JP2009104983A - Lithium-ion secondary battery and power source for electric automobile using it - Google Patents

Lithium-ion secondary battery and power source for electric automobile using it Download PDF

Info

Publication number
JP2009104983A
JP2009104983A JP2007277526A JP2007277526A JP2009104983A JP 2009104983 A JP2009104983 A JP 2009104983A JP 2007277526 A JP2007277526 A JP 2007277526A JP 2007277526 A JP2007277526 A JP 2007277526A JP 2009104983 A JP2009104983 A JP 2009104983A
Authority
JP
Japan
Prior art keywords
soc
ion secondary
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277526A
Other languages
Japanese (ja)
Other versions
JP5157365B2 (en
Inventor
Naruaki Okuda
匠昭 奥田
Yoji Takeuchi
要二 竹内
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007277526A priority Critical patent/JP5157365B2/en
Publication of JP2009104983A publication Critical patent/JP2009104983A/en
Application granted granted Critical
Publication of JP5157365B2 publication Critical patent/JP5157365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery which has a wider SOC region capable of estimating based on the battery voltage than a conventional one. <P>SOLUTION: A cylindrical lithium-ion secondary battery is manufactured by using manganese-substituted iron lithium phosphate LiFe<SB>0.8</SB>Mn<SB>0.2</SB>PO<SB>4</SB>as a positive electrode active material, soft carbon as a negative electrode active material, and, as a non-aqueous electrolytic liquid, one in which LiPF<SB>6</SB>as an electrolyte is dissolved in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed in volume ratio of 30/70 so that it may be 1 mol/L. When the SOC dependency of the battery voltage at the time of discharge is measured for this battery under a temperature condition of 20°C by carrying out a constant current constant voltage charge up to a charging upper limit voltage of 4.1V by 1C current and then, carrying out a constant current discharge up to a discharge lower limit voltage of 2.5 V by 0.1 C current, the range of the SOC capable of estimating based on the battery voltage has become a wide range of 0-60%, 75-85%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池及びそれを用いた電気自動車用電源に関する。   The present invention relates to a lithium ion secondary battery and a power source for an electric vehicle using the same.

従来より、無定形炭素(ハードカーボンやソフトカーボン)を負極活物質とするリチウムイオン二次電池が知られている。この種のリチウムイオン二次電池は、放電時にゆっくりと電池電圧が変化するためにこの電池電圧に基づいて残容量(SOC)の表示が可能である(例えば特許文献1参照)。
特開平10−152311(段落0006)
Conventionally, lithium ion secondary batteries using amorphous carbon (hard carbon or soft carbon) as a negative electrode active material are known. Since this type of lithium ion secondary battery slowly changes the battery voltage during discharge, the remaining capacity (SOC) can be displayed based on the battery voltage (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 10-152231 (paragraph 0006)

しかしながら、無定形炭素を負極活物質とするリチウムイオン二次電池では、低SOC領域(例えばSOCが0〜60%の領域)では電池電圧に基づいてSOCを推定することが可能であるが、高SOC領域ではSOCにかからわず電池電圧がほぼ一定となるため、電池電圧に基づいてSOCを推定することができないという問題があった。特に、電気自動車では、SOCを検出しながらバッテリの充放電制御を行うため、広範囲のSOCにつき電池電圧に基づいて簡単に検出できることが望まれる。   However, in a lithium ion secondary battery using amorphous carbon as a negative electrode active material, it is possible to estimate the SOC based on the battery voltage in a low SOC region (for example, a region where SOC is 0 to 60%). In the SOC region, since the battery voltage is substantially constant regardless of the SOC, there is a problem in that the SOC cannot be estimated based on the battery voltage. In particular, in an electric vehicle, since charging / discharging control of the battery is performed while detecting the SOC, it is desired that a wide range of SOC can be easily detected based on the battery voltage.

本発明は、上述した課題に鑑みなされたものであり、電池電圧に基づいて推定可能なSOC領域が従来に比べて広いリチウムイオン二次電池及びそれを用いた電気自動車用電源を提供することを主目的とする。   The present invention has been made in view of the above-described problems, and provides a lithium ion secondary battery having a wider SOC region than can be estimated based on battery voltage and a power source for an electric vehicle using the same. Main purpose.

上述した目的を達成するために、本発明者らは、ソフトカーボンを負極活物質とする負極と、LiFe0.8Mn0.2PO4で表されるオリビン型リチウム化合物を正極活物質とする正極とを非水系電解液を介して配置したリチウムイオン二次電池を作製したところ、低SOC領域のみならず高SOC領域でも電池電圧に基づいてSOCを推定することができることを見いだし、本発明を完成するに至った。 In order to achieve the above-described object, the present inventors made a non-use of a negative electrode using soft carbon as a negative electrode active material and a positive electrode using an olivine type lithium compound represented by LiFe 0.8 Mn 0.2 PO 4 as a positive electrode active material. When a lithium ion secondary battery arranged via an aqueous electrolyte was fabricated, it was found that the SOC can be estimated based on the battery voltage not only in the low SOC region but also in the high SOC region, and the present invention was completed. It was.

