JPWO2013046349A1 - Square battery - Google Patents

Square battery Download PDF

Info

Publication number
JPWO2013046349A1
JPWO2013046349A1 JP2013535702A JP2013535702A JPWO2013046349A1 JP WO2013046349 A1 JPWO2013046349 A1 JP WO2013046349A1 JP 2013535702 A JP2013535702 A JP 2013535702A JP 2013535702 A JP2013535702 A JP 2013535702A JP WO2013046349 A1 JPWO2013046349 A1 JP WO2013046349A1
Authority
JP
Japan
Prior art keywords
power generation
element group
generation element
shaft core
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013535702A
Other languages
Japanese (ja)
Other versions
JP5728585B2 (en
Inventor
拓郎 綱木
拓郎 綱木
有島 康夫
康夫 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2013046349A1 publication Critical patent/JPWO2013046349A1/en
Application granted granted Critical
Publication of JP5728585B2 publication Critical patent/JP5728585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本発明は、例えば自動車に用いて振動や衝撃、衝突等により発電要素群6に外力が働いた場合に、発電要素群6の圧壊を防ぎ、短絡等の発生を防止できる角形電池1を提供することを課題としている。本発明の角形電池1は、正極シート11と負極シート12を間にセパレータ13を介して重ねて軸芯14に捲回した扁平状の発電要素群6と、発電要素群6を収容する電池缶2とを有する角形電池において、軸芯14を軸芯14の捲回軸方向両側に延長して発電要素群6よりも捲回軸方向外側に突出する一対の補強部材51を有することを特徴としている。The present invention provides a prismatic battery 1 that can be used for an automobile, for example, when an external force is applied to the power generation element group 6 due to vibration, impact, collision, or the like, to prevent the power generation element group 6 from being crushed and to prevent occurrence of a short circuit or the like. It is an issue. The rectangular battery 1 of the present invention includes a flat power generation element group 6 in which a positive electrode sheet 11 and a negative electrode sheet 12 are overlapped with a separator 13 interposed therebetween and wound around an axis 14, and a battery can that houses the power generation element group 6 2 has a pair of reinforcing members 51 that extend from the power generation element group 6 to the outer side in the winding axis direction by extending the shaft core 14 to both sides in the winding axis direction of the shaft core 14. Yes.

Description

本発明は、角形電池に関する。   The present invention relates to a prismatic battery.

シート状の正極、負極を間にセパレータを介在させて積層し捲回することにより扁平状の発電要素群を作製し、この扁平状の発電要素群を電解液が充填された角形の金属あるいは樹脂製の密閉容器内に納め、発電要素群の両極と接続した外部へと導電させる導電部材を設けたリチウムイオン二次電池が広く知られている。   A flat power generation element group is produced by laminating and winding a sheet-like positive electrode and negative electrode with a separator interposed therebetween, and this flat power generation element group is a rectangular metal or resin filled with an electrolyte. 2. Description of the Related Art Lithium ion secondary batteries provided with a conductive member that is housed in a sealed container made of metal and that conducts electricity to the outside connected to both electrodes of a power generation element group are widely known.

リチウムイオン二次電池は、ノートパソコンや携帯電話のような小型電子装置に主に使用されているが、他種の二次電池に比べて高出力、高容量及び軽量などの特性を有するため、ハイブリット自動車または電気自動車にも使用される。自動車に搭載されるリチウムイオン二次電池は、振動や衝撃の他に、衝突により圧壊させる外力が働くおそれがあることを考慮する必要がある。   Lithium ion secondary batteries are mainly used in small electronic devices such as notebook computers and mobile phones, but because they have characteristics such as high output, high capacity and light weight compared to other types of secondary batteries, It is also used for hybrid cars or electric cars. It is necessary to consider that a lithium ion secondary battery mounted on an automobile may cause an external force to be crushed by a collision in addition to vibration and impact.

特許文献1では、耐衝撃、耐振動に関しては、導電部材と電池缶の間に介在された弾性部材が圧縮されることで発電要素群を電池缶に対して固定する角形電池の構造が示されている。   Patent Document 1 discloses a structure of a prismatic battery that fixes a power generation element group to a battery can by compressing an elastic member interposed between the conductive member and the battery can in terms of impact resistance and vibration resistance. ing.

特開2011-108507号公報JP 2011-108507 A

角形電池は、振動や衝撃、衝突等によって発電要素群に外力が働いた場合に、発電要素群が圧壊して短絡などの不具合を生ずるおそれがある。   In the case of a square battery, when an external force is applied to the power generation element group due to vibration, impact, collision, or the like, the power generation element group may be collapsed and cause a problem such as a short circuit.

本発明は、上記課題に鑑みてなされたものであり、その目的は、角形電池の発電要素群の圧壊を防ぎ、短絡等の発生を防止できる角形電池を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a prismatic battery capable of preventing the power generation element group of the prismatic battery from being crushed and preventing the occurrence of a short circuit or the like.

上記課題を解決する本発明の角形電池は、正極シートと負極シートを間にセパレータを介して重ねて軸芯に捲回した扁平状の発電要素群と、該発電要素群を収容する電池缶とを有する角形電池において、前記軸芯を該軸芯の捲回軸方向両側に延長して前記発電要素群よりも捲回軸方向外側に突出する一対の補強部材を有することを特徴とする。   The prismatic battery of the present invention that solves the above problems includes a flat power generation element group in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween and wound around an axis, and a battery can that houses the power generation element group, The prismatic battery has a pair of reinforcing members that extend on both sides in the winding axis direction of the shaft core and project outward in the winding axis direction from the power generation element group.

本発明によれば、発電要素群の捲回軸方向に外力が働いて電池缶内で発電要素群が捲回軸方向に移動した場合に、補強部材を電池容器の側壁部に当接させて、発電要素群の捲回軸方向端部の変形を防ぐことができる。したがって、発電要素群の変形による短絡等の発生を抑制して、角形電池の強度を向上させることができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, when an external force acts in the winding axis direction of the power generation element group and the power generation element group moves in the winding axis direction in the battery can, the reinforcing member is brought into contact with the side wall portion of the battery container. And the deformation | transformation of the winding-axis direction edge part of an electric power generation element group can be prevented. Therefore, it is possible to suppress the occurrence of a short circuit due to the deformation of the power generation element group and improve the strength of the rectangular battery. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本実施の形態に係わるリチウムイオン二次電池の外観斜視図。1 is an external perspective view of a lithium ion secondary battery according to an embodiment. 図1に示すリチウムイオン二次電池の分解斜視図。The disassembled perspective view of the lithium ion secondary battery shown in FIG. 図1に示すリチウムイオン二次電池の内部構成を説明する縦断面図。The longitudinal cross-sectional view explaining the internal structure of the lithium ion secondary battery shown in FIG. 捲回後の発電要素群を示す斜視図。The perspective view which shows the electric power generation element group after winding. 発電要素群を捲回する前の状態を示す斜視図。The perspective view which shows the state before winding an electric power generation element group. 軸芯の構成を説明する斜視図。The perspective view explaining the structure of an axial center. 軸芯の要部を拡大して一部を断面で示す斜視図。The perspective view which expands the principal part of an axial center and shows one part in a cross section. 図1のA−A線断面斜視図。FIG. 2 is a cross-sectional perspective view taken along line AA in FIG. 1. 補強部材と扁平軸芯との係合部分を示す図。The figure which shows the engaging part of a reinforcement member and a flat shaft core. 補強部材の構成の一例を説明する斜視図。The perspective view explaining an example of the composition of a reinforcing member. 補強部材の構成の一例を説明する斜視図。The perspective view explaining an example of the composition of a reinforcing member. 補強部材の構成の一例を説明する斜視図。The perspective view explaining an example of the composition of a reinforcing member. 補強部材を発電要素群に係合させる方法を説明する図。The figure explaining the method of engaging a reinforcement member with an electric power generation element group. 発電要素群の金属箔積層部を発電要素群の厚さ方向に2つに分けて一対の接続部を形成する工程を説明する断面図。Sectional drawing explaining the process of dividing the metal foil lamination | stacking part of an electric power generation element group into two in the thickness direction of an electric power generation element group, and forming a pair of connection part. 発電要素群の接続部を集電端子に接合する工程を説明する断面図。Sectional drawing explaining the process of joining the connection part of an electric power generation element group to a current collection terminal. 扁平軸芯に補強部材を係合させる工程を説明する断面図。Sectional drawing explaining the process of engaging a reinforcement member with a flat shaft core. 補強部材の他の構成を説明する斜視図。The perspective view explaining the other structure of a reinforcement member. 図11に示す補強部材を用いたリチウムイオン二次電池の内部構成を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the lithium ion secondary battery using the reinforcement member shown in FIG. 図11に示す補強部材と軸芯との係合部分を示す図。The figure which shows the engaging part of the reinforcement member shown in FIG. 11, and an axial center. 補強部材の他の構成を説明する斜視図。The perspective view explaining the other structure of a reinforcement member. 図14に示す補強部材を用いたリチウムイオン二次電池の内部構成を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the lithium ion secondary battery using the reinforcement member shown in FIG. 補強部材の他の構成を説明する斜視図。The perspective view explaining the other structure of a reinforcement member. 図16に示す補強部材を用いたリチウムイオン二次電池の内部構成を示す縦断面図。The longitudinal cross-sectional view which shows the internal structure of the lithium ion secondary battery using the reinforcement member shown in FIG. 図16に示す補強部材を発電要素群に係合させる方法を説明する図。The figure explaining the method of engaging the reinforcement member shown in FIG. 16 with an electric power generation element group.

以下、図面を参照して、本発明の角形電池をハイブリッド車用のリチウムイオン二次電池に適用した実施の形態について説明する。   Hereinafter, an embodiment in which a prismatic battery of the present invention is applied to a lithium ion secondary battery for a hybrid vehicle will be described with reference to the drawings.

リチウムイオン二次電池1は、図1から図3に示すように、外観が略矩形状(角形)を呈しており、角形で有底の金属製(本例ではアルミニウム合金製)電池缶2と、電池缶2の開口部に輪郭が合致する平板状の金属製(本例ではアルミニウム合金製)電池蓋3とを有している。   As shown in FIGS. 1 to 3, the lithium ion secondary battery 1 has a substantially rectangular (rectangular) appearance, and is a rectangular and bottomed metal (in this example, aluminum alloy) battery can 2. The battery lid 2 has a flat metal (in this example, aluminum alloy) battery lid 3 whose contour matches the opening of the battery can 2.

電池缶2は、深絞り加工により形成されており、矩形の底壁部PBと、底壁部PBの一対の長辺から上方に向かって立ち上がり対峙する一対の幅広の面壁部PWと、底壁部PBの一対の短辺から上方に向かって立ち上がり対峙する一つの幅狭の側壁部PNとを有している。   The battery can 2 is formed by deep drawing, and includes a rectangular bottom wall portion PB, a pair of wide surface wall portions PW that rise upward from a pair of long sides of the bottom wall portion PB, and a bottom wall. It has one narrow side wall part PN that rises upward from a pair of short sides of the part PB.

電池蓋3は、その外周輪郭が電池缶2の開口部の内周部にレーザ(ビーム)溶接で接合されており、電池缶2の開口部を封止している。電池蓋3には、電池内圧が上昇したときに予め設定された圧力で開裂し、ガスを外部放出するためのガス排出弁41が設けられている。ガス排出弁41は、電池蓋3と略同一の金属材で構成した薄膜部材であり、レーザ溶接等により電池蓋3に接合されている。また、電池蓋3には、電池缶2の開口部を封止した後に、電池缶2内に電解液を注入するための注液口42が設けられている。この注液口42は、電解液を注入した後に、注液栓43によって封口される。   The battery lid 3 is joined to the inner periphery of the opening of the battery can 2 by laser (beam) welding, and the opening of the battery can 2 is sealed. The battery lid 3 is provided with a gas discharge valve 41 for cleaving at a preset pressure when the battery internal pressure rises and releasing the gas to the outside. The gas discharge valve 41 is a thin film member made of substantially the same metal material as the battery lid 3 and is joined to the battery lid 3 by laser welding or the like. In addition, the battery lid 3 is provided with a liquid injection port 42 for injecting an electrolytic solution into the battery can 2 after sealing the opening of the battery can 2. The liquid injection port 42 is sealed by a liquid injection plug 43 after injecting the electrolytic solution.

リチウムイオン二次電池1の電池缶2と電池蓋3とで構成される内部空間には、扁平状の発電要素群6および電解液等が収納されている。なお、本実施形態のリチウムイオン二次電池1は、電池缶2および電池蓋3が極性を持たない中性である。   A flat power generation element group 6, an electrolyte, and the like are accommodated in an internal space formed by the battery can 2 and the battery lid 3 of the lithium ion secondary battery 1. In addition, the lithium ion secondary battery 1 of this embodiment is neutral in which the battery can 2 and the battery cover 3 do not have polarity.

電池蓋3には、正極端子21と負極端子31が配設されている。正極端子21及び負極端子31は、電池蓋3の長手方向一方側と他方側の互いに離れた位置に配置されている。正極端子21及び負極端子31は、例えば図2に示すように、電池蓋3の外側に配置される外部端子22、32と、電池蓋3の内側から電池缶2内を底壁部PBに向かって延出して発電要素群6に導通接続される集電端子24、34と、電池蓋3を貫通して外部端子22、32と集電端子24、34との間を導通接続させる接続端子23、33と、を有している。   The battery lid 3 is provided with a positive electrode terminal 21 and a negative electrode terminal 31. The positive electrode terminal 21 and the negative electrode terminal 31 are disposed at positions separated from each other on one side and the other side in the longitudinal direction of the battery lid 3. For example, as shown in FIG. 2, the positive electrode terminal 21 and the negative electrode terminal 31 are connected to the external terminals 22 and 32 arranged on the outside of the battery lid 3 and from the inside of the battery lid 3 toward the bottom wall portion PB in the battery can 2. Current collector terminals 24, 34 extending and connected to the power generation element group 6, and connection terminals 23 penetrating the battery lid 3 and electrically connecting the external terminals 22, 32 and the current collector terminals 24, 34. , 33.

正極端子21は、アルミニウム合金で製作され、負極端子31は、銅合金で製作されている。そして、正極端子21及び負極端子31は、電池蓋3との間に絶縁部材20が介在されており、電池蓋3から電気的に絶縁されている。   The positive terminal 21 is made of an aluminum alloy, and the negative terminal 31 is made of a copper alloy. The positive electrode terminal 21 and the negative electrode terminal 31 are electrically insulated from the battery lid 3 with the insulating member 20 interposed between them.

正極端子21及び負極端子31は、電池蓋3に固定されて蓋組立体とされ、正極端子21の集電端子24と負極端子31の集電端子34との間に、発電要素群6がその一方の円弧部から挿入されて、接合等により一体化され、発電要素組立体とされる。そして、発電要素群6の捲回軸方向両端部に、後述する一対の補強部材51、51がそれぞれ装着される。   The positive electrode terminal 21 and the negative electrode terminal 31 are fixed to the battery lid 3 to form a lid assembly. Between the current collecting terminal 24 of the positive electrode terminal 21 and the current collecting terminal 34 of the negative electrode terminal 31, the power generation element group 6 is It is inserted from one arc portion and integrated by joining or the like to form a power generation element assembly. Then, a pair of reinforcing members 51 and 51, which will be described later, are attached to both ends of the power generation element group 6 in the winding axis direction.

正極端子21の集電端子24は、電池蓋3の下面に沿って平行に配置される平板状の基部24A(図3を参照)と、基部24Aの両端部で折曲されて電池蓋3の短辺方向に離間して互いに対向し電池缶2の底壁部PBに向かって延びる一対の集電接続片24B(図2を参照)を備える。一対の集電接続片24Bは、電池缶2の上方からみて略ハの字形状を有しており、電池蓋3の長辺方向中央側に近づくほど接続片同士の間隔が狭くなるように傾斜した形状を有している(例えば、図10Aを参照)。   The current collecting terminal 24 of the positive electrode terminal 21 is bent at both ends of the flat base portion 24 </ b> A (see FIG. 3) and the base portion 24 </ b> A arranged in parallel along the lower surface of the battery lid 3. A pair of current collecting connection pieces 24 </ b> B (see FIG. 2) that are spaced apart in the short side direction and face each other and extend toward the bottom wall portion PB of the battery can 2 are provided. The pair of current collecting connection pieces 24 </ b> B has a substantially C shape when viewed from above the battery can 2, and is inclined so that the distance between the connection pieces becomes narrower toward the center side in the long side direction of the battery lid 3. (See, for example, FIG. 10A).

同様に、負極端子31の集電端子34は、電池蓋3の下面に沿って平行に配置される平板状の基部34A(図3を参照)と、基部34Aの両端部で折曲されて電池蓋3の短辺方向に離間して互いに対向し電池缶2の底壁部PBに向かって延びる一対の集電接続片34B(図2を参照)を備える。一対の集電接続片34Bは、電池缶2の上方からみて略ハの字形状を有しており、電池蓋3の長辺方向中央側に近づくほど接続片同士の間隔が狭くなるように傾斜した形状を有している(例えば、図10Aを参照)。   Similarly, the current collecting terminal 34 of the negative electrode terminal 31 is bent at both ends of the flat base 34A (see FIG. 3) arranged in parallel along the lower surface of the battery lid 3 and the base 34A. A pair of current collecting connection pieces 34 </ b> B (see FIG. 2) that are spaced apart from each other in the short side direction of the lid 3 and face each other and extend toward the bottom wall portion PB of the battery can 2. The pair of current collecting connection pieces 34 </ b> B has a substantially C shape when viewed from above the battery can 2, and is inclined so that the interval between the connection pieces becomes narrower toward the center side in the long side direction of the battery lid 3. (See, for example, FIG. 10A).

正極側の一対の集電接続片24Bは、発電要素群6の正極側の端部で発電要素群6の厚さ方向外側にそれぞれ対向して配置され、一対の集電接続片24Bの各内面が、後述する発電要素群6の正極金属箔積層部11cの外表面と接合される。負極側の一対の集電接続片34Bは、発電要素群6の負極側の端部で発電要素群6の扁平厚さ方向外側にそれぞれ対向して配置され、一対の集電接続片34Bの各内面が、後述する発電要素群6の負極金属箔積層部12cの外表面と接合される。   The pair of current collecting connection pieces 24B on the positive electrode side are arranged to face the outside in the thickness direction of the power generation element group 6 at the end on the positive electrode side of the power generation element group 6, and each inner surface of the pair of current collection connection pieces 24B. Is joined to the outer surface of the positive electrode metal foil laminate portion 11c of the power generation element group 6 to be described later. The pair of current collecting connection pieces 34B on the negative electrode side are arranged to face the outer side in the flat thickness direction of the power generation element group 6 at the end on the negative electrode side of the power generation element group 6, respectively. The inner surface is joined to the outer surface of the negative electrode metal foil laminate 12c of the power generation element group 6 described later.

図4A、図4Bは、発電要素群の構成を説明する図であり、図4Aは、捲回後の発電要素群6の状態を示し、図4Bは、発電要素群を捲回する前の状態を示している。   4A and 4B are diagrams for explaining the configuration of the power generation element group. FIG. 4A shows the state of the power generation element group 6 after winding, and FIG. 4B shows the state before winding the power generation element group. Is shown.

発電要素群6は、図4Bに示すように、正極シート11と負極シート12との間にセパレータ13を介在させて、板状の軸芯14の周りに捲回することによって形成される。発電要素群6は、軸芯14に、セパレータ13のみを捲回したのち、セパレータ13、負極シート12、セパレータ13、正極シート11の順番で重ね合わされて巻回されており、最内周に1又は複数層のセパレータ13が捲回されている。最外周の電極は、負極シート12となっており、全ての正極シート11は、その内周側と外周側をセパレータ13を介して負極シート12に挟まれている。また、発電要素群6の最外周も必要に応じて短絡防止の為にセパレータ13が1又は複数層捲回されており、セパレータ13の捲回終了端は、予め旗面に粘着剤が塗布されたテープ(不図示)で止められている。   As shown in FIG. 4B, the power generation element group 6 is formed by winding around a plate-shaped shaft core 14 with a separator 13 interposed between the positive electrode sheet 11 and the negative electrode sheet 12. The power generation element group 6 is wound around the shaft core 14 by winding only the separator 13, and is then overlapped and wound in the order of the separator 13, the negative electrode sheet 12, the separator 13, and the positive electrode sheet 11. Alternatively, a plurality of separators 13 are wound. The outermost electrode is the negative electrode sheet 12, and all the positive electrode sheets 11 are sandwiched between the inner peripheral side and the outer peripheral side of the negative electrode sheet 12 via the separator 13. In addition, the outermost periphery of the power generation element group 6 is also wound with one or more layers of the separator 13 to prevent a short circuit, and the winding end of the separator 13 is coated with an adhesive in advance on the flag surface. It is stopped with a tape (not shown).

正極シート11は、アルミニウム箔もしくはアルミニウム合金箔からなる帯状の正極金属箔(正極集電体)を有し、負極シート12は、銅箔もしくは銅合金箔からなる帯状の負極金属箔(負極集電体)を有している。また、セパレータ13は、リチウムイオンが通過可能な微多孔性シート材で構成されており、本例では、数十μm厚のポリエチレンシートが用いられている。   The positive electrode sheet 11 has a strip-like positive electrode metal foil (positive electrode current collector) made of an aluminum foil or an aluminum alloy foil, and the negative electrode sheet 12 is a strip-like negative electrode metal foil (negative electrode current collector) made of a copper foil or a copper alloy foil. Body). The separator 13 is made of a microporous sheet material through which lithium ions can pass. In this example, a polyethylene sheet having a thickness of several tens of μm is used.

正極シート11の正極金属箔の両面には、正極活物質として、例えば、マンガン酸リチウム等のリチウム含有遷移金属複酸化物を含む正極活物質合剤が略均等かつ略均一に塗着(塗工)されて正極合剤層(正極合剤塗工部)11bが形成されており、両面とも長手方向に沿う一側に正極活物質合剤が未塗工の正極金属箔が露出した正極金属箔露出部(正極未塗工部)11aが形成されている。   A positive electrode active material mixture containing a lithium-containing transition metal double oxide such as lithium manganate is applied to both surfaces of the positive electrode metal foil of the positive electrode sheet 11 as a positive electrode active material. ) To form a positive electrode mixture layer (positive electrode mixture coating portion) 11b, and both sides of the positive electrode metal foil with the positive electrode active material mixture uncoated with the positive electrode active material mixture exposed on one side along the longitudinal direction. An exposed portion (positive electrode uncoated portion) 11a is formed.

そして、負極シート12の負極金属箔の両面には、負極活物質として、リチウムイオンを吸蔵、放出可能な黒鉛等の炭素材を含む負極活物質合剤が略均等かつ略均一に塗着されて負極合剤層(負極合剤塗工部)12bが形成されており、両面とも長手方向に沿う一側に負極活物質合剤が未塗工の負極金属箔が露出した負極金属箔露出部(負極未塗工部)12aが形成されている。   A negative electrode active material mixture containing a carbon material such as graphite capable of occluding and releasing lithium ions is applied to both surfaces of the negative electrode metal foil of the negative electrode sheet 12 as a negative electrode active material. The negative electrode mixture layer (negative electrode mixture coating part) 12b is formed, and the negative electrode metal foil exposed part (the negative electrode metal foil uncoated with the negative electrode active material mixture is exposed on one side along the longitudinal direction on both sides ( A negative electrode uncoated portion) 12a is formed.

正極シート11と負極シート12は、負極合剤層12bの捲回軸方向長さが、正極合剤層11bの捲回軸方向長さよりも長くなるように形成されている。正極シート11は、正極合剤層11bの捲回軸方向両側端位置が、後述する軸芯14の捲回軸方向中央部14Aと捲回軸方向端部14Bとの境界位置よりも捲回軸方向中央寄り位置に配置されるように軸芯14に捲回される。また、負極シート12は、負極合剤層12bの捲回軸方向両側端位置が、正極合剤層11bの捲回方向両側端位置よりも捲回軸方向外側位置に配置されるように軸芯14に捲回される。   The positive electrode sheet 11 and the negative electrode sheet 12 are formed so that the winding axis direction length of the negative electrode mixture layer 12b is longer than the winding axis direction length of the positive electrode mixture layer 11b. In the positive electrode sheet 11, the winding axis direction both side end positions of the positive electrode mixture layer 11b are winding axes more than the boundary position between the winding axis direction central portion 14A and the winding axis direction end portion 14B of the shaft core 14 described later. It is wound around the shaft core 14 so as to be arranged at a position closer to the center in the direction. Further, the negative electrode sheet 12 has an axial core such that the positions of both ends of the negative electrode mixture layer 12b in the winding axis direction are located at positions outside the winding axis in the winding axis direction than the positions of both ends of the positive electrode mixture layer 11b in the winding direction. 14 is wound.

正極シート11及び負極シート12は、捲回軸方向一方側に正極金属箔露出部11aが配置され、捲回軸方向他方側に負極金属箔露出部12aが配置され、正極合剤層11bと負極合剤層12bとの間にセパレータ13が介在されるように重ねられて軸芯14に捲回される。発電要素群6の捲回軸方向一方側の端部には、正極金属箔露出部11aが捲回されて積み重ねられた正極金属箔積層部11cが形成されており、捲回軸方向他方側の端部には、負極金属箔露出部12aが捲回されて積み重ねられた負極金属箔積層部12cが形成されている。   The positive electrode sheet 11 and the negative electrode sheet 12 have a positive electrode metal foil exposed portion 11a disposed on one side of the winding axis direction, a negative electrode metal foil exposed portion 12a disposed on the other side of the winding axis direction, and the positive electrode mixture layer 11b and the negative electrode The separator 13 is overlapped with the mixture layer 12b so as to be wound around the shaft core 14. A positive electrode metal foil laminated portion 11c in which the positive electrode metal foil exposed portion 11a is wound and stacked is formed at one end of the power generation element group 6 in the winding axis direction. At the end, a negative electrode metal foil laminated portion 12c in which the negative electrode metal foil exposed portion 12a is wound and stacked is formed.

図5A、図5Bは、軸芯14の構成を説明する図であり、図5Aは軸芯14の外観斜視図、図5Bは軸芯14の要部である図5AのB部を拡大して一部を断面で示す斜視図である。なお、説明内容の理解を容易にするために、軸芯14の捲回軸方向をX方向、軸芯14の平面に垂直な方向をZ方向、軸芯14のX方向とZ方向に直交する方向をY方向として説明する。   5A and 5B are diagrams for explaining the configuration of the shaft core 14, FIG. 5A is an external perspective view of the shaft core 14, and FIG. 5B is an enlarged view of a portion B of FIG. 5A, which is a main part of the shaft core 14. It is a perspective view which shows a part in cross section. For easy understanding of the description, the winding axis direction of the shaft core 14 is perpendicular to the X direction, the direction perpendicular to the plane of the shaft core 14 is Z direction, and the X direction of the shaft core 14 is orthogonal to the Z direction. The direction will be described as the Y direction.

軸芯14は、絶縁性の材料より形成され、特に、PP(ポリプロピレン)樹脂、PBT(ポリブチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、PEEK(ポリエーテルエーテルケトン)樹脂の少なくとも一つの樹脂材料を用いて形成されている。   The shaft core 14 is formed of an insulating material, and in particular, at least one resin material of PP (polypropylene) resin, PBT (polybutylene terephthalate) resin, PPS (polyphenylene sulfide) resin, and PEEK (polyether ether ketone) resin. It is formed using.

軸芯14は、発電要素群6の平面形状に対応した矩形状の板状部材であり、X方向の中央位置に設けられて正極シート11の正極合剤層11bと負極シート12の負極合剤層12bが重なり合う部位に対応する中央部14Aと、中央部14AのX方向両側の位置に設けられて正極金属箔露出部11aと負極金属箔露出部12aにそれぞれ対応する端部14B、14Bとを備えている。   The shaft core 14 is a rectangular plate-like member corresponding to the planar shape of the power generation element group 6, and is provided at the center position in the X direction, and the negative electrode mixture of the positive electrode mixture layer 11 b of the positive electrode sheet 11 and the negative electrode sheet 12. A central portion 14A corresponding to a portion where the layer 12b overlaps, and end portions 14B and 14B provided at positions on both sides in the X direction of the central portion 14A and corresponding to the positive electrode metal foil exposed portion 11a and the negative electrode metal foil exposed portion 12a, respectively. I have.

軸芯14は、中央部14Aよりも端部14Bの方が、Y方向の板幅が狭い形状を有しており、例えば、矩形状の板状部材の四隅にテーパー部14bを形成して板幅を狭くしている。軸芯14の中央部14Aは、X方向に沿って延在する一対の平行な外縁部14a,14aを有している。軸芯14の端部14Bは、外縁部14a,14aの板幅V1より狭い板幅V2の側端面14eを有している。   The shaft core 14 has a shape in which the end portion 14B is narrower in the Y direction than the center portion 14A. For example, the shaft portion 14 is formed by forming tapered portions 14b at four corners of a rectangular plate member. The width is narrowed. The central portion 14A of the shaft core 14 has a pair of parallel outer edge portions 14a and 14a extending along the X direction. The end portion 14B of the shaft core 14 has a side end face 14e having a plate width V2 that is narrower than the plate width V1 of the outer edge portions 14a, 14a.

軸芯14は、中央部14Aに正極シート11の正極合剤層11bと負極シート12の負極合剤層12bが配置され、端部14B、14Bに正極金属箔露出部11aと負極金属箔露出部12aが配置され、正極合剤層11bと負極合剤層12bとの間には、セパレータ13が介在されて、軸芯14のX方向一方側の端部14Bに正極金属箔露出部11aが配置され、他方側の端部14Bに負極金属箔露出部12aが配置された状態で捲回される。   The shaft core 14 has a positive electrode mixture layer 11b of the positive electrode sheet 11 and a negative electrode mixture layer 12b of the negative electrode sheet 12 arranged at the center portion 14A, and the positive electrode metal foil exposed portion 11a and the negative electrode metal foil exposed portion at the end portions 14B and 14B. 12a is disposed, and a separator 13 is interposed between the positive electrode mixture layer 11b and the negative electrode mixture layer 12b, and the positive electrode metal foil exposed portion 11a is disposed at the end portion 14B on one side in the X direction of the shaft core 14. The negative electrode metal foil exposed portion 12a is wound on the other end 14B.

軸芯14の端部14Bは、X方向に沿って中央部14Aから離れる方向に移行するにしたがってY方向の板幅が狭くなるように形成されている。すなわち、軸芯14は、矩形状の軸芯14の四隅にテーパー部14bが形成され、軸芯14の板幅が、中央部14Aの板幅よりも狭くなっている。また、軸芯14はテーパー部14bを四隅に形成することにより、中央部14AのX方向に沿う横幅(捲回軸方向長さ)が、正極合剤層11bの横幅(捲回軸方向長さ)より大きく設定されている。そして、中央部14Aの横幅と負極合剤層12bの横幅は一致するように設定されている。この構成により、正極シート11の正極金属箔と負極シート12の負極金属箔との間における充放電時のイオンの移動が効率よく行われる。   The end portion 14B of the shaft core 14 is formed so that the plate width in the Y direction becomes narrower as it moves in the direction away from the central portion 14A along the X direction. That is, the shaft core 14 is formed with tapered portions 14b at the four corners of the rectangular shaft core 14, and the plate width of the shaft core 14 is narrower than the plate width of the central portion 14A. Further, the shaft core 14 is formed with tapered portions 14b at the four corners, so that the lateral width (the length in the winding axis direction) along the X direction of the central portion 14A is the lateral width (the length in the winding axis direction) of the positive electrode mixture layer 11b. ) Is set larger. The lateral width of the central portion 14A and the lateral width of the negative electrode mixture layer 12b are set to match. With this configuration, ions are efficiently moved during charging / discharging between the positive electrode metal foil of the positive electrode sheet 11 and the negative electrode metal foil of the negative electrode sheet 12.

軸芯14のX方向の両端部には、凹部14c、14cが切り欠き形成されている。各凹部14cは、補強部材51の延長部52が挿入される大きさの矩形状を有している。凹部14cのX方向の大きさは、延長部52の高さh(図8Aを参照)と略一致しており、凹部14cのY方向(板幅方向)の大きさは、延長部52の横幅w(図8Aを参照)よりも若干大きく設定されている。そして、凹部14c内で捲回軸方向外側に面する側端面14dには、補強部材51を係合させるためのスリット15(図5Bを参照)が設けられている。   Concave portions 14c and 14c are cut out at both end portions of the shaft core 14 in the X direction. Each recess 14c has a rectangular shape in which the extension 52 of the reinforcing member 51 is inserted. The size of the recess 14c in the X direction is substantially the same as the height h (see FIG. 8A) of the extension 52, and the size of the recess 14c in the Y direction (plate width direction) is the width of the extension 52. It is set slightly larger than w (see FIG. 8A). And the slit 15 (refer FIG. 5B) for engaging the reinforcement member 51 is provided in the side end surface 14d which faces the winding-axis direction outer side within the recessed part 14c.

補強部材51は、発電要素群6の捲回軸方向の強度を補強するものであり、発電要素群6の捲回軸方向両端部にそれぞれ装着される。発電要素群6の捲回軸方向両端部には、正極金属箔積層部11cと負極金属箔積層部12cが設けられており、外力が働くことによって容易に変形しやすい。したがって、これら正極金属箔積層部11cと負極金属箔積層部12cの変形を防ぐために補強部材51が設けられる。   The reinforcing members 51 reinforce the strength of the power generation element group 6 in the winding axis direction, and are attached to both ends of the power generation element group 6 in the winding axis direction. A positive electrode metal foil laminate portion 11c and a negative electrode metal foil laminate portion 12c are provided at both ends in the winding axis direction of the power generation element group 6, and are easily deformed by an external force. Therefore, the reinforcing member 51 is provided in order to prevent deformation of the positive electrode metal foil laminate portion 11c and the negative electrode metal foil laminate portion 12c.

補強部材51は、高強度部材であり、アルミニウム合金及び銅合金やアルミニウム合金に絶縁層を塗布した部材やポリフェニレンスルファイド(PPS)及びポリプロピレン(PP)などが用いられる。一対の補強部材51は、図3に示すように、軸芯14の捲回軸方向の両端部に連続して配置され、軸芯14を捲回軸方向に延長して発電要素群6の端面よりも捲回軸方向外側に突出し、電池缶2の側壁部PNとの間に所定の間隙を有して対向する構成を有している。   The reinforcing member 51 is a high-strength member, and a member obtained by applying an insulating layer to an aluminum alloy, a copper alloy, or an aluminum alloy, polyphenylene sulfide (PPS), polypropylene (PP), or the like is used. As shown in FIG. 3, the pair of reinforcing members 51 are arranged continuously at both ends of the axial core 14 in the winding axis direction, and extend from the axial core 14 in the winding axis direction to end faces of the power generation element group 6. It protrudes further outward in the winding axis direction, and has a configuration that faces the side wall portion PN of the battery can 2 with a predetermined gap.

図6は、図1のA−A線断面を拡大して示す斜視図、図7は、補強部材51と軸芯14との係合部分を示す図、図8A〜図8Cは、補強部材51の構成を説明する図である。   6 is an enlarged perspective view showing a cross section taken along line AA of FIG. 1, FIG. 7 is a diagram showing an engagement portion between the reinforcing member 51 and the shaft core 14, and FIGS. FIG.

補強部材51は、図6及び図7に示すように、軸芯14の側端面14dに一端(当接面52a)が対向して当接し、軸芯14を捲回軸方向に連続して延長し、他端が発電要素群6及び集電接続片24B、34Bよりも捲回軸方向外側に突出する延長部52と、延長部52の他端に連続して延長部52に直交する方向に平面状に拡がり、電池缶2の側壁部PNとの間に所定の間隙を有して対向する対向面部53とを有しており、断面が略T字状を有している。   As shown in FIGS. 6 and 7, the reinforcing member 51 has one end (abutting surface 52 a) facing and abutting on the side end surface 14 d of the shaft core 14, and the shaft core 14 is continuously extended in the winding axis direction. The other end of the extension element 52 protrudes outward in the winding axis direction from the power generation element group 6 and the current collecting connection pieces 24B and 34B, and the other end of the extension part 52 extends in a direction perpendicular to the extension part 52. It extends in a planar shape, and has a facing surface portion 53 that faces the side wall portion PN of the battery can 2 with a predetermined gap, and has a substantially T-shaped cross section.

延長部52は、図8Aに示すように、所定の板厚で外形が凹部14cに収まる大きさの寸法形状を有する略矩形の板形状を有しており、対向面部53は、電池缶2の底壁部PBから開口部の近傍まで一定幅で延在して(図3を参照)、発電要素群6の捲回軸方向一方側の端部に対向する平板形状を有している。   As shown in FIG. 8A, the extension portion 52 has a substantially rectangular plate shape with a predetermined plate thickness and a size that allows the outer shape to be accommodated in the recess 14c. It has a flat plate shape extending from the bottom wall portion PB to the vicinity of the opening portion (see FIG. 3) and facing the end portion on one side of the power generation element group 6 in the winding axis direction.

そして、延長部52の当接面52aには、補強部材51を軸芯14に係合するための係合手段を構成する挿入片54が設けられている。挿入片54は、軸芯14のスリット15に挿入可能な薄板形状を有している。   An insertion piece 54 that constitutes an engagement means for engaging the reinforcing member 51 with the shaft core 14 is provided on the contact surface 52 a of the extension 52. The insertion piece 54 has a thin plate shape that can be inserted into the slit 15 of the shaft core 14.

補強部材51の延長部52と対向面部53との間には、複数の補強リブ55が設けられており、剛性の向上が図られている。補強部材51は、図8Bに示すように、延長部52の形状を断面台形状に形成して更なる剛性の向上を図ってもよい。補強部材51は、図8Aの補強リブ55の構成と、図8Bの断面台形状の構成を比較した場合に、図8Aの方が軽量化を図ることができる一方、図8Bの方が高剛性を得ることができる。また、図8Cに示すように、図8Aの補強リブ55を省略して、更なる軽量化を図った構成としてもよい。   A plurality of reinforcing ribs 55 are provided between the extension portion 52 and the facing surface portion 53 of the reinforcing member 51 to improve the rigidity. As shown in FIG. 8B, the reinforcing member 51 may further improve the rigidity by forming the extension 52 in a trapezoidal cross section. When the configuration of the reinforcing rib 55 in FIG. 8A and the configuration of the trapezoidal cross section in FIG. 8B are compared, the reinforcing member 51 can be reduced in weight in FIG. 8A, while the rigidity in FIG. 8B is higher. Can be obtained. Further, as shown in FIG. 8C, the reinforcing rib 55 of FIG. 8A may be omitted to further reduce the weight.

補強部材51は、発電要素群6の正極金属箔積層部11cと負極金属箔積層部12cが集電端子24、34に接合されて発電要素組立体とされた後に、発電要素群6の捲回軸方向両端部にそれぞれ装着される。そして、補強部材51及び集電端子24、34も含めた発電要素群6の周り全体が絶縁保護シート9で包まれて覆われた状態で電池缶2内に収容される。したがって、補強部材51は、例えば図6に示すように、補強部材51の対向面部53と電池缶2の側壁部PNとの間に絶縁保護シート9が介在される。   The reinforcing member 51 is formed by winding the power generating element group 6 after the positive electrode metal foil laminated portion 11c and the negative electrode metal foil laminated portion 12c of the power generating element group 6 are joined to the current collecting terminals 24 and 34 to form a power generating element assembly. Attached to both ends in the axial direction. Then, the entire power generation element group 6 including the reinforcing member 51 and the current collecting terminals 24 and 34 is housed in the battery can 2 in a state of being covered and covered with the insulating protective sheet 9. Therefore, in the reinforcing member 51, for example, as shown in FIG. 6, the insulating protective sheet 9 is interposed between the facing surface portion 53 of the reinforcing member 51 and the side wall portion PN of the battery can 2.

次に、上記構成を有するリチウムイオン二次電池の製造方法について説明する。   Next, a method for manufacturing a lithium ion secondary battery having the above configuration will be described.

リチウムイオン二次電池1の製造方法では、まず、電池蓋3に正極端子21と負極端子31を取り付けて蓋組立体を作成すると共に、図4に示した発電要素群6を作成する。そして、その蓋組立体と発電要素群6とを一体化して発電要素組立体を作成し、発電要素組立体の発電要素群6に補強部材51を装着する。   In the method of manufacturing the lithium ion secondary battery 1, first, the positive electrode terminal 21 and the negative electrode terminal 31 are attached to the battery lid 3 to create a lid assembly, and the power generation element group 6 shown in FIG. 4 is created. Then, the lid assembly and the power generation element group 6 are integrated to create a power generation element assembly, and the reinforcing member 51 is attached to the power generation element group 6 of the power generation element assembly.

それから、補強部材51及び集電端子24、34も含めた発電要素群6の周り全体を絶縁保護シート9で包み込んで覆い、電池缶2内に挿入する。そして、電池蓋3を電池缶2にレーザ溶接して電池缶2の開口を封止し、その後に、注液口42から電池缶2内に電解液(図示省略)を注入する。電解液注入後、注液口42を注液栓43で封口し、レーザ溶接する。   Then, the entire power generation element group 6 including the reinforcing member 51 and the current collecting terminals 24 and 34 is covered and covered with the insulating protective sheet 9 and inserted into the battery can 2. Then, the battery lid 3 is laser welded to the battery can 2 to seal the opening of the battery can 2, and thereafter, an electrolytic solution (not shown) is injected into the battery can 2 from the liquid inlet 42. After injecting the electrolytic solution, the injection port 42 is sealed with an injection plug 43 and laser welding is performed.

発電要素群6と集電端子24、34を一体化するに先立って、発電要素群6の捲回軸方向一方端部に一対の正極接続部11d、11dを形成しかつ捲回軸方向他方端部に一対の負極接続部12d、12dを形成する。一対の正極接続部11d、11dと一対の負極接続部12d、12dは、図10Aに示すように、発電要素群6の正極金属箔積層部11cと負極金属箔積層部12cを、それぞれ軸芯14から扁平厚さ方向(Z方向)に2つに分けて圧縮し、それぞれ集合させることによって形成される。これにより、発電要素群6の正極金属箔積層部11cと負極金属箔積層部12cはそれぞれ内周側から外側に押し開かれて、断面が略V字型となるように拡げられた形状とされる。   Prior to integrating the power generation element group 6 and the current collecting terminals 24 and 34, a pair of positive electrode connection portions 11d and 11d are formed at one end of the power generation element group 6 in the winding axis direction and the other end in the winding axis direction A pair of negative electrode connecting portions 12d and 12d is formed in the portion. As shown in FIG. 10A, the pair of positive electrode connection portions 11d and 11d and the pair of negative electrode connection portions 12d and 12d are respectively formed by connecting the positive electrode metal foil laminate portion 11c and the negative electrode metal foil laminate portion 12c of the power generation element group 6 to the axial core 14 respectively. Are compressed in two in the flat thickness direction (Z direction) and assembled together. As a result, the positive electrode metal foil laminate portion 11c and the negative electrode metal foil laminate portion 12c of the power generation element group 6 are each pushed open from the inner peripheral side to the outer side, and are expanded to have a substantially V-shaped cross section. The

そして、蓋組立体の下方から発電要素群6を接近させて、一対の正極集電接続片24Bの間に正極金属箔積層部11cを挿入し、かつ、一対の負極集電接続片34Bの間に負極金属箔積層部12cを挿入する。これにより、図10Bに示すように、一対の正極接続部11d、11dの各外表面に、正極集電端子24の一対の正極集電接続片24Bの各内表面が対向配置され、一対の負極接続部12d、12dの各外表面に、負極集電端子34の一対の負極集電接続片34Bの各内表面が対向配置される。   Then, the power generation element group 6 is approached from below the lid assembly, the positive electrode metal foil laminate portion 11c is inserted between the pair of positive electrode current collector connection pieces 24B, and between the pair of negative electrode current collector connection pieces 34B. The negative electrode metal foil laminated portion 12c is inserted into As a result, as shown in FIG. 10B, the inner surfaces of the pair of positive electrode current collector connection pieces 24B of the positive electrode current collector terminal 24 are opposed to the outer surfaces of the pair of positive electrode connection portions 11d and 11d, The inner surfaces of the pair of negative electrode current collector connection pieces 34B of the negative electrode current collector terminal 34 are arranged to face each outer surface of the connection portions 12d and 12d.

そして、外表面と内表面とが互いに対向配置されている正極接続部11dと正極集電接続片24Bに対して、超音波接合の振動子(ホーン)と固定子(アンビル)を図中に太矢印で示す方向から接近させて、振動子と固定子との間に正極接続部11d及び正極集電接続片24Bを挟み込んで超音波接合する。同様に、外表面と内表面とが互いに対向配置されている負極接続部12dと負極集電接続片34Bを、超音波接合の振動子(ホーン)と固定子(アンビル)でそれぞれ挟み込み、超音波接合する。これにより、発電要素群6は、正極集電端子24と負極集電端子34に電気的に接続された状態で支持され、発電要素組立体が形成される。   Then, an ultrasonic bonding vibrator (horn) and stator (anvil) are thickened in the figure for the positive electrode connection part 11d and the positive electrode current collector connection piece 24B, in which the outer surface and the inner surface are opposed to each other. Approaching from the direction indicated by the arrow, the positive electrode connection portion 11d and the positive electrode current collector connection piece 24B are sandwiched between the vibrator and the stator, and ultrasonic bonding is performed. Similarly, the negative electrode connection portion 12d and the negative electrode current collecting connection piece 34B, whose outer surfaces and inner surfaces are arranged to face each other, are sandwiched between an ultrasonic bonding vibrator (horn) and a stator (anvil), respectively, and ultrasonic waves Join. As a result, the power generation element group 6 is supported in a state of being electrically connected to the positive electrode current collector terminal 24 and the negative electrode current collector terminal 34, thereby forming a power generation element assembly.

そして、図10Cに示すように、発電要素群6の捲回軸方向両端部に、一対の補強部材51、51を装着する工程が行われる。補強部材51は、図9に示すように、発電要素群6に対して捲回軸方向外側から接近されて、延長部52が、断面略V字状に拡げられた一対の正極接続部11d、11dの間、及び一対の負極接続部12d、12dの間に挿入される。そして、図7に示すように、延長部52に設けられた挿入片54が、軸芯14のスリット15に挿入されて、延長部52の当接面52aが軸芯14の側端面14dに当接した状態で軸芯14に係合される。   Then, as shown in FIG. 10C, a step of attaching a pair of reinforcing members 51, 51 to both ends of the power generation element group 6 in the winding axis direction is performed. As shown in FIG. 9, the reinforcing member 51 is approached from the outside in the winding axis direction with respect to the power generation element group 6, and a pair of positive electrode connecting portions 11 d in which the extension portion 52 is expanded in a substantially V-shaped cross section. 11d and between the pair of negative electrode connecting portions 12d and 12d. Then, as shown in FIG. 7, the insertion piece 54 provided in the extension portion 52 is inserted into the slit 15 of the shaft core 14, and the contact surface 52 a of the extension portion 52 contacts the side end surface 14 d of the shaft core 14. It is engaged with the shaft core 14 in contact.

以上説明した本実施の形態によるリチウムイオン二次電池1は、次のような作用効果を奏することができる。   The lithium ion secondary battery 1 according to the present embodiment described above can exhibit the following operational effects.

(1)軸芯14の捲回軸方向一方端部と他方端部にそれぞれ装着されて、軸芯を捲回軸方向外側に延長し、発電要素群6の端面よりも突出して電池缶の側壁部PNに対向する補強部材51を有するので、振動や衝撃、あるいは自動車の衝突等によって、リチウムイオン二次電池1に外力が働き、電池缶2に対して発電要素群6が相対的に捲回軸方向に沿った方向に移動した場合に、補強部材51を電池缶2の側壁部PNに当接させることができる。 (1) The shaft core 14 is attached to one end and the other end in the winding axis direction, extends the shaft core outward in the winding axis direction, protrudes from the end face of the power generation element group 6, and the side wall of the battery can Since the reinforcing member 51 is opposed to the part PN, an external force acts on the lithium ion secondary battery 1 due to vibration, impact, automobile collision, or the like, and the power generation element group 6 is wound relative to the battery can 2. When moved in a direction along the axial direction, the reinforcing member 51 can be brought into contact with the side wall portion PN of the battery can 2.

発電要素群6は、電池蓋3から対をなして突出する正極集電接続片24Bと負極集電接続片34Bとの間に支持されているので、リチウムイオン二次電池1に対して発電要素群6の捲回軸方向に沿った方向の外力が作用した場合に、かかる方向に沿って電池缶2内を移動するおそれがある。   Since the power generation element group 6 is supported between the positive electrode current collection connection piece 24B and the negative electrode current collection connection piece 34B that protrude in a pair from the battery lid 3, the power generation element group 6 has a power generation element with respect to the lithium ion secondary battery 1. When an external force in a direction along the winding axis direction of the group 6 is applied, there is a risk of moving in the battery can 2 along the direction.

かかる条件の下、本実施の形態に係わるリチウムイオン二次電池1は、補強部材51が発電要素群6よりも捲回軸方向外側に突出して電池缶2の側壁部PNに対向しているので、発電要素群6が上記した方向に相対的に移動した場合に、補強部材51を電池缶2の側壁部PNに当接させることができる。そして、当接により補強部材51に加えられたエネルギーは、補強部材51から軸芯14に伝達されて吸収される。したがって、発電要素群6の捲回軸方向外側の端部が、電池缶2の側壁部PNに接触して変形あるいは圧壊されるのを防ぐことができ、短絡等が発生するのを抑制できる。   Under such conditions, in the lithium ion secondary battery 1 according to the present embodiment, the reinforcing member 51 protrudes outward in the winding axis direction from the power generation element group 6 and faces the side wall portion PN of the battery can 2. When the power generation element group 6 moves relatively in the above-described direction, the reinforcing member 51 can be brought into contact with the side wall portion PN of the battery can 2. The energy applied to the reinforcing member 51 by the contact is transmitted from the reinforcing member 51 to the shaft core 14 and absorbed. Therefore, it is possible to prevent the end of the power generation element group 6 on the outer side in the winding axis direction from coming into contact with the side wall PN of the battery can 2 to be deformed or crushed, and to suppress occurrence of a short circuit or the like.

(2)リチウムイオン二次電池1に対して、発電要素群6の捲回軸方向に沿った方向の外力が働いて、電池缶2を長辺方向に収縮させる方向に変形させた場合には、電池缶2の一方の側壁部PNに対して一方の補強部材51を当接させると共に、電池缶2の他方の側壁部PNに対して他方の補強部材51を当接させることができる。したがって、軸芯14及びその捲回軸方向両端部に支持された一対の補強部材51を、一対の側壁部PN、PNの間に亘って介在させて、一対の側壁部PN、PNの間を支持し、一対の側壁部PN、PNがそれ以上互いに接近する方向に移動するのを防ぐことができる。したがって、発電要素群6の捲回軸方向外側の端部が、電池缶2の側壁部PNに接触して変形あるいは圧壊されるのを防ぐことができ、短絡等が発生するのを抑制できる。 (2) When the external force in the direction along the winding axis direction of the power generation element group 6 acts on the lithium ion secondary battery 1 and the battery can 2 is deformed in the direction of contracting in the long side direction. The one reinforcing member 51 can be brought into contact with the one side wall PN of the battery can 2, and the other reinforcing member 51 can be brought into contact with the other side wall PN of the battery can 2. Therefore, the pair of reinforcing members 51 supported by the shaft core 14 and both ends of the winding axis direction are interposed between the pair of side wall portions PN and PN, and the space between the pair of side wall portions PN and PN is interposed. It is possible to support and prevent the pair of side wall parts PN and PN from moving further toward each other. Therefore, it is possible to prevent the end of the power generation element group 6 on the outer side in the winding axis direction from coming into contact with the side wall PN of the battery can 2 to be deformed or crushed, and to suppress occurrence of a short circuit or the like.

(3)補強部材51の対向面部53は、延長部52の基端に連続して延長部52に直交する方向に平面状に拡がり、電池缶2の側壁部PNとの間に所定の間隙を有して対向配置されている。そして、発電要素群6の捲回軸方向外側の端部に沿って電池缶2の底壁部PBから開口部の近傍まで一定幅で延在している。 (3) The facing surface portion 53 of the reinforcing member 51 extends in a planar shape in a direction orthogonal to the extension portion 52 continuously from the base end of the extension portion 52, and a predetermined gap is formed between the side wall portion PN of the battery can 2. And are arranged opposite to each other. The power generation element group 6 extends with a constant width from the bottom wall portion PB of the battery can 2 to the vicinity of the opening along the outer end in the winding axis direction.

したがって、補強部材51は、軸芯14の捲回軸方向に直交する方向の断面積よりも広い面積で電池缶2の側壁部PNに対向することができる。したがって、例えば、電池缶2を長手方向に圧壊させる方向に外力が作用して、電池缶2の一方の側壁部PNの一部が電池缶2の内部側に向かって変形した場合に、対向面部53を確実に当接させて側壁部PNを保持することができる。したがって、発電要素群6の捲回軸方向外側の端部が、電池缶2の側壁部PNに接触して変形あるいは圧壊されるのを防ぐことができ、短絡等が発生するのを抑制できる。   Therefore, the reinforcing member 51 can be opposed to the side wall portion PN of the battery can 2 with an area larger than the cross-sectional area in the direction orthogonal to the winding axis direction of the shaft core 14. Therefore, for example, when an external force acts in a direction in which the battery can 2 is crushed in the longitudinal direction and a part of one side wall PN of the battery can 2 is deformed toward the inside of the battery can 2, The side wall portion PN can be held by reliably abutting 53. Therefore, it is possible to prevent the end of the power generation element group 6 on the outer side in the winding axis direction from coming into contact with the side wall PN of the battery can 2 to be deformed or crushed, and to suppress occurrence of a short circuit or the like.

(4)本実施の形態におけるリチウムイオン二次電池1は、発電要素群6の捲回軸方向外側の端部に一対の接続部11d、12dを形成して、かかる一対の接続部11d、12dに集電端子の集電接続片24B、34Bを超音波接合することによって、蓋組立体に発電要素群6を支持させる構成を有している。したがって、超音波接合工程においては、発電要素群6の捲回軸方向外側の端部に超音波接合用の振動子と固定子を挿入するスペースが必要である。したがって、例えば、軸芯14と補強部材51を一体に形成するなど、発電要素群6を蓋組立体に取り付ける前から補強部材51を設けておくことはできない。補強部材51は、発電要素群6の接続部11d、12dを集電端子の集電接続片24B、34Bに超音波接合した後に、発電要素群6に装着するものであり、外力が作用した場合に、発電要素群6の捲回軸方向外側の端部が、電池缶2の側壁部PNに接触して変形あるいは圧壊されるのを防ぐことができる。 (4) The lithium ion secondary battery 1 according to the present embodiment is formed with a pair of connection portions 11d and 12d at the outer end in the winding axis direction of the power generation element group 6, and the pair of connection portions 11d and 12d. The power collecting element group 6 is supported by the lid assembly by ultrasonically bonding the current collecting connection pieces 24B and 34B of the current collecting terminal to each other. Therefore, in the ultrasonic bonding process, a space for inserting the ultrasonic bonding transducer and the stator at the outer end of the power generation element group 6 in the winding axis direction is necessary. Therefore, for example, the reinforcing member 51 cannot be provided before the power generating element group 6 is attached to the lid assembly, for example, the shaft core 14 and the reinforcing member 51 are integrally formed. The reinforcing member 51 is attached to the power generation element group 6 after ultrasonically joining the connection portions 11d and 12d of the power generation element group 6 to the current collector connection pieces 24B and 34B of the current collecting terminals, and when an external force is applied. In addition, it is possible to prevent the end of the power generation element group 6 on the outer side in the winding axis direction from being deformed or crushed by contacting the side wall PN of the battery can 2.

上述の実施の形態では、軸芯14の端面に形成されたスリット15に補強部材51の挿入片54を挿入することによって軸芯14に補強部材51を係合する構造について説明したが、係合する構造は、上記した構成に限定されるものではなく、他の構成であってもよい。以下に、他の構成について図11〜図18を用いて説明する。なお、上述の実施の形態と同様の構成要素には同一の符号を付することでその詳細な説明を省略する。   In the above-described embodiment, the structure in which the reinforcing member 51 is engaged with the shaft core 14 by inserting the insertion piece 54 of the reinforcing member 51 into the slit 15 formed on the end surface of the shaft core 14 has been described. The structure to be performed is not limited to the above-described configuration, and may be another configuration. Other configurations will be described below with reference to FIGS. Note that the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図11〜図13は、補強部材51を軸芯14に係合させる他の構造を説明する図であり、図11は、補強部材の斜視図、図12は、図11の補強部材を用いたリチウムイオン二次電池の縦断面図、図13は、図12のC−C線断面図である。   11-13 is a figure explaining the other structure which engages the reinforcement member 51 with the axial core 14, FIG. 11 is a perspective view of a reinforcement member, FIG. 12 used the reinforcement member of FIG. FIG. 13 is a longitudinal sectional view of the lithium ion secondary battery, and FIG. 13 is a sectional view taken along the line CC of FIG.

本実施例では、係合手段としてスリット56を補強部材51に設け、挿入片16を軸芯14に設けている。スリット56は、補強部材51の延長部52の当接面52aに開口して形成されており、所定深さで延長部52の横幅方向に沿って延在する凹溝形状を有している。挿入片16は、軸芯14の側端面14dから所定幅を有して所定長さだけ突出する薄板形状を有しており、その大きさは、スリット56に嵌入可能な寸法に設定されている。   In this embodiment, the slit 56 is provided in the reinforcing member 51 as the engaging means, and the insertion piece 16 is provided in the shaft core 14. The slit 56 is formed to open in the contact surface 52a of the extension portion 52 of the reinforcing member 51, and has a concave groove shape extending along the lateral width direction of the extension portion 52 at a predetermined depth. The insertion piece 16 has a thin plate shape having a predetermined width and protruding from the side end surface 14 d of the shaft core 14 by a predetermined length, and the size thereof is set to a dimension that can be fitted into the slit 56. .

上記構成を有する補強部材51の発電要素群6への取り付けは、補強部材51を発電要素群6の捲回軸方向外側から接近させて、延長部52を、断面略V字状に拡げられた一対の正極接続部11d、11dの間、及び一対の負極接続部12d、12dの間に挿入する。そして、延長部52の先端に設けられたスリット56に、軸芯14の挿入片16を挿入させて、延長部52の当接面52aが軸芯14の端面に当接した状態で軸芯14に係合させる。   The reinforcing member 51 having the above-described configuration is attached to the power generation element group 6 by causing the reinforcement member 51 to approach from the outside in the winding axis direction of the power generation element group 6 and the extension portion 52 is expanded in a substantially V-shaped cross section. It inserts between a pair of positive electrode connection parts 11d and 11d and between a pair of negative electrode connection parts 12d and 12d. Then, the insertion piece 16 of the shaft core 14 is inserted into the slit 56 provided at the tip of the extension portion 52, and the shaft core 14 is in a state where the contact surface 52 a of the extension portion 52 is in contact with the end surface of the shaft core 14. Engage with.

上記構成によれば、軸芯14の挿入片16を補強部材51のスリット56に挿入することによって、補強部材51を軸芯14に係合させることができ、補強部材51を発電要素6に容易に取り付けることができる。また、スリット56に挿入片16を挿入して係合しているので、補強部材51に対して捲回軸方向外側から捲回軸方向に沿って外力が働いた場合に、補強部材51の当接面52aと軸芯14の側端面14dとを互いに当接させた状態に保持することができ、補強部材51に入力された衝撃エネルギーを軸芯14に確実に伝達して分散させることができる。   According to the above configuration, the reinforcing member 51 can be engaged with the shaft core 14 by inserting the insertion piece 16 of the shaft core 14 into the slit 56 of the reinforcing member 51, and the reinforcing member 51 can be easily attached to the power generation element 6. Can be attached to. Further, since the insertion piece 16 is inserted and engaged with the slit 56, when an external force is applied to the reinforcing member 51 from the outside in the winding axis direction along the winding axis direction, the contact of the reinforcing member 51 is prevented. The contact surface 52a and the side end surface 14d of the shaft core 14 can be held in contact with each other, and the impact energy input to the reinforcing member 51 can be reliably transmitted to the shaft core 14 and dispersed. .

図14、図15は、補強部材51の保持構造のさらに他の実施例を説明する図であり、図14は、補強部材の斜視図、図15は、図14の補強部材を用いたリチウムイオン二次電池の縦断面図である。   14 and 15 are diagrams for explaining still another embodiment of the holding structure of the reinforcing member 51, FIG. 14 is a perspective view of the reinforcing member, and FIG. 15 is a lithium ion using the reinforcing member of FIG. It is a longitudinal cross-sectional view of a secondary battery.

本実施例では、係合手段として補強部材51に係止爪57を設け、軸芯14に係止爪57が係止される係止穴17を設けている。係止爪57は、補強部材51の延長部52の当接面52aから突出しており、補強部材51の長さ方向に所定距離だけ離間して対をなして設けられている。係止穴17は、軸芯14の側端面14dに凹設されており、挿入された係止爪57を係止する穴形状を有している。   In this embodiment, the engaging claw 57 is provided in the reinforcing member 51 as the engaging means, and the engaging hole 17 in which the engaging claw 57 is engaged is provided in the shaft core 14. The locking claws 57 protrude from the contact surface 52 a of the extension 52 of the reinforcing member 51, and are provided in pairs with a predetermined distance apart in the length direction of the reinforcing member 51. The locking hole 17 is recessed in the side end surface 14 d of the shaft core 14 and has a hole shape for locking the inserted locking claw 57.

上記構成によれば、補強部材51を発電要素群6の捲回軸方向外側から接近させて、軸芯14の係止穴17に補強部材51の係止爪57を挿入して係止させることができる。したがって、補強部材51を軸芯14に確実に係合させることができ、例えば組み立て作業中に補強部材51が外れるのを防ぐことができる。   According to the above configuration, the reinforcing member 51 is approached from the outside in the winding axis direction of the power generation element group 6, and the locking claw 57 of the reinforcing member 51 is inserted and locked in the locking hole 17 of the shaft core 14. Can do. Therefore, the reinforcing member 51 can be reliably engaged with the shaft core 14, and for example, the reinforcing member 51 can be prevented from coming off during the assembly operation.

図16〜図18は、補強部材51の取り付け構造の更に他の実施例を説明する図であり、図16は、補強部材の斜視図、図17は、図16の補強部材を用いたリチウムイオン二次電池の縦断面図、図18は、補強部材の装着方法を説明する斜視図である。   16 to 18 are views for explaining still another embodiment of the mounting structure of the reinforcing member 51, FIG. 16 is a perspective view of the reinforcing member, and FIG. 17 is a lithium ion using the reinforcing member of FIG. FIG. 18 is a perspective view for explaining a mounting method of the reinforcing member.

本実施例では、係合手段として軸芯14の側端面14eに突起部18を設け、補強部材51の対向面部53に嵌合穴58を設けている。突起部18は、軸芯14の側端面14eであって、凹部14cよりもY方向外側に離間した位置に対をなして設けられている。突起部18は、発電要素群6の端面よりも捲回軸方向外側に向かって突出する円柱形状を有している。   In the present embodiment, the protrusion 18 is provided on the side end surface 14 e of the shaft core 14 as the engaging means, and the fitting hole 58 is provided in the facing surface portion 53 of the reinforcing member 51. The protrusions 18 are provided as a pair on the side end face 14e of the shaft core 14 and at a position separated outward in the Y direction from the recess 14c. The protrusion 18 has a cylindrical shape that protrudes outward from the end face of the power generation element group 6 in the winding axis direction.

嵌合穴58は、補強部材51の対向面部53に貫通して設けられており、延長部52よりも横幅方向外側であって突起部18と対向する位置に開口している。嵌合穴58は、突起部14を嵌入可能な丸穴形状を有している。   The fitting hole 58 is provided so as to penetrate through the facing surface portion 53 of the reinforcing member 51, and is open at a position on the outer side in the lateral width direction from the extension portion 52 and facing the protruding portion 18. The fitting hole 58 has a round hole shape into which the protruding portion 14 can be fitted.

上記構成によれば、補強部材51は、発電要素群6の捲回軸方向外側から接近させて、軸芯14の突起部18を補強部材51の嵌合穴58に嵌入させることによって係合させることができる。したがって、補強部材51を軸芯14に確実に係合させることができ、例えば組み立て作業中に補強部材51が外れるのを防ぐことができる。特に、本実施例によれば、係合状態を視認することができ、作業性の向上を図ることができる。   According to the above configuration, the reinforcing member 51 is brought into engagement from the outer side in the winding axis direction of the power generation element group 6 and the projecting portion 18 of the shaft core 14 is fitted into the fitting hole 58 of the reinforcing member 51. be able to. Therefore, the reinforcing member 51 can be reliably engaged with the shaft core 14, and for example, the reinforcing member 51 can be prevented from coming off during the assembly operation. In particular, according to the present embodiment, the engaged state can be visually recognized, and the workability can be improved.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 角形電池
2 電池缶
6 発電要素群
11 正極シート
11c 正極金属箔積層部
11d 正極接続部
12 負極シート
12c 負極金属箔積層部
12d 負極接続部
13 セパレータ
14 軸芯
14d、14e 側端面
15 スリット(係合手段)
51 補強部材
52 延長部
53 対向面部
54 挿入片(係合手段)
PN 側壁部
DESCRIPTION OF SYMBOLS 1 Square battery 2 Battery can 6 Power generation element group 11 Positive electrode sheet 11c Positive electrode metal foil lamination | stacking part 11d Positive electrode connection part 12 Negative electrode sheet 12c Negative electrode metal foil lamination | stacking part 12d Negative electrode connection part 13 Separator 14 Axle core 14d, 14e Side end surface 15 Slit Combined means)
51 Reinforcing member 52 Extension part 53 Opposing surface part 54 Insertion piece (engagement means)
PN side wall

Claims (10)

正極シートと負極シートを間にセパレータを介して重ねて軸芯に捲回した扁平状の発電要素群と、該発電要素群を収容する電池缶とを有する角形電池において、
前記軸芯を該軸芯の捲回軸方向両側に延長して前記発電要素群よりも捲回軸方向外側に突出する一対の補強部材を有することを特徴とする角形電池。
In a prismatic battery having a flat power generation element group in which a positive electrode sheet and a negative electrode sheet are stacked with a separator interposed therebetween and wound around an axis, and a battery can accommodating the power generation element group,
A prismatic battery comprising: a pair of reinforcing members extending from the power generation element group to the outside in the winding axis direction by extending the shaft core to both sides in the winding axis direction of the shaft core.
前記補強部材は、
前記軸芯の側端面に一端が当接し、他端が発電要素群よりも捲回軸方向外側に突出する延長部と、
該延長部の他端に連続して該延長部に直交する方向に平面状に拡がり、前記電池缶の側壁部に対向する対向面部と、を有することを特徴とする請求項1の角形電池。
The reinforcing member is
One end abuts on the side end surface of the shaft core, and the other end protrudes outward in the winding axis direction from the power generation element group, and
The rectangular battery according to claim 1, further comprising: an opposing surface portion that extends in a planar shape in a direction orthogonal to the extension portion continuously to the other end of the extension portion and faces the side wall portion of the battery can.
前記発電要素群は、捲回軸方向一方端部に形成された正極シートの正極金属箔積層部を前記軸芯から扁平厚さ方向に2つに分けてそれぞれ集合させた一対の正極接続部と、捲回軸方向他方側に形成された負極シートの負極金属箔積層部を前記軸芯から扁平厚さ方向に2つに分けてそれぞれ集合させた一対の負極接続部とを有し、
前記補強部材は、前記一対の正極接続部の間に前記延長部が挿入され、前記一対の正極接続部よりも捲回軸方向外側に前記対向面部が対向配置されていることを特徴とする請求項2に記載の角形電池。
The power generation element group includes a pair of positive electrode connection portions obtained by dividing the positive electrode metal foil laminated portion of the positive electrode sheet formed at one end portion in the winding axis direction into two in the flat thickness direction from the shaft core, respectively. A pair of negative electrode connecting portions each of which is formed by dividing the negative electrode metal foil laminated portion of the negative electrode sheet formed on the other side of the winding axis direction into two in the flat thickness direction from the axial core,
The reinforcing member is characterized in that the extension portion is inserted between the pair of positive electrode connection portions, and the facing surface portion is disposed opposite to the winding shaft direction outer side than the pair of positive electrode connection portions. Item 3. The prismatic battery according to Item 2.
前記補強部材を前記軸芯に係合する係合手段を有することを特徴とする請求項1から請求項3のいずれか一項に記載の角形電池。   The prismatic battery according to any one of claims 1 to 3, further comprising engagement means for engaging the reinforcing member with the shaft core. 前記係合手段は、前記軸芯の側端面に形成されたスリットと、前記補強部材の前記延長部から突出して前記スリットに挿入可能な挿入片とを有することを特徴とする請求項4に記載の角形電池。   The said engaging means has the slit formed in the side end surface of the said shaft core, and the insertion piece which protrudes from the said extension part of the said reinforcement member, and can be inserted in the said slit. Square battery. 前記係合手段は、前記軸芯の側端面から突出して形成された挿入片と、前記補強部材の前記延長部に凹設されて前記挿入片を挿入可能なスリットとを有することを特徴とする請求項4に記載の角形電池。   The engaging means includes an insertion piece formed to protrude from a side end surface of the shaft core, and a slit that is recessed in the extension portion of the reinforcing member and into which the insertion piece can be inserted. The prismatic battery according to claim 4. 前記係合手段は、前記軸芯の側端面に凹設された係止穴と、前記補強部材の前記延長部から突出して前記係止穴に係止可能な係止爪とを有することを特徴とする請求項4に記載の角形電池。   The engaging means includes a locking hole recessed in a side end surface of the shaft core, and a locking claw that protrudes from the extension portion of the reinforcing member and can be locked in the locking hole. The prismatic battery according to claim 4. 前記係合手段は、前記軸芯の側端面に突設された突起部と、前記補強部材の前記対向面部に凹設されて前記突起部を嵌合可能な嵌合穴とを有することを特徴とする請求項4に記載の角形電池。   The engaging means includes a protruding portion protruding from a side end surface of the shaft core, and a fitting hole recessed in the facing surface portion of the reinforcing member and capable of fitting the protruding portion. The prismatic battery according to claim 4. 前記補強部材は、前記延長部と前記対向面部との間に補強リブが設けられていることを特徴とする請求項2に記載の角形電池。   The prismatic battery according to claim 2, wherein the reinforcing member is provided with a reinforcing rib between the extension portion and the facing surface portion. 前記補強部材は、前記延長部が前記対向面部に接近する方向に移行するにしたがって漸次拡がる断面略台形形状を有することを特徴とする請求項2に記載の角形電池。   The prismatic battery according to claim 2, wherein the reinforcing member has a substantially trapezoidal cross section that gradually expands as the extension portion moves in a direction approaching the facing surface portion.
JP2013535702A 2011-09-28 2011-09-28 Square battery Expired - Fee Related JP5728585B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072151 WO2013046349A1 (en) 2011-09-28 2011-09-28 Prismatic cell

Publications (2)

Publication Number Publication Date
JPWO2013046349A1 true JPWO2013046349A1 (en) 2015-03-26
JP5728585B2 JP5728585B2 (en) 2015-06-03

Family

ID=47994461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013535702A Expired - Fee Related JP5728585B2 (en) 2011-09-28 2011-09-28 Square battery

Country Status (2)

Country Link
JP (1) JP5728585B2 (en)
WO (1) WO2013046349A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320714A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode
JPH1064588A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JP2011071052A (en) * 2009-09-28 2011-04-07 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2011086483A (en) * 2009-10-15 2011-04-28 Honda Motor Co Ltd Laminated secondary battery
WO2011111661A1 (en) * 2010-03-12 2011-09-15 株式会社Gsユアサ Battery
JP2011192476A (en) * 2010-03-12 2011-09-29 Hitachi Vehicle Energy Ltd Lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552152B2 (en) * 1998-07-21 2004-08-11 株式会社デンソー Flat wound electrode battery
JP2000164195A (en) * 1998-11-24 2000-06-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4058898B2 (en) * 2000-11-21 2008-03-12 新神戸電機株式会社 Winding battery
JP2004303500A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Square battery
JP5211086B2 (en) * 2010-02-08 2013-06-12 日立ビークルエナジー株式会社 Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320714A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode
JPH1064588A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Cylindrical lithium secondary battery
JP2011071052A (en) * 2009-09-28 2011-04-07 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2011086483A (en) * 2009-10-15 2011-04-28 Honda Motor Co Ltd Laminated secondary battery
WO2011111661A1 (en) * 2010-03-12 2011-09-15 株式会社Gsユアサ Battery
JP2011192476A (en) * 2010-03-12 2011-09-29 Hitachi Vehicle Energy Ltd Lithium ion secondary battery

Also Published As

Publication number Publication date
WO2013046349A1 (en) 2013-04-04
JP5728585B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
US11316235B2 (en) Prismatic secondary battery, assembled battery using the same and method of producing the same
US10305084B2 (en) Prismatic secondary battery and assembled battery using the same
JP5252937B2 (en) Stacked battery and method for manufacturing the same
WO2015045632A1 (en) Assembled cell
JP6599129B2 (en) Rectangular secondary battery, assembled battery using the same, and manufacturing method thereof
EP3312904A1 (en) Battery cell having venting structure using taping
US10916760B2 (en) Secondary battery and method of manufacturing same
JP2014157722A (en) Battery pack
JP2019204799A (en) Square secondary battery and battery pack using the same
WO2015097770A1 (en) Rectangular secondary battery
JP2017068968A (en) Square secondary battery
JP2012009317A (en) Lithium-ion secondary battery and battery pack
CN114447535A (en) Battery and method for manufacturing same
JP2016162755A (en) Rechargeable battery having cover
JP5975854B2 (en) Prismatic secondary battery
JP6641842B2 (en) Prismatic rechargeable battery
JP5728590B2 (en) Square battery
JP5514618B2 (en) Secondary battery
WO2021200738A1 (en) Electrical storage module
JP2013251123A (en) Square secondary battery
JP5728585B2 (en) Square battery
JP2015095433A (en) Laminate pack battery
US11990628B2 (en) Secondary battery
JP2019057444A (en) Power storage element
WO2020196095A1 (en) Power storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5728585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees