 to 500 mAh corresponding to the boundary between the quasi-flat portions. In this example, since the remaining capacity of the battery (discharge capacity for discharging) is about 450 mAh with respect to the total capacity of the battery of about 700 mAh, the state of charge is approximately 36%. Since the remaining battery capacity in which the battery voltage changes between the quasi-flat portions is determined by the mixing ratio of the mixed positive electrode active material, it has been found that the state of charge can be detected with a certain remaining battery capacity secured. Therefore, if the battery voltage change point (change part) is detected, the state of charge of the battery can be detected at a stage where the remaining battery capacity is sufficient, so that it is not necessary to immediately stop the device. That is, it is easy to detect the state of charge even with low-accuracy voltage detection, and the operation of the device can be ensured even after detection.

本発明は複雑な電子回路を使用することなく充電状態を容易に検知することができる非水電解液二次電池を提供するため、非水電解液二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a non-aqueous electrolyte secondary battery that can easily detect the state of charge without using a complicated electronic circuit, it contributes to the manufacture and sale of non-aqueous electrolyte secondary batteries. Has industrial applicability.

本発明を適用可能な実施形態のラミネートフィルム外装電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the laminated film exterior battery of embodiment which can apply this invention. 実施形態のラミネートフィルム外装電池を充放電したときの電池残容量の変化に対する電池電圧の変化を示すグラフである。It is a graph which shows the change of the battery voltage with respect to the change of the battery remaining capacity when charging / discharging the laminated film exterior battery of embodiment.

符号の説明Explanation of symbols

1 ラミネートフィルム外装電池(非水電解液二次電池)
2 ラミネートフィルム
1 Laminated film exterior battery (non-aqueous electrolyte secondary battery)
2 Laminate film

Claims (3)

リチウムイオンを挿入離脱可能な正極と負極とを備えた非水電解液二次電池において、前記正極は2種以上の正極活物質を含み、かつ、前記非水電解液二次電池を充放電したときの電池残容量と電池電圧との関係を表す充放電曲線が、前記電池残容量を横軸にとり前記電池電圧を縦軸にとったときに前記電池電圧が略フラットとなり前記電池残容量の変化に対する前記電池電圧の変化の小さい2つ以上のフラット部を有し、前記フラット部間には、前記フラット部より前記電池残容量の変化に対する前記電池電圧の変化の大きいスロープ部が介在していることを特徴とする非水電解液二次電池。   In a non-aqueous electrolyte secondary battery including a positive electrode and a negative electrode capable of inserting and removing lithium ions, the positive electrode includes two or more positive electrode active materials, and the non-aqueous electrolyte secondary battery is charged and discharged. When the charge / discharge curve representing the relationship between the remaining battery capacity and the battery voltage when the remaining battery capacity is taken on the horizontal axis and the battery voltage is taken on the vertical axis, the battery voltage becomes substantially flat and the change in the remaining battery capacity There are two or more flat portions with a small change in the battery voltage with respect to the battery, and a slope portion with a large change in the battery voltage with respect to the change in the remaining battery capacity is interposed between the flat portions. A non-aqueous electrolyte secondary battery. 前記正極活物質は、オリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方とを含むことを特徴とする請求項1に記載の非水電解液二次電池。   The positive electrode active material includes a lithium-containing transition metal composite oxide having an olivine crystal structure, and at least one of a lithium-containing transition metal composite oxide having a layered crystal structure and a lithium-containing transition metal composite oxide having a spinel crystal structure. The nonaqueous electrolyte secondary battery according to claim 1, comprising: 前記オリビン結晶構造を有するリチウム含有遷移金属複合酸化物が化学式Li1+y1−yPO(Mは、Mn、Co、Ni、Cr、Al、Mg、Feから選択される1種以上の遷移金属元素である。)で表される化合物及び化学式Li1+y1−yPOで表される化合物に炭素を担持させた化合物の少なくとも1種であり、前記層状結晶構造を有するリチウム含有遷移金属複合酸化物が化学式Li1+x1−xで表される化合物であり、前記スピネル結晶構造を有するリチウム含有遷移金属複合酸化物が化学式Li1+x2−xで表される化合物であることを特徴とする請求項2に記載の非水電解液二次電池。 The lithium-containing transition metal composite oxide having the olivine crystal structure has the chemical formula Li 1 + y M 1-y PO 4 (M is one or more transition metals selected from Mn, Co, Ni, Cr, Al, Mg, Fe) A lithium-containing transition metal composite having the above-mentioned layered crystal structure, which is at least one of a compound represented by the following formula and a compound represented by the chemical formula Li 1 + y M 1-y PO 4. The oxide is a compound represented by the chemical formula Li 1 + x M 1-x O 2 , and the lithium-containing transition metal composite oxide having the spinel crystal structure is a compound represented by the chemical formula Li 1 + x M 2-x O 4. The non-aqueous electrolyte secondary battery according to claim 2.
JP2006070510A 2006-03-15 2006-03-15 Nonaqueous electrolyte solution secondary battery Pending JP2007250299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070510A JP2007250299A (en) 2006-03-15 2006-03-15 Nonaqueous electrolyte solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070510A JP2007250299A (en) 2006-03-15 2006-03-15 Nonaqueous electrolyte solution secondary battery