すなわち、本発明のリチウムイオン二次電池は、無定形炭素を負極活物質とする負極と、LiMPO4(Mは、Fe,Ni,Mn,Co及びMgからなる群より選ばれた2種以上の金属元素であり、各金属元素の割合は、組み立てたリチウムイオン二次電池の放電特性において、Mに2種以上の金属元素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域が、前記負極活物質として無定形炭素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域よりも高SOC側になるように設定されている)で表されるオリビン型リチウム化合物を正極活物質とする正極と、前記負極と前記正極との間でリチウムイオンのやり取りを許容するイオン伝導媒体と、を備えたものである。また、本発明の電気自動車用電源は、上述したリチウムイオン二次電池を直列に接続してなるものである。 That is, the lithium ion secondary battery of the present invention includes a negative electrode using amorphous carbon as a negative electrode active material and LiMPO 4 (M is two or more selected from the group consisting of Fe, Ni, Mn, Co, and Mg). In the discharge characteristics of the assembled lithium ion secondary battery, the ratio of each metal element is a region in which the battery voltage decreases due to the decrease in SOC due to the effect of adopting two or more metal elements for M, The olivine type lithium compound represented by the above formula is set so as to be on the higher SOC side than the region where the battery voltage decreases with the decrease in SOC due to the influence of adopting amorphous carbon as the negative electrode active material. And an ion conductive medium that allows exchange of lithium ions between the negative electrode and the positive electrode. The electric vehicle power source of the present invention is formed by connecting the above-described lithium ion secondary batteries in series.

本発明のリチウムイオン二次電池によれば、低SOC領域のみならずそれよりも高SOC側においても電池電圧に基づいてSOCを推定することができる。したがって、SOCを検出しながらバッテリの充放電制御を行う電気自動車の電源として適している。ここで、低SOC領域で電池電圧に基づいてSOCを推定できるのは、無定形炭素を負極活物質としているため放電時にゆっくりと電池電圧が変化することによると考えられる。また、低SOC領域よりも高SOC側で電池電圧に基づいてSOCを推定できるのは、オリビン型リチウム化合物の金属元素Mが2種以上からなるためプラトー領域(平坦領域)に段差が生じ、その段差部分で電池電圧がSOCに対して傾きを持つことによると考えられる。   According to the lithium ion secondary battery of the present invention, the SOC can be estimated based on the battery voltage not only in the low SOC region but also on the higher SOC side. Therefore, it is suitable as a power source for an electric vehicle that performs charge / discharge control of the battery while detecting the SOC. Here, it is considered that the SOC can be estimated based on the battery voltage in the low SOC region because the battery voltage slowly changes during discharge because amorphous carbon is used as the negative electrode active material. In addition, the SOC can be estimated based on the battery voltage on the higher SOC side than the low SOC region because the metal element M of the olivine type lithium compound is composed of two or more types, and a step is generated in the plateau region (flat region). It is considered that the battery voltage has a slope with respect to the SOC at the step portion.

本発明のリチウムイオン二次電池において、負極活物質に用いられる無定形炭素としては、ソフトカーボンやハードカーボン、両カーボンの混合物などを挙げることができる。ソフトカーボンとは、1000℃以上の熱処理によって黒鉛化する易黒鉛化性炭素材料であり、例えば、コークスやメソカーボン小球体、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。ハードカーボンとは、2800℃以上の熱処理によっても黒鉛化の進みにくい難黒鉛化性炭素材料であり、例えば、テトラフルオロエチレン−パーフロロアルキルビニルエーテル共重合樹脂(PFA樹脂)やポリアクリロニトリル系炭素繊維(PAN系炭素繊維)、ガラス状炭素(グラッシーカーボン)などが挙げられる。このような無定形炭素を負極活物質として用いると、低SOC領域(例えばSOCが0〜60%の領域)において電池電圧に基づいてSOCを推定することができる。なお、無定形炭素としては、ハードカーボンよりもソフトカーボンが好ましい。これは、ソフトカーボンの方がハードカーボンに比べて不可逆容量が少ないからである。   In the lithium ion secondary battery of the present invention, examples of the amorphous carbon used for the negative electrode active material include soft carbon, hard carbon, a mixture of both carbons, and the like. Soft carbon is an easily graphitizable carbon material that is graphitized by heat treatment at 1000 ° C. or higher, and examples thereof include coke, mesocarbon microspheres, mesophase pitch carbon fibers, and pyrolytic vapor grown carbon fibers. Hard carbon is a non-graphitizable carbon material that hardly undergoes graphitization even by heat treatment at 2800 ° C. or higher. For example, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA resin) or polyacrylonitrile-based carbon fiber ( PAN-based carbon fiber) and glassy carbon (glassy carbon). When such amorphous carbon is used as the negative electrode active material, the SOC can be estimated based on the battery voltage in a low SOC region (for example, a region where the SOC is 0 to 60%). As the amorphous carbon, soft carbon is preferable to hard carbon. This is because soft carbon has less irreversible capacity than hard carbon.

