JP2011050137A - 電力変換回路 - Google Patents

電力変換回路 Download PDF

Info

Publication number
JP2011050137A
JP2011050137A JP2009194932A JP2009194932A JP2011050137A JP 2011050137 A JP2011050137 A JP 2011050137A JP 2009194932 A JP2009194932 A JP 2009194932A JP 2009194932 A JP2009194932 A JP 2009194932A JP 2011050137 A JP2011050137 A JP 2011050137A
Authority
JP
Japan
Prior art keywords
circuit
capacitor
power supply
voltage
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009194932A
Other languages
English (en)
Inventor
Morimitsu Sekimoto
守満 関本
Toshiyuki Maeda
敏行 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009194932A priority Critical patent/JP2011050137A/ja
Publication of JP2011050137A publication Critical patent/JP2011050137A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】本発明の目的は、電源電圧レベルで設計された回路に対する過電圧を防止する電力変換回路を提供することにある。
【解決手段】電力変換回路10は、電源側から、ダイオード群16、DC部18、インバータ回路20が設けられる。DC部18には、ダイオード群16から出力された直流電圧を平滑化するためのリアクトルLinと平滑コンデンサCdcが備えられ、LC平滑回路が構成されている。リアクトルLinよりも交流電源側にコンデンサCssを接続する。コンデンサCssを室外機のファンモータ駆動回路30の電源とすることができる。
【選択図】図1

Description

本発明は、交流電源と負荷との間に設けられる電力変換回路に関するものである。
交流電源と負荷との間に設けられ、所定の交流電流を負荷に供給する電力変換回路が種々開発されている。その中で、インバータ回路の小型化やコストダウンを目的としたコンデンサレスインバータが提案されている(非特許文献1)。図7に示すように、コンデンサレスインバータ40は、ダイオード群16、DC部18、およびインバータ回路20が備えられる。
ダイオード群(第1の整流回路)16は、交流電源の出力を全波整流するダイオードブリッジである。ダイオード群16は、上側アームの電源線22と下側アームの電源線24に出力する。DC部18は、電源線22に挿入されたリアクトルLinと電源線22と24の間の平滑コンデンサ(第1のコンデンサ)Cdcからなる。インバータ回路20は、スイッチング用パワー素子(トランジスタ)と還流ダイオードを備え、スイッチングによって負荷12に対して交流電力を出力する。DC部18に大容量の電解コンデンサを有しない。DC部18の平滑コンデンサCdcの容量は例えば約20μFであり、電解コンデンサの約0.01〜0.02倍である。
DC部18の平滑コンデンサCdcが小容量であるため、電源12からの交流電圧の変動に応じて、DC部18の直流電圧Vdcが大きく変動し、過電圧となる。また、過電圧を生じる他の要因としては、リアクトルLinと平滑コンデンサCdcとのLC共振や、モータ歪みが挙げられる。
上記の過電圧を防止するための対策として、図8に示すように、DC部18にダイオードDs、抵抗Rs、電解コンデンサCsを直列接続したエネルギー吸収回路28を設けることが提案されている(特許文献1)。平滑コンデンサCdc以外に電解コンデンサCsにも充電がおこなわれるため、平滑コンデンサCdcの見かけ上の容量が増大する。また、抵抗RsはDC部18の直流電圧の上昇を抑える。したがって、平滑コンデンサCdcの両端の電位差Vdcの変動が小さくなり、過電圧を防止できる。
電解コンデンサCsの充電電圧はほぼ一定に平滑されている。電解コンデンサCsは、一定電圧の必要な回路の電源として使用できる。また、コンデンサレスインバータ40bには、スイッチング用パワー素子をコントロールする制御回路26が設けられる。そこで、制御回路26の電源としてエネルギー吸収回路28の電解コンデンサCsを使用することが特許文献1に提案されている。
図8のコンデンサレスインバータ40bは、電解コンデンサCsが制御回路26の電源となるが、適宜、他の回路の電源に使用できるか否かを検討する。そのために、電解コンデンサCsの充電電圧のシミュレーション結果を図9に示す。シミュレーションの条件として、電源電圧は振幅20V、周波数460Hzの歪み成分を含み、電圧最大値が373Vであるとする。リアクトルLinが6mH、平滑コンデンサCdcが20μF、抵抗Rsが5Ω、電解コンデンサCsが150μFであるとする。シミュレーションの都合上、電解コンデンサCsと並列に20kΩの抵抗を接続している。この抵抗は、電解コンデンサCsを電源とする回路の代わりである。図9において、Vinは電源12からダイオード群16に入力される電圧、Vdcはダイオード群16からの出力電圧、Vcは電解コンデンサCsの充電電圧である。なお、Vinは0Vよりも低い値を省略している。
シミュレーションの結果、電解コンデンサCsの充電電圧は420Vに達している。電源電圧レベル(電源電圧の最大値)に最大定格電圧が設定されている回路に対して、電解コンデンサCsを電源として使用することはできない。例えば、空調機の室外機において、ファンモータの駆動回路は電源電圧レベルで最大定格電圧を設計している場合が多い。ファンモータの駆動回路の電源として電解コンデンサCsを使用した場合、ファンモータの駆動回路は、過電圧保護によって停止したり、破壊されたりする可能性がある。したがって、ファンモータの駆動回路の電源としては使用できない。
なお、図8ではDC/DCコンバータ32を使用しているため、ファンモータの駆動回路にあわせた電圧に降圧できるように考えられる。しかし、コンデンサレスインバータ40bに使用されるDC/DCコンバータ32は、高電圧(数100V)から低電圧(5〜10V程度)に降圧する回路である。また、空調用のファンモータ駆動回路は高電圧が必要であり、DC/DCコンバータ32を介さずに直接電解コンデンサCsから電力を供給する必要がある。したがって、ファンモータ駆動回路の最大定格電圧よりも高い充電電圧となった電解コンデンサCsは、ファンモータ駆動回路の電源とすることができない。また、電解コンデンサCsはインバータの駆動用の制御回路26の電源となっているため、ファンモータ駆動回路の電源は別途設ける必要もある。
特許3772898号公報 高橋勲「高入力力率のダイオード整流回路を持つPMモータのインバータ制御法」、平成12年電気学会全国大会4−149(平成12年3月)、第1591頁
本発明の目的は、電源電圧レベルで設計された回路に対する過電圧を防止する電力変換回路を提供することにある。
本発明の電力変換回路は、交流電源と負荷との間に設けられる電力変換回路において、前記交流電源の出力を全波整流する複数のダイオードを含んだ第1の整流回路と、前記第1の整流回路の出力を平滑する第1のコンデンサとリアクトルを備えた平滑回路と、前記平滑回路の出力を受け、三相交流電流を出力するインバータ回路と、前記第1のコンデンサよりも交流電源側に設けられたリアクトルと、前記リアクトルよりも交流電源側から、第2の整流回路を介して接続された第2のコンデンサとを備え、第1のコンデンサの両端電圧の最大値が最小値の2倍以上である。本回路は、リアクトルよりも前段から第2のコンデンサへの充電をおこなう。
前記リアクトルが第1の整流回路よりも負荷側に設けられ、前記第1の整流回路と前記リアクトルの間に前記第2の整流回路を接続される。また、前記リアクトルが第1の整流回路よりも交流電源側に設けられ、交流電源と前記リアクトルの間に前記第2の整流回路が接続される。
前記第2のコンデンサは、前記第1のコンデンサの両端電圧の最大値以下の電圧を最大定格電圧とした回路の電源となる。第2のコンデンサはリアクトルよりも前段で充電されるため、充電電圧が交流電源の電源電圧レベルとなる。
前記第2コンデンサは電解コンデンサである。第1のコンデンサに比べて大容量の電解コンデンサが、電源電圧レベルで充電がなされる。
前記負荷が空気調和機の圧縮機に使用されるモータを含む。本発明の電力変換回路は、空気調和機の圧縮機用のモータを駆動させる。
前記第2のコンデンサに接続される回路は、空気調和機の室外機のファンに使用されるモータの駆動回路を含む。第2のコンデンサがファンのモータの駆動回路の電源となる。
前記第2のコンデンサに接続される回路は、インバータ回路のスイッチングを制御する制御回路を含む。第2のコンデンサがインバータ回路の制御回路の電源となる。
本発明は、平滑回路のリアクトルよりも交流電源側からコンデンサを接続するため、平滑回路の共振時の影響を受けることがない。コンデンサの充電電圧を電源電圧レベルよりも高くなることを防止できる。コンデンサは、電源電圧レベルで設計された回路の電源にすることができる。その回路としては、空調機の室外機のファンモータ駆動回路が挙げられる。
本発明の電力変換回路の構成を示す回路図である。 図1の回路の電圧の変化を示すシミュレーション結果である。 ダイオード群よりも前段に電解コンデンサを接続した構成を示す回路図である。 ダイオード群よりも前段に電解コンデンサを接続した構成を示す回路図である。 図1を三相のコンデンサレスインバータに適用した構成を示す回路図である。 図4を三相のコンデンサレスインバータに適用した構成を示す回路図である。 従来のコンデンサレスインバータの構成を示す回路図である。 図7のコンデンサレスインバータにエネルギー吸収回路を設けた構成を示す回路図である。 図8の回路の電圧の変化を示すシミュレーション結果である。
本発明について図面を用いて説明する。本発明の電力変換回路は、コンデンサレスインバータである。
図1に示すように、電力変換回路10は、電源12と負荷14との間に設けられ、負荷14に対して所定の交流電力を出力する。図1の電源12は単相電源である。負荷14は三相負荷であり、例えば圧縮機に使用される三相モータが挙げられる。
電力変換回路10は、電源側から、ダイオード群(第1の整流回路)16、DC部18、インバータ回路20が設けられる。ダイオード群16、DC部18、インバータ回路20は、第1電源線22と第2電源線24とで接続される。また、インバータ回路20の駆動・制御のために制御回路26が設けられる。
ダイオード群16は、4つのダイオードで構成されたダイオードブリッジである。ダイオード群16は、全波整流をおこない、第1電源線22と第2電源線24とに直流電圧を出力する。第1電源線22が高電位、第2電源線24が低電位である。
ダイオード群16の後段にあるDC部18には、ダイオード群16から出力された直流電圧を平滑化するための平滑回路として、リアクトルLinと平滑コンデンサ(第1のコンデンサ)Cdcが備えられる。リアクトルLinは第1電源線22に挿入され、平滑コンデンサCdcは電源線22と24の間に接続される。図1に示すように、リアクトルLinと平滑コンデンサCdcによって、一般的なLC平滑回路が構成されている。従来技術で説明したように、平滑コンデンサCdcは低容量であり、平滑コンデンサCdcの両端電圧の最大値が最小値の2倍以上である。
DC部18には、DC部18の過電圧を防止するためのエネルギー吸収回路28が備えられる。エネルギー吸収回路28は、平滑コンデンサCdcと並列接続される。エネルギー吸収回路28は、第1電源線22側から、ダイオードDs、抵抗Rs、電解コンデンサCsの順で直列接続される。ダイオードDsはアノードが第1電源線22に接続される。平滑コンデンサCdcと電解コンデンサCsとが並列接続になり、平滑コンデンサCdcの見かけ上の容量が増大する。抵抗Rsは、急激な電圧の上昇を抑える働きがある。エネルギー吸収回路28によって、平滑コンデンサCdcの両端電圧Vdcの過電圧が抑えられる。また、電解コンデンサCsは一定電圧に平滑された電圧が充電される。電解コンデンサCsはインバータ回路20の制御回路26の電源となる。
従来技術で説明した電解コンデンサCsの両端電圧が上昇する原因として、リアクトルLinと平滑コンデンサCdcとの間で発生する共振現象が挙げられる。そこで、リアクトルLinよりも交流電源側にコンデンサ(第2のコンデンサ)Cssを接続する。コンデンサCssはダイオード群16とリアクトルLinとの間において、電源線22と24の間に設けられる。コンデンサCssが、リアクトルLinと平滑コンデンサCdcで構成される平滑回路よりも交流電源側にあるため、LC共振の影響を受けることがない。したがって、コンデンサCssの充電電圧は電源電圧の最大値とほぼ同じになる。
コンデンサCssとしては、電解コンデンサを使用する。エネルギー吸収回路28の電解コンデンサCsの代わりにするためである。また、第1電源線22からダイオードDss、リアクトルLss、抵抗Rss、コンデンサCssを直列接続する。ダイオード(第2の整流回路)Dssは、コンデンサCssに蓄電された電気エネルギーを三相負荷14に流さないために、電流の逆流防止素子として働く。リアクトルLssと抵抗Rssは、電流の波形改善や減流の効果がある。コンデンサCssは、一定電圧に平滑された電圧が充電される。
図2に図9の条件と同じ条件でのシミュレーション結果を示す。本発明において従来とは異なる新たな構成については、抵抗Rssが5Ω、コンデンサCssが150μFである。シミュレーションのために、ファンモータ駆動回路30として、コンデンサCssと並列に20kΩの抵抗を設けた。コンデンサCssの両端電圧Vccは370Vである。電源電圧の実効値240Vに対し電圧変動+10%を見込むと、電源電圧の波高値は最大373Vに達する。一方、従来のエネルギー吸収回路28の電解コンデンサCsの両端電圧Vcは従来と同様に420Vに達しており、電源電圧を超えている。シミュレーション結果より、リアクトルLinよりも電源側にコンデンサCssを設けると、コンデンサCssの両端電圧Vccは電解コンデンサCsの両端電圧Vcよりも低くなることが分かる。
電力変換回路10を空調機に使用した場合、室外機のファンのモータを駆動させるファンモータ駆動回路30を備える。このファンモータ駆動回路30は、DC部18の平滑コンデンサCdcの両端電圧の最大値以下の電圧を最大定格電圧としている。図2のシミュレーション結果から、電圧Vccと電圧Vinの最大値が同じであり、ファンモータ駆動回路30は、コンデンサCssを電源として使用できる。
その他、インバータ回路20は、DC部18の出力を受け、三相交流電流を出力する。インバータ回路20は、2つのスイッチング用パワー素子(トランジスタ)が直列接続され、その接続部と負荷14の端子が接続される。直列接続されたスイッチング用パワー素子は、第1電源線22と第2電源線24に接続される。負荷14が三相負荷であるので、スイッチング用パワー素子は合計6個となる。各スイッチング用パワー素子と並列に還流ダイオードが接続される。制御回路26がスイッチング用パワー素子のオン・オフのタイミングを調節することにより、所望の三相電流を負荷14に出力する。制御回路26は、電解コンデンサCsを電源としており、必要に応じてDC/DCコンバータ32を設けて必要な電圧に変換する。
以上のように、本発明はリアクトルLinと平滑コンデンサCdcとからなる平滑回路よりも前段にコンデンサCsを接続している。LC共振の影響を受けず、コンデンサCssの充電電圧は電源電圧レベルである。コンデンサCssは、電源電圧レベルを最大定格電圧とする回路の電源にすることができる。本発明を空調機に使用した場合、コンデンサCssを室外機のファンモータ駆動回路30の電源とすることができる。
以上、本発明の実施形態について説明したが、本発明の実施形態は上記の内容に限定されることはない。例えば、ダイオード群16よりも電源側に平滑回路のリアクトルLinがある場合でも、リアクトルLinよりも電源側からコンデンサCssを接続し、充電をおこなう。具体的には、図3の回路10bのように、リアクトルLinよりも電源側からリアクトルLss、抵抗Rss、整流回路(第2の整流回路)34を介してコンデンサ(第2のコンデンサ)Cssに充電をおこなう。コンデンサCssは、図1と同様に電解コンデンサである。リアクトルLssと抵抗Rssは、電流の波形改善や減流の働きがある。整流回路34は、4つのダイオードDsbで全波整流をおこなう。これらの回路構成により、コンデンサCssの充電電圧は電源電圧レベルでほぼ一定に平滑され、一定電圧を必要とする回路の電源となる。整流回路34により、電流の逆流も防止され、コンデンサCssに充電された電気エネルギーが負荷14に流れるのを防止できる。
また、リアクトルLinがダイオード群16よりも後段にあったとしても、図4の回路10cのように、ダイオード群16よりも電源側に整流回路(第2の整流回路)34を接続し、整流回路34からコンデンサ(第2のコンデンサ)Cssの充電をおこなってもよい。図1や図3の回路10,10bと同様に、コンデンサCssは電源電圧の最大値で充電され、電源電圧レベルを最大定格電圧とする回路の電源とすることができる。
図1などの回路10で設けられた電流の波形改善や減流のためのリアクトルLssや抵抗Rssは、必要なければ設けなくてもよい。回路が簡略化できる。
各図面は単相のコンデンサレスインバータであったが、三相のコンデンサレスインバータであっても本発明を適用することができる。図5の回路10dは図1に対応し、図6の回路10eは図4に対応する。平滑回路のリアクトルLinよりも前段からコンデンサ(第2のコンデンサ)Cssに充電をおこなっている。コンデンサCssは、電源電圧レベルを最大定格電圧とする回路の電源とすることができる。
コンデンサCssを電源とするのは、ファンモータ駆動回路30だけに限定されるものではなく、インバータ回路20の制御回路26の電源にもできる。コンデンサCssを電源とする回路は、DC部18にある平滑コンデンサCdcの両端電圧の最大値よりも小さい電圧を最大定格電圧とする回路である。コンデンサCsとCssは、利用される回路の耐電圧によって適宜選択される。また、必要に応じてDC/DCコンバータを使用して所定の電圧に変換する。
その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。
10:電力変換回路
12:電源
14:負荷
16:ダイオード群
18:DC部
20:インバータ回路
22,24:電源線
26:制御回路
28:エネルギー吸収回路
30:ファンモータ駆動回路
32:DC/DCコンバータ
34:整流回路

Claims (8)

  1. 交流電源と負荷との間に設けられる電力変換回路において、
    前記交流電源の出力を整流するダイオードを含んだ第1の整流回路と、
    前記第1の整流回路の出力を平滑する第1のコンデンサとリアクトルとを含む平滑回路と、
    前記平滑回路の出力を受け、三相交流電流を出力するインバータ回路と、
    前記リアクトルよりも交流電源側から第2の整流回路を介して接続された第2のコンデンサと、
    を備え、
    前記第1のコンデンサの両端電圧の最大値が最小値の2倍以上である電力変換回路。
  2. 前記リアクトルが前記第1の整流回路よりも負荷側に設けられ、前記第1の整流回路と前記リアクトルの間に前記第2の整流回路を接続した請求項1の電力変換回路。
  3. 前記リアクトルが前記第1の整流回路よりも交流電源側に設けられ、交流電源と前記リアクトルの間に前記第2の整流回路を接続した請求項1の電力変換回路。
  4. 前記第2のコンデンサは、前記第1のコンデンサの両端電圧の最大値以下の電圧を最大定格電圧とした回路の電源となる請求項1乃至3の電力変換回路。
  5. 前記第2のコンデンサは電解コンデンサである請求項1乃至4の電力変換回路。
  6. 前記負荷が空気調和機の圧縮機に使用されるモータを含む請求項1乃至5の電力変換回路。
  7. 前記第2のコンデンサに接続される回路は、空気調和機の室外機のファンに使用されるモータの駆動回路を含む請求項1乃至6の電力変換回路。
  8. 前記第2のコンデンサに接続される回路は、前記インバータ回路のスイッチングを制御する制御回路を含む請求項1乃至6の電力変換回路。
JP2009194932A 2009-08-26 2009-08-26 電力変換回路 Pending JP2011050137A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194932A JP2011050137A (ja) 2009-08-26 2009-08-26 電力変換回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194932A JP2011050137A (ja) 2009-08-26 2009-08-26 電力変換回路

Publications (1)

Publication Number Publication Date
JP2011050137A true JP2011050137A (ja) 2011-03-10

Family

ID=43835916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194932A Pending JP2011050137A (ja) 2009-08-26 2009-08-26 電力変換回路

Country Status (1)

Country Link
JP (1) JP2011050137A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122878A1 (ja) * 2013-02-05 2014-08-14 パナソニック株式会社 モータ駆動装置およびそれを用いた電気機器
CN109302082A (zh) * 2018-09-28 2019-02-01 奥克斯空调股份有限公司 三相电源的变频控制器及空调器
CN112514226A (zh) * 2018-07-30 2021-03-16 弗罗纽斯国际有限公司 具有中间电路保护的逆变器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772898B2 (ja) * 2004-09-08 2006-05-10 ダイキン工業株式会社 多相電流供給回路及び駆動装置
JP2008206260A (ja) * 2007-02-19 2008-09-04 Yanmar Co Ltd 直流電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772898B2 (ja) * 2004-09-08 2006-05-10 ダイキン工業株式会社 多相電流供給回路及び駆動装置
JP2008206260A (ja) * 2007-02-19 2008-09-04 Yanmar Co Ltd 直流電源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122878A1 (ja) * 2013-02-05 2014-08-14 パナソニック株式会社 モータ駆動装置およびそれを用いた電気機器
CN112514226A (zh) * 2018-07-30 2021-03-16 弗罗纽斯国际有限公司 具有中间电路保护的逆变器
CN109302082A (zh) * 2018-09-28 2019-02-01 奥克斯空调股份有限公司 三相电源的变频控制器及空调器

Similar Documents

Publication Publication Date Title
JP4706987B2 (ja) 電力変換回路
US7804271B2 (en) Multiphase current supplying circuit, driving apparatus, compressor and air conditioner
JP6255577B2 (ja) 直流電源回路
KR100806774B1 (ko) Ac/dc 변환기 및 이를 이용한 ac/dc 변환 방법
KR101561341B1 (ko) 역률 보상 회로
KR101948976B1 (ko) 인버터 제어 회로
KR102374725B1 (ko) 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
JP2007282442A (ja) 交直変換回路
JP2011125102A (ja) 電動機駆動用インバータ装置
JPWO2012043466A1 (ja) 電力変換装置
JP2011050137A (ja) 電力変換回路
JP2018174642A (ja) 倍電圧整流回路及びモータ駆動装置
JP4543718B2 (ja) 電力変換装置
JP7471442B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP2006217753A (ja) 電源装置及び電子機器
JP2010283989A (ja) 電力変換装置
JP4674122B2 (ja) 電源装置
JP2016127677A (ja) 電力変換装置
KR101563900B1 (ko) 역률 개선용 3상 강압 공진형 능동정류기
CN212086071U (zh) 一种电机控制电路及空调设备
JP2016092929A (ja) インバータ回路
JP7014598B2 (ja) インバータ装置、昇圧回路制御方法及びプログラム
JPH10127046A (ja) 昇圧形コンバータの制御回路
JP2005224039A (ja) 電源装置
JP2013183533A (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119