JP2011066728A - 固体撮像装置、その駆動方法および固体撮像素子の駆動装置 - Google Patents

固体撮像装置、その駆動方法および固体撮像素子の駆動装置 Download PDF

Info

Publication number
JP2011066728A
JP2011066728A JP2009216341A JP2009216341A JP2011066728A JP 2011066728 A JP2011066728 A JP 2011066728A JP 2009216341 A JP2009216341 A JP 2009216341A JP 2009216341 A JP2009216341 A JP 2009216341A JP 2011066728 A JP2011066728 A JP 2011066728A
Authority
JP
Japan
Prior art keywords
reference current
sample
signal
current amount
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009216341A
Other languages
English (en)
Inventor
Haruhisa Naganokawa
晴久 永野川
Shizutoku Matsumoto
静徳 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009216341A priority Critical patent/JP2011066728A/ja
Publication of JP2011066728A publication Critical patent/JP2011066728A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】画素回路に接続された垂直信号線に供給される電流の電流量不足を軽減する。
【解決手段】基準電流生成部500は、基準電流量を順次大きくすることによって、複数の基準電流を生成する。標本回路410は、基準電流生成部500から順次基準電流量を大きくするたびに、各列の垂直信号線601に標本信号を出力する。読出し回路700は、標本回路410から垂直信号線601に出力された標本信号を読み出すことによって、標本信号出力を算出する。基準電流制御部830は、読出し回路700により基準電流量ごとに算出された標本信号出力の大きさに基づいて、標本信号出力が一定となる基準電流量のうち最小の基準電流量を選択する。読出し電流源部600は、基準電流制御部830により選択された基準電流量により基準電流生成部500から出力される基準電流に応じた負荷電流を垂直信号線601に供給する。
【選択図】図1

Description

本発明は、固体撮像装置に関し、特にMOS型固体撮像装置、その駆動方法、および、MOS型固体撮像素子の駆動装置に関する。
従来、固体撮像装置として、MOS(Metal-Oxide Semiconductor:金属酸化膜半導体)型固体撮像装置が知られている。このMOS型固体撮像装置では、光変換素子から発生された電荷によって生じる電位を増幅トランジスタにより増幅して、その増幅された画素信号を読み出す。このとき、画素回路に接続された垂直信号線には、画素回路から画素信号を出力させるための負荷電流が供給される。例えば、負荷電流量の基準となる基準電流として定電流源から定電流を出力することによって、画素回路における増幅トランジスタにより増幅された信号を読み出す固体撮像装置が提案されている。(例えば、特許文献1参照。)。
特開2004−165825号公報(図1)
上述の従来技術では、定電流源である基準電流生成部から垂直信号線に定電流を供給することによって、画素回路における増幅トランジスタにより増幅された画素信号を読み出すことができる。しかしながら、基準電流生成部を構成する基準抵抗などの内部素子の生成におけるプロセスばらつきによって、基準電流生成部により基準電流として生成される定電流の電流量が不足する場合がある。このような場合、読み出された画素信号の大きさには列ごとに固有の誤差が生じるため、固体撮像装置により取得される撮像画像に縦筋状の固定パターンノイズが現われてしまい、撮像画像の画質が劣化することがある。
本発明はこのような状況に鑑みてなされたものであり、画素回路に接続された垂直信号線に供給される電流の電流量不足を軽減することを目的とする。
本発明は、上記課題を解決するためになされたものであり、その第1の側面は、光電変換を行うことによって画素信号を生成する複数の画素回路と、上記画素回路から前記画素信号を出力させるための負荷電流が供給される垂直信号線と、第1の標本電位から第2の標本電位に設定された信号を増幅して標本信号として出力する標本信号出力部と、上記標本信号出力部から出力される標本信号を読み出すための複数の基準電流を生成する基準電流生成部と、上記基準電流生成部により生成された上記基準電流の基準電流量に応じた上記標本信号を読み出す読出し回路と、上記読出し回路により上記基準電流量ごとに読み出された上記標本信号の大きさに基づいて上記複数の基準電流量のうち1つの基準電流量を選択して上記選択された基準電流量の基準電流を上記基準電流生成部に生成させるように制御する基準電流制御部と、上記基準電流制御部の制御により上記基準電流生成部から生成された上記基準電流に応じた上記負荷電流を上記垂直信号線に供給する負荷トランジスタとを具備する固体撮像装置およびその駆動方法である。これにより、読出し回路により、基準電流量ごとに読み出された標本信号の大きさに基づいて、複数の基準電流量のうち1つの基準電流量を選択して、その選択された基準電流量により基準電流生成部から基準電流を出力させるという作用をもたらす。
また、この第1の側面において、上記基準電流生成部は、上記複数の基準電流を順次生成し、上記基準電流制御部は、上記読出し回路により読み出された上記標本信号の大きさと過去に読み出された上記標本信号の大きさとの信号差分に基づいて上記1つの基準電流量を選択するようにしてもよい。これにより、基準電流制御部により、基準電流量が変化するたびに、読出し回路において読み出された標本信号の大きさと、過去に読み出された標本信号の大きさとの信号差分に基づいて、最適な基準電流量を選択させるという作用をもたらす。この場合において、上記基準電流制御部は、一定の信号差分閾値を超える上記信号差分に対応する上記基準電流量のうち最小の基準電流量を上記1つの基準電流量として選択するようにしてもよい。これにより、基準電流制御部により、信号差分閾値を超える信号差分に対応する基準電流量のうち、最小の基準電流量を、最適な基準電流量として選択させるという作用をもたらす。この場合において、上記基準電流生成部は、上記基準電流量を順次大きくすることによって上記複数の基準電流を順次生成し、上記基準電流制御部は、上記読出し回路により読み出された上記標本信号の大きさと直前に読み出された上記標本信号の大きさとの上記信号差分が上記信号差分閾値を超えた場合には上記信号差分閾値を超えた信号差分に対応する基準電流量を上記1つの基準電流量として選択するようにしてもよい。これにより、基準電流制御部により、基準電流量を順次大きくするたびに算出される信号差分が信号差分閾値を超えた場合には、その信号差分に対応する基準電流量を、最適な基準電流量として選択させるという作用をもたらす。
また、この第1の側面において、上記標本信号出力部は、上記第1の標本電位から上記第2の標本電位に設定された信号を増幅して標本信号を出力する複数の標本回路を備え、上記基準電流制御部は、上記読出し回路により上記基準電流量ごとに上記複数の標本回路から読み出された上記標本信号の大きさの度数分布における偏り度合いに基づいて上記1つの基準電流量を選択するようにしてもよい。これにより、基準電流制御部により、読出し回路において複数の標本回路から基準電流量ごとに読み出された標本信号の大きさの度数分布における偏り度合いに基づいて、最適な基準電流量を選択させるという作用をもたらす。この場合において、上記基準電流制御部は、上記度数分布における最大および最小の上記標本信号の分布差分に基づいて上記1つの基準電流量を選択するようにしてもよい。これにより、基準電流制御部により、複数の標本回路から読み出された複数の標本信号のうち、各基準電流量における最大および最小の標本信号の分布差分に基づいて、最適な基準電流量を選択させるという作用をもたらす。この場合において、上記基準電流制御部は、上記基準電流量ごとの上記分布差分における所定の分布閾値を超える上記分布差分に対応する上記基準電流量のうち最小の基準電流量を上記1つの基準電流量として選択するようにしてもよい。これにより、基準電流制御部により、分布閾値を超える分布差分に対応する基準電流量のうち、最小の基準電流量を、最適な基準電流量として選択させるという作用をもたらす。この場合において、上記基準電流生成部は、上記基準電流量を順次大きくすることによって上記複数の基準電流を順次生成し、上記基準電流制御部は、上記分布差分が上記分布閾値を超えた場合には上記分布閾値を超えた上記分布差分に対応する基準電流量を上記1つの基準電流量として選択するようにしてもよい。これにより、基準電流制御部により、基準電流量を順次大きくするたびに算出される分布差分が分布閾値を超えた場合には、その分布差分に対応する基準電流量を、最適な基準電流量として選択させるという作用をもたらす。この場合において、上記基準電流制御部は、上記読出し回路により読み出された上記標本信号および直前に読み出された上記標本信号の大きさの信号差分における一定の信号差分閾値を超えた上記信号差分に対応する上記基準電流量と上記分布閾値を超えた上記度数分布に対応する上記基準電流量とのうち大きい方を上記1つの基準電流量として選択するようにしてもよい。これにより、上記基準電流制御部により、一定の信号差分閾値を超えた信号差分に対応する基準電流量と、分布閾値を超えた度数分布に対応する基準電流量とのうち、大きい方を、最適な基準電流量として選択させるという作用をもたらす。
また、上記標本信号出力部は、上記第1の標本電位から上記第2の標本電位に設定された信号を増幅して標本信号を出力する複数の標本回路を備え、上記基準電流制御部は、上記読出し回路により上記基準電流量ごとに上記複数の標本回路から読み出された上記標本信号の大きさの度数分布における偏り度合いに基づいて上記1つの基準電流量を選択する場合において、上記基準電流制御部は、上記基準電流量ごとの上記度数分布における最大値に基づいて上記1つの基準電流量を選択するようにしてもよい。これにより、基準電流制御部により、基準電流量ごとの度数分布における最大値が一定の度数閾値を超える度数分布に対応する基準電流量を、最適な基準電流量として選択させるという作用をもたらす。
また、本発明の第2の側面は、第1の標本電位から第2の標本電位に設定される設定信号を生成する標本電位設定部と、前記標本電位設定部により生成される設定信号を増幅して標本信号として出力する標本信号出力部と、前記標本信号出力部から出力される標本信号を読み出すための複数の基準電流を生成する基準電流生成部と、前記基準電流生成部により生成された前記基準電流の基準電流量に応じた前記標本信号を読み出す読出し回路と、前記読出し回路により前記基準電流量ごとに読み出された前記標本信号の大きさに基づいて前記複数の基準電流量のうち1つの基準電流量を選択して前記選択された基準電流量の基準電流を前記基準電流生成部に生成させるように制御する基準電流制御部と、前記基準電流制御部の制御により前記基準電流生成部から前記基準電流を生成させることによって固体撮像素子から画素信号を出力させるための負荷電流を垂直信号線に供給する負荷トランジスタとを具備する固体撮像素子の駆動装置である。これにより、読出し回路において標本信号出力部から基準電流量ごとに読み出された標本信号の大きさに基づいて最適な基準電流量を選択して、その選択された基準電流量に応じた負荷電流を垂直信号線に供給させるという作用をもたらす。
本発明によれば、画素回路に接続された垂直信号線に供給される電流の電流量不足を軽減することができるという優れた効果を奏し得る。
、本発明の第1の実施の形態における固体撮像装置の一構成例を示すブロック図である。 本発明の第1の実施の形態における基準電流生成部500の一構成例を示すブロック図である。 本発明の第1の実施の形態における標本回路410および画素回路420の一構成例を示す回路図である。 本発明の第1の実施の形態における固体撮像装置100により最適な基準電流量に調整される例を示すタイミングチャートである。 本発明の第1の実施の形態における標本回路410から垂直信号線(VSL)に出力される標本信号の応答特性を例示する図である。 基準電流量と標本信号出力との関係を例示する概念図である。 本発明の第1の実施の形態における基準電流制御部830による最適な基準流量の判定手法例を示す図である。 本発明の第1の実施の形態における固体撮像装置100の駆動方法を例示するフローチャートである。 本発明の第2の実施の形態における基準電流制御部830による標本信号出力の度数分布に基づく最適な基準流量の判定手法例を示す概念図である。
以下、本発明を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(基準電流最適化制御:標本信号出力の差分により基準電流量を設定する例)
2.第2の実施の形態(基準電流最適化制御:複数の標本信号出力の度数分布の偏り度合いにより基準電流量を設定する例)
<1.第1の実施の形態>
[固体撮像装置の構成例]
図1は、本発明の第1の実施の形態における固体撮像装置の一構成例を示すブロック図である。
固体撮像装置100は、タイミング制御部200と、垂直駆動回路300と、画素アレイ部400と、基準電流生成部500と、読出し電流源部600と、読出し回路700と、参照電圧生成部720と、水平駆動回路730とを備える。また、読出し回路700は、画素回路420の列単位により複数のカラムAD変換回路710を備える。このカラムAD変換回路710は、電圧比較器711と、アップダウンカウンタ(U/D CNT)712と、スイッチ713と、メモリ714とを備える。これらに加えて、固体撮像装置100は、出力アンプ810と、信号処理部820と、基準電流制御部830とを備える。
この固体撮像装置100における画素アレイ部400は、n×k個の2次元マトリックス状に配列された標本回路410と、n×(m−k)個の2次元マトリックス状に配列された画素回路420とを備える。なお、k、nおよびmは2以上の整数である。ここでは、便宜上、第0行目における標本回路410と、第k行目および第m−1行目における画素回路420とが示されている。
また、この画素アレイ部400には、標本回路410および画素回路420の列単位により第0乃至第n−1列の垂直信号線(VSL:Vertical Signal Line)601が配線されている。この垂直信号線(VSL0乃至n−1)601は、読出し電流源部600および読出し回路700に接続されている。ここでは、便宜上、第0列目、第1列目および第n−1列目の垂直信号線(VSL0、1およびn−1)601が示されている。
さらに、画素アレイ部400には、行単位により第0乃至第k−1行の標本選択線(Ss:Sample Select line)308および標本電位線(Sv:Sample Voltage line)309が配線されている。この標本選択線(Ss0乃至k−1)308および標本電位線(Sv0乃至k−1)は、それぞれ垂直駆動回路300に接続されている。ここでは、便宜上、第0行目の標本選択線(Ss0)308と、第0行目および第k−1行目の標本電位線(Sv0およびSvk−1)309とが示されている。
また、画素アレイ部400には、行単位により第k乃至第m−1行の水平線(H:Horizontal line)301が配線されており、垂直駆動回路300に接続されている。ここでは、第k行目および第m−1行目の水平線(HkおよびHm−1)301が示されている。
タイミング制御部200は、垂直駆動回路300、基準電流生成部500、読出し回路700および参照電圧生成部720に対して、画像信号を生成するためのタイミングを制御するものである。このタイミング制御部200は、画素アレイ部400における画素回路420から行単位により出力される信号を列方向に順次読み出すことによって、画像信号を生成するためのタイミングを制御する。すなわち、このタイミング制御部200は、列並列読み出し方式により、画像信号を生成するためのタイミングを制御する。
このタイミング制御部200は、クロック端子101からのマスタークロック信号に同期して、各部に必要なタイミング信号およびクロック信号を生成する。このタイミング制御部200は、垂直駆動回路300のタイミングを制御するための垂直駆動制御信号を生成する。このタイミング制御部200は、垂直制御線201を介して、その生成された垂直駆動制御信号を垂直駆動回路300に供給する。
また、タイミング制御部200は、基準電流生成部500により生成される基準電流の基準電流量を最適な電流量に調整するために、基準電流量を順次切り替えるための電流量切替信号を生成する。このタイミング制御部200は、例えば、固体撮像装置100の初期設定時、電源起動時またはスタンバイ解除時の直後において、電流量切替信号を生成する。このタイミング制御部200は、例えば、基準電流生成部500から出力される基準電流の基準電流量を順次大きくするように電流量切替信号を生成する。また、タイミング制御部200は、電流制御線202を介して、その生成された電流量切替信号を基準電流生成部500に供給する。
さらに、このタイミング制御部200は、基準電流制御部830からの最適な基準電流量を示す電流量設定情報に基づいて、基準電流生成部500から最適な基準電流量の基準電流が出力されるように電流量設定信号を生成する。また、タイミング制御部200は、電流制御線202を介して、その生成された電流量設定信号を基準電流生成部500に供給する。
また、タイミング制御部200は、標本回路410または画素回路420から出力されたアナログ信号の大きさが電圧比較器711により時間の長さに変換されるため、その時間の長さをカウント値に換算するためのカウントクロック信号を生成する。このタイミング制御部200は、カウント線204を介して、その生成されたカウントクロック信号を、アップダウンカウンタ712および参照電圧生成部720に供給する。
また、タイミング制御部200は、参照電圧生成部720から出力される参照電圧波形を生成するための信号を、信号線203を介して参照電圧生成部720に供給する。また、タイミング制御部200は、アップダウンカウンタ712から供給されるカウント値をメモリ714に出力するための切替制御信号を生成する。このタイミング制御部200は、切替制御線205を介して、その生成された切替制御信号をスイッチ713に供給する。
また、タイミング制御部200は、水平駆動回路730のタイミングを制御するための水平駆動制御信号を生成する。このタイミング制御部200は、水平制御線206を介して、その生成された水平駆動制御信号を水平駆動回路730に供給する。
垂直駆動回路300は、タイミング制御部200からの垂直駆動制御信号に従って、標本回路410または画素回路420により生成される信号を垂直信号線(VSL)601に出力させるための行走査信号を行単位により順次生成するものである。この垂直駆動回路300は、基準電流量を調整する調整期間において、各行の標本選択線(Ss0乃至k−1)308を介して、行単位により標本回路410を選択する選択パルスを供給する。また、垂直駆動回路300は、各行の標本電位線(Sv0乃至k−1)309を介して、その選択パルスが供給された標本回路410に標本信号を生成させるための標本パルスを供給する。
この垂直駆動回路300は、例えば、基準電流量の調整期間において、標本回路410に選択パルスおよび標本パルスを行単位により順次供給する。この例では、垂直駆動回路300は、調整期間において、第0行目における標本回路410から標本信号を出力させた後、基準電流量の切替えとともに、第1行目における標本回路410から標本信号を出力させるように選択パルスおよび標本パルスを生成する。
また、垂直駆動回路300は、調整期間後の画像信号生成期間において、垂直駆動制御信号に基づいて、各行の水平線(Hk乃至Hm−1)301を介して画素回路420に行走査信号を順次供給する。この垂直駆動回路300は、例えば、シフトレジスタにより構成される。なお、垂直駆動回路300は、特許請求の範囲に記載の標本電位設定部の一例である。
標本回路410は、基準電流生成部500により生成される基準電流の基準電流量に応じた標本信号を出力する回路である。すなわち、この標本回路410は、垂直信号線(VSL)601に供給される基準電流の電流量が充分であるか否かを判定するための参照信号として、標本信号を垂直信号線(VSL)601に出力する。
画素回路420は、光電変換を行うことによって、画素信号を生成する固体撮像素子である。すなわち、この画素回路420は、入射光である光信号を電気信号に変換して、その変換された電気信号を増幅する。この画素回路420は、例えば、浮遊拡散層(FD:Floating-Diffusion)を有するFDアンプにより電気信号を増幅する。
この画素回路420は、水平線(H)301から供給される行走査信号に基づいて、画素回路420におけるノイズ成分を除去するための基準信号を垂直信号線(VSL)601に出力する。また、画素回路420は、光電変換された電気信号を増幅して画素信号として垂直信号線(VSL)601に出力する。なお、画素回路420は、特許請求の範囲に記載の画素回路および固体撮像素子の一例である。
基準電流生成部500は、標本回路410から出力される標本信号を読み出すための複数の基準電流を生成するものである。この基準電流生成部500は、電流制御線202を介して、タイミング制御部200から供給される電流量切替信号に従って、基準電流量を順次変化させる。この基準電流生成部500は、例えば、基準電流量の調整期間において、標本回路410から出力される標本信号を行単位により読み出すたびに、基準電流量を順次大きくする。すなわち、この基準電流生成部500は、基準電流量の調整期間において、水平走査期間(1H)間隔により、基準電流量を順次大きくするように基準電流を順次生成する。
また、基準電流生成部500は、基準電流制御部830からの電流量設定情報により生成された電流量設定信号に基づいて、最適な基準電流量により基準電流を生成する。また、基準電流生成部500は、その生成された基準電流を基準電流線611に供給する。なお、基準電流生成部500は、特許請求の範囲に記載の基準電流生成部の一例である。
読出し電流源部600は、基準電流生成部500により生成された基準電流に応じた負荷電流を各列の垂直信号線(VSL0乃至n−1)601に供給するものである。すなわち、この読出し電流源部600は、標本回路410または画素回路420から出力される信号を読み出すために、各列の垂直信号線(VSL0乃至n−1)601に一定の負荷電流を供給する。この読出し電流源部600は、1個の基準トランジスタ610と、n個の負荷トランジスタ620とを備える。
基準トランジスタ610は、基準電流生成部500により生成された基準電流(バイアス電流)に基づいて、負荷トランジスタ620のゲート電圧を設定するトランジスタである。この基準トランジスタ610は、各列の負荷トランジスタ620とカレントミラー回路を構成する。すなわち、この基準トランジスタ610は、負荷トランジスタ620から一定の負荷電流を各列の垂直信号線(VSL0乃至n−1)601に供給させるための役割を果たす。
負荷トランジスタ620は、標本回路410または画素回路420から信号を出力させるための負荷電流を、各列の垂直信号線(VSL0乃至n−1)601に供給するトランジスタである。この負荷トランジスタ620は、例えば、画素回路420から画素信号を出力させるために負荷電流を垂直信号線(VSL0乃至n−1)601に供給する。この負荷トランジスタ620は、基準トランジスタ610とカレントミラー回路を構成するため、基準電流生成部500により生成される基準電流と略等しい負荷電流を各列の垂直信号線(VSL0乃至n−1)601に供給する。すなわち、この負荷トランジスタ620は、基準電流生成部500から生成された基準電流に応じた負荷電流を垂直信号線(VSL0乃至n−1)601に供給する。なお、負荷トランジスタ620は、特許請求の範囲に記載の負荷トランジスタの一例である。
読出し回路700は、列単位のカラムAD変換回路710により各列の垂直信号線(VSL0乃至n−1)601に出力された信号を読み出すための回路である。この読出し回路700は、基準電流生成部500により生成された基準電流の基準電流量に応じた標本信号を読み出す。なお、読出し回路700は、特許請求の範囲に記載の読出し回路の一例である。
カラムAD変換回路710は、標本回路410または画素回路420から垂直信号線(VSL)601に出力されたアナログ信号をデジタル信号にAD(Analog to Digital)変換する回路である。このカラムAD変換回路710は、その変換されたデジタル信号を用いて、相関二重サンプリング(CDS:Correlated Double Sampling)処理により信号出力を算出する。
このカラムAD変換回路710は、例えば、画素回路420から出力される基準信号および画素信号の信号レベルをそれぞれAD変換して、これらの変換されたデジタル信号に基づいて、ノイズ成分が除去された画素信号を画素信号出力として算出する。また、カラムAD変換回路710は、例えば、標本回路410から出力された標本信号の信号レベルをAD変換して、標本信号出力として算出する。すなわち、カラムAD変換回路710は、標本回路410から出力された標本信号を読み出して、その読み出された標本信号の大きさを標本信号出力として出力する。
電圧比較器711は、垂直信号線(VSL)601に出力された信号の大きさを時間の長さに変換するものである。この電圧比較器711は、参照電圧線721を介して参照電圧生成部720から供給される参照電位と、垂直信号線(VSL)601に出力された信号の電位とを比較するものである。この電圧比較器711は、その比較結果をアップダウンカウンタ712に供給する。
アップダウンカウンタ712は、電圧比較器711による比較結果に基づいて、カウント線204から供給されるカウントクロック信号に同期して、カウント値を増減させるカウンタである。このアップダウンカウンタ712は、例えば、画素回路420から出力される基準信号を読み出す期間において、参照電圧線721からの参照電位が垂直信号線(VSL)601の電位以上の場合には、カウントクロック信号に同期してカウント値を減算する。
また、アップダウンカウンタ712は、画素回路420から出力される画素信号を読み出す期間において、参照電圧線721からの参照電位が垂直信号線(VSL)601の電位以上の場合には、カウントクロック信号に同期してカウント値を加算する。また、アップダウンカウンタ712は、その算出されたカウント値を、スイッチ713を介してメモリ714に出力する。
スイッチ713は、切替制御線205から供給される切替制御信号に従って、アップダウンカウンタ712から出力されたカウント値をメモリ714に供給する切替器である。このスイッチ713は、切替制御線205からの切替制御信号に従って、アップダウンカウンタ712とメモリ714との間を接続する。
メモリ714は、アップダウンカウンタ712からのカウント値を保持するものである。このメモリ714は、水平駆動回路730からの出力制御信号に従って、その保持されたカウント値であるデジタル信号を、水平信号線(HSL:Horizontal Signal Line)709を介して出力アンプ810に出力する。
参照電圧生成部720は、垂直信号線(VSL)601に出力されたアナログ信号をデジタル信号に変換するための参照電圧を生成するものである。この参照電圧生成部720は、例えば、時間が経過するとともに参照電位が階段状に変化する、いわゆるランプ波形を参照電圧として生成する。また、参照電圧生成部720は、参照電圧線721を介して、その生成された参照電圧を各列の電圧比較器711に供給する。
水平駆動回路730は、タイミング制御部200からの水平駆動制御信号に従って、各列のメモリ714に保持されたデジタル信号を、出力アンプ810を介して信号処理部820に出力するように制御する回路である。すなわち、この水平駆動回路730は、読出し回路700において行単位により読み出された信号出力を出力アンプ810に出力させる。この水平駆動回路730は、例えば、シフトレジスタにより構成される。
信号処理部820は、出力アンプ810から出力された画素信号出力に基づいて、画像信号を生成するものである。この信号処理部820は、その生成された画像信号を出力端子109に出力する。また、信号処理部820は、読出し回路700からの各基準電流量の標本信号出力を基準電流制御部830に供給する。
基準電流制御部830は、基準電流量の調整期間において、信号処理部820から供給される基準電流量ごとの標本信号出力に基づいて、基準電流を最適な電流量に設定するために、基準電流生成部500を制御するものである。すなわち、この基準電流制御部830は、基準電流量ごとに読み出された標本信号の大きさに基づいて、複数の基準電流量のうち1つの基準電流量を選択して、その選択された基準電流量が基準電流生成部500から生成されるように制御する。この基準電流生成部830は、互いに異なる基準電流量における標本信号の大きさの信号差分に基づいて最適な基準電流量を判定する。
この基準電流制御部830は、例えば、複数の基準電流量が順次生成される場合において、読出し回路700により読み出された標本信号の大きさと、過去に読み出された標本信号の大きさとの信号差分に基づいて、1つの基準電流量を選択する。この例において、基準電流制御部830は、基準電流量が順次大きくなるたびに信号差分を算出して、その算出された信号差分が一定の信号差分閾値Dthを超えるか否かを判断する。そして、この基準電流制御部830は、その算出された信号差分が信号差分閾値Dthを超えた場合には、その信号差分に対応する基準電流量のうち、最小の基準電流量を、最適な基準電流量として選択する。
また、基準電流制御部830は、その選択された基準電流量の大きさを示す電流量設定情報をタイミング制御部200に供給する。なお、基準電流制御部830は、特許請求の範囲に記載の基準電流制御部の一例である。
このように、標本回路410を設けることによって、読出し回路700において基準電流量に応じた標本信号出力を算出することができる。また、基準電流制御部830を設けることによって、基準電流生成部500から順次出力される基準電流の電流量ごとの標本信号出力に基づいて、基準電流生成部500により生成される基準電流を最適な電流量に設定することができる。次に、基準電流生成部500の構成例について以下に図面を参照して簡単に説明する。
[基準電流生成部500の構成例]
図2は、本発明の第1の実施の形態における基準電流生成部500の一構成例を示すブロック図である。
基準電流生成部500は、基準電圧生成部510およびVI変換部520を備える。VI変換部520は、増幅器521と、n型トランジスタ522と、基準抵抗523と、p型トランジスタ524および525とを備える。
基準電圧生成部510は、基準電流を発生させるための基準電圧を生成する回路である。この基準電圧生成部510は、例えば、バンドギャップリファレンス回路または電源電圧を抵抗分圧する分圧回路により実現される。また、基準電圧生成部510は、その生成された電位を増幅器521に供給する。
増幅器521は、基準電圧生成部510により生成された基準電圧を増幅する増幅器である。この増幅器521は、その増幅された基準電圧をn型トランジスタ522のゲート端子に印加する。
n型トランジスタ522は、増幅器521からそのゲート端子に印加された電圧に応じて、電流を生成するものである。このn型トランジスタ522は、そのドレイン端子が、p型トランジスタ524および525のゲート端子と、p型トランジスタドレイン端子とに接続され、そのソース端子が基準抵抗523の一端および増幅器521の反転端子に接続される。
基準抵抗523は、電流制御線202を介してタイミング制御部200から供給される電流量切替信号に基づいて、抵抗値を切り替える可変抵抗器である。この基準抵抗523は、基準電流線611に供給する基準電流の電流量の大きさを変化させる役割を果たす。この基準抵抗523は、例えば、電流量切替信号が供給されるたびに抵抗値を順次小さくする。
また、基準抵抗523は、電流制御線202を介してタイミング制御部200から供給される電流量設定信号に基づいて、最適な抵抗値に設定する。この基準抵抗523は、例えば、電流量切替信号により抵抗値を順次小さくする場合において、電流制御線202からの電流量設定信号が供給されたときは、直前に設定された抵抗値を、最適な抵抗値として設定する。
p型トランジスタ524および525は、p型トランジスタ524から出力される基準電流(Ibase1)と略等しい基準電流(Ibase2)をp型トランジスタ525から基準電流線611に供給するカレントミラー回路である。
このように、基準抵抗523を可変抵抗器にすることによって、p型トランジスタ524を流れる基準電流(Ibase1)の電流量を変化させることができるため、p型トランジスタ525から出力される基準電流(Ibase2)を変化させることができる。
なお、ここでは、基準抵抗523を可変抵抗器にすることによって基準電流生成部500により生成される基準電流の電流量を変化させる例について説明したが、p型トランジスタ524および525のカレントミラー回路のミラー比を変化させるようにしてもよい。次に、標本回路410および画素回路420の構成例について以下に図面を参照して説明する。
[標本回路410および画素回路420の構成例]
図3は、本発明の第1の実施の形態における標本回路410および画素回路420の一構成例を示す回路図である。ここでは一例として、第n−1列目における第k−1行目の標本回路410および第k行目の画素回路420を示す。
標本回路410は、増幅トランジスタ414および選択トランジスタ415を備える。また、標本回路410には、増幅トランジスタ414を駆動させるための電源電位が供給される電源電位線416が示されている。なお、標本回路410は、特許請求の範囲に記載の標本信号出力部および標本回路の一例である。
この標本回路410の構成において、増幅トランジスタ414は、そのゲート端子が標本電位線(Svk−1)309に接続され、そのドレイン端子が電源電位線416に接続され、そのソース端子が選択トランジスタ415のドレイン端子に接続される。また、選択トランジスタ415は、そのゲート端子が標本選択線(Ssk−1)308に接続され、そのソース端子が垂直信号線(VSLn−1)601に接続される。
増幅トランジスタ414は、標本電位線(Svk−1)309から供給される標本電位を増幅して、その増幅された標本電位を、標本信号として垂直信号線(VSLn−1)601に出力する電界効果トランジスタである。
選択トランジスタ415は、標本選択線(Ssk−1)308から供給される選択パルスに従って、増幅トランジスタ414により増幅された標本信号を垂直信号線(VSLn−1)601に出力する電界効果トランジスタである。具体的には、この選択トランジスタ415は、標本選択線(Ssk−1)308からの選択パルスにより、増幅トランジスタ414のソース端子と、垂直信号線(VSLn−1)601との間を接続する。
画素回路420は、光電変換素子421と、転送トランジスタ422と、リセットトランジスタ423と、増幅トランジスタ424と、選択トランジスタ425とを備える。また、ここでは、リセットトランジスタ423および増幅トランジスタ424を駆動させるための電源電位が供給される電源電位線426が示されている。
ここでは、水平線(Hk)301に含まれる画素リセット線321、電荷転送線331および画素選択線341が示されている。これらの画素リセット線321、電荷転送線331および画素選択線341には、垂直駆動回路300からリセットパルス、転送パルスおよび画素選択パルスがそれぞれ供給される。
この画素回路420に構成において、光電変換素子421は、そのアノード端子が接地され、カソード端子が転送トランジスタ422のソース端子に接続される。また、転送トランジスタ422は、そのゲート端子が電荷転送線331に接続され、そのドレイン端子がフローティングディフュージョンFDを介してリセットトランジスタ423のソース端子と、増幅トランジスタ424のゲート端子とに接続される。
また、リセットトランジスタ423は、そのゲート端子が画素リセット線321に接続され、そのドレイン端子が電源電位線426に接続される。また、増幅トランジスタ424は、そのドレイン端子が電源電位線426に接続され、そのソース端子が選択トランジスタ425のドレイン端子に接続される。また、選択トランジスタ425は、そのゲート端子が画素選択線341に接続され、そのソース端子が垂直信号線(VSLn−1)601に接続される。
光電変換素子421は、光の強度に応じて電荷を発生させる素子である。この光電変換素子421は、例えば、フォトダイオードにより実現され、光の強度に応じて電子を発生させる。
転送トランジスタ422は、電荷転送線331からの転送パルスに従って、光電変換素子421から生じた電子をフローティングディフュージョンFDに転送する電界効果トランジスタである。この転送トランジスタ422は、例えば、そのゲート端子に転送パルスが供給された場合には、光電変換素子421のカソード端子と増幅トランジスタ424のゲート端子との間を接続する。
リセットトランジスタ423は、画素リセット線321からのリセットパルスに従って、フローティングディフュージョンFDを一定の基準電位に設定(充電)することによって、画素回路420をリセットする電界効果トランジスタである。このリセットトランジスタ423は、例えば、画素リセット線321からのリセットパルスに従って、電源電位線426に供給される電源電位を増幅トランジスタ424のゲート端子に与えることによって、フローティングディフュージョンFDをリセットする。
増幅トランジスタ424は、フローティングディフュージョンFDに生じる電位を増幅して、その増幅された電位に応じた信号を、選択トランジスタ425を介して垂直信号線(VSLn−1)601に出力する増幅素子である。この増幅トランジスタ424は、図1に示した負荷トランジスタ620とソースフォロワ回路を構成する。すなわち、増幅トランジスタ424は、負荷トランジスタ620からの負荷電流の大きさに応じて、フローティングディフュージョンFDに生じる電位を増幅する。
この増幅トランジスタ424は、例えば、画素リセット線321からのリセットパルスによりフローティングディフュージョンFDに生じる基準電位を増幅して、その増幅された基準電位を、基準信号として垂直信号線(VSLn−1)601に出力する。この基準信号は、カラムAD変換回路710において、リセットトランジスタ423におけるリセットノイズや、増幅トランジスタ424の閾値電圧のばらつき等の画素回路420における固有のノイズ成分を除去するために用いられる。
また、この増幅トランジスタ424は、例えば、転送パルスにより光電変換素子421からの電子がフローティングディフュージョンFDに蓄積されることによって生じる電位を増幅する。そして、この増幅トランジスタ424は、選択トランジスタ425を介して、その増幅された電位を、画素信号として垂直信号線(VSLn−1)601に出力する。
選択トランジスタ425は、画素選択線341から供給される選択パルスに従って、増幅トランジスタ424により増幅された信号を垂直信号線(VSLn−1)601に出力する電界効果トランジスタである。具体的には、この選択トランジスタ425は、画素選択線341から選択パルスが供給された場合には、増幅トランジスタ424のソース端子と、垂直信号線(VSLn−1)601との間を接続する。
このように、標本回路410においては、標本電位線(Svk−1)309から供給される標本電位が増幅トランジスタ414により増幅されて、その増幅された標本電位が標本信号として垂直信号線(VSLn−1)601に出力される。なお、本発明の第1の実施の形態では、垂直駆動回路300から標本電位線(Svk−1)309を介して標本電位が供給されることを想定しているが、外部端子から標本電位線(Svk−1)309に標本電位を供給するようにしてもよい。次に、固体撮像装置100による基準電流の調整例について以下に図面を参照して説明する。
[固体撮像装置100による基準電流量の調整例]
図4は、本発明の第1の実施の形態における固体撮像装置100により最適な基準電流量に調整される例を示すタイミングチャートである。ここでは、電流制御線202における電位変化と、基準電流線611における基準電流量の変化が示されている。また、第0行乃至第3行の標本選択線(Ss0乃至3)308および第k行乃至第k+2行の画素選択線(Hk乃至Hk+2)341における電位変化が示されている。ここでは、基準電流制御部830により、複数の基準電流量Ia乃至Idのうち、基準電流量Icが最適な基準電流量として選択される場合を想定する。
また、このタイミングチャートには、基準電流を最適な基準電流量に調整する基準電流量調整期間と、画像信号を生成するために行ごとに画素信号を読み出す画像信号生成期間とが示されている。さらに、画素アレイ部400が1行単位により走査される第1乃至第7水平走査期間(1乃至7H)が示されている。
まず、固体撮像装置100の初期設定時または電源起動時の直後における第1水平走査期間(1H)では、タイミング制御部200から電流量切替信号が供給されることにより、電流制御線202における電位が高電位(Vh)に遷移する。これにより、基準抵抗523の抵抗値が最大値に設定される。このため、基準電流線611を介して、基準電流生成部500から最小の基準電流量Iaが出力される。
このとき、第0行目の標本選択線(Ss0)308に選択パルスが供給されるため、読出し回路700により、第0行目の標本回路410から出力される標本信号が読み出される。これにより、基準電流量Iaにおいて、読出し回路700によって読み出された標本信号の大きさを示す標本信号出力が基準電流制御部830に供給される。
続いて、第2水平走査期間(2H)では、タイミング制御部200から電流量切替信号が供給されることにより、電流制御線202における電位が高電位(Vh)に遷移する。これにより、基準抵抗523の抵抗値が2番目に大きい値に設定される。このため、基準電流線611を介して、基準電流生成部500から2番目に小さい基準電流量Ibが出力される。
このとき、第1行目の標本選択線(Ss1)308に選択パルスが供給されるため、読出し回路700により、第1行目の標本回路410から出力される標本信号が読み出される。これにより、基準電流量Ibにおいて、読出し回路700によって読み出された標本信号の大きさを示す標本信号出力が基準電流制御部830に供給される。ここでは、基準電流制御部830において、基準電流量Ibにおける標本信号出力と直前の基準電流量Iaにおける標本信号出力との信号差分が信号差分閾値Dthを超えないため、電流量設定情報は生成されない。
この後、第3水平走査期間(3H)では、電流制御線202における電位が高電位(Vh)に遷移することによって、基準抵抗523の抵抗値が3番目に大きい値に設定される。このため、基準電流線611を介して、基準電流生成部500から3番目に小さい基準電流量Icが出力される。
このとき、第2行目の標本選択線(Ss2)308に選択パルスが供給されるため、読出し回路700により、第2行目の標本回路410から出力される標本信号が読み出される。これにより、基準電流量Icにおいて、読出し回路700によって読み出された標本信号の大きさを示す標本信号出力が基準電流制御部830に供給される。ここでは、基準電流制御部830において、基準電流量Icにおける標本信号出力と直前の基準電流量Ibにおける標本信号出力との信号差分が信号差分閾値Dthを超えないため、電流量設定情報は生成されない。
そして、第4水平走査期間(4H)では、電流制御線202における電位が高電位(Vh)に遷移することによって、基準抵抗523の抵抗値が4番目に大きい値に設定される。このため、基準電流線611を介して、基準電流生成部500から4番目に小さい基準電流量Idが出力される。
このとき、第3行目の標本選択線(Ss3)308に選択パルスが供給されるため、読出し回路700により、第3行目の標本回路410から出力される標本信号が読み出される。これにより、基準電流量Idにおいて、読出し回路700によって読み出された標本信号の大きさを示す標本信号出力が基準電流制御部830に供給される。この場合において、基準電流量Idにおける標本信号出力と、直前の基準電流量Icにおける標本信号出力との信号差分が信号差分閾値Dthを超えるため、基準電流制御部830により、電流量設定情報が生成される。
次に、第5水平走査期間(5H)では、基準電流制御部830により電流量設定情報が生成されたことに伴い、タイミング制御部200から電流量設定信号が供給されることにより、電流制御線202における電位が低電位(Vl)に設定される。これにより、基準電流生成部500における基準抵抗523は、直前に設定された抵抗値である3番目に大きい値に設定される。このため、基準電流線611を介して、基準電流生成部500から3番目に小さい基準電流量Icが出力される。
このとき、第k行目の画素選択線(Hk)341に選択パルスが供給されるため、読出し回路700により、第k行目の画素回路420から出力される信号が読み出されることによって、画素信号出力が信号処理部820に供給される。
そして、第6水平走査期間(6H)では、第k+1行目の画素選択線(Hk+1)341に選択パルスが供給される。これにより、読出し回路700において、第k+1行目の画素回路420から出力される信号が読み出されることによって、画素信号出力が信号処理部820に供給される。
このように、固体撮像装置100は、標本回路410の行ごとに基準電流量を順次高くしていき、読出し回路700により基準電流量ごとに読み出された標本信号出力に基づいて、最適な基準電流量を設定する。次に、水平走査期間における標本回路410の動作例の詳細について以下に図面を参照して説明する。
[基準電流量の大きさによる標本信号の応答特性の例]
図5は、本発明の第1の実施の形態における標本回路410から垂直信号線(VSL)に出力される標本信号の応答特性を例示する図である。ここでは、図4に示した第3水平走査期間(3H)における標本回路410の動作例を示すタイミングチャートが示されている。
このタイミングチャートでは、横軸を共通の時間軸として、第2行目の標本選択線(Ss2)308、第2行目の標本電位線(Sv2)309、垂直信号線(VSL)601およびカウント線204における電位変化が示されている。また、アップダウンカウンタ712におけるカウント値の増減が示されている。また、ここでは、画素回路420から出力される基準信号および画素信号に基づいて画素信号出力を算出する手法と同様の手法により、標本回路410から出力される標本信号に基づいて標本信号出力を算出することを想定している。
この例において、垂直信号線601には、標本信号特性631が一点鎖線により示され、標本信号特性632が実線により示されている。また、参照電圧線721における参照電位が、便宜上、垂直信号線601における標本信号特性631および632に重ねて、破線により示されている。
一点鎖線により示された標本信号特性631は、図4に示した第2水平走査期間(2H)における基準電流量Ibによる標本信号の応答特性を示す。実線により示された標本信号特性632は、第3水平走査期間(3H)における基準電流量Icによる標本信号の応答特性を示す。
まず、時刻t0において、第2行目の標本選択線(Ss2)308に選択パルスが供給されることによって、標本選択線308における電位が、L(Low)レベルからH(High)レベルに遷移する。すなわち、垂直駆動回路300により第2行目の標本回路410が選択される。このとき、第2行目の標本電位線(Sv2)309における電位は、第2の標本電位(Vs2)から第1の標本電位(Vs1)に設定される。
続いて、時刻t1から時刻t3までの基準信号読出し期間において、カウント線204を介してカウントクロック信号が供給される。この基準信号読出し期間において、電圧比較器711により、標本信号特性631または632によって示される垂直信号線601における標本信号の電位と、参照電圧線721における参照電位とが比較される。ここでは、時刻t1から時刻t2までの期間において、電圧比較器711において標本信号の電位が参照電位以上であると判定されるため、アップダウンカウンタ712により、カウントクロック信号に同期して、カウント値が減算される。
次に、時刻t4では、第2行目の標本電位線(Sv2)309に標本パルスが供給されることによって、第2行目の標本電位線(Sv2)309の電位が、第1の標本電位(Vs1)から第2の標本電位(Vs2)に設定される。すなわち、垂直駆動回路300により、第1の標本電位(Vs1)から第2の標本電位(Vs2)に設定された設定信号が生成されて、その生成された設定信号が、第2行目の標本電位線(Sv2)309に供給される。これにより、標本回路410の増幅トランジスタ414のゲート電位が、第1の標本電位(Vs1)から第2の標本電位(Vs2)に設定される。なお、第1および第2の標本電位(Vs1および2)は、互いに異なる電位であり、例えば、第1の標本電位(Vs1)を画素回路420における基準信号の電位とし、第2の標本電位(Vs2)を白レベルの画素信号の電位に設定するようにしてもよい。
このとき、第2行目の標本電位線(Sv2)309の電位が、第1の標本電位(Vs1)から第2の標本電位(Vs2)に低下するため、垂直信号線(VSL)601における電位は低下する。これは、標本回路410における増幅トランジスタ414によって増幅された標本電位が標本信号として垂直信号線(VSL)601に出力されるからである。
この場合において、基準電流量Icの標本信号特性632の電位低下は、基準電流量Ibの標本信号特性631に比べて急峻になる。これは、垂直信号線(VSL)601に供給される負荷電流が大きいほど、標本信号の応答特性が改善されるからである。したがって、基準電流量に応じて負荷電流は大きくなるため、基準電流量Icの標本信号特性632の電位低下は急峻になる。
この後、時刻t5から時刻t8までの画素信号読出し期間において、カウント線204を介してカウントクロック信号が供給される。この画素信号読出し期間において、電圧比較器711によって、標本信号特性632により示される垂直信号線(VSL)601における標本信号の電位と、参照電圧線721における参照電位とが比較される。この場合、時刻t5から時刻t7までの期間において、電圧比較器711において標本信号の電位が参照電位以上であると判定されるため、アップダウンカウンタ712により、カウントクロック信号に同期してカウント値が加算される。これにより、読出し回路700により読み出された標本信号として標本信号出力(S2out)が基準電流制御部830に供給される。
これに対し、標本信号特性631では、時刻t5から時刻t6までの期間において、電圧比較器711によって標本信号の電位が参照電位以上であると判定されるため、アップダウンカウンタ712により、カウントクロック信号に同期して、カウント値が加算される。これにより、読出し回路700により読み出された標本信号として標本信号出力(S1out)が基準電流制御部830に供給される。
このように、標本電位線(Sv2)309に標本パルスを供給することによって、基準電流量の大きさ(IbおよびIc)に応じて、標本回路410から垂直信号線(VSL)601に出力される標本信号の応答特性が変化する。この例では、基準電流量Ibが不十分であるため、アップダウンカウンタ712から出力される標本信号出力(S1out)は、基準電流量Icのときに比べて、「ΔS」だけ小さいカウント値が算出される。ここで、基準電流量と標本信号出力の大きさとの関係を以下に図面を参照して説明する。
[基準電流量に応じた標本信号出力例]
図6は、基準電流量と標本信号出力との関係を例示する概念図である。ここでは、VSL0乃至3特性841乃至844と、基準電流生成部500により生成される複数の基準電流の基準電流量Ia乃至Idとが示されている。ここでは、基準電流量Icが最適な基準電流量であることを想定する。また、縦軸を標本信号出力の大きさとし、横軸を基準電流量としている。
VSL0乃至3特性841乃至844は、第0列乃至第3列の垂直信号線(VSL0乃至3)601における標本信号が、読出し回路700において読み出されることによって算出される標本信号出力の特性を示す。例えば、VSL0特性841には、第0列目の垂直信号線(VSL0)601における標本信号が、読出し回路700により基準電流量ごとに読み出されることによって算出された標本信号出力の特性が示されている。ここでは、VSL0乃至3特性841乃至844が互いに異なるのは、標本回路410における増幅トランジスタ414や負荷トランジスタ620の個体差などに起因する。
このように、基準電流量を大きくするほど、標本信号出力は大きくなり、基準電流量Ic近傍から一定となる。このため、基準電流量が「Ic」以上であれば、第0列乃至第3列の全ての垂直信号線(VSL0乃至3)601における標本信号出力が一定となるため、基準電流の電流量としては充分であることが分かる。ただし、基準電流量が大き過ぎると、基準電流生成部500の消費電力が大きくなってしまうため、基準電流量Icに設定するのが最適であることが分かる。次に、このような最適な基準電流量を判定する判定例について、以下に図面を参照して説明する。
[基準電流制御部830による最適な基準電流量の判定例]
図7は、本発明の第1の実施の形態における基準電流制御部830による最適な基準流量の判定手法例を示す図である。ここでは、ケース1乃至3におけるVSL0差分851、VSL1差分852、VSL2差分853およびVSL3差分854が示されている。この例では、基準電流量の調整期間において、基準電流生成部500から出力される基準電流量をIa、Ib、Ic、Idの順に大きくすることを想定している。また、縦軸を、互いに異なる基準電流量における標本信号出力の信号差分とする。
VSL0差分851は、第0列目の垂直信号線(VSL0)601に接続された標本回路410から読み出された標本信号出力と、直前の基準電流量により読み出された標本信号出力との信号差分である。VSL1差分852は、第1列目の垂直信号線(VSL1)601に接続された標本回路410から読み出された標本信号出力と、直前の基準電流量により読み出された標本信号出力との信号差分である。
VSL2差分853は、第2列目の垂直信号線(VSL2)601に接続された標本回路410から読み出された標本信号出力と、直前の基準電流量により読み出された標本信号出力との信号差分である。VSL3差分854は、第3列目の垂直信号線(VSL3)601に接続された標本回路410から読み出された標本信号出力と、直前の基準電流量により読み出された標本信号出力との信号差分である。
ケース1(ΔIb−a)には、基準電流量Ibにおける標本信号出力から、基準電流量Iaにおける標本信号出力を減算することによって算出された信号差分が示されている。このケース1では、基準電流量が不足しているため、VSL0乃至3差分851乃至854は大きな値を取る。
ケース2(ΔIc−b)には、基準電流量Icにおける標本信号出力から、基準電流量Ibにおける標本信号出力を減算することによって算出された信号差分が示されている。このケース2では、ケース1に比べて基準電流量が大きいため、VSL0乃至3差分851乃至854は小さくなる。
ケース3(ΔId−c)には、基準電流量Idにおける標本信号出力から、基準電流量Icにおける標本信号出力を減算することによって算出された信号差分が示されている。このケース3では、基準電流量IcおよびIdの両者が充分大きいため、VSL0乃至3差分851乃至854は、全て「0」になる。
このように、ケース3(ΔId−c)において、全ての垂直信号線(VSL0乃至3)601に対応する信号差分が「0」近傍の値を取ることから、現在の基準電流量Idおよび直前の基準電流量Icは、基準電流の基準電流量として、充分な大きさであることが分かる。さらに、基準電流量Idに比べて基準電流量Icの方が小さいため、ケース3における信号差分に対応する直前の基準電流量Icが、最適な基準電流量となる。
このため、基準電流制御部830は、現在の基準電流量における標本信号出力と、直前の基準電流量における標本信号出力との信号差分に基づいて、最大の標本信号出力となる基準電流量のうち最小の基準電流量を、最適な基準電流量として選択する。具体的には、基準電流制御部830は、基準電流量を順次大きくするたびに算出された信号差分が一定の信号差分閾値Dthを超えたときに、その信号差分に対応する基準電流量を、最適な基準電流量として選択する。すなわち、基準電流制御部830は、信号差分閾値Dthを超える信号差分に対応する基準電流量のうち最小の基準電流量を、最適な基準電流量として選択する。
[固体撮像装置100の動作例]
次に本発明の実施の形態における固体撮像装置100の動作について図面を参照して説明する。
図8は、本発明の第1の実施の形態における固体撮像装置100の駆動方法を例示するフローチャートである。
まず、固体撮像装置100の電源起動時または初期設定時直後において、基準電流生成部500から基準電流が基準電流線611に出力される(ステップS911)。これにより、各列の垂直信号線(VSL0乃至n−1)601に基準電流量に応じた負荷電流が負荷トランジスタ620によって供給される。
続いて、垂直駆動回路300によって行単位により選択された標本回路410における増幅トランジスタ414のゲート端子に第2の標本電位が印加される(ステップS912)。続いて、第2の標本電位が印加された標本回路410から出力される標本信号が、読出し回路700によって読み出される(ステップS913)。なお、ステップS913は、特許請求の範囲に記載の読出し手順の一例である。
そして、基準電流制御部830により、読出し回路700において読み出された標本信号の大きさを示す標本信号出力と、直前に設定された基準電流量における標本信号出力との信号差分が算出される(ステップS914)。続いて、基準電流制御部830により、その算出された信号差分が信号差分閾値Dthを超えたか否かが判断される(ステップS915)。例えば、全ての列の標本回路410に対応する信号差分が、信号差分閾値Dth未満であるか否かが判断される。
そして、信号差分閾値Dthを超過しない場合には、タイミング制御部200により、基準電流生成部500から出力される基準電流の基準電流量が大きくなるように制御される(ステップS918)。この後、ステップS912に戻り、信号差分が信号差分閾値Dthを超過するまで、これらのステップS912乃至S914の一連の処理が繰り返される。すなわち、信号差分が信号差分閾値Dthを超えるまで基準電流量を順次大きくしていく。なお、1回目の処理においては、直前に設定された電流量における標本信号出力が無いため、ステップS914およびS915の処理を実行せずにステップS918に進むようにしてもよい。
一方、信号差分が閾値Dthを超過する場合には、基準電流制御部830から電流量設定情報がタイミング制御部200に通知されることによって、タイミング制御部200から電流量設定信号が基準電流生成部500に供給される。これにより、基準電流が直前に設定された基準電流量に戻されることによって、基準電流生成部500から最適な基準電流量の基準電流が出力される(ステップS916)。
すなわち、基準電流制御部830により、基準電流量ごとに読み出された標本信号の大きさに基づいて複数の基準電流量のうち1つの基準電流量が選択されて、その選択された基準電流量の基準電流を基準電流生成部500に生成させるように制御される。なお、ステップS914乃至S916は、特許請求の範囲に記載の基準電流制御手順の一例である。
次に、基準電流生成部500から出力される最適な電流量の基準電流において、読出し回路700により行単位により順次読み出された画素信号に基づいて、信号処理部820によって画像信号が生成される(ステップS917)。すなわち、基準電流制御部830により基準電流生成部500から生成させた基準電流に応じた負荷電流を垂直信号線に供給することにより読み出された画素信号に基づいて、画像信号が生成される。なお、ステップS917は、特許請求の範囲に記載の負荷電流供給手順の一例である。このように画像信号が生成されて、固体撮像装置100の駆動方法の処理が終了する。
このように、本発明の第1の実施の形態では、基準電流量ごとに標本回路410から読み出された標本信号出力の信号差分に基づいて、基準電流生成部500により生成される基準電流を最適な基準電流量に設定することができる。これにより、基準電流量の不足に起因する、読出し回路700により算出される画素信号出力の誤差の発生を抑制することができるため、撮像画像に縦筋として現われる固定パターンノイズの発生を抑制することができる。また、基準電流生成部500により生成される基準電流を最適な基準電流量に設定することができるため、過剰な基準電流量の生成による消費電力の増大を抑制することができる。
なお、ここでは一例として、標本信号出力の信号差分に基づいて最適な基準電流量を選択する例について説明したが、標本信号出力の度数分布の偏り度合いによっても最適な基準電流量を判定することができる。そこで、標本信号出力の度数分布の偏り度合いに基づいて最適な基準電流量を判定する基準電流制御部830を第2の実施の形態として、以下に図面を参照して説明する。
<2.第2の実施の形態>
[基準電流制御部830による最適な基準電流量の判定例]
図9は、本発明の第2の実施の形態における基準電流制御部830による標本信号出力の度数分布に基づく最適な基準流量の判定手法例を示す概念図である。
ここでは、Ia度数分布861と、Ib度数分布862と、IcおよびId度数分布863とが示されている。また、縦軸を標本信号出力の度数とし、横軸を標本信号出力とする。また、ここでの各度数分布861乃至863における標本信号出力は、各度数分布861乃至863の最大度数がScとなるように補正されている。
点線により示されるIa度数分布861は、基準電流量が「Ia」のときにおいて、各列の垂直信号線(VSL0乃至n−1)601に接続された複数の標本回路410から読み出された標本信号出力の度数分布である。このIa度数分布861は、最大および最小の標本信号出力の分布差分ΔDaが大きく、最大度数Naが小さい。
一点鎖線により示されるIb度数分布862は、基準電流量が「Ib」のときにおいて、各列の垂直信号線(VSL0乃至n−1)601に接続された複数の標本回路410から読み出された標本信号出力の度数分布である。このIb度数分布862は、Ia度数分布861に比べて、最大および最小の標本信号出力の分布差分ΔDbが小さく、最大度数Nbが大きい。
実線により示されるIcおよびId度数分布863は、基準電流量が「Ic」または「Id」のときにおいて、各列の垂直信号線(VSL0乃至n−1)601に接続された複数の標本回路410から読み出された標本信号出力の度数分布である。このIcおよびId度数分布863は、Ib度数分布862に比べて、最大および最小の標本信号出力の分布差分ΔDc、ΔDdが小さく、最大度数Nc、Ndが大きい。
このように、基準電流量を順次大きくすることによって、各列の垂直信号線(VSL0乃至n−1)601における複数の標本信号出力に基づく度数分布861乃至863の偏り度合いは大きくなる。このため、基準電流制御部830は、読出し回路700により基準電流量ごとに複数の標本回路410から読み出された標本信号の大きさの度数分布の偏り度合いに基づいて最適な基準電流量を選択する。
この基準電流制御部830は、例えば、基準電流量ごとの度数分布における最大および最小の標本信号出力の分布差分、または、度数分布の最大度数である最大値に基づいて、最適な基準電流量を選択する。この基準電流制御部830は、具体的には、基準電流量を順次大きくしていき、所定の分布閾値Thを超えた分布差分に対応する基準電流量を、最適な基準電流量として選択する。すなわち、この基準電流制御部830は、分布閾値Thを超える分布差分(ΔDcおよびΔDd)に対応する基準電流量IcおよびIdのうち、最小の基準電流量Icを最適な基準電流量として選択する。
このように、本発明の第2の実施の形態では、各列の垂直信号線(VSL0乃至n−1)601における複数の標本信号出力に基づく度数分布の偏り度合いに基づいて、最適な基準電流量を選択することができる。また、その他の最適な基準電流量の判定手法として、本発明の第1および第2の実施の形態における基準電流制御部830によりそれぞれ選択された最適な基準電流量のうち、大きい方の基準電流量を最適な基準電流量として選択するようにしてもよい。これにより、最適な基準電流量の判定誤差による基準電流量不足を軽減することができる。
このように、本発明の実施の形態によれば、基準電流量ごとにおける標本回路410から読み出された標本信号の大きさに基づいて、基準電流生成部500により生成される基準電流を最適な基準電流量に設定することができる。これにより、画素回路420に接続された垂直信号線(VSL)601に供給される負荷電流の電流量不足を軽減することができる。すなわち、読出し回路700により画素信号が適切に読み出されるため、画像信号の生成に伴う画質劣化を抑制することができる。また、図1では図示していないが、基準電流生成部500は、読出し電流源部600以外の別の構成部にも基準電流を供給しているため、最適な電流量に設定することによって、別の構成部に対しても適切な電流量として基準電流を供給することができる。また、基準電流生成部500内に基準抵抗などの素子を設けることよって、外付け素子を削減することができるため、固体撮像装置100を小型化することができる。
なお、本発明の実施の形態では、垂直信号線(VSL)601におけるアナログ信号をデジタル信号に変換する読出し回路700を例にして説明したが、アナログ信号をそのまま読み出すカラム読出し回路にも適用することができる。
なお、本発明の実施の形態は本発明を具現化するための一例を示したものであり、本発明の実施の形態において明示したように、本発明の実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本発明の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本発明は実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、本発明の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
100 固体撮像装置
200 タイミング制御部
300 垂直駆動回路
400 画素アレイ部
410 標本回路
414、424 増幅トランジスタ
415、425 選択トランジスタ
420 画素回路
421 光電変換素子
422 転送トランジスタ
423 リセットトランジスタ
510 基準電圧生成部
520 VI変換部
521 増幅器
522 n型トランジスタ
523 基準抵抗
524、525 p型トランジスタ
600 読出し電流源部
610 基準トランジスタ
620 負荷トランジスタ
700 読出し回路
710 カラムAD変換回路
711 電圧比較器
712 アップダウンカウンタ
713 スイッチ
714 メモリ
720 参照電圧生成部
730 水平駆動回路
810 出力アンプ
820 信号処理部
830 基準電流制御部

Claims (12)

  1. 光電変換を行うことによって画素信号を生成する複数の画素回路と、
    前記画素回路から前記画素信号を出力させるための負荷電流が供給される垂直信号線と、
    第1の標本電位から第2の標本電位に設定された信号を増幅して標本信号として出力する標本信号出力部と、
    前記標本信号出力部から出力される標本信号を読み出すための複数の基準電流を生成する基準電流生成部と、
    前記基準電流生成部により生成された前記基準電流の基準電流量に応じた前記標本信号を読み出す読出し回路と、
    前記読出し回路により前記基準電流量ごとに読み出された前記標本信号の大きさに基づいて前記複数の基準電流量のうち1つの基準電流量を選択して前記選択された基準電流量の基準電流を前記基準電流生成部に生成させるように制御する基準電流制御部と、
    前記基準電流制御部の制御により前記基準電流生成部から生成された前記基準電流に応じた前記負荷電流を前記垂直信号線に供給する負荷トランジスタと
    を具備する固体撮像装置。
  2. 前記基準電流生成部は、前記複数の基準電流を順次生成し、
    前記基準電流制御部は、前記読出し回路により読み出された前記標本信号の大きさと過去に読み出された前記標本信号の大きさとの信号差分に基づいて前記1つの基準電流量を選択する
    請求項1記載の固体撮像装置。
  3. 前記基準電流制御部は、一定の信号差分閾値を超える前記信号差分に対応する前記基準電流量のうち最小の基準電流量を前記1つの基準電流量として選択する請求項2記載の固体撮像装置。
  4. 前記基準電流生成部は、前記基準電流量を順次大きくすることによって前記複数の基準電流を順次生成し、
    前記基準電流制御部は、前記読出し回路により読み出された前記標本信号の大きさと直前に読み出された前記標本信号の大きさとの前記信号差分が前記信号差分閾値を超えた場合には前記信号差分閾値を超えた信号差分に対応する基準電流量を前記1つの基準電流量として選択する
    請求項3記載の固体撮像装置。
  5. 前記標本信号出力部は、前記第1の標本電位から前記第2の標本電位に設定された信号を増幅して標本信号を出力する複数の標本回路を備え、
    前記基準電流制御部は、前記読出し回路により前記基準電流量ごとに前記複数の標本回路から読み出された前記標本信号の大きさの度数分布における偏り度合いに基づいて前記1つの基準電流量を選択する
    請求項1記載の固体撮像装置。
  6. 前記基準電流制御部は、前記度数分布における最大および最小の前記標本信号の分布差分に基づいて前記1つの基準電流量を選択する請求項5記載の固体撮像装置。
  7. 前記基準電流制御部は、前記基準電流量ごとの前記分布差分における所定の分布閾値を超える前記分布差分に対応する前記基準電流量のうち最小の基準電流量を前記1つの基準電流量として選択する請求項6記載の固体撮像装置。
  8. 前記基準電流生成部は、前記基準電流量を順次大きくすることによって前記複数の基準電流を順次生成し、
    前記基準電流制御部は、前記分布差分が前記分布閾値を超えた場合には前記分布閾値を超えた前記分布差分に対応する基準電流量を前記1つの基準電流量として選択する
    請求項7記載の固体撮像装置。
  9. 前記基準電流制御部は、前記読出し回路により読み出された前記標本信号および直前に読み出された前記標本信号の大きさの信号差分のうちの一定の信号差分閾値を超えた前記信号差分に対応する前記基準電流量と前記分布閾値を超えた前記度数分布に対応する前記基準電流量とのうち大きい方を前記1つの基準電流量として選択する請求項8記載の固体撮像装置。
  10. 前記基準電流制御部は、前記基準電流量ごとの前記度数分布における最大値に基づいて前記1つの基準電流量を選択する請求項5記載の固体撮像装置。
  11. 第1の標本電位から第2の標本電位に設定される設定信号を生成する標本電位設定部と、
    前記標本電位設定部により生成される設定信号を増幅して標本信号として出力する標本信号出力部と、
    前記標本信号出力部から出力される標本信号を読み出すための複数の基準電流を生成する基準電流生成部と、
    前記基準電流生成部により生成された前記基準電流の基準電流量に応じた前記標本信号を読み出す読出し回路と、
    前記読出し回路により前記基準電流量ごとに読み出された前記標本信号の大きさに基づいて前記複数の基準電流量のうち1つの基準電流量を選択して前記選択された基準電流量の基準電流を前記基準電流生成部に生成させるように制御する基準電流制御部と、
    前記基準電流制御部の制御により前記基準電流生成部から前記基準電流を生成させることによって固体撮像素子から画素信号を出力させるための負荷電流を垂直信号線に供給する負荷トランジスタと
    を具備する固体撮像素子の駆動装置。
  12. 光電変換を行うことによって画素信号を生成する複数の画素回路と、前記画素回路から前記画素信号を出力させるための負荷電流が供給される垂直信号線と、第1の標本電位から第2の標本電位に設定された信号を増幅して標本信号として出力する標本信号出力部と、前記標本信号出力部から出力される標本信号を読み出すための複数の基準電流を生成する基準電流生成部とを備える固体撮像装置における駆動方法であって、
    前記基準電流生成部により生成された前記基準電流の基準電流量に応じた前記標本信号を順次読み出す読出し手順と、
    前記読出し手順により前記基準電流量ごとに読み出された前記標本信号の大きさに基づいて前記複数の基準電流量のうち1つの基準電流量を選択して前記選択された基準電流量の基準電流を前記基準電流生成部に生成させるように制御する基準電流制御手順と、
    前記基準電流制御手順により前記基準電流生成部から生成させた前記基準電流に応じた前記負荷電流を前記垂直信号線に供給する負荷電流供給手順と
    を具備する固体撮像装置の駆動方法。
JP2009216341A 2009-09-18 2009-09-18 固体撮像装置、その駆動方法および固体撮像素子の駆動装置 Abandoned JP2011066728A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216341A JP2011066728A (ja) 2009-09-18 2009-09-18 固体撮像装置、その駆動方法および固体撮像素子の駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216341A JP2011066728A (ja) 2009-09-18 2009-09-18 固体撮像装置、その駆動方法および固体撮像素子の駆動装置

Publications (1)

Publication Number Publication Date
JP2011066728A true JP2011066728A (ja) 2011-03-31

Family

ID=43952474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216341A Abandoned JP2011066728A (ja) 2009-09-18 2009-09-18 固体撮像装置、その駆動方法および固体撮像素子の駆動装置

Country Status (1)

Country Link
JP (1) JP2011066728A (ja)

Similar Documents

Publication Publication Date Title
JP4569647B2 (ja) Ad変換装置、ad変換方法、固体撮像素子、およびカメラシステム
TWI404411B (zh) 固態成像裝置、其控制方法及相機系統
KR101515046B1 (ko) 고체촬상장치 및 그 구동방법
CN101667833B (zh) 数模转换器电路、固态成像器件以及成像装置
JP5868065B2 (ja) 撮像装置
JP5858695B2 (ja) 固体撮像装置及び固体撮像装置の駆動方法
JP4725608B2 (ja) 比較器、比較器の校正方法、固体撮像素子、およびカメラシステム
JP3904111B2 (ja) 固体撮像装置及びその信号処理方法
JP5482137B2 (ja) 固体撮像装置、負荷電流源回路
KR20050054843A (ko) 고체 촬상 장치와 촬상 방법
JP2009171397A (ja) 固体撮像素子、およびカメラシステム
JP2008219243A (ja) 撮像装置およびカメラ
CN104137421A (zh) A/d转换电路及固体成像装置
CN103001637A (zh) 固态成像装置、模数转换器及其控制方法
JP2020171061A (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
JP2012065032A (ja) パワーゲート回路、固体撮像素子、およびカメラシステム
JPWO2016027683A1 (ja) 固体撮像素子および電子機器
JP6794985B2 (ja) 固体撮像装置および固体撮像装置の駆動方法
JP5822547B2 (ja) 撮像装置および撮像システム
JP6112871B2 (ja) 撮像素子及び撮像装置
JP5943576B2 (ja) 固体撮像装置及び固体撮像装置の駆動方法
JP2011171889A (ja) 固体撮像素子及び撮像機器
JP2011066728A (ja) 固体撮像装置、その駆動方法および固体撮像素子の駆動装置
JP2011091474A (ja) 固体撮像装置及び撮像機器
JP6192790B2 (ja) 撮像装置および撮像システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425