本発明のリチウムイオン二次電池において、正極活物質に用いられるLiMPO4(Mは前出の通り)で表されるオリビン型リチウム化合物は、例えば、Li源とM源とPO4源とを混合した後、混合物を焼成し、得られた焼成物を解砕することにより得られるものである。このようなオリビン型リチウム化合物を正極活物質として用いると、低SOC領域よりも高SOC側においても電池電圧に基づいてSOCを推定可能な範囲を確保することができる。また、高温になったり過充電になったりしてもほとんど酸素を発生しないオリビン型リチウム化合物を正極活物質として採用しているため、熱的・化学的に安定な電池となる。ここで、Li源としては、例えば、炭酸リチウム(Li2CO3)や水酸化リチウム(LiOH)などの公知のリチウム化合物を用いることができる。PO4源としては、例えば、リン酸二水素アンモニウム(NH42PO4)やリン酸水素二アンモニウム((NH42HPO4)などの公知のリン酸塩を用いることができる。このようにLiとPO4とをそれぞれ個別に含む化合物を用いてもよいが、LiとPO4との両方を含む化合物を用いることが秤量の回数を減らすことができるため好ましい。このような化合物としては、例えば、リン酸二水素リチウム(LiH2PO4)などが挙げられる。M源としては、2種以上の金属元素Mの一つがFeの場合には、例えば、シュウ酸鉄(II)二水和物(FeC24・2H2O)や塩化(II)鉄(FeCl2)などの公知の2価の鉄化合物を用いることができる。このとき、シュウ酸鉄(II)二水和物がより好ましい。シュウ酸鉄(II)二水和物は塩化(II)鉄に比べて、焼成時に発生するガスの腐食性が低いためである。2種以上の金属元素Mの一つがNiの場合には、例えば、酸化ニッケル(NiO)や水酸化ニッケル(Ni(OH)2)などの公知の2価のニッケル化合物を用いることができる。2種以上の金属元素Mの一つがMnの場合には、例えば、炭酸マンガン(MnCO3)や塩化マンガン四水和物(MnCl2・4H2O)などの公知の2価のマンガン化合物を用いることができる。2種以上の金属元素Mの一つがCoの場合には、例えば、酸化コバルト(CoO)や塩化コバルト(CoCl2)などの公知の2価のコバルト化合物を用いることができる。2種以上の金属元素Mの一つがMgの場合には、例えば、酸化マグネシウム(MgO)や水酸化マグネシウム(Mg(OH)2)などの公知の2価のマグネシウム化合物を用いることができる。 In the lithium ion secondary battery of the present invention, the olivine type lithium compound represented by LiMPO 4 (M is as described above) used for the positive electrode active material is, for example, a mixture of a Li source, an M source, and a PO 4 source. After that, the mixture is fired, and the obtained fired product is crushed. When such an olivine type lithium compound is used as the positive electrode active material, a range in which the SOC can be estimated based on the battery voltage can be ensured even on the higher SOC side than the low SOC region. In addition, since an olivine type lithium compound that hardly generates oxygen even when it becomes high temperature or overcharged is adopted as the positive electrode active material, it becomes a thermally and chemically stable battery. Here, as the Li source, for example, a known lithium compound such as lithium carbonate (Li 2 CO 3 ) or lithium hydroxide (LiOH) can be used. As the PO 4 source, for example, a known phosphate such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) or diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) can be used. Thus, compounds containing Li and PO 4 individually may be used, but it is preferable to use a compound containing both Li and PO 4 because the number of weighings can be reduced. Examples of such a compound include lithium dihydrogen phosphate (LiH 2 PO 4 ). As the M source, when one of the two or more metal elements M is Fe, for example, iron (II) oxalate dihydrate (FeC 2 O 4 .2H 2 O) or iron chloride (II) ( A known divalent iron compound such as FeCl 2 ) can be used. At this time, iron (II) oxalate dihydrate is more preferable. This is because iron (II) oxalate dihydrate is less corrosive to the gas generated during firing than iron (II) chloride. When one of the two or more metal elements M is Ni, for example, a known divalent nickel compound such as nickel oxide (NiO) or nickel hydroxide (Ni (OH) 2 ) can be used. When one of the two or more metal elements M is Mn, for example, a known divalent manganese compound such as manganese carbonate (MnCO 3 ) or manganese chloride tetrahydrate (MnCl 2 .4H 2 O) is used. be able to. When one of the two or more metal elements M is Co, for example, a known divalent cobalt compound such as cobalt oxide (CoO) or cobalt chloride (CoCl 2 ) can be used. When one of the two or more metal elements M is Mg, for example, a known divalent magnesium compound such as magnesium oxide (MgO) or magnesium hydroxide (Mg (OH) 2 ) can be used.

Li源とM源とPO4源との混合物を焼成するには、特に限定されるものではないが、例えば、焼成温度は400℃以上であることが好ましく、600℃以上800℃以下であることがより好ましい。焼成温度が400℃未満では、反応が十分に進行せず、結晶性が悪くなるため好ましくない。また、800℃以上で焼成すると、粒成長が促成され粒子径が大きくなるため好ましくない。焼成時間は、混合物の焼成が完了するために十分な時間であれば特に限定されるものではないが、例えば、10〜15時間程度であることが好ましい。焼成は、不活性雰囲気下など、酸素が存在しない環境下で行うことが好ましい。酸素が存在する環境下で焼成を行うと一部の鉄が3価となり、放電容量が低下するため好ましくない。具体的には、特に限定されるものではないが、例えば、ヘリウムガスやネオンガス、アルゴンガスなどの希ガス属元素ガス気流下や、窒素ガスなどの不活性ガス気流下などが挙げられる。このとき、アルゴンガスは酸素より重いため、アルゴンガス気流下で行うことがより好ましい。これらの成分を含む焼成物を正極活物質として用いるためには、導電材と混合し電子伝導性を高めることが好ましい。こうした混合に備えて、焼成物を解砕することが好ましい。焼成物を解砕する方法としては、後述する導電材等と十分に混合できる程度に解砕することができる方法であれば特に限定されるものではないが、例えば、ボールミルやミキサ、乳鉢等を用いる方法が挙げられる。 The firing of the mixture of the Li source, the M source and the PO 4 source is not particularly limited. For example, the firing temperature is preferably 400 ° C. or higher, and 600 ° C. or higher and 800 ° C. or lower. Is more preferable. A calcination temperature of less than 400 ° C. is not preferable because the reaction does not proceed sufficiently and the crystallinity deteriorates. Further, firing at 800 ° C. or higher is not preferable because grain growth is promoted and the particle diameter is increased. The firing time is not particularly limited as long as it is sufficient to complete firing of the mixture, but is preferably about 10 to 15 hours, for example. Firing is preferably performed in an environment where oxygen is not present, such as in an inert atmosphere. If firing is performed in an environment where oxygen is present, part of iron becomes trivalent and discharge capacity decreases, which is not preferable. Specifically, it is not particularly limited, and examples thereof include a rare gas group element gas stream such as helium gas, neon gas, and argon gas, and an inert gas stream such as nitrogen gas. At this time, since argon gas is heavier than oxygen, it is more preferable to perform under argon gas flow. In order to use a fired product containing these components as a positive electrode active material, it is preferable to increase the electron conductivity by mixing with a conductive material. It is preferable to crush the fired product in preparation for such mixing. The method for pulverizing the fired product is not particularly limited as long as it can be pulverized to such an extent that it can be sufficiently mixed with a conductive material described later. For example, a ball mill, a mixer, a mortar, etc. The method to use is mentioned.

本発明のリチウムイオン二次電池において、正極は、LiFexMn1-xPO4(xは、組み立てたリチウムイオン二次電池の放電特性において、FeとMnの2成分系とした影響によりSOCの減少に伴い電池電圧が減少する領域が、前記負極活物質として無定形炭素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域よりも高SOC側になるように設定されている)で表されるオリビン型リチウム化合物を正極活物質とすることが好ましい。こうすれば、FeもMnも比較的豊富に存在するため正極活物質のコストが嵩まない。ここで、xは、0.65以上0.95以下であることが好ましい。こうすれば、FeとMnの2成分系とした影響によりSOCの減少に伴い電池電圧が減少する領域が、負極活物質として無定形炭素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域よりも確実に高SOC側になる。なお、xの値は、例えばリチウムイオン二次電池を電気自動車用電源として用いる場合には、その電気自動車で実施する電池制御を考慮して決定することが好ましい。 In the lithium ion secondary battery of the present invention, the positive electrode, LiFe x Mn 1-x PO 4 (x is in the discharge characteristics of the lithium ion secondary battery assembled, the SOC due to the effects obtained by the two-component system of Fe and Mn The region in which the battery voltage decreases with the decrease is set to be higher on the SOC side than the region in which the battery voltage decreases with the decrease in SOC due to the influence of adopting amorphous carbon as the negative electrode active material) The represented olivine type lithium compound is preferably used as the positive electrode active material. In this case, since the Fe and Mn are relatively abundant, the cost of the positive electrode active material is not increased. Here, x is preferably 0.65 or more and 0.95 or less. In this way, the region where the battery voltage decreases as the SOC decreases due to the influence of the two-component system of Fe and Mn, the battery voltage decreases as the SOC decreases due to the influence of adopting amorphous carbon as the negative electrode active material. It is surely on the high SOC side than the region. For example, when a lithium ion secondary battery is used as a power source for an electric vehicle, the value of x is preferably determined in consideration of battery control performed in the electric vehicle.

本発明のリチウム二次電池において、正極は、導電材を含んでいてもよい。導電材としては、導電性を有する材料であれば特に限定されない。例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよいし、銅や銀、ニッケル、アルミニウムなどの金属粉末類でもよいし、ポリフェニレン誘導体などの有機導電性材料でもよい。また、これらを単体で用いてもよいし、複数を混合して用いてもよい。   In the lithium secondary battery of the present invention, the positive electrode may contain a conductive material. The conductive material is not particularly limited as long as it is a conductive material. For example, carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black and thermal black may be used, and natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite may be used. Further, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper, silver, nickel, and aluminum, or organic conductive materials such as polyphenylene derivatives may be used. These may be used alone or in combination.

本発明のリチウムイオン二次電池において、正極は、バインダを含んでいてもよい。バインダとしては、特に限定されるものではないが、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体などが挙げられる。これらの材料は単独で用いてもよいし、複数を混合して用いてもよい。   In the lithium ion secondary battery of the present invention, the positive electrode may contain a binder. Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. are mentioned. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer ( ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene- Rollotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, etc. Is mentioned. These materials may be used alone or in combination.

本発明のリチウムイオン二次電池において、イオン伝導媒体については、特に限定されるものではないが、例えば、支持塩を含む電解液やゲル電解質、固体電解質などを用いることができる。支持塩としては、例えば、LiPF6,LiClO4,LiBF4,Li(CF3SO3)、LiAsF6、LiN(CF3SO22、LiN(C25SO2)などの公知の支持塩を用いることができる。電解液の溶媒としては、例えば、非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては、例えば環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテル等が挙げられる。環状カーボネートとしては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニルカーボネート等がある。鎖状カーボネートとしては、例えばジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート等がある。環状エステルカーボネートとしては、例えばガンマブチロラクトン、ガンマバレロラクトン等がある。環状エーテルとしては、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン等がある。鎖状エーテルとしては、例えばジメトキシエタン、エチレングリコールジメチルエーテル等が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類またはアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the lithium ion secondary battery of the present invention, the ion conductive medium is not particularly limited. For example, an electrolytic solution containing a supporting salt, a gel electrolyte, a solid electrolyte, or the like can be used. Examples of the supporting salt include known supports such as LiPF 6 , LiClO 4 , LiBF 4 , Li (CF 3 SO 3 ), LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ). A salt can be used. As a solvent for the electrolytic solution, for example, an aprotic organic solvent can be used. Examples of such an organic solvent include cyclic carbonates, chain carbonates, cyclic esters, cyclic ethers, chain ethers, and the like. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, and vinyl carbonate. Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate. Examples of the cyclic ester carbonate include gamma butyrolactone and gamma valerolactone. Examples of the cyclic ether include tetrahydrofuran and 2-methyltetrahydrofuran. Examples of the chain ether include dimethoxyethane and ethylene glycol dimethyl ether. These may be used alone or in combination. The gel electrolyte is not particularly limited. For example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include, for example, Li nitrides, halides, oxyacid salts, and the like. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. These may be used alone or in combination. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination.

本発明のリチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium ion secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it is a composition that can withstand the range of use of the lithium ion secondary battery. A microporous membrane is mentioned. These may be used alone or in combination.

本発明のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、こうしたリチウムイオン二次電池を複数直列に接続して電気自動車用電源としてもよい。電気自動車としては、例えば、電池のみで駆動する電池電気自動車や内燃機関とモータ駆動とを組み合わせたハイブリッド電気自動車、燃料電池で発電する燃料電池自動車等が挙げられる。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Further, a plurality of such lithium ion secondary batteries may be connected in series to serve as an electric vehicle power source. Examples of the electric vehicle include a battery electric vehicle driven only by a battery, a hybrid electric vehicle combining an internal combustion engine and a motor drive, a fuel cell vehicle generating power by a fuel cell, and the like.

以下、本発明の具体例を実施例を用いて説明する。   Hereinafter, specific examples of the present invention will be described using examples.

[実施例1]
Li源、PO4源としてリン酸二水素リチウムLiH2PO4を、Fe源としてシュウ酸鉄(II)二水和物FeC24・2H2Oを、Mn源として酢酸マンガン(II)Mn(CH3COO)2を用い、Li:Fe:Mn:PO4がモル比で1:0.8:0.2:1になるように精秤した。原料をエタノールと共にボールミルを用いて十二分に混合した後に、エタノールを揮発させて乳鉢で解砕した粉末を1t/cm2の圧力でペレット化したものを焼成用試料とした。この焼成用試料を高気密性管状炉に入れて減圧し、炉内をアルゴンガスで置換したあと600℃で12時間焼成した。その後、室温まで降温し、焼成物を乳鉢で解砕し、マンガン置換オリビン構造リン酸鉄リチウム(LiFe0.8Mn0.2PO4)の粉末を得た。なお、焼成中は管状炉にアルゴンガスを流速30mL/minでフローさせた。
[Example 1]
Li source, a lithium dihydrogen phosphate LiH 2 PO 4 as a PO 4 source, the iron (II) oxalate dihydrate FeC 2 O 4 · 2H 2 O as Fe source, Mn source as manganese acetate (II) Mn (CH 3 COO) 2 was used and precisely weighed so that the molar ratio of Li: Fe: Mn: PO 4 was 1: 0.8: 0.2: 1. After thoroughly mixing the raw material with ethanol using a ball mill, the powder obtained by volatilizing ethanol and pulverizing with a mortar was pelletized at a pressure of 1 t / cm 2 was used as a firing sample. The firing sample was put in a highly airtight tubular furnace, the pressure was reduced, and the inside of the furnace was replaced with argon gas, followed by firing at 600 ° C. for 12 hours. Thereafter, the temperature was lowered to room temperature, and the fired product was crushed with a mortar to obtain a manganese-substituted olivine-structured lithium iron phosphate (LiFe 0.8 Mn 0.2 PO 4 ) powder. During firing, argon gas was flowed into the tubular furnace at a flow rate of 30 mL / min.

次に、円筒型リチウムイオン二次電池を次のようにして作製した。まず、正極活物質として、先ほど得られたLiFe0.8Mn0.2PO4を用いた。この正極活物質を85wt%、導電材としてカーボンブラックを10wt%、結着材としてポリフッ化ビニリデンを5wt%混合し、分散材としてN−メチル−2−ピロリドンを適量添加し分散することによりスラリー状の正極合材とした。この正極合材を20μm厚のアルミニウム箔集電体の両面に塗布し、乾燥させた後、ロールプレスで高密度化し、52mm幅×450mm長の形状に切り出したものを正極シートとした。なお、正極活物質の付着量は、片面あたり7mg/cm2程度とした。次に、負極活物質として、ソフトカーボン(日本カーボン(株)製の品名GP−5)を用いた。この負極活物質を95wt%、結着材としてポリフッ化ビニリデンを5wt%混合し、分散材としてN−メチル−2−ピロリドンを適量添加し分散することによりスラリー状の負極合材とした。この負極合材を10μm厚の銅箔集電体の両面に塗布し、乾燥させた後、ロールプレスで高密度化し、54mm幅×500mm長の形状に切り出したものを負極シートとした。なお、負極活物質の付着量は、片面あたり4mg/cm2程度とした。上記の正極シートと負極シートを、56mm幅で25μm厚のポリエチレン製セパレータを挟んで捲回しロール状電極体を作製した。この電極体を18650型円筒ケースに挿入し、非水系電解液を含浸させたあと密閉して円筒型リチウムイオン二次電池を作製した。なお、非水系電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で30/70で混合した混合溶媒に電解質としてのLiPF6が1mol/Lとなるように溶解させたものを用いた。 Next, a cylindrical lithium ion secondary battery was produced as follows. First, LiFe 0.8 Mn 0.2 PO 4 obtained earlier was used as the positive electrode active material. 85% by weight of this positive electrode active material, 10% by weight of carbon black as a conductive material, 5% by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersing agent is added and dispersed to form a slurry. The positive electrode composite material was used. This positive electrode mixture was applied to both sides of a 20 μm thick aluminum foil current collector, dried, then densified with a roll press, and cut into a 52 mm wide × 450 mm long shape as a positive electrode sheet. In addition, the adhesion amount of the positive electrode active material was about 7 mg / cm 2 per side. Next, soft carbon (product name GP-5 manufactured by Nippon Carbon Co., Ltd.) was used as the negative electrode active material. A slurry-like negative electrode mixture was prepared by mixing 95% by weight of this negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder, and adding and dispersing an appropriate amount of N-methyl-2-pyrrolidone as a dispersant. The negative electrode mixture was applied to both sides of a 10 μm thick copper foil current collector, dried, then densified with a roll press, and cut into a 54 mm wide × 500 mm long shape as a negative electrode sheet. In addition, the adhesion amount of the negative electrode active material was about 4 mg / cm 2 per side. The positive electrode sheet and the negative electrode sheet were wound by sandwiching a polyethylene separator having a width of 56 mm and a thickness of 25 μm to produce a roll electrode body. This electrode body was inserted into a 18650 type cylindrical case, impregnated with a non-aqueous electrolyte, and then sealed to produce a cylindrical lithium ion secondary battery. In addition, in the non-aqueous electrolyte solution, LiPF 6 as an electrolyte was dissolved in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30/70 so as to be 1 mol / L. A thing was used.

次に、このようにして作製した円筒型リチウムイオン二次電池につき、充放電試験を行った。充放電試験は、20℃の温度条件下で、1Cの電流で充電上限電圧4.1Vまで定電流定電圧充電を行い、次いで0.1Cの電流で放電下限電圧2.5Vまで定電流放電を行い、放電時における電池電圧のSOC依存性を測定した。その結果を図1に示す。図1から明らかなように、SOCが0〜60%の領域(低SOC領域)では、SOCの減少に伴い電池電圧が減少するため、電池電圧に基づいてSOCを推定することが可能となる。また、SOCが75〜85%の領域では、オリビン構造リン酸鉄リチウムの鉄をマンガンに置換したことによる段差(SOCの減少に伴い電池電圧が減少する部分)が生じるため、電池電圧に基づいてSOCを推定することが可能となる。このように、電池電圧に基づいて推定可能なSOCの範囲が0〜60%、75〜85%と広範囲となる。   Next, the cylindrical lithium ion secondary battery produced in this way was subjected to a charge / discharge test. In the charge / discharge test, a constant current and constant voltage charge is performed up to a charging upper limit voltage of 4.1 V with a current of 1 C under a temperature condition of 20 ° C., and then a constant current discharge is performed with a current of 0.1 C to a discharge lower limit voltage of 2.5 V The SOC dependence of the battery voltage during discharge was measured. The result is shown in FIG. As is apparent from FIG. 1, in the SOC range of 0 to 60% (low SOC range), the battery voltage decreases as the SOC decreases, so that it is possible to estimate the SOC based on the battery voltage. Further, in the region where the SOC is 75 to 85%, a step (part where the battery voltage decreases as the SOC decreases) due to the replacement of iron in the olivine lithium iron phosphate with manganese occurs. The SOC can be estimated. Thus, the range of SOC that can be estimated based on the battery voltage is as wide as 0 to 60% and 75 to 85%.

[実施例2]
実施例1のLi:Fe:Mn:PO4がモル比で1:0.95:0.05:1になるように精秤してマンガン置換オリビン構造リン酸鉄リチウム(LiFe0.95Mn0.05PO4)を合成しこれを正極活物質とした以外は、実施例1と同様にして円筒型リチウムイオン二次電池を作製し、充放電試験を行った。その結果を図2に示す。図2から明らかなように、SOCが0〜60%の領域(低SOC領域)では、SOCの減少に伴い電池電圧が減少するため、電池電圧に基づいてSOCを推定することが可能となる。また、SOCが93〜100%の領域では、オリビン構造リン酸鉄リチウムの鉄をマンガンに置換したことによる段差(SOCの減少に伴い電池電圧が減少する部分)が生じるため、電池電圧に基づいてSOCを推定することが可能となる。このように、電池電圧に基づいて推定可能なSOCの範囲が0〜60%、93〜100%と広範囲となる。
[Example 2]
The Li: Fe: Mn: PO 4 of Example 1 was precisely weighed so that the molar ratio was 1: 0.95: 0.05: 1 and manganese-substituted olivine-structured lithium iron phosphate (LiFe 0.95 Mn 0.05 PO 4 ) Was synthesized and this was used as the positive electrode active material, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1, and a charge / discharge test was performed. The result is shown in FIG. As apparent from FIG. 2, in the region where the SOC is 0 to 60% (low SOC region), the battery voltage decreases as the SOC decreases. Therefore, it is possible to estimate the SOC based on the battery voltage. Further, in the region where the SOC is 93 to 100%, a step (a portion where the battery voltage decreases as the SOC decreases) due to the replacement of iron in the lithium iron phosphate of the olivine structure with manganese occurs. The SOC can be estimated. Thus, the range of SOC that can be estimated based on the battery voltage is as wide as 0 to 60% and 93 to 100%.

[実施例3]
実施例1のLi:Fe:Mn:PO4がモル比で1:0.65:0.35:1になるように精秤してマンガン置換オリビン構造リン酸鉄リチウム(LiFe0.65Mn0.35PO4)を合成しこれを正極活物質とした以外は、実施例1と同様にして円筒型リチウムイオン二次電池を作製し、充放電試験を行った。その結果を図3に示す。図3から明らかなように、実施例3では、SOCが0〜60%の領域(低SOC領域)では、SOCの減少に伴い電池電圧が減少するため、電池電圧に基づいてSOCを推定することが可能となる。また、SOCが60〜70%の領域では、オリビン構造リン酸鉄リチウムの鉄をマンガンに置換したことによる段差(SOCの減少に伴い電池電圧が減少する部分)が生じるため、電池電圧に基づいてSOCを推定することが可能となる。このように、電池電圧に基づいて推定可能なSOCの範囲が0〜70%と広範囲となる。なお、実施例1〜3から明らかなように、マンガン置換により生じる段差の位置は、置換するマンガンの量に応じて変化するため、電気自動車のバッテリ制御に要求されるSOCの検出可能範囲に基づいて置換するマンガンの量を決定すればよい。
[Example 3]
The Li: Fe: Mn: PO 4 of Example 1 was precisely weighed so that the molar ratio was 1: 0.65: 0.35: 1, and manganese-substituted olivine structure lithium iron phosphate (LiFe 0.65 Mn 0.35 PO 4 ) Was synthesized and this was used as the positive electrode active material, and a cylindrical lithium ion secondary battery was produced in the same manner as in Example 1, and a charge / discharge test was performed. The result is shown in FIG. As is clear from FIG. 3, in Example 3, in the region where the SOC is 0 to 60% (low SOC region), the battery voltage decreases as the SOC decreases. Therefore, the SOC is estimated based on the battery voltage. Is possible. Moreover, in the region where the SOC is 60 to 70%, a step (a portion where the battery voltage decreases as the SOC decreases) due to the replacement of iron in the lithium iron phosphate of the olivine structure with manganese occurs. The SOC can be estimated. Thus, the range of SOC that can be estimated based on the battery voltage is as wide as 0 to 70%. As apparent from Examples 1 to 3, since the position of the step generated by the manganese replacement changes according to the amount of manganese to be replaced, it is based on the SOC detectable range required for battery control of the electric vehicle. The amount of manganese to be replaced may be determined.

[比較例1]
実施例1の負極活物質に人造黒鉛を用いた以外は、実施例1と同様にして円筒型リチウムイオン二次電池を作製し、充放電試験を行った。その結果を図4に示す。図4から明らかなように、比較例1では、10〜75%の広範囲にわたって電池電圧に基づいてSOCを推定することができない。
[Comparative Example 1]
A cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that artificial graphite was used as the negative electrode active material of Example 1, and a charge / discharge test was performed. The result is shown in FIG. As is clear from FIG. 4, in Comparative Example 1, the SOC cannot be estimated based on the battery voltage over a wide range of 10 to 75%.

[比較例2]
実施例1のLi:Fe:Mn:PO4がモル比で1:1:0:1になるように精秤してオリビン構造リン酸鉄リチウム(LiFePO4)を合成しこれを正極活物質とした以外は、実施例1と同様にして円筒型リチウムイオン二次電池を作製し、充放電試験を行った。その結果を図5に示す。図5から明らかなように、SOCが0〜60%の領域(低SOC領域)では、SOCの減少に伴い電池電圧が減少するため、電池電圧に基づいてSOCを推定することが可能となるが、それよりも高SOC側では電池電圧に基づいてSOCを推定することができない。
[Comparative Example 2]
The olivine-structured lithium iron phosphate (LiFePO 4 ) was synthesized by accurately weighing Li: Fe: Mn: PO 4 in Example 1 so that the molar ratio was 1: 1: 0: 1, and this was used as the positive electrode active material. A cylindrical lithium ion secondary battery was produced in the same manner as in Example 1 except that the charge / discharge test was performed. The result is shown in FIG. As is clear from FIG. 5, in the region where the SOC is 0 to 60% (low SOC region), the battery voltage decreases as the SOC decreases. Therefore, it is possible to estimate the SOC based on the battery voltage. On the higher SOC side, the SOC cannot be estimated based on the battery voltage.

上述した各実施例では金属元素MがFeとMnの2成分系の場合について説明したが、Fe,Ni,Co,Mn及びMgからなる群より選ばれた2種以上であれば、上述した各実施例と同様の効果が得られることは、容易に類推される。   In each of the above-described embodiments, the case where the metal element M is a binary system of Fe and Mn has been described. However, if the metal element M is two or more selected from the group consisting of Fe, Ni, Co, Mn, and Mg, It can be easily inferred that the same effect as the embodiment can be obtained.

実施例1のSOCと電池電圧との関係を表すグラフである。It is a graph showing the relationship between SOC of Example 1, and a battery voltage. 実施例2のSOCと電池電圧との関係を表すグラフである。It is a graph showing the relationship between SOC of Example 2, and battery voltage. 実施例3のSOCと電池電圧との関係を表すグラフである。It is a graph showing the relationship between SOC of Example 3, and battery voltage. 比較例1のSOCと電池電圧との関係を表すグラフである。It is a graph showing the relationship between SOC of Comparative Example 1 and battery voltage. 比較例2のSOCと電池電圧との関係を表すグラフである。It is a graph showing the relationship between SOC of Comparative Example 2 and battery voltage.

Claims (5)

無定形炭素を負極活物質とする負極と、
LiMPO4(Mは、Fe,Ni,Mn,Co及びMgからなる群より選ばれた2種以上の金属元素であり、各金属元素の割合は、組み立てたリチウムイオン二次電池の放電特性において、Mに2種以上の金属元素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域が、前記負極活物質として無定形炭素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域よりも高SOC側になるように設定されている)で表されるオリビン型リチウム化合物を正極活物質とする正極と、
前記負極と前記正極との間でリチウムイオンのやり取りを許容するイオン伝導媒体と、
を備えたリチウムイオン二次電池。
A negative electrode using amorphous carbon as a negative electrode active material;
LiMPO 4 (M is two or more metal elements selected from the group consisting of Fe, Ni, Mn, Co and Mg, and the ratio of each metal element is the discharge characteristics of the assembled lithium ion secondary battery. The region where the battery voltage decreases due to the decrease in SOC due to the effect of employing two or more metal elements in M, the region where the battery voltage decreases due to the decrease in SOC due to the effect of employing amorphous carbon as the negative electrode active material A positive electrode having an olivine-type lithium compound represented by a positive electrode active material as shown in FIG.
An ion conducting medium that allows the exchange of lithium ions between the negative electrode and the positive electrode;
Lithium ion secondary battery equipped with.
前記正極は、LiFexMn1-xPO4(xは、組み立てたリチウムイオン二次電池の放電特性において、FeとMnの2成分系とした影響によりSOCの減少に伴い電池電圧が減少する領域が、前記負極活物質として無定形炭素を採用した影響によりSOCの減少に伴い電池電圧が減少する領域よりも高SOC側になるように設定されている)で表されるオリビン型リチウム化合物を正極活物質とする、
請求項1に記載のリチウムイオン二次電池。
The positive electrode, LiFe x Mn 1-x PO 4 (x is in the discharge characteristics of the lithium ion secondary battery assembled, the battery voltage with a decrease in the SOC by impact of a two-component system of Fe and Mn is reduced area Is set to be on the higher SOC side than the region where the battery voltage decreases due to the decrease in SOC due to the influence of adopting amorphous carbon as the negative electrode active material). Active material,
The lithium ion secondary battery according to claim 1.
前記正極は、LiFexMn1-xPO4(0.65≦x≦0.95)で表されるオリビン型リチウム化合物を正極活物質とする、
請求項1に記載のリチウムイオン二次電池。
The positive electrode, the positive electrode active material an olivine-type lithium compounds represented by LiFe x Mn 1-x PO 4 (0.65 ≦ x ≦ 0.95),
The lithium ion secondary battery according to claim 1.
前記負極は、ソフトカーボンを負極活物質とする、
請求項1〜3のいずれか1項に記載のリチウムイオン二次電池。
The negative electrode uses soft carbon as a negative electrode active material,
The lithium ion secondary battery of any one of Claims 1-3.
請求項1〜4のいずれか1項に記載のリチウムイオン二次電池を直列に接続してなる、
電気自動車用電源。
The lithium ion secondary battery according to any one of claims 1 to 4 is connected in series.
Power source for electric vehicles.
JP2007277526A 2007-10-25 2007-10-25 Lithium ion secondary battery and electric vehicle power source using the same Expired - Fee Related JP5157365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277526A JP5157365B2 (en) 2007-10-25 2007-10-25 Lithium ion secondary battery and electric vehicle power source using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277526A JP5157365B2 (en) 2007-10-25 2007-10-25 Lithium ion secondary battery and electric vehicle power source using the same

Publications (2)

Publication Number Publication Date
JP2009104983A true JP2009104983A (en) 2009-05-14
JP5157365B2 JP5157365B2 (en) 2013-03-06

Family

ID=40706442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277526A Expired - Fee Related JP5157365B2 (en) 2007-10-25 2007-10-25 Lithium ion secondary battery and electric vehicle power source using the same

Country Status (1)

Country Link
JP (1) JP5157365B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113857A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Method of manufacturing electrode active material
JP2012104239A (en) * 2010-11-05 2012-05-31 Toyota Motor Corp Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP2012169093A (en) * 2011-02-11 2012-09-06 Denso Corp Battery pack
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
JP2015526873A (en) * 2012-11-21 2015-09-10 エルジー・ケム・リミテッド Lithium secondary battery
JP2016225306A (en) * 2011-09-09 2016-12-28 株式会社Gsユアサ Charge/discharge system of electric storage device
US9853288B2 (en) 2012-11-21 2017-12-26 Lg Chem, Ltd. Lithium secondary battery
DE112018001790T5 (en) 2017-03-31 2019-12-12 Gs Yuasa International Ltd. DEVICE FOR MANAGING AN ENERGY STORAGE DEVICE AND METHOD FOR MANAGING AN ENERGY STORAGE DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036889A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size
JP2005032714A (en) * 2003-06-16 2005-02-03 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007035354A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007250299A (en) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte solution secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509447A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for the synthesis of redox materials coated with carbon of controlled size
JP2003036889A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2005032714A (en) * 2003-06-16 2005-02-03 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007035354A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007250299A (en) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte solution secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113857A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Method of manufacturing electrode active material
US9109286B2 (en) 2010-06-18 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing power storage device
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
JP2012104239A (en) * 2010-11-05 2012-05-31 Toyota Motor Corp Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP2012169093A (en) * 2011-02-11 2012-09-06 Denso Corp Battery pack
JP2016225306A (en) * 2011-09-09 2016-12-28 株式会社Gsユアサ Charge/discharge system of electric storage device
JP2015526873A (en) * 2012-11-21 2015-09-10 エルジー・ケム・リミテッド Lithium secondary battery
US9660266B2 (en) 2012-11-21 2017-05-23 Lg Chem, Ltd. Lithium secondary battery
US9853288B2 (en) 2012-11-21 2017-12-26 Lg Chem, Ltd. Lithium secondary battery
DE112018001790T5 (en) 2017-03-31 2019-12-12 Gs Yuasa International Ltd. DEVICE FOR MANAGING AN ENERGY STORAGE DEVICE AND METHOD FOR MANAGING AN ENERGY STORAGE DEVICE
US11656282B2 (en) 2017-03-31 2023-05-23 Gs Yuasa International Ltd. Energy storage device management apparatus and energy storage device management method

Also Published As

Publication number Publication date
JP5157365B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
KR101718054B1 (en) Positive active material, and electrode and lithium battery containing the material
JP5157365B2 (en) Lithium ion secondary battery and electric vehicle power source using the same
JP4317571B2 (en) Active material, electrode, battery, and method for producing active material
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
US20090004566A1 (en) Negative Electrode for Non-Aqueous Electrolyte Secondary Batteries, and Non-Aqueous Electrolyte Secondary Battery Having the Same
KR20120129816A (en) Accumulator device and positive electrode
US20150171414A1 (en) Lithium secondary battery and method for producing same
EP2203948A2 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
JP5818115B2 (en) Non-aqueous electrolyte secondary battery and use thereof
JP2013084565A (en) Positive electrode material, lithium ion secondary battery with the same, and method for manufacturing positive electrode material
JP2010129430A (en) Nonaqueous lithium ion secondary battery
KR20120088675A (en) Manganese phosphates and related electrode active materials
CA2777377C (en) Non-aqueous electrolyte lithium ion secondary battery
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2009200043A (en) Battery
KR102586846B1 (en) Lithium secondary battery
JP2008103311A (en) Battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
KR102296854B1 (en) Lithium ion secondary Battery
JP2011121801A (en) METHOD FOR PRODUCING LiFePO4 AND LITHIUM ION SECONDARY BATTERY
JP4103487B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP2006032144A (en) Nonaqueous electrolyte secondary battery
CN109428073B (en) Negative electrode active material particle, method for producing same, negative electrode, and lithium ion secondary battery
JP2010123339A (en) Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery
JP2007157538A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees