JP2011021883A - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
JP2011021883A
JP2011021883A JP2010246363A JP2010246363A JP2011021883A JP 2011021883 A JP2011021883 A JP 2011021883A JP 2010246363 A JP2010246363 A JP 2010246363A JP 2010246363 A JP2010246363 A JP 2010246363A JP 2011021883 A JP2011021883 A JP 2011021883A
Authority
JP
Japan
Prior art keywords
accumulator
pipe
foreign matter
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010246363A
Other languages
English (en)
Other versions
JP4980459B2 (ja
Inventor
Masaki Toyoshima
正樹 豊島
Susumu Yoshimura
寿守務 吉村
Shinichi Wakamoto
慎一 若本
Osamu Morimoto
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010246363A priority Critical patent/JP4980459B2/ja
Publication of JP2011021883A publication Critical patent/JP2011021883A/ja
Application granted granted Critical
Publication of JP4980459B2 publication Critical patent/JP4980459B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】第1には配管洗浄時にアキュムレータから異物が圧縮機に戻ることがなく、第2には異物を短時間で回収可能にした冷凍空調装置を提供する。
【解決手段】熱源側ユニットは、既設配管内の異物を分離回収する機能を備えたアキュムレータと、アキュムレータで分離された異物を回収する回収容器と、アキュムレータの下部に接続され、流量調整手段を介して冷凍機油を圧縮機へ返油する返油配管と、圧縮機から四方弁へ至るまでの高圧側からバイパス弁を介してアキュムレータ手前又はアキュムレータへ接続するバイパス管とを備える。通常冷暖房運転時には返油配管に冷凍機油を流し、配管洗浄及び異物回収運転時には、流量調整手段を全閉とし、且つバイパス弁又は熱源側ユニット若しくは負荷側ユニットに内蔵される絞りを開閉することにより、回収容器とアキュムレータとの間に差圧を発生させて異物を回収容器へ引き込む。
【選択図】図1

Description

本発明は、既設の冷媒配管を用いて熱源側ユニットと負荷側ユニットとを接続して構成される空気調和装置に関し、特に、配管から洗浄回収した主に旧冷凍機油を主成分とする異物を分離し、回収容器に回収する技術に関するのものである。
冷凍空調機リプレースにおける既設配管再利用を目的とした配管洗浄においては、配管洗浄により回収される既設配管内に存在していた主に鉱油などの残留物が圧縮機に戻って新設の冷媒回路へ流れ込まないように鉱油などの残留物を分離回収する必要がある。これは、リプレース前の塩素を含むCFC(クロロフルオロカーボン)やHCFC(ハイドロクロロフルオロカーボン)に用いられていた鉱油などの冷凍機油は、リプレース後の塩素を含まない新冷媒HFC系(ハイドロフルオロカーボン)などとは相溶しないためであり、旧冷凍機油が多量に冷凍サイクル中に残留すると異物(コンタミネーション)となって、圧縮機が壊れるなどの問題が発生する可能性がある。
そこで従来より、配管洗浄で回収される異物(主に旧冷凍機油)を分離回収する技術が開発されており、その例として、アキュムレータを冷媒と異物の分離手段として用い、分離回収された異物をアキュムレータ下部に設けた回収容器に回収するものがある(例えば特許文献1参照)。また、アキュムレータを冷媒と異物の分離手段として用い、分離回収された異物を回収容器に回収する技術として、油回収速度を増大させるためにアキュムレータ出口管に回収容器のガス抜き用の配管を接続し、配管圧損差圧分の吸引効果アップを利用したものがある(例えば特許文献2,3,4参照)。
特開2003−302127号公報(図1、図2) 特開2004−069101号公報(図1、図3) 特開2004−085037号公報(図1、図2) 特開2004−219016号公報(図1、図2)
従来は、分離手段であるアキュムレータの出口管下部に油戻し用の穴を有したU字管を用いていたため、起動時などに異物や液冷媒が多量にアキュムレータへ戻った場合には、異物がU字管の穴を経由して圧縮機に戻ってしまう可能性があった。
また、従来の分離手段である、出口管下部に油戻し用の穴を有したU字管を内蔵したアキュムレータを用いる方法では、アキュムレータの出口配管を2本として、U字管と圧縮機とを接続する方の配管の途中に電動弁を設け、配管洗浄時にはこの弁を閉じることにより、起動時などに異物や液冷媒が多量にアキュムレータへ戻った場合にも異物がU字管の穴を経由して圧縮機に戻ってしまうことを防いでいたが、φ28.7などの大口径である吸入配管に対応した電磁弁は高価であり、また圧縮機に直接繋がる配管に大型の弁を設けると配管が振動で折れる可能性がある、などの不都合があった。
また、上記の電磁弁を閉じていてもU字管内では油戻し穴高さ位置まで異物が滞留して抜けなくなってしまうため、配管洗浄後に弁を開放して通常運転に戻る際に残異物が圧縮機へ戻ってしまうという課題があった。一般にU字管を含めた圧縮機の吸入配管は大口径(φ28.6mmなど)であり、油戻し穴高さより下の容積は大きく、無視できないほど多くの異物が圧縮機へ戻る可能性があった。
また、従来のアキュムレータを分離回収器として利用しアキュムレータに回収された異物を回収容器に回収する技術では、異物回収の駆動力として回収容器をアキュムレータの下方に設置し、そのヘッド差のみを利用していた。しかし、熱源機ユニット内の設置スペース制約から、ヘッド差を大きく取ることは困難であり吸引力が弱く、回収に多大の時間が掛かり工事性を悪化させるという課題があった。特に暖房期の外気温度が低いときには異物の主成分である油の温度低下に伴い油粘度が上昇するため、その傾向が顕著に現れていた。油の粘度は温度低下に対し急激に粘度が上昇する傾向がある。
また、従来のアキュムレータを分離回収器として利用してアキュムレータに回収された異物を回収容器に回収する技術では、異物回収の吸引力を増大させるためにアキュムレータ出口側(圧縮機吸込側)と回収容器のガス抜き管とを接続していた。このため、回収容器内の異物がオーバーフローして圧縮機に多量に戻る恐れがあった。また、これを防止するためにフロート弁、のぞき窓などを設けていたが、高価であり、フロート弁作動不良時には鉱油がオーバーフローして圧縮機に戻ってしまう恐れがあった。
また、従来のアキュムレータを分離回収器として利用してアキュムレータに回収された異物を回収容器に回収する技術では、回収容器を新冷媒用油補充用の容器として兼用し、予め回収容器に新冷媒用の油を封入して配管洗浄に流出した新冷媒用油の補充に用いていたが、この方法では、新冷媒用油の補充が完了するまで異物回収が行えないため、外気低温時に油粘度が上昇した際には新冷媒用油補充に多大な時間を要し全体の工程時間が長くなり、工事性が悪化するという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、少なくとも、第1には配管洗浄時にアキュムレータから異物が圧縮機に戻ることがなく、第2には異物を短時間で回収することを可能にした冷凍空調装置を提供することを目的とする。
本発明に係る冷凍空調装置は、
熱源側ユニットと負荷側ユニットとを既設の冷媒配管で接続してなる冷凍空調装置において、
前記熱源側ユニットは、
既設配管内の異物を分離回収する機能を備えたアキュムレータと、
前記アキュムレータで分離された異物を回収する回収容器と、
前記アキュムレータの下部に接続され、流量調整手段を介して冷凍機油を圧縮機へ返油する返油配管と、
前記圧縮機から四方弁へ至るまでの高圧側から、バイパス弁を介してアキュムレータ手前又はアキュムレータへ接続するバイパス管と
を備え、
通常冷暖房運転時には前記返油配管に冷凍機油を流し、
配管洗浄及び異物回収運転時には、
前記流量調整手段を全閉とし、且つ、
前記バイパス弁又は熱源側ユニット若しくは負荷側ユニットに内蔵される絞りを開閉することにより、前記回収容器と前記アキュムレータとの間に差圧を発生させて異物を前記回収容器へ引き込む。
本発明においては、熱源側ユニットと負荷側ユニットを既設の冷媒配管で接続してなる空調装置において、配管洗浄及び異物回収運転時には、前記流量調整手段を全閉とし、且つ、前記のバイパス弁又は熱源側ユニット若しくは負荷側ユニットに内蔵される絞りを開閉することにより、前記回収容器と前記アキュムレータとの間に差圧を発生させて異物を前記回収容器へ引き込むようにしたので、配管洗浄時にはアキュムレータから異物が圧縮機へ戻されず、異物が新冷凍機油に混入することがなく、確実に異物回収が行われる。
本発明の実施の形態1の冷凍空調装置の冷媒回路図。 本発明の実施の形態1の油回収装置のガス戻し部断面詳細図(軸方向)。 本発明の実施の形態1の油回収装置のガス戻し部断面詳細図(半径方向)。 本発明の実施の形態1の油回収装置の説明図。 本発明の実施の形態1の作業フローを示す図。 本発明の実施の形態1のアキュムレータ内水平方向の流れを表す図。 本発明の実施の形態2の冷凍空調装置の冷媒回路の一部を示す断面図(その1)。 本発明の実施の形態2の冷凍空調装置の冷媒回路の一部を示す断面図(その2)。 本発明の実施の形態2の冷凍空調装置の冷媒回路の一部を示す断面図(その3)。
実施の形態1.
図1は本発明の実施の形態1の冷凍空調装置の冷媒回路構成を表す図である。図1において、熱源側ユニット100は、アキュムレータ8、圧縮機1、油分離器10、四方弁2、熱源側熱交換器3及び圧力調整弁12を備えており、これらを順に接続して熱源側ユニット100のメイン回路を構成している。また、負荷側ユニット200は絞り装置5a、5b、及び負荷側熱交換器6a、6bから構成されており、熱源側ユニット100と負荷側ユニット200とは、既設の液冷媒配管13と既設のガス冷媒配管14、液側ボールバルブ4とガス側ボールバルブ7にて接続されている。
また、熱源側ユニット100は、低圧部に設けられた圧力センサー16と、圧縮機1の吸入側で、アキュムレータ8の手前の温度を測定する温度センサー17とを備えている。図の符号16、17の位置に圧力センサー、温度センサーを設けることにより、アキュムレータ8の入口の冷媒加熱度の検出が可能となる。ここで、温度センサー17の位置をアキュムレータ8の入口側としたのは、アキュムレータ8の入口の冷媒加熱度を制御し、液冷媒がアキュムレータ8に戻らない運転を実現するためである(詳細は後述)。なお、圧力センサー16の位置については図示の位置に限られたものではなく、四方弁2から圧縮機1の吸入側に至るまでの区間であれば、何処の場所に設けられていてもよい。
また、熱源側ユニット100はオイルタンク11を備えており、このオイルタンク11の上部には、油分離器10の下部と返油用毛細管18aの間の冷媒回路を分岐した配管が接続されている。オイルタンク11の別の上部は、配管にて圧縮機吸入配管と接続される。さらに、オイルタンク11の下部からは電磁弁15bを介して返油用毛細管18aと圧縮機吸入配管との間に接続する配管へ接続される。また油分離器10の出口側とアキュムレータ8の入口側はバイパス電磁弁30を介して接続されており、バイパス電磁弁30を開くことで、圧縮機1の高温高圧ガスをアキュムレータ8の手前に導くことができる。なお、図1ではバイパス回路の高圧側接続部を油分離器10の出口側としているが、油分離器10の手前側に接続してもよい。
続いて、熱源側ユニット100内に内蔵された異物回収装置110の構成について説明する。なお、本実施の形態における異物とは主に旧冷凍機油のことであり、以降、旧冷凍機油と既設配管中に残留する異物とを総称して異物と表現する。異物回収装置110は、アキュムレータ8、回収容器9及びこれらに付随する配管や弁類から構成されており、アキュムレータ8が異物分離手段として機能し、アキュムレータ8に貯留された異物を回収容器9へ回収する。
アキュムレータ8には主冷媒回路の入口管(アキュムレータ入口管8a)と出口管(アキュムレータ出口管8b)とが接続されている。アキュムレータ入口管8aは開口部がアキュムレータ8の上部に位置しており、流入ガスが壁面に水平、又は水平より若干下方に沿う流れとなるように、管の出口が管壁面水平方向に向くように曲げられている。アキュムレータ出口管8bは開口部がアキュムレータ8の上方に位置しており、アキュムレータ8内に液体が多量に貯留しない限り液体を直接吸い込まない構成となっている。アキュムレータ8の底部には、アキュムレータ8に貯留された異物を回収するため回収配管24aと、通常冷暖房運転時に油を圧縮機1へ返油するための返油配管24bとが接続されている。回収配管24aは流量調整弁21a及びボールバルブ22aを介して回収容器9の上部に接続されている。回収容器9はアキュムレータ8の下方に設けられており、アキュムレータ8の底面と回収容器9の上下方向の位置関係は、回収容器9の上端で回収配管24aが接続される部位よりもアキュムレータ8の底面が高い位置となるように設置されている。これにより異物回収の際にヘッド差の利用が可能となり回収速度を速くすることができる。
返油配管24bは、流量調整弁21bを介してアキュムレータ8と圧縮機1の間のアキュムレータ後吸入管28へ接続されている。返油配管24bは2分岐されてアキュムレータ後吸入管28と上下2箇所で接続されているが、これはアキュムレータ8の液面高さ変化に対応するためで、通常は液面が低いため下方接続配管を通して油が返油されるが、過渡的に液面が高くなった際には上方に位置する接続配管からも返油されることにより、油がアキュムレータ8に多量に溜まり、圧縮機1に油を早く返す必要があるときに返油速度を大きくして対応することが可能となる。
回収配管24a及び返油配管24bは、液体を流すための配管であり主冷媒管よりも細く、また回収容器9は鉛直下方に設置しているため、異物回収の際に異物が配管内に滞留し、主冷媒回路側に残ることはない。また、回収配管24aから返油配管24bが分岐して流量調整弁21bに至るまでの部分はトラップなどの滞留部がなく、分岐部を鉛直下方にして設置するため、この部分についても異物が滞留する可能性はなく、異物回収運転後に異物が圧縮機1へ戻ることはない。
回収容器9の上部には、異物回収時に異物を吸引するためのガス抜き管25が設けられており、ガス抜き管25はボールバルブ22b、電磁弁15cを介してアキュムレータ前吸入管27へ接続されている。また、ガス抜き管25にはボールバルブ22bと電磁弁15cを迂回するように圧力逃し弁23が並列に接続されている。圧力逃し弁23は回収容器9の内圧が上昇した場合に適宜開いて圧力を逃す構造となっており、回収容器9内が異常高圧となり破損することを防いでいる。
ここで、ガス抜き管25、アキュムレータ前吸入管27及びガス抜き管合流部26の構成を図2及び図3を用いて説明する。図2は軸方向から見た異物回収装置110のガス戻し部断面詳細図であり、図3はガス抜き管(回収容器9内のガスを低圧側主冷媒回路に戻すのでガス戻し管ともいう)25の中心断面にて半径方向から見た異物回収装置110のガス戻し部断面詳細図である。図2に示されるように、アキュムレータ前吸入管27のガス抜き管25が接続される部分はその前後の配管内径よりも小さい内径となるように構成されている。水力学の定理であるベルヌーイの定理(式1)によれば圧力ヘッドと速度ヘッドと位置ヘッドの合計は一定であり、図2のように水平方向のみの変化であれば位置ヘッドは変化がなく無視できる。
Figure 2011021883
ここで、P:静圧[Pa]、V:流速[m/s]、H:位置ヘッド[m]、ρ:密度[kg/m3]、g:重力加速度[m/s2
図2のように接続される部分の配管内径を絞ることにより、絞り部では断面積Aが減少して管内の流速Vが上昇する。
Figure 2011021883
ここで、G:質量流量[kg/s]、A:断面積[m2
このため絞り部では動圧が上昇し、ベルヌーイの定理(式1)より、速度ヘッド(すなわち動圧)が上昇した分だけ、圧力ヘッド(すなわち静圧)が低下する。このため絞り部の静圧が低下した分だけ、回収容器9のガス抜き管25側の静圧が低下し、アキュムレータ前吸入管27側へ引き込む吸引力が大きくなる。この吸引力増大効果は冷媒循環量すなわち管内流速が大きい領域の方が絞りによる速度変化量が大きくなるため、その効果が顕著に現れる。一方、圧縮機吸入配管の一部を絞ると圧力損失が増大して冷媒循環量低下を招くため、絞り部の絞り比を極端に大きくすることはできない。絞り比は性能に悪影響のない範囲で決定する。
本実施の形態では、配管を絞る部分の長さをガス抜き管合流部26付近のみと極力小さく設定しているため、絞り量が適切であれば(例えば面積比6〜9割程度)圧力損失による性能悪化はほとんど発生しない。
また、図2及び図3に示されるようにガス抜き管25はアキュムレータ前吸入管27に対して水平から垂直までの角度、すなわち水平よりも高い位置に接続されている。これにより、過渡的にアキュムレータ前吸入管27内を液冷媒が流れたときに、液冷媒がガス抜き管25を通して回収容器9へ流れ落ちることを防止している。
次に図4に基づき異物回収の動作原理について説明する。
図4は図1のアキュムレータ8及び回収容器9からなる異物回収装置110の拡大図である。なお、図4では異物回収の原理説明に直接関係のない弁類については省略している。
図4において、回収容器9の上端からアキュムレータ8の底面とのヘッド差(液状の異物が流れる流路高さ)をH[m]、ガス抜き管合流部26内の静圧をP1[Pa]、アキュムレータ8内の静圧をP2[Pa]、回収容器9内の静圧をP3[Pa]、返油配管24bとアキュムレータ後吸入管28との合流部の静圧をP4[Pa]とする。また、回収配管24a内を流れる油の流速をVo[m/s]、回収配管24aの圧損をΔP[pa]とする。なお、異物回収の回路であるアキュムレータ8の底面からガス抜き管合流部26までの回収回路における配管圧損の中で、問題となるのは異物の主成分である粘度の高い油が流れる回収配管24aの圧損であり、これと同一流量であるが粘度の低いガス冷媒のみが流れるガス抜き管25の圧損は流量が小さいため相対的に無視できるほど小さく、ここでは簡略化のためP1≒P3として扱い、説明する。
回収容器9の上端を高さの基準とすると、ベルヌーイの定理より式(3)が導かれる。
Figure 2011021883
式(3)を変形すると式(4)になる。
Figure 2011021883
式(4)から分かるように異物回収速度を上昇させるためには、
(1)P2とP3の差圧を大きくする、すなわちP2は固定とするとP3の圧力を下げる
(右辺第一項より)、
(2)ヘッド差Hを大きくする(右辺第二項より)、
(3)回収配管の圧損を下げる(右辺第三項より)、方法が考えられる。
そこで、本実施の形態では上記(1)〜(3)の相乗効果により異物回収速度を上昇させた。
第一に、ヘッド差Hを確保するために、回収容器9の上端高さ位置をアキュムレータ8の底面よりも低く設置する構成とした。またこの高低差を機器構成配置制約が許す限り最大とすることでより大きな回収速度を得ることができる。
第二に、本実施の形態では、回収配管内の圧損を小さくするために、回収配管24aの配管径を極力大きく、また長さを短くして、介在させる弁類も圧損係数の極力小さなものを選定することとした。
第三に、本実施の形態のようにガス抜き管合流部26におけるアキュムレータ前吸入管27の内径をその前後よりも小さくして、静圧P1(≒P3)を低下させることにより静圧差による吸引効果を大きくした。
なお、式(4)において静圧差(P2−P3)を(P2−P4)に置き換えると、ガス抜き管25をアキュムレータ出口側に接続した場合の式となる。この場合にはP2からP4へ至る間に配管の摩擦損失による圧損などがある。主冷媒回路の冷媒循環量が大きければ、圧損により(P2−P4)の差圧は回収速度を確保するのに十分なほど大きくなり、図のP4の部位の合流部を絞らなくてもよい。このため、アキュムレータ8の下流側にガス抜き管25を戻せば配管を絞るなどの手段を用いなくても回収速度を確保することができる。
一方、ガス抜き管合流部26を絞らずにガス抜き管25をアキュムレータ8の手前に戻した場合には、通常は配管圧損とアキュムレータ8内の急拡大圧損によりP1(≒P3)>P2となるため、静圧差だけでは異物回収のための吸引力が得られず、むしろ抵抗となってしまう。このためヘッド差Hを大きくとらなければ異物回収ができなくなる。本実施の形態では上述のようにアキュムレータ前吸入管27の一部を絞り、静圧を下げた部分にガス抜き管25を戻すことにより吸引力を発生させてこの問題を解決している。
なお、アキュムレータ8の下流側にガス抜き管25を戻した場合には、運転過渡状態において一時的に多量の液冷媒が戻った場合などに回収容器9がオーバーフローして異物が圧縮機1へ直接戻ってしまう可能性がある。圧縮機1へ異物が戻った場合には回収が不可能となり、圧縮機1の交換など大きな補修を行わなければならなくなる。
そこで、本実施の形態では、ガス抜き管25をアキュムレータ8の手前に戻したことにより、万が一、回収容器9がオーバーフローした場合でも圧縮機1に異物が戻ることがなく、高い安全性を確保することができる。
続いて、現地でユニットを施工後、空調運転を開始するまでのフローについて図5に基づき説明する。施工後のSTEP1では、ユニットの室外機又は室内機に設けた開始スイッチ(図示せず)により、運転を開始する。ここで、一連の洗浄運転が終了するまでは、誤って制御用のリモコン(図示せず)が操作されても、圧縮機1が回らないようにしておく。また、一連の洗浄運転が終了しない場合にリモコンが操作された場合には、洗浄運転を自動で開始してもよい。
STEP2では、圧縮機1を起動し洗浄運転1を開始する。ここでは、冷房サイクルで運転する場合の動作について説明する。圧縮機1を運転すると、高温高圧のガス冷媒が油分離器10で圧縮機1から持ち出された冷凍機油を分離し、冷媒ガスは四方弁2を介して熱源側熱交換器3で凝縮・液化される。油分離器10で分離された冷凍機油は返油用毛細管18aを介して圧縮機1の吸入配管に流れ、冷媒とともに圧縮機1に戻る。熱源側熱交換器3で凝縮した冷媒は、液又は低乾き度の気液二相冷媒となる。この気液二相冷媒が圧力調整弁12で中間圧力まで絞られる。ここで、圧力調整弁12は既設配管の耐圧より低くなるように制御する。中間圧力の気液二相冷媒もしくは液単相冷媒は液冷媒配管13を流れ、絞り装置5a、5bにて低圧まで絞られる。負荷側熱交換器6a、6bでは低圧の気液二相冷媒が周囲から熱を奪い冷房するとともに、自身は蒸発してガス冷媒となってガス冷媒配管14を流れる。ガス冷媒配管14を流れた冷媒が鉱油などの液状の異物とともに四方弁2を介してアキュムレータ8に入る。アキュムレータ8では冷媒ガスと異物とが分離され、冷媒ガスが圧縮機1に戻り、液状の異物はアキュムレータ8内に滞留する。
アキュムレータ8では、上述のようにアキュムレータ入口管8aの構造を冷媒ガスがアキュムレータ内壁水平方向に沿って噴出する構成としている。このため、図6に示されるようにアキュムレータ8内では液状の異物が遠心力により壁面に衝突してガス冷媒と分離するサイクロン効果により、ガス冷媒と異物とが効率良く分離される。また、アキュムレータ8のシェル径を大きくして、アキュムレータ8内の微細化された液状異物が重力により沈降し、ガス流速に乗って上昇することがないようにすることにより、より大きな分離効率を得ることができる。これにより、ガス冷媒の流れに乗って異物がアキュムレータ8から流出し圧縮機1へ至って新冷凍機油に混入してしまう、という不都合を回避できる。また、洗浄運転中はアキュムレータ8の下部に設けられた流量調整弁21aと、ガス抜き管25に設けられた電磁弁15cとは閉じられており、回収容器9への異物や冷媒などの流れはなく、完全に閉じられている。なお、流量調整弁21aと電磁弁15cが開放されるのは異物回収のときだけであり、これ以外の運転状態のときには閉じられている。また、ボールバルブ22a,22bは開となっており、これは出荷時の初期設定である。また、返油配管24bに設けられた返油用の流量調整弁21bはSTEP1からSTEP5が完了するまで閉じられており、異物が返油配管24bを経由して圧縮機1に戻ることはない。
アキュムレータ8に流入するガス冷媒の加熱度は、圧力センサー16及び温度センサー17の出力から演算されており(加熱度=ガス冷媒温度―圧力の飽和温度)、加熱度演算値と過熱度目標値との差を演算比較して、目標過熱度の範囲に入るように絞り装置5a、5bの開度を変化させることにより制御されている。なお、上記演算処理と制御処理は熱源側ユニット100内に内蔵されているマイコン(図示せず)などにて行われる。目標加熱度は例えば10℃などであり、少なくともアキュムレータ8に流入するガス冷媒の加熱度をプラス域に保つようにする。このようにアキュムレータ手前の冷媒加熱度を適切に制御することにより、アキュムレータ8へ流入する冷媒に液冷媒が混入せず、液冷媒がアキュムレータ8内に滞留することはない。
液冷媒がアキュムレータ8内に滞留すると、後に述べるSTEP5の異物回収の際に液冷媒も一緒に回収してしまうため、冷凍サイクル内の冷媒量が変化してしまい、空調能力が低下するなどの悪影響が出る可能性がある。このため、洗浄運転中はアキュムレータ8内に液冷媒が戻らない運転とする必要がある。また、アキュムレータ8の出口側の温度を測定して、圧縮機吸入加熱度を測定する方法もあるが、この方法では起動時などに液冷媒がアキュムレータ8へ戻った場合に、アキュムレータ8の入口では加熱度がついていても、出口では飽和に近い状態と計測されてしまう(液がアキュムレータ8から蒸発するため)。このため、アキュムレータ8の入口の加熱度が正確に検知できず、液冷媒が混入してしまう可能性がある。そこで、本実施の形態のようにアキュムレータ8の入口に温度センサー17を設けることにより、アキュムレータ8へ液冷媒が戻らない運転が確実に実行可能となる。
なお、アキュムレータ8の外周にヒーター(図示せず)を巻きつけて外装し、又はヒーターをアキュムレータ8内に内蔵(内装)させて通電加熱することにより、アキュムレータ8内に液冷媒が混入した場合でも、より早期に液冷媒を蒸発させる構成としてもよい。また、回収容器9にヒーター(図示せず)を巻きつけて外装し、又は内蔵させることにより、万が一液冷媒が回収容器9へ混入した場合でもヒーターを通電加熱することにより液冷媒を完全に除去することができ、これにより冷凍サイクル主回路で必要とする冷媒を確実に確保することができる。
また、図1に示すバイパス電磁弁30を開くことにより圧縮機1から吐出される高温のガス冷媒をアキュムレータ8へ導くことも可能であり。高温ガスによりアキュムレータ8内を加熱して液冷媒を早期に蒸発乾燥させる運転を行ってもよい。
STEP3では、冷媒量調整をする。冷媒量の調整は、冷媒充填ポートから冷媒を追加し、冷凍サイクルの凝縮機出口SCや蒸発器出口SHが所定の値となったことを検知して、STEP3を終了し、STEP4へ移行する。また、所定時間以上、冷媒の充填が適正にならない場合には、熱源側ユニット100及び負荷側ユニット200の駆動を停止し、時間オーバーの警告を外部に発報する。ここで、適正冷媒量とは、通常の空調運転で必要な冷媒量と、洗浄運転を継続するために必要な冷媒量の2つの基準を設け、どちらかを満足すれば、適正と判断する。但し、洗浄運転を継続するために必要な冷媒量は満足するが、通常の空調運転で必要な冷媒量を満足しない場合には、一連の洗浄運転後、再度、冷媒量調整を実施する必要があることを外部に発報する。
STEP4では、洗浄運転2を行う。運転動作はSTEP2とほぼ同じであるが、圧縮機1の運転周波数は、洗浄運転を素早く終了させるために、最大容量で運転してもよい。この運転を所定の時間運転し、STEP4を終了し、STEP5へ移行して異物回収をする。
STEP5では、これまでのステップで閉じられていた流量調整弁21a及び電磁弁15cが開放されて、アキュムレータ8に貯留された異物が回収容器9へ移動する。本実施の形態では、上述のように、ヘッド差利用、ガス抜き管25を通した吸引効果などにより異物回収速度を高めているため、短時間で異物の回収を終えることができる。異物回収時間は異物の主成分である油の粘度に大きく依存し、外気温度から予測することができる。この予測時間に対して、たとえば1.5倍などの余裕を持たせて、回収時間を設定することでアキュムレータ8内の異物を完全に回収容器9へ移動させることができる。
また、STEP5において、回収容器9内の圧力を低く保った状態で流量調整弁21a及び電磁弁15cを一旦閉じて、この状態でバイパス電磁弁30(図1)を開いて高圧の吐出ガスをアキュムレータ8へ導きアキュムレータ8側の圧力を上昇させることによりアキュムレータ8(高圧)と回収容器9(低圧)との間に差圧を発生させる。そして、次に流量調整弁21aを開放することにより、発生させた差圧を利用して異物回収速度を大きくすることも可能である。
また、STEP5において圧力調整弁(冷房運転の場合は5a,5b、暖房運転の場合は12)を一旦閉じてアキュムレータ8を含む低圧側圧力を低下させて、この状態で流量調整弁21a及び電磁弁15cを閉じることにより回収容器9の圧力を低く保ち、次に圧力調整弁(冷房運転の場合は5a,5b、暖房運転の場合は12)を開いてアキュムレータ8を含む低圧側の圧力を回復させて回収容器9内よりも高圧とし、これにより発生するアキュムレータ8と回収容器9との差圧を利用して異物回収速度を大きくすることも可能である。
設定された回収時間が終了した場合には、流量調整弁21a及び電磁弁15cを閉じて、異物回収運転を終了する。
STEP6では、通常の空調運転の開始をする。このときに、電磁弁15bを開放することにより出荷前にオイルタンク11内に貯めておいた新冷媒用の冷凍機油が圧縮機吸入配管に流れ、冷媒ガスとともに圧縮機1に戻る。
このように新冷媒用の冷凍機油を溜めるオイルタンク11を主冷媒回路とは別置することにより、洗浄運転中に異物と共にアキュムレータ8へ回収されてしまう新冷媒用冷凍機油を、洗浄運転後に迅速に主冷媒回路内へ戻すことが可能となる。また、起動時に大きく持ち出される新冷媒用冷凍機油分の余剰油を予め主冷媒回路内貯留しておく従来の方式の場合には余剰油が圧縮機1へ戻るまでの間、異物回収運転に移れないが(余剰油も異物とともに回収されてしまうため)、本実施の形態のようにオイルタンク11を別置とすれば運転開始後すぐに異物回収運転を行うことができるため、工事時間の短縮が可能となる。
ここで、洗浄中に圧縮機1から冷媒回路中へ持ち出される油量を、出荷前にオイルタンク11へ充填しておく方法について説明する。熱源側ユニット100の液側ボールバルブ4とガス側ボールバルブ7にダミーの熱交換器を接続するか、液側ボールバルブ4とガス側ボールバルブ7とを短絡し三角運転させられるような状態で電磁弁15aを開き、電磁弁15bを閉じて圧縮機1を起動すると、圧縮機1から持ち出された冷凍機油が油分離器10で分離されオイルタンク11に入る。オイルタンク11内で冷媒ガスと冷凍機油が分離され、冷凍機油はオイルタンク11に滞留し、冷媒ガスは電磁弁15aを介して圧縮機吸入側へ戻る。この運転を一定時間続けることにより、オイルタンク11に冷凍機油を溜め、電磁弁15a、15bを閉じた状態として出荷する。
なお、上記STEP1からSTEP6までが終了後、ボールバルブ22a及び22bを手動で閉じて、回収容器9を冷凍サイクル回路から完全に閉じた状態とすることも可能である。またボールバルブ22a,22bから回収容器9側を取り外し、回収容器9自体を熱源側ユニット100から除去してしまうことも可能である。
STEP6以降の通常空調運転では、返油回路の流量調整弁21bを開いて、冷凍機油を圧縮機1へ戻す返油運転を行うことにより、圧縮機1の油量は常に適正に維持される。流量調整弁21bの開度は、圧縮機運転周波数などの運転条件に合わせた油量を返油するように適切に制御される。また、返油回路はアキュムレータ8の下流側に戻しているため、上述のように配管圧損によりアキュムレータ後吸入管28と返油配管24bの静圧はアキュムレータ8内よりも低く、吸引力が発生しているため油の回収が可能となる。
また、本実施の形態のアキュムレータ返油機構は、従来多用されている穴開きU字管を用いず、ガス冷媒はアキュムレータ8上方から戻し、油はアキュムレータ8の底面から流量調整弁21bを介して戻す構成となっている。このため流量調整弁21bを全閉にすればアキュムレータ8に溜まる油や液体を戻すことはなく、上述のSTEP1からSTEP5では流量調整弁21bを閉じているため、アキュムレータ8に回収される異物が圧縮機1へ戻る不都合が発生することはない。
なお、上記STEP1からSTEP6の運転例では冷房運転を例に説明したが、暖房運転についても同様のアキュムレータ8による異物分離と、回収容器9への回収運転が可能である。
実施の形態2.
図7は本発明の実施の形態2の冷凍空調装置の冷媒回路の一部を示す断面図である。一端が回収容器9に接続されたガス抜き管25は、他端が熱源側ユニット100の四方弁2から圧縮機1の吸入側に至る低圧側主冷媒回路配管(図示の例ではアキュムレータ前吸入管27)内に突き出して接続されている。その他の構成は実施の形態1と同様のため説明を省略する。
アキュムレータ8から回収容器9への異物回収時には、実施の形態1で示したとおり、異物はアキュムレータ8とガス抜き管25が接続された主冷媒回路配管との圧力差と自重の作用によって移動する。主冷媒回路配管内では、冷媒ガスが流れ、突き出されたガス抜き管25の端部はガス冷媒の流れにさらされる。
一般に、流れの中に置かれた円柱などの物体の表面付近では、周囲よりも静圧が上昇する上流側の一部を除いて、静圧が著しく低下する領域が下流側に発生することが知られている。本実施の形態は、この現象を巧みに利用したものであり、すなわち、ガス抜き管25の周りに大きな静圧低下を発生させて吸引力を増加させる。これにより、異物回収速度を増大させることができる。通常、ガス抜き管25の径は主冷媒回路配管径に比べて小さく、突き出されたガス抜き管25による主冷媒回路配管内の流路断面積の減少割合は小さいため、ガス冷媒の圧力損失の増加はほとんどなく、したがって冷媒循環量の低下による性能低下は小さい。
静圧低下量は、流れの動圧、すなわち突き出されたガス抜き管25の端部に衝突するガス冷媒の流速の自乗に比例する。実用運転範囲では主冷媒回路配管内の冷媒ガスの流れはほぼ乱流状態であり、この場合、管内の流速は半径方向に分布を持つ。この流速分布は、例えば管壁から計った距離の1/7乗で増加し管軸で最大になる、いわゆる1/7乗則と呼ばれる分布で表され、管壁から計った距離が管半径の10〜20%の比較的流速が小さい領域とそれ以外の流速が大きく比較的一様な領域に分けられる。したがって、ガス抜き管25の先端を後者の領域まで突き出せば安定した吸引力を得ることができる。ただし、ガス抜き管25の突き出し長さが増加するほど主冷媒回路配管内の流路断面積の減少割合が増加するため、特に、ガス抜き管25の径が比較的大きい場合などは、冷媒循環量の低下を招く。このため、突き出されたガス抜き管25の先端の最適位置は、半径方向に管壁から計った距離が管半径の10〜20%から管軸の間に存在する。
また、図8は、ガス抜き管25において、低圧側主冷媒回路配管に接続する方の端部の開口部が下流側に対向するような斜め先端形状を有する場合を示した断面図である。この構成にすれば、製造上、ガス抜き管25を低圧側主冷媒回路配管に接続する際、傾いて取り付けられても上流側に開口部が向くことがなく、組立てが容易で、ばらつきが少ない安定した吸引力を発生させることができる。なお、ガス抜き管25の前記端部の開口部が上流側に傾いて取り付けられると、流れの動圧の影響を受けて吸引力が低下してしまう。このため、ガス抜き管25の取り付け時には取り付け角度に留意する必要がある。図8の構成では、もし、取り付け精度が低く、前記端部の開口部が上流側に傾いて取り付けられるような場合であっても安定した吸引力を得ることができる。
また、図8の構成では、ガス抜き管25の開口面積を大きくすることができるため、異物回収運転時の回収容器9内のガス抜きが促進され、回収容器9内の内圧上昇による吸引力の低下を抑制することができる。なお、図9に示されるように、開口部が下流側に対向するように、突き出したガス抜き管25の先端下流側を切り欠いて構成してもよい。
また、突き出されたガス抜き管25の一部が曲がっていても、その開口部が上流側に対向してなければ、開口部の周りでは静圧低下が生じるため、吸引力が得られる。
さらに、突き出されたガス抜き管25の開口部は、流れに対向する前面から背面の間に存在する最も大きな静圧低下が得られる場所に設けることが望ましい。
また、低圧側主冷媒回路配管のガス抜き管25が接続される部分の内径が、その前後の内径よりも絞られていると、流速の増加により流れの動圧が増大し、より一層大きな静圧低下が発生し、吸引力が増大する。
上記説明のように主冷媒配管に接続されるガス抜き管25の端部を構成することにより、アキュムレータ8から回収容器9への異物回収における吸引力を大きくすることができるため、異物回収速度を大きくすることが可能となる。このため異物の回収を短時間で終了することが可能となり、作業工程にかかる時間を短縮できる。また、外気温度が低温で異物の主成分である油の粘度が低下する場合においても、強力な吸引力により短時間での回収が可能となる。
1 圧縮機、2 四方弁、3 熱源側熱交換器、4 液側ボールバルブ、5a,5b 圧力調整弁、6a,6b 負荷側熱交換器、7 ガス側ボールバルブ、8 アキュムレータ、8a アキュムレータ入口管、8b アキュムレータ出口管、9 回収容器、10 油分離器、11 オイルタンク、12 圧力調整弁、13 液冷媒配管、14 ガス冷媒配管、15a,15b,15c 電磁弁、16 圧力センサー、17 温度センサー、18a 返油用毛細管、21a,21b 流量調整弁、22a,22b ボールバルブ、23 圧力逃し弁、24a 回収配管、24b 返油配管、25 ガス抜き管、26 ガス抜き管合流部、27 アキュムレータ前吸入管、28 アキュムレータ後吸入管、30 バイパス電磁弁、100 熱源側ユニット、110 異物回収装置、200 負荷側ユニット。

Claims (1)

  1. 熱源側ユニットと負荷側ユニットとを既設の冷媒配管で接続してなる冷凍空調装置において、
    前記熱源側ユニットは、
    既設配管内の異物を分離回収する機能を備えたアキュムレータと、
    前記アキュムレータで分離された異物を回収する回収容器と、
    前記アキュムレータの下部に接続され、流量調整手段を介して冷凍機油を圧縮機へ返油する返油配管と、
    前記圧縮機から四方弁へ至るまでの高圧側から、バイパス弁を介してアキュムレータ手前又はアキュムレータへ接続するバイパス管と
    を備え、
    通常冷暖房運転時には前記返油配管に冷凍機油を流し、
    配管洗浄及び異物回収運転時には、
    前記流量調整手段を全閉とし、且つ、
    前記バイパス弁又は熱源側ユニット若しくは負荷側ユニットに内蔵される絞りを開閉することにより、前記回収容器と前記アキュムレータとの間に差圧を発生させて異物を前記回収容器へ引き込むことを特徴とする冷凍空調装置。
JP2010246363A 2010-11-02 2010-11-02 冷凍空調装置 Active JP4980459B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010246363A JP4980459B2 (ja) 2010-11-02 2010-11-02 冷凍空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010246363A JP4980459B2 (ja) 2010-11-02 2010-11-02 冷凍空調装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005293643A Division JP4726600B2 (ja) 2005-10-06 2005-10-06 冷凍空調装置

Publications (2)

Publication Number Publication Date
JP2011021883A true JP2011021883A (ja) 2011-02-03
JP4980459B2 JP4980459B2 (ja) 2012-07-18

Family

ID=43632108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010246363A Active JP4980459B2 (ja) 2010-11-02 2010-11-02 冷凍空調装置

Country Status (1)

Country Link
JP (1) JP4980459B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109140843A (zh) * 2018-11-02 2019-01-04 西安交通大学 使用排气节流防止节流装置油堵的空调器及运行方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024164U (ja) * 1988-06-20 1990-01-11
JP2002228306A (ja) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp 冷凍サイクル装置およびその運転方法
JP2003262418A (ja) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp 冷凍空調装置
JP2005043025A (ja) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp 冷凍空調装置及びその更新方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024164U (ja) * 1988-06-20 1990-01-11
JP2002228306A (ja) * 2001-01-30 2002-08-14 Mitsubishi Electric Corp 冷凍サイクル装置およびその運転方法
JP2003262418A (ja) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp 冷凍空調装置
JP2005043025A (ja) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp 冷凍空調装置及びその更新方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109140843A (zh) * 2018-11-02 2019-01-04 西安交通大学 使用排气节流防止节流装置油堵的空调器及运行方法
CN109140843B (zh) * 2018-11-02 2023-05-30 西安交通大学 使用排气节流防止节流装置油堵的空调器及运行方法

Also Published As

Publication number Publication date
JP4980459B2 (ja) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4726600B2 (ja) 冷凍空調装置
EP2264379B1 (en) Air conditioner
JP6101815B2 (ja) 冷凍サイクル装置
US9976783B2 (en) Refrigeration cycle apparatus
JP5130910B2 (ja) 空気調和装置及び冷媒量判定方法
JP2002277078A (ja) 冷凍サイクル
JP2008298341A (ja) 空気調和装置
EP0852324A1 (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
EP2873935A1 (en) Freezer
WO2018154628A1 (ja) 空気調和装置
JP4980459B2 (ja) 冷凍空調装置
JP4420892B2 (ja) 冷凍空調装置
JP6087610B2 (ja) 空気調和機
JP2009014268A (ja) 空気調和装置
JP2007255738A (ja) 空気調和装置
JP4420871B2 (ja) 冷凍空調装置
EP3712542B1 (en) Oil separator and refrigeration cycle device
JP2020085269A (ja) 冷凍サイクル装置
JP5583134B2 (ja) 熱源側ユニット及び冷凍空気調和装置
JP2009210143A (ja) 空気調和装置および冷媒量判定方法
JP5574638B2 (ja) 冷凍空調装置
JP6859461B2 (ja) 冷凍サイクル装置
JP2008111584A (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250