JP2011027068A - 空気圧縮機 - Google Patents

空気圧縮機 Download PDF

Info

Publication number
JP2011027068A
JP2011027068A JP2009175756A JP2009175756A JP2011027068A JP 2011027068 A JP2011027068 A JP 2011027068A JP 2009175756 A JP2009175756 A JP 2009175756A JP 2009175756 A JP2009175756 A JP 2009175756A JP 2011027068 A JP2011027068 A JP 2011027068A
Authority
JP
Japan
Prior art keywords
air
pressure
electric motor
air compressor
air tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009175756A
Other languages
English (en)
Other versions
JP5263057B2 (ja
Inventor
Tomoyoshi Yokota
伴義 横田
Seiichi Kotado
誠一 古田土
Kenichi Matsunaga
健一 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2009175756A priority Critical patent/JP5263057B2/ja
Publication of JP2011027068A publication Critical patent/JP2011027068A/ja
Application granted granted Critical
Publication of JP5263057B2 publication Critical patent/JP5263057B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

【課題】簡素な構成で、連結された複数の空気圧縮機を効率良く使用することができる空気圧縮機を提供する。
【解決手段】空気圧縮機100の1対の空気タンク131(131a、131b)と空気圧縮機200の1対の空気タンク231(231a、231b)は、エアホース300を介して連通している。空気圧縮機100、200は、運転停止中に圧力センサ133、233の検出信号から算出した空気タンク131、231内の圧力の時間変化率が正、すなわち圧力が上昇していると判別すると、電動モータ120、220の運転を再開する。従って、空気圧縮機100、200は、一方の空気圧縮機が先に再起動圧力を検出して運転を再開すると、他方の空気圧縮機は空気タンク内の圧力上昇を検出して運転を再開する。
【選択図】図1

Description

本発明は、空気工具等に用いられる圧縮空気を生成する空気圧縮機に関する。
従来、建築現場等では、圧縮空気の圧力で釘やネジを木材等に打ち込む携帯型の空気工具が使用されている。しかし、近年、建築市場では工法の変化により、空気工具による圧縮空気の消費量が増大しており、1台の空気圧縮機では圧縮空気の供給が追いつかない場合がある。このため、複数台の空気圧縮機の空気タンクをホースを介して連通させて使用する方法が知られている。また、複数台の空気圧縮機を接続して運転をする場合に、専用の外部接続ケーブルで空気圧縮機を接続して運転制御をおこなうシステムが提案されている。(例えば特許文献1、及び特許文献2)。
特開2005−337204号公報 特開2007−332946号公報
複数の空気圧縮機を連結して使用した場合、各々の空気圧縮機の圧力センサに誤差がなければ複数の空気圧縮機は完全に同調する。しかし、一般に高圧の圧縮空気の圧力を正確に測定することは容易でないため、圧力センサの測定値には若干のばらつきが生じる場合がある。各空気圧縮機の空気タンクに設けられた圧力センサの測定値のばらつきにより、先に再起動設定圧力値を検出した空気圧縮機のみが運転してしまい、運転する圧縮機に偏りが生じる恐れがある。一方の空気圧縮機のみが運転する状況が続くと、空気圧縮機の寿命にも偏りが生じてしまう恐れがある。
また、特許文献1、及び特許文献2に記載されているシステムでは、複数台の空気圧縮機の運転を制御するために、専用の外部接続ケーブルが必要であり、空気圧縮機本体には外部接続用のポートを設ける必要があるため、空気圧縮機の構成が複雑となる。
本発明はかかる問題点に鑑みてなされたものであって、簡素な構成で、連結された複数の空気圧縮機を効率良く使用することができる空気圧縮機を提供することを目的とする。
上記目的を達成するため、本発明の第1の観点に係る空気圧縮機は、
圧縮空気を生成する圧縮装置と、
前記圧縮装置を駆動する電動モータと、
前記圧縮装置で生成された圧縮空気を貯留し、他の空気圧縮機の空気タンクとエアホースを介して連通する空気タンクと、
前記空気タンク内の圧力を検出する圧力センサと、
前記電動モータの運転を制御する制御回路部と、
を備える空気圧縮機であって、
前記制御回路部は、
前記圧力センサにより検出された前記空気タンク内の圧力が所定の圧力よりも大きいと判別した場合、前記電動モータの運転を停止し、
前記圧力センサにより検出された前記空気タンク内の圧力に基づいて演算された前記空気タンク内の圧力の時間変化率が正であると判別した場合、前記電動モータの運転を開始する、ことを特徴とする。
前記制御回路部は、前記圧力センサにより検出された前記空気タンク内の圧力に基づいて演算された前記空気タンク内の圧力の時間減少率が所定の時間減少率よりも大きいと判別した場合、前記電動モータの運転を開始してもよい。
前記空気タンクが他の空気圧縮機の空気タンクと連通している状態で前記電動モータを運転させるモードと、前記空気タンクが他の空気圧縮機の空気タンクと連通していない状態で前記電動モータを運転させるモードとに切り替える切替手段をさらに備え、
前記制御回路部は、前記切替手段により切り替えられたモードに基づいて、前記所定の時間減少率を第1の所定値と第2の所定値とに切り替えてもよい。
前記制御回路部は、前記圧力センサにより検出された前記空気タンク内の圧力が所定の圧力よりも小さいと判別した場合、前記電動モータの運転を開始してもよい。
本発明によれば、簡素な構成で、連結された複数の空気圧縮機を効率良く使用することができる。
第1の実施形態に係る空気圧縮機の側面図である。 第1の実施形態に係る空気圧縮機の正面図である。 第1の実施形態に係る空気圧縮機の回路構成図である。 第1の実施形態に係る制御部の運転制御処理のフローチャートである。 (a)は従来の空気圧縮機における空気タンク内圧力と電動モータの運転状態の時間推移を示す図、(b)は第1の実施形態に係る空気圧縮機における空気タンク内圧力と電動モータの運転状態の時間推移を示す図である。 第2の実施形態に係る空気圧縮機の回路構成図である。 第2の実施形態に係る制御部の運転制御処理のフローチャートである。
以下、本発明の第1の実施形態に係る空気圧縮機100を図面を用いて説明する。図1に示すように、空気圧縮機100は、圧縮装置110と、電動モータ120と、空気タンク部130と、操作パネル部140と、制御回路部150と、から構成される。また、空気圧縮機100の空気タンク部130は、その取出口132からエアホース300を介して他の空気圧縮機200の空気タンク部230と連通している。なお、空気圧縮機200の構成は以下に説明する空気圧縮機100の構成と同様である。
圧縮装置110は、シリンダ内のピストンを電動モータ120により往復運動させ、シリンダの吸気弁からシリンダ内に引き込まれた空気を圧縮することにより、圧縮空気を生成する。生成された圧縮空気は、シリンダの排気弁から排気され、配管を通って空気タンク部130に貯留される。
電動モータ120は、圧縮装置110のピストンを往復運動させるための駆動力を発生させるもので、電動モータ120の回転軸に取り付けられたクランク軸を介してピストンを往復運動させる。また、電動モータ120は、制御回路部150により、その運転の開始・停止等を制御される。
電動モータ120とともに圧縮装置110を間に挟むようにして冷却ファン121が設けられる。冷却ファン121は、電動モータ120の回転軸に取り付けられ、圧縮装置110を通風冷却する。
空気タンク部130は、図1及び図2に示すように、長胴型に形成された1対の空気タンク131(131a、131b)から構成される。空気タンク131aと空気タンク131bとは連結管により連通しており、圧縮装置110で生成された圧縮空気は、配管を介して空気タンク部130に供給され、空気タンク131aと空気タンク131bの双方に貯留される。空気タンク131aは、図1に示すように圧縮空気を取り出すための取出口132を備えており、空気圧縮機200の空気タンク231aと、公知の構造の継手により着脱可能なエアホース300を介して連通している。このようにして、空気圧縮機100は空気タンク131の容量を増大させている。また、空気圧縮機100の空気タンク131と、空気圧縮機200の空気タンク231とは連通している。
また、空気タンク130aには、内部の圧縮空気の圧力を検出するための圧力センサ133が設けられている。圧力センサ133による検出信号は、制御回路部150に送られ、電動モータ120の運転制御に用いられる。
また、空気タンク部130は、図2に示すように、空気タンク131に貯留された圧縮空気を所定の圧力に減圧して空気工具等へ供給するための減圧弁134a、134bを備える。
操作パネル部140は、電動モータ120の電源のON・OFF操作を行うための電源スイッチ141と、例えば空気タンク131内の圧力や警告を表示するLED(Light-Emitting Diode)を有する出力部142とから構成される。
制御回路部150は、図3に示すように、制御部151と、電源回路152と、駆動回路153と、電流監視回路154と、から構成される。
制御部151は、例えば、内部にタイマを備えるCPU(Central Processing Unit)と、ワークエリアとなるRAM(Random Access Memory)と、電動モータ120の運転制御プログラム等を格納するROM(Read-Only Memory)とから構成される。制御部151は、圧力センサ133からの検出信号を受信し、その検出信号が示す圧力P(t)と、予めROMに記憶されている停止圧力PSTOP、再起動圧力PSTART、再起動圧力降下ΔPSTART等に基づき、駆動回路153を介して電動モータ120の運転を制御する。ここで、「停止圧力」とは、電動モータ120の運転を停止する際の空気タンク131内の圧縮空気の圧力、「再起動圧力」とは、電動モータ120の運転を再開する際の空気タンク131内の圧縮空気の圧力を示す。従って、制御部151により、空気タンク131内の圧力は、停止圧力PSTOPと再起動圧力PSTARTとの間の圧力となるように維持される。また、「再起動圧力降下」とは、電動モータ120の運転を再開する際における空気タンク131内の圧縮空気の所定時間ΔT内の圧力Pの減少量を示す。なお、本実施形態では、上記数値の一例として、PSTOP=4.4MPa、PSTART=3.2MPa、ΔT=3sでのΔPSTART=0.05MPaである場合について説明する。
電源回路152は、整流回路、平滑回路、定電圧回路等から構成され、交流電源400から電動モータ120等に供給される電源を直流に変換する。
駆動回路153は、制御部151からの制御信号に従って、電動モータ120の運転開始・停止を制御する。
電流監視回路154は、電動モータ120に供給される電流を検出し、その検出信号を制御部151に送信する。
次に、本実施形態において制御部151が行う電動モータ120の運転制御処理について図4を用いて説明する。
制御部151は、空気圧縮機100が交流電源400に接続され、電源スイッチが操作されることにより、運転制御処理を開始する。
制御部151は、駆動回路153に電動モータ120の運転開始の制御信号を送信する。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を開始し、電動モータ120が運転を開始する(ステップS101)。
次に制御部151は、圧力センサ133から送信される検出信号のサンプリングを開始する(ステップS102)。制御部151は、所定時間毎(例えば1秒毎)にサンプリングを行い、サンプリングされた検出信号により示される空気タンク131内の圧力P(t)をRAMに記憶する。
次に制御部151は、ステップS102で記憶された圧力P(t)が停止圧力PSTOP=4.4MPa以上か否かを判別する(ステップS103)。
圧力P(t)が4.4MPa以上でないと判別した場合(ステップS103;No)、制御部151は、圧力P(t)が4.4MPa以上となるまで待ち状態となる。
圧力P(t)が4.4MPa以上であると判別した場合(ステップS103;Yes)、制御部151は、駆動回路153に電動モータ120の運転を停止する旨の制御信号を送信する(ステップS104)。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を停止し、電動モータ120は運転を停止する。
次に制御部151は、RAMに記憶された圧力P(t)から、圧力P(t)の時間変化率ΔP/ΔTを算出し、算出されたΔP/ΔTが正か否かを判別する(ステップS105)。ここで、ΔP/ΔTを算出する方法としては、例えば、ある時点における圧力値P(t)と所定時間ΔT後(例えばΔT=3s)における圧力P(t+ΔT)との差ΔP=P(t+ΔT)−P(t)を算出し、そこからΔP/ΔTを算出する。
ΔP/ΔTが正であると判別した場合(ステップS105;Yes)、制御部151は、ステップS101に戻り、電動モータ120の運転開始の制御信号を駆動回路153に送信する。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を開始し、電動モータ120が運転を開始する。ここで、電動モータ120の運転を開始するのは、電動モータ120が運転していないにもかかわらず、ΔP/ΔTが正、すなわち空気タンク131内の圧力が上昇しているのは、エアホース300を介して連結している別の空気圧縮機200が運転しているためである。従って、運転する空気圧縮機の偏りをなくすため、制御部151は空気タンク131内の圧力上昇を検出すると電動モータ120の運転を開始させる。
ΔP/ΔTが正でないと判別した場合(ステップS105;No)、制御部151は、圧力P(t)が再起動圧力PSTART=3.2MPaよりも小さいか否かを判別する(ステップS106)。
圧力P(t)が再起動圧力PSTART=3.2MPaよりも小さいと判別した場合(ステップS106;Yes)、制御部151は、ステップS101に戻り、電動モータ120の運転を開始する旨の制御信号を送信する。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を開始し、電動モータ120が運転を開始する。
次に制御部151は、圧力P(t)が4MPaよりも小さいか否かを判別する(ステップS107)。
圧力P(t)が4MPaよりも小さくないと判別した場合(ステップS107;No)、制御部151は、ステップS105に処理を戻す。ここで、圧力P(t)が4MPaよりも小さくない、すなわちP(t)が4MPa以上の場合にステップS105へ処理を戻すのは、電動モータ120の停止直後に瞬間的に大量の圧縮空気が消費され、その後すぐに作業が中断されるような場合に、電動モータ120の運転と停止が短いサイクルで繰り返されることを防ぐためである。
圧力P(t)が4MPaよりも小さいと判別した場合(ステップS107;Yes)、制御部151は、所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔPSTART=0.05MPaよりも大きいか否かを判別する(ステップS108)。ここで、圧力降下−ΔPは、ある時点における圧力P(t)と所定時間ΔT=3sにおける圧力P(t+ΔT)との差ΔP=P(t+ΔT)−P(t)から、−ΔP=−{P(t+ΔT)−P(t)}=P(t)−P(t+ΔT)のように算出される。
所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔPSTART=0.05MPaよりも大きいと判別した場合(ステップS108;Yes)、制御部151はステップS101に戻り、電動モータ120の運転開始の制御信号を駆動回路153に送信する。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を開始し、電動モータ120が運転を開始する。このように、圧力降下−ΔPが再起動圧力降下ΔPSTARTよりも大きい場合、すなわち圧縮空気の消費速度が所定の速度よりも速い場合に、空気タンク131内の圧力P(t)が再起動圧力PSTARTに達する前に電動モータ120の運転を再開させることで、空気工具等に対してスムーズに圧縮空気を供給できる。
所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔPSTART=0.05MPaよりも大きくない、すなわち−ΔPが0.05MPa以下であると判別した場合(ステップS108;No)、制御部151は、ステップS105に処理を戻す。
次に、上述したように構成される空気圧縮機100の動作を図5を用いて説明する。
まず、圧力センサの検出信号に基づいて、停止圧力PSTOPと再起動圧力PSTARTとの間に空気タンク内の圧力Pを維持するように制御される従来の空気圧縮機500、600の動作について図5(a)を用いて説明する。図5(a)において、上図は空気圧縮機500、600の空気タンク内圧力Pの時間変化を表したグラフである。また、中図及び下図は、それぞれ空気圧縮機500、600の電動モータの運転状態を表す図である。ここで、電動モータの運転状態を表す図において、「ON」と記載された矩形は電動モータが運転している状態を表し、何も記載されていない空間は、電動モータが運転していない状態を表す。なお、2台の空気圧縮機500、600の空気タンクはエアホースを介して連通しているため、両空気タンク内の圧力は同一と考えられる。また、空気圧縮機500の圧力センサが再起動圧力PSTARTを検出する時の空気タンク内圧力をPSTART+ΔP500、空気圧縮機600の圧力センサが再起動圧力PSTARTを検出する時の空気タンク内圧力をPSTART+ΔP600とする。ここで、空気圧縮機500の圧力センサおよび空気圧縮機600の圧力センサの測定誤差をそれぞれΔP500およびΔP600とし、ΔP500<ΔP600であるとする。
まず、時刻t=0で、2台の空気圧縮機500、600の電動モータは同時に電源スイッチがONにされることにより、運転を開始する。そして、空気圧縮機500、600の空気タンク内圧力は増加していき、時刻t=tにて停止圧力PSTOP=4.4MPaに達するため、空気圧縮機500、600の電動モータは運転を停止する。
そして、空気タンク内の圧縮空気が消費され、空気タンク内の圧力が減少していくと、時刻t=tにおいて空気圧縮機600の圧力センサが空気圧縮機500の圧力センサよりも先に再起動圧力PSTART=3.2MPaを検出するため、空気圧縮機600の電動モータは運転を再開する。従って、両空気タンク内の圧力は上昇する。この時、空気圧縮機500の圧力センサは再起動圧力である3.2MPaを検出していない状態で空気タンク内の圧力が上昇するため、空気圧縮機500の電動モータは運転を再開しないまま、空気圧縮機600の電動モータのみが運転している状態である。
そして、時刻t=tにおいて両空気タンク内の圧力が再び停止圧力PSTOP=4.4MPaに達すると、空気圧縮機600の電動モータは運転を停止する。そして、圧縮空気が消費され、両空気タンク内の圧力が減少していくと、時刻t=tにおいて、時刻t=tの時と同様に空気圧縮機600の電動モータのみが運転を再開する。
このように、空気圧縮機500、600の圧力センサの測定値にばらつきがあると、空気圧縮機600の電動モータのみが運転を繰り返すことになり、運転する空気圧縮機に偏りが生じる。
次に、本実施形態に係る空気圧縮機100、200の空気タンク131、231を連通させて運転させる場合の動作を図5(b)を用いて説明する。図5(b)は、上図が空気圧縮機100、200の空気タンク内圧力Pの時間変化を表したグラフである。中図及び下図は、それぞれ空気圧縮機100、200の電動モータ120、220の運転状態を表す図であり、表し方は図5(a)と同様である。また、空気圧縮機100の圧力センサ133が再起動圧力PSTARTを検出する時の空気タンク内圧力をPSTART+ΔP100、空気圧縮機200の圧力センサ233が再起動圧力PSTARTを検出する時の空気タンク内圧力をPSTART+ΔP200とする。ここで、空気圧縮機100の圧力センサ133および空気圧縮機200の圧力センサ233の測定誤差をそれぞれΔP100およびΔP200とし、ΔP100<ΔP200であるとする。
まず、時刻t=0で、2台の空気圧縮機100、200の電動モータ120、220は同時に電源スイッチがONにされることにより、運転を開始する。そして、空気圧縮機100、200の空気タンク内圧力Pは増加していき、時刻t=tにて停止圧力PSTOP=4.4MPaに達するため、空気圧縮機100、200の電動モータ120、220は運転を停止する。
そして、空気タンク内の圧縮空気が消費され、空気タンク内圧力Pが減少していくと、時刻t=tにおいて空気圧縮機200の圧力センサ233が空気圧縮機100の圧力センサ133よりも先に再起動圧力PSTART=3.2MPaを検出するため、空気圧縮機200の電動モータ220は運転を再開する。従って、両空気タンク内の圧力は上昇する。そして、時刻t=tにおいて空気圧縮機100の制御部151は、空気タンク131内の圧力が上昇していることを判別し、電動モータ120の運転を開始させる。従って、空気圧縮機100、200の両方の電動モータ120、220が運転を行う。
そして、時刻t=tにおいて空気タンク内圧力Pが再び停止圧力PSTOP=4.4MPaに達すると、空気圧縮機100、200の電動モータ120、220は運転を停止する。そして、圧縮空気が消費され、空気タンク内圧力Pが減少していくと、時刻t=tにおいて、時刻t=tの時と同様にまず空気圧縮機200の電動モータ220のみが運転を再開し、続いて時刻t=tにおいて空気タンク内の圧力上昇を検出した空気圧縮機100の電動モータ120が運転を再開する。
このように、空気圧縮機100、200は、自身の電動モータ120、220が運転しておらず、かつ自身の空気タンク131、231内の圧力が上昇していることを検出して電動モータ120、220の運転を再開するため、それぞれの圧力センサ133、233の測定値にばらつきがあっても、一方の空気圧縮機のみが運転を行うことを防止することができる。さらに、上述したように空気圧縮機を動作させるためには、従来の空気圧縮機に対して、本実施形態に係る運転制御プログラムを適用するだけでよく、特別な配線等は必要としない。
続けて、圧縮空気の消費速度が所定の速度よりも速い場合の空気圧縮機100、200の動作を説明する。図5(b)の時刻t=tにおいて空気タンク内圧力Pが停止圧力PSTOP=4.4MPaに達すると、空気圧縮機100、200の電動モータ120、220は運転を停止する。そして、時刻t=tにおいて、空気圧縮機100、200は空気タンク内圧力が4.0MPaよりも小さく、かつ圧力降下−ΔPが再起動圧力降下ΔPSTART=0.05MPaよりも大きい、すなわち圧縮空気の消費速度が所定の速度よりも速いことを検出すると、再起動圧力PSTART=3.2MPaを検出する前に運転を再開する。
このように、圧縮空気の消費速度が所定の速度よりも速い場合に、空気タンク内圧力が再起動圧力に達する前に電動モータの運転を再開させることで、空気工具等にスムーズに圧縮空気を供給することができる。
次に、本発明の第2の実施形態に係る空気圧縮機100Aを図面を用いて説明する。空気圧縮機100Aは、図6に示すように操作パネル部140に切替スイッチ143を備えている点、及び後述するように制御部151が切替スイッチ143により再起動圧力降下ΔPSTARTの値を切り替える点で第1の実施形態に係る空気圧縮機100と異なる。なお、第1の実施形態に係る空気圧縮機100と同様の構成要素については同一の符号を付し、その説明を省略する。
切替スイッチ143は、操作パネル部140に設けられ、空気圧縮機100Aの空気タンク131を他の空気圧縮機の空気タンクと連通させて使用するモード(複数連結モード)と、他の空気圧縮機の空気タンクと連通させずに空気圧縮機100Aを単体で使用するモード(単体モード)の何れかに切り替えるためのスイッチである。切替スイッチ143は、複数連結モードと単体モードのうち何れのモードに切り替えられているかを示すモード信号を制御部151に送信する。
制御部151は、予めROMに単体モード時の再起動圧力降下ΔP1STARTと、複数連結モード時の再起動圧力降下ΔP2STARTとを記憶している。そして、制御部151は、切替スイッチ143からのモード信号に基づいて、圧縮空気の消費速度が速いか否かを判別する基準となる再起動圧力降下ΔPSTARTの値を切り替える。なお、本実施形態では、上記数値の一例として、ΔT=3sでのΔP1START=0.05MPa、ΔP2START=0.025MPaである場合について説明する。
次に、本実施形態において制御部151が行う電動モータ120の運転制御処理について図7を用いて説明する。
制御部151は、空気圧縮機100Aが交流電源400に接続されることにより、運転制御処理を開始する。なお、その後のステップS101からステップS107までの処理は第1の実施形態と同様であるため、その説明を省略する。
圧力P(t)が4MPaよりも小さいと判別した場合(ステップS107;Yes)、制御部151は、切替スイッチ143から受信したモード信号が示すモードが単体モードであるか否かを判別する(ステップS109)。
モード信号が示すモードが単体モードであると判別した場合(ステップS109;Yes)、制御部151は所定時間ΔT=3s後の圧力降下−ΔPが単体モード時の再起動圧力降下ΔP1START=0.05MPaよりも大きいか否かを判別する(ステップS110)。なお、圧力降下−ΔPは、第1の実施形態のステップS108と同様に算出される。
また、モード信号が示すモードが単体モードでない、すなわち複数連結モードであると判別した場合(ステップS109;No)、制御部151は所定時間ΔT=3s後の圧力降下−ΔPが複数連結モード時の再起動圧力降下ΔP2START=0.025MPaよりも大きいか否かを判別する(ステップS111)。なお、圧力降下−ΔPは、第1の実施形態のステップS108と同様に算出される。
そして、所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔP1START=0.05MPaよりも大きいと判別した場合(ステップS110;Yes)、または所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔP2START=0.025MPaよりも大きいと判別した場合(ステップS111;Yes)、制御部151はステップS101に戻り、電動モータ120の運転開始の制御信号を駆動回路153に送信する。この制御信号を受信した駆動回路153は、電動モータ120への電源供給を開始し、電動モータ120が運転を開始する。
所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔP1START=0.05MPaよりも大きくない、すなわち−ΔPが0.05MPa以下であると判別した場合(ステップS110;No)、または所定時間ΔT=3s後の圧力降下−ΔPが再起動圧力降下ΔP2START=0.025MPaよりも大きくない、すなわち−ΔPが0.025MPa以下であると判別した場合(ステップS111;No)、制御部151は、ステップS105に処理を戻す。
このように、本実施形態における空気圧縮機100Aは、単体モードと複数連結モードとを切り替える切替スイッチ143を備えている。ここで、複数連結モードでは空気タンク131の容量が全体として大きくなるため、単体モードの場合と比べて、同じ量の圧縮空気を使用した場合に圧力降下−ΔPが小さくなる。従って、切替スイッチ143により複数連結モードに切り替えられた場合に、制御部151が圧縮空気の消費速度が速いと判別する基準値である再起動圧力降下ΔPSTARTとして、単体モード時のΔP1STARTよりも小さな値であるΔP2STARTに切り替えることで、より正確な判別を行うことができる。
なお、本発明は、上記の実施形態に限定されず、種々の変形及び応用が可能である。
第1及び第2の実施形態では、電流監視回路154により、電動モータ120が運転しているか否かを判別している。しかし、電流監視回路154による電動モータ120が運転しているか否かの判別は念のための確認であり、電流監視回路154はなくてもよい。
また、第1及び第2の実施形態では、ステップS107において、空気タンク内の圧力P(t)が4MPaよりも小さいか否かを判別しているが、4MPaよりも大きな値であっても小さな値であってもよい。また、この処理はなくてもよい。
また、第1及び第2の実施形態では、圧力センサにより検出された圧力P(t)またはΔP/ΔTと、ROMに記憶された停止圧力ΔPSTOP等の設定値の大小関係から電動モータ120の運転停止・開始を制御しているが、圧力P(t)またはΔP/ΔTと設定値との偏差に基づきPID制御を行ってもよい。これにより、さらにきめ細かく電動モータ120の運転を制御することができる。
100、100A 空気圧縮機
110 圧縮装置
120 電動モータ
121 冷却ファン
130 空気タンク部
131(131a、131b) 空気タンク
132 取出口
133 圧力センサ
134a、134b 減圧弁
140 操作パネル部
141 電源スイッチ
142 出力部
143 切替スイッチ
150 制御回路部
151 制御部
152 電源回路
153 駆動回路
154 電流監視回路
200 空気圧縮機
220 電動モータ
230 空気タンク部
231(231a、231b) 空気タンク
233 圧力センサ
300 エアホース
400 交流電源
500、600 空気圧縮機

Claims (4)

  1. 圧縮空気を生成する圧縮装置と、
    前記圧縮装置を駆動する電動モータと、
    前記圧縮装置で生成された圧縮空気を貯留し、他の空気圧縮機の空気タンクとエアホースを介して連通する空気タンクと、
    前記空気タンク内の圧力を検出する圧力センサと、
    前記電動モータの運転を制御する制御回路部と、
    を備える空気圧縮機であって、
    前記制御回路部は、
    前記圧力センサにより検出された前記空気タンク内の圧力が所定の圧力よりも大きいと判別した場合、前記電動モータの運転を停止し、
    前記圧力センサにより検出された前記空気タンク内の圧力に基づいて演算された前記空気タンク内の圧力の時間変化率が正であると判別した場合、前記電動モータの運転を開始する、
    ことを特徴とする空気圧縮機。
  2. 前記制御回路部は、前記圧力センサにより検出された前記空気タンク内の圧力に基づいて演算された前記空気タンク内の圧力の時間減少率が所定の時間減少率よりも大きいと判別した場合、前記電動モータの運転を開始する、
    ことを特徴とする請求項1に記載の空気圧縮機。
  3. 前記空気タンクが他の空気圧縮機の空気タンクと連通している状態で前記電動モータを運転させるモードと、前記空気タンクが他の空気圧縮機の空気タンクと連通していない状態で前記電動モータを運転させるモードとに切り替える切替手段をさらに備え、
    前記制御回路部は、前記切替手段により切り替えられたモードに基づいて、前記所定の時間減少率を第1の所定値と第2の所定値とに切り替える、
    ことを特徴とする請求項2に記載の空気圧縮機。
  4. 前記制御回路部は、前記圧力センサにより検出された前記空気タンク内の圧力が所定の圧力よりも小さいと判別した場合、前記電動モータの運転を開始する、
    ことを特徴とする請求項1乃至3のいずれか1項に記載の空気圧縮機。
JP2009175756A 2009-07-28 2009-07-28 空気圧縮機 Active JP5263057B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175756A JP5263057B2 (ja) 2009-07-28 2009-07-28 空気圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175756A JP5263057B2 (ja) 2009-07-28 2009-07-28 空気圧縮機

Publications (2)

Publication Number Publication Date
JP2011027068A true JP2011027068A (ja) 2011-02-10
JP5263057B2 JP5263057B2 (ja) 2013-08-14

Family

ID=43636074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175756A Active JP5263057B2 (ja) 2009-07-28 2009-07-28 空気圧縮機

Country Status (1)

Country Link
JP (1) JP5263057B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730788A1 (en) * 2019-04-25 2020-10-28 Max Co., Ltd. Air compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0174389U (ja) * 1987-11-05 1989-05-19
JPH08296566A (ja) * 1995-04-26 1996-11-12 Kobe Steel Ltd 圧縮機の台数制御装置
JP2005214137A (ja) * 2004-01-30 2005-08-11 Hitachi Ltd 圧縮機
JP2007332946A (ja) * 2006-06-19 2007-12-27 Max Co Ltd 圧縮装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0174389U (ja) * 1987-11-05 1989-05-19
JPH08296566A (ja) * 1995-04-26 1996-11-12 Kobe Steel Ltd 圧縮機の台数制御装置
JP2005214137A (ja) * 2004-01-30 2005-08-11 Hitachi Ltd 圧縮機
JP2007332946A (ja) * 2006-06-19 2007-12-27 Max Co Ltd 圧縮装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730788A1 (en) * 2019-04-25 2020-10-28 Max Co., Ltd. Air compressor
US11274674B2 (en) 2019-04-25 2022-03-15 Max Co., Ltd. Air compressor

Also Published As

Publication number Publication date
JP5263057B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
US8784070B2 (en) Air compressor
CN100476208C (zh) 空气压缩机
US11131301B2 (en) Air compressor
US11274674B2 (en) Air compressor
US7017342B2 (en) Air compressor and control method therefor
US11378072B2 (en) Air compressor
JP2004316504A (ja) 空気圧縮機及びその制御方法
US7326038B2 (en) Pressure switch mechanism and air compressor using the same mechanism
JP5263057B2 (ja) 空気圧縮機
JP2007170216A (ja) 空気圧縮機
JP2007231816A (ja) 圧縮機
JP2004300996A (ja) 空気圧縮機及びその制御方法
JP5333319B2 (ja) 空気圧縮機
JP2012031789A (ja) 小型コンプレッサーの制御方法
US20100076658A1 (en) Method for controlling constant-pressure fluid
US11732704B2 (en) Air compressor
KR100478705B1 (ko) 부스터 펌프 연동 제어시스템
JP6676961B2 (ja) 空気圧縮機
JP2012154294A (ja) 気体圧縮装置の制御装置
JP6322115B2 (ja) 気体圧縮装置およびその起動方法
JP2011064113A (ja) 自動圧力タンク式ポンプ
JP2011220162A (ja) 空気圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5263057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350