Publications (1)

Publication Number Publication Date
JP2007250299A true JP2007250299A (en) 2007-09-27

Family

ID=38594359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070510A Pending JP2007250299A (en) 2006-03-15 2006-03-15 Nonaqueous electrolyte solution secondary battery

Country Status (1)

Country Link
JP (1) JP2007250299A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2009104983A (en) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery and power source for electric automobile using it
JP2009295397A (en) * 2008-06-04 2009-12-17 Denso Corp Organic radical secondary battery, charge/discharge control method of the organic radical secondary battery, and charge/discharge control device of the organic radical secondary battery
JP2010225486A (en) * 2009-03-25 2010-10-07 Toshiba Corp Nonaqueous electrolyte battery
JP2011018547A (en) * 2009-07-08 2011-01-27 Toyota Motor Corp Lithium ion secondary battery and battery system
WO2011046000A1 (en) * 2009-10-13 2011-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte solution type lithium ion secondary battery
KR101034226B1 (en) 2009-11-25 2011-05-12 주식회사 엘지화학 Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2011228293A (en) * 2010-03-31 2011-11-10 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2012023501A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Non-aqueous electrolyte secondary battery
WO2011105833A3 (en) * 2010-02-24 2012-03-01 주식회사 엘지화학 Positive electrode active material for improving output, and lithium secondary battery comprising same
JP5033262B2 (en) * 2009-12-14 2012-09-26 パナソニック株式会社 Completion determination method and discharge end determination method for lithium ion secondary battery, charge control circuit, discharge control circuit, and power supply
WO2012147929A1 (en) * 2011-04-28 2012-11-01 日本電気株式会社 Lithium secondary cell
JP2012234833A (en) * 2012-08-29 2012-11-29 Nec Energy Devices Ltd Lithium ion battery, and method for manufacturing the same
US8330427B2 (en) 2008-02-18 2012-12-11 Panasonic Corporation Charge control circuit, and charging device and battery pack incorporated with the same
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
WO2013146207A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
JP2013211110A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery, and method for producing electrode active material
WO2013154272A1 (en) * 2012-04-13 2013-10-17 주식회사 엘지화학 System of secondary cell including mixed cathode material, and apparatus and method for secondary cell management
WO2013161445A1 (en) * 2012-04-27 2013-10-31 日産自動車株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing same
CN103389466A (en) * 2012-05-10 2013-11-13 株式会社杰士汤浅国际 Electric storage device management apparatus, electric storage device pack, electric storage device management program, and method of estimating state of charge
WO2013187581A1 (en) * 2012-06-13 2013-12-19 주식회사 엘지화학 Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material
WO2014088325A1 (en) * 2012-12-04 2014-06-12 주식회사 엘지화학 Method and device for estimating depth of discharge of secondary battery
US20140322605A1 (en) * 2012-08-02 2014-10-30 Lg Chem, Ltd. Mixed cathode active material having improved power characteristics and lithium secondary battery including the same
WO2015019709A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015019482A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries
KR101501440B1 (en) * 2010-04-01 2015-03-11 주식회사 엘지화학 Novel Positive Electrode for Secondary Battery
JP2015138651A (en) * 2014-01-22 2015-07-30 株式会社デンソー Method for controlling nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery system
KR101546115B1 (en) 2011-04-04 2015-08-21 주식회사 엘지화학 CATHODE ACTIVE MATERIAL FOR SERIES-TYPE PHEV (Plug-in Hybrid Electric Vehicle) AND LITHIUM SECONDARY BATTERY COMPRISING THEREOF
JP2017167163A (en) * 2012-05-10 2017-09-21 株式会社Gsユアサ Power storage element management device and power storage element soc estimation method
WO2020026058A1 (en) * 2018-07-31 2020-02-06 株式会社半導体エネルギー研究所 Power storage system and method for operating power storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279989A (en) * 2001-03-16 2002-09-27 Sony Corp Battery
JP2005011657A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery, its device, and electrode for secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279989A (en) * 2001-03-16 2002-09-27 Sony Corp Battery
JP2005011657A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery, its device, and electrode for secondary battery

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293661A (en) * 2007-05-22 2008-12-04 Nec Tokin Corp Positive electrode for lithium secondary battery, and lithium secondary battery using it
JP2009104983A (en) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery and power source for electric automobile using it
US8330427B2 (en) 2008-02-18 2012-12-11 Panasonic Corporation Charge control circuit, and charging device and battery pack incorporated with the same
JP2009295397A (en) * 2008-06-04 2009-12-17 Denso Corp Organic radical secondary battery, charge/discharge control method of the organic radical secondary battery, and charge/discharge control device of the organic radical secondary battery
JP2010225486A (en) * 2009-03-25 2010-10-07 Toshiba Corp Nonaqueous electrolyte battery
US9882213B2 (en) 2009-03-25 2018-01-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
JP2011018547A (en) * 2009-07-08 2011-01-27 Toyota Motor Corp Lithium ion secondary battery and battery system
JP2011086405A (en) * 2009-10-13 2011-04-28 Toyota Motor Corp Nonaqueous electrolyte type lithium ion secondary battery
KR101477873B1 (en) * 2009-10-13 2014-12-30 도요타지도샤가부시키가이샤 Nonaqueous electrolyte solution type lithium ion secondary battery
US9209462B2 (en) 2009-10-13 2015-12-08 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte solution type lithium ion secondary battery
WO2011046000A1 (en) * 2009-10-13 2011-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte solution type lithium ion secondary battery
KR101034226B1 (en) 2009-11-25 2011-05-12 주식회사 엘지화학 Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
WO2011065651A3 (en) * 2009-11-25 2011-07-21 주식회사 엘지화학 Anode made by a combination of two components, and lithium secondary battery using same
US8871117B2 (en) 2009-11-25 2014-10-28 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
RU2501124C1 (en) * 2009-11-25 2013-12-10 ЭлДжи КЕМ, ЛТД. Cathode based on two types of compounds and lithium secondary battery including it
US20130228725A1 (en) * 2009-11-25 2013-09-05 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
US8449792B2 (en) 2009-11-25 2013-05-28 Lg Chem, Ltd. Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP5033262B2 (en) * 2009-12-14 2012-09-26 パナソニック株式会社 Completion determination method and discharge end determination method for lithium ion secondary battery, charge control circuit, discharge control circuit, and power supply
US9240592B2 (en) 2010-02-24 2016-01-19 Lg Chem, Ltd. Positive-electrode active material for elevation of output and lithium secondary battery including the same
KR101139972B1 (en) * 2010-02-24 2012-04-30 주식회사 엘지화학 positive-electrode active material for elevation of output in low voltage and Lithium secondary battery including them
WO2011105833A3 (en) * 2010-02-24 2012-03-01 주식회사 엘지화학 Positive electrode active material for improving output, and lithium secondary battery comprising same
CN102859763A (en) * 2010-02-24 2013-01-02 株式会社Lg化学 Positive electrode active material for improving output, and lithium secondary battery comprising same
JP2011228293A (en) * 2010-03-31 2011-11-10 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
KR101501440B1 (en) * 2010-04-01 2015-03-11 주식회사 엘지화학 Novel Positive Electrode for Secondary Battery
WO2012023501A1 (en) * 2010-08-20 2012-02-23 株式会社 村田製作所 Non-aqueous electrolyte secondary battery
JP5565465B2 (en) * 2010-08-20 2014-08-06 株式会社村田製作所 Nonaqueous electrolyte secondary battery
KR101546115B1 (en) 2011-04-04 2015-08-21 주식회사 엘지화학 CATHODE ACTIVE MATERIAL FOR SERIES-TYPE PHEV (Plug-in Hybrid Electric Vehicle) AND LITHIUM SECONDARY BATTERY COMPRISING THEREOF
JP6052168B2 (en) * 2011-04-28 2016-12-27 日本電気株式会社 Lithium secondary battery
WO2012147929A1 (en) * 2011-04-28 2012-11-01 日本電気株式会社 Lithium secondary cell
JP2013089522A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device
JP2013089523A (en) * 2011-10-20 2013-05-13 Tdk Corp Battery pack and electricity storage device including the same
JP2013211110A (en) * 2012-03-30 2013-10-10 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery, and method for producing electrode active material
WO2013146207A1 (en) * 2012-03-30 2013-10-03 住友大阪セメント株式会社 Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
US8822054B2 (en) 2012-04-13 2014-09-02 Lg Chem, Ltd. Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
EP2838151A1 (en) * 2012-04-13 2015-02-18 LG Chem, Ltd. System of secondary cell including mixed cathode material, and apparatus and method for secondary cell management
US8854005B2 (en) 2012-04-13 2014-10-07 Lg Chem, Ltd. Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
KR101419920B1 (en) 2012-04-13 2014-07-15 주식회사 엘지화학 System for Secondary Battery Comprising Blended Cathode Material, and Apparatus and Method for Managing the Same
WO2013154272A1 (en) * 2012-04-13 2013-10-17 주식회사 엘지화학 System of secondary cell including mixed cathode material, and apparatus and method for secondary cell management
EP2838151A4 (en) * 2012-04-13 2016-01-13 Lg Chemical Ltd System of secondary cell including mixed cathode material, and apparatus and method for secondary cell management
US8935113B2 (en) 2012-04-13 2015-01-13 Lg Chem, Ltd. Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
EP3252854A1 (en) * 2012-04-13 2017-12-06 LG Chem, Ltd. Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
US10283819B2 (en) 2012-04-13 2019-05-07 Lg Chem, Ltd. Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
JP2015523543A (en) * 2012-04-13 2015-08-13 エルジー・ケム・リミテッド System for secondary battery including mixed positive electrode material, management apparatus and method for secondary battery including mixed positive electrode material
EP3255444A1 (en) * 2012-04-13 2017-12-13 LG Chem, Ltd. Method for managing a secondary battery
CN104396082A (en) * 2012-04-13 2015-03-04 株式会社Lg化学 System of secondary cell including mixed cathode material, and apparatus and method for secondary cell management
JP2013243116A (en) * 2012-04-27 2013-12-05 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2013161445A1 (en) * 2012-04-27 2013-10-31 日産自動車株式会社 Non-aqueous electrolyte secondary cell and method for manufacturing same
DE102013208246A1 (en) 2012-05-10 2013-11-14 Gs Yuasa International Ltd. Electric storage management system, electric storage pack and method for estimating the state of charge
JP2017167163A (en) * 2012-05-10 2017-09-21 株式会社Gsユアサ Power storage element management device and power storage element soc estimation method
CN103389466A (en) * 2012-05-10 2013-11-13 株式会社杰士汤浅国际 Electric storage device management apparatus, electric storage device pack, electric storage device management program, and method of estimating state of charge
WO2013187581A1 (en) * 2012-06-13 2013-12-19 주식회사 엘지화학 Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material
EP3339870A1 (en) * 2012-06-13 2018-06-27 LG Chem, Ltd. Apparatus and method for estimating soc of secondary battery including blended cathode material
US10408886B2 (en) 2012-06-13 2019-09-10 Lg Chem, Ltd. Apparatus and method for estimating SOC of secondary battery including blended cathode material
CN104364669A (en) * 2012-06-13 2015-02-18 株式会社Lg化学 Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material
EP2848953A4 (en) * 2012-06-13 2016-10-12 Lg Chemical Ltd Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material
CN104364669B (en) * 2012-06-13 2017-02-22 株式会社Lg 化学 Apparatus and method for estimating state of charge state of charge of secondary cell including mixed cathode material
JP2017067790A (en) * 2012-06-13 2017-04-06 エルジー・ケム・リミテッド Apparatus and method for estimating state of charge of secondary battery including blended cathode material
EP3901642A1 (en) * 2012-06-13 2021-10-27 LG Chem, Ltd. Apparatus and method for estimating soc of secondary battery including blended cathode material
CN104396066A (en) * 2012-08-02 2015-03-04 株式会社Lg化学 Mixed cathode active material having improved output characteristics and lithium secondary battery including same
US20140322605A1 (en) * 2012-08-02 2014-10-30 Lg Chem, Ltd. Mixed cathode active material having improved power characteristics and lithium secondary battery including the same
CN104396066B (en) * 2012-08-02 2017-02-01 株式会社Lg 化学 Mixed cathode active material having improved output characteristics and lithium secondary battery including same
JP2012234833A (en) * 2012-08-29 2012-11-29 Nec Energy Devices Ltd Lithium ion battery, and method for manufacturing the same
US9678165B2 (en) 2012-12-04 2017-06-13 Lg Chem, Ltd. Apparatus for estimating depth of discharge (DOD) of secondary battery
CN104871021A (en) * 2012-12-04 2015-08-26 株式会社Lg化学 Method and apparatus for estimating depth of discharge of secondary battery
WO2014088325A1 (en) * 2012-12-04 2014-06-12 주식회사 엘지화학 Method and device for estimating depth of discharge of secondary battery
WO2015019729A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries
WO2015019482A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries
WO2015019481A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015019709A1 (en) * 2013-08-09 2015-02-12 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2015138651A (en) * 2014-01-22 2015-07-30 株式会社デンソー Method for controlling nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery system
WO2020026058A1 (en) * 2018-07-31 2020-02-06 株式会社半導体エネルギー研究所 Power storage system and method for operating power storage system

Similar Documents

Publication Publication Date Title
JP2007250299A (en) Nonaqueous electrolyte solution secondary battery
JP4977375B2 (en) Lithium ion battery and battery pack using the same
KR101294587B1 (en) Non-Aqueous Secondary Battery
KR101529408B1 (en) Non-aqueous electrolyte secondary battery
JP4892893B2 (en) Bipolar battery
JP6151431B1 (en) Nonaqueous electrolyte battery and battery pack
JP5010250B2 (en) Battery stack and battery pack
JP6246901B2 (en) Nonaqueous electrolyte battery and battery pack
JP2013008691A (en) Pouch and secondary battery comprising the same
KR20170013189A (en) Pouch-type secondary battery comprising safety member
KR102264734B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
JP2008041504A (en) Nonaqueous electrolyte battery
KR20200119207A (en) Nonaqueous electrolyte secondary battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP2011070932A (en) Lithium secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP2011071052A (en) Lithium-ion secondary battery
JP2007317576A (en) Cathode active material and battery
JPWO2016143123A1 (en) Nonaqueous electrolyte battery and battery pack
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
JP2007073437A (en) Secondary battery
JP5776948B2 (en) Lithium secondary battery and manufacturing method thereof
JP2017027837A (en) Lithium ion secondary battery
KR101917488B1 (en) Flat secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412