JP2011021260A - Aluminum substrate and method of manufacturing the same - Google Patents

Aluminum substrate and method of manufacturing the same Download PDF

Info

Publication number
JP2011021260A
JP2011021260A JP2009168776A JP2009168776A JP2011021260A JP 2011021260 A JP2011021260 A JP 2011021260A JP 2009168776 A JP2009168776 A JP 2009168776A JP 2009168776 A JP2009168776 A JP 2009168776A JP 2011021260 A JP2011021260 A JP 2011021260A
Authority
JP
Japan
Prior art keywords
aluminum substrate
oxide film
pore structure
potential
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009168776A
Other languages
Japanese (ja)
Other versions
JP5545707B2 (en
Inventor
Shinichi Hasegawa
長谷川真一
Masahiro Kurata
倉田正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2009168776A priority Critical patent/JP5545707B2/en
Publication of JP2011021260A publication Critical patent/JP2011021260A/en
Application granted granted Critical
Publication of JP5545707B2 publication Critical patent/JP5545707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum substrate which has an adhesion oxide film only on one surface, is used as a coated plate, an adhesive plate and a laminate plate, and is excellent in resin adhesion. <P>SOLUTION: In the method of manufacturing the aluminum substrate 6, the aluminum substrate 6 is arranged between a pair of opposed electrodes 7, 10 so that the aluminum substrate 6 is not electrically connected to both electrode plates, and the surface of the substrate is in parallel to surfaces of the electrodes. Wherein, an electrolytic treatment is performed in an electrolyte 9 of an alkaline aqueous solution of pH 9-13 and 35-85°C, at 4-50 A/dm<SP>2</SP>current density for 5-20 sec while making the potential of one electrode plate higher than that of another electrode plate and changing the potential at the cycle of 20-100 Hz. The aluminum substrate is manufactured by the method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面処理を施したアルミニウム基板に関し、詳細には、片面のみに密着性酸化皮膜を有する、塗装板、接着用板及びラミネート板として用いられる樹脂密着性に優れたアルミニウム基板に関する。   The present invention relates to a surface-treated aluminum substrate, and more particularly, to an aluminum substrate having an adhesive oxide film only on one side and excellent in resin adhesion used as a coating plate, an adhesive plate, and a laminate plate.

アルミニウム板又はアルミニウム合金板(以下、「アルミニウム基板」と記す)は、軽量で適度な機械的特性を有し、かつ、美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類、構造材、機械部品等に広く使われている。   An aluminum plate or an aluminum alloy plate (hereinafter referred to as “aluminum substrate”) is lightweight and has appropriate mechanical properties, and has excellent characteristics such as aesthetics, moldability, and corrosion resistance. Widely used in various containers, structural materials, machine parts, etc.

近年、アルミニウム基板の持つ高い熱伝導性に注目し、プリント配線基板としての用途が急速に増加している。すなわち、近年の電気・電子機器の小型化、軽量化に伴い、プリント配線基板には従来以上の多層化、高集積化及び高密度化が要求されるようになっている。そして、従来の絶縁体を用いた基板では、高密度に実装された電子部品から発する熱を放散しきれず、回路の不安定化を招く。これに対し、熱伝導性に優れたアルミニウム基板を基板として採用することにより、基板自身による電子部品の冷却が可能となり、回路全体の性能を向上させることができる。   In recent years, paying attention to the high thermal conductivity of an aluminum substrate, the use as a printed wiring board is rapidly increasing. That is, with the recent reduction in size and weight of electrical / electronic devices, printed wiring boards are required to have more multilayers, higher integrations and higher densities than conventional ones. A substrate using a conventional insulator cannot dissipate heat generated from electronic components mounted at high density, resulting in circuit instability. On the other hand, by adopting an aluminum substrate having excellent thermal conductivity as the substrate, the electronic components can be cooled by the substrate itself, and the performance of the entire circuit can be improved.

一般にアルミニウム基板を用いたプリント配線基板は、アルミニウム基板に銅箔等の金属箔を貼り付けて作られる。その際、接着剤としてエポキシ系樹脂やポリイミド系樹脂等が用いられるのであるが、これらの樹脂とアルミニウム基板表面の密着性を向上させるために有効な手法として、アルミニウム基板をアルカリ浴中で交流電解処理し、その表面に密着性の酸化皮膜を形成させる方法が提案されている。   In general, a printed wiring board using an aluminum substrate is made by attaching a metal foil such as a copper foil to an aluminum substrate. At that time, epoxy resins and polyimide resins are used as adhesives. As an effective technique for improving the adhesion between these resins and the aluminum substrate surface, the aluminum substrate is subjected to AC electrolysis in an alkaline bath. There has been proposed a method of treating and forming an adhesive oxide film on the surface thereof.

例えば特許文献1には、貫通孔を設けたアルミニウム基板を浴温40〜90℃のアルカリ性溶液を用いて電気量80〜250C/dmにて交流波形により8〜30秒間の電解処理し、貫通孔に樹脂を充填して孔埋めした後、このアルミニウム基板に回路体を積層する方法が示されている。 For example, in Patent Document 1, an aluminum substrate provided with a through hole is subjected to electrolytic treatment for 8 to 30 seconds with an AC waveform at an electric quantity of 80 to 250 C / dm 2 using an alkaline solution having a bath temperature of 40 to 90 ° C. A method of laminating a circuit body on this aluminum substrate after filling a hole with resin and filling the hole is shown.

また特許文献2には、アルミニウム又はアルミニウム合金板に中心線平均粗さ(Ra)が0.5〜5μmとなるように粗面化処理を施し、更にpH9〜13、浴温35〜85℃のアルカリ性水溶液中で電流密度4〜50A/dmにて、電気量が80C/dmを超えることとなる時間、交流電解処理を行い、膜厚500〜5000Åの酸化皮膜を形成することを特徴とするプリント配線用基板の製造方法が示されている。 In Patent Document 2, the aluminum or aluminum alloy plate is subjected to a surface roughening treatment so that the center line average roughness (Ra) is 0.5 to 5 μm, and further has a pH of 9 to 13 and a bath temperature of 35 to 85 ° C. at a current density of 4~50A / dm 2 in an alkaline aqueous solution, the time quantity of electricity becomes to exceed 80C / dm 2, subjected to AC electrolytic treatment, and characterized by forming an oxide film having a thickness of 500~5000Å A printed wiring board manufacturing method is shown.

特開平09−18140号公報Japanese Patent Laid-Open No. 09-18140 特許2630858号公報Japanese Patent No. 2630858

しかし、上記のような従来技術には、以下のような問題があった。
すなわち従来技術においては、アルミニウム基板に直接結線して電解処理を行うことから、アルミニウム基板自体が電極となる。このため、密着性の酸化皮膜は、アルミニウム基板が電解液に触れている領域全体、すなわち板の両面に生成する。
However, the conventional techniques as described above have the following problems.
That is, in the prior art, since the electrolytic treatment is performed by directly connecting to the aluminum substrate, the aluminum substrate itself becomes an electrode. For this reason, the adhesive oxide film is generated on the entire area where the aluminum substrate is in contact with the electrolyte, that is, on both surfaces of the plate.

一方、プリント配線基板の一部においては、アルミニウム基板の一方の面のみに銅箔を貼り合せる一方、他方の面はアルミニウム素地のままとする製品がある。このような製品においては、回路形成のための銅箔エッチング工程におけるアルミニウム基板の保護目的、及び搬送時等におけるアルミニウム素地へのキズ付き防止のため、銅箔貼り合せ工程に先立ち、アルミニウム基板の裏面に一旦マスキングフィルムが貼られる。マスキングフィルムは一般に、塩化ビニル系樹脂等から構成されるフィルムと、再剥離が容易なように接着力の低いアクリル系樹脂等の接着剤から構成されるが、この際、従来技術のようにアルミニウム基板の両面に密着性の酸化皮膜が形成されていると、一時的に貼っただけのマスキングフィルムまで強固に粘着してしまい、場合によってはマスキングフィルムを剥離する際に接着剤がアルミニウム基板裏面に残存する等、作業工程に支障をきたしていた。   On the other hand, in some printed wiring boards, there is a product in which copper foil is bonded to only one surface of an aluminum substrate, while the other surface is left an aluminum substrate. In such products, in order to protect the aluminum substrate in the copper foil etching process for circuit formation and to prevent scratches on the aluminum substrate during transportation, the back surface of the aluminum substrate prior to the copper foil bonding process A masking film is once applied to. The masking film is generally composed of a film composed of a vinyl chloride resin and the like and an adhesive such as an acrylic resin having a low adhesive strength so that it can be easily peeled off. If an adhesive oxide film is formed on both sides of the substrate, even the masking film that has only been temporarily adhered will stick firmly, and in some cases, the adhesive will adhere to the back of the aluminum substrate when the masking film is peeled off. It remained in trouble, such as remaining.

本発明者らは、上記課題を解決すべく検討を重ねた結果、従来技術に基づく密着性の酸化皮膜の性能を損なうことなく、かつ、それを特定の面のみに形成させたアルミニウム基材、ならびにその製造方法を見出し本発明をなすに至った。   As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention do not impair the performance of the adhesive oxide film based on the prior art, and an aluminum base material formed only on a specific surface thereof, In addition, the inventors have found a method for producing the same and made the present invention.

すなわち、本発明は請求項1において、両面に酸化皮膜を備えたアルミニウム基板であって、一方の面の酸化皮膜は10〜500nmの全体厚さを有する密着性酸化皮膜であり、アルミニウム素地側のバリア層と表面側のポア構造とを備え、当該ポア構造は内部に分岐した直径5〜30nmの小孔を有し、他方の面の酸化皮膜は剥離性酸化皮膜であることを特徴とするアルミニウム基板。   That is, the present invention is the aluminum substrate having an oxide film on both sides according to claim 1, wherein the oxide film on one surface is an adhesive oxide film having an overall thickness of 10 to 500 nm, An aluminum comprising a barrier layer and a pore structure on the surface side, the pore structure having small holes with a diameter of 5 to 30 nm branched into the inside, and the oxide film on the other surface being a peelable oxide film substrate.

本発明は請求項2において、剥離性酸化皮膜が、(1)10nm未満又は500nmを超える厚さであること;(2)ポア構造を有していないこと;(3)ポア構造を有していても分岐構造を有していないこと、(4)ポア構造を有しており、かつ、分岐構造を有していても、小孔の直径が5nm未満又は30nmを超えること;のいずれかを満たすものとした。   According to the present invention, in claim 2, the peelable oxide film is (1) a thickness of less than 10 nm or more than 500 nm; (2) no pore structure; (3) a pore structure. Or (4) having a pore structure and having a branched structure, the diameter of the small hole is less than 5 nm or more than 30 nm. It was supposed to satisfy.

本発明は請求項3において、対向する一対の電極板間に、両電極板と結線しないアルミニウム基板をその基板面が両電極板面と平行になるように配設し、pH9〜13で温度35〜85℃のアルカリ性水溶液の電解液中で、一方の電極板の電位に対して、他方の電極板の電位をそれ以上にして20〜100Hzの周期で変化させ、最高電流密度4〜50A/dmで、5〜60秒間電解処理するアルミニウム基板の製造方法とした。 According to a third aspect of the present invention, an aluminum substrate that is not connected to both electrode plates is disposed between a pair of opposing electrode plates so that the substrate surface is parallel to both electrode plate surfaces, and the temperature is 35 to 13 at pH 9-13. In an electrolytic solution of an alkaline aqueous solution at ˜85 ° C., the potential of one electrode plate is made higher than that of the other electrode plate and changed at a cycle of 20 to 100 Hz, and the maximum current density is 4 to 50 A / dm. 2 and the manufacturing method of the aluminum substrate which is electrolytically treated for 5 to 60 seconds.

また本発明は請求項4において、電位の周期的変化を正弦波、矩形波、台形波及び三角波から成る群から選択される少なくとも一種とし、最低電流密度を示す時間を1周期の中の80%以下とした。更に本発明は請求項5において、前記最高電流密度と最低電流密度との差を2A/dm以上とした。 According to the present invention, in claim 4, the periodic change in potential is at least one selected from the group consisting of a sine wave, a rectangular wave, a trapezoidal wave, and a triangular wave, and the time indicating the minimum current density is 80% of one period. It was as follows. Further, in the present invention, the difference between the maximum current density and the minimum current density is 2 A / dm 2 or more.

本発明によって、一方の面にポア構造を有する密着性の酸化皮膜を備え、他の面には剥離性の酸化皮膜を備えるアルミニウム基板、ならびに、その製造方法を提供できる。   According to the present invention, it is possible to provide an aluminum substrate provided with an adhesive oxide film having a pore structure on one surface and a peelable oxide film on the other surface, and a method for producing the same.

本発明に係るアルミニウム基板の構造を示す模式図である。It is a schematic diagram which shows the structure of the aluminum substrate which concerns on this invention. 本発明に係るアルミニウム基板の電解装置を示す正面図である。It is a front view which shows the electrolytic device of the aluminum substrate which concerns on this invention. 本発明に係るアルミニウム基板の電解装置を示す平面図である。It is a top view which shows the electrolytic device of the aluminum substrate which concerns on this invention. 従来のアルミニウム基板の電解装置を示す正面図である。It is a front view which shows the conventional electrolytic device of the aluminum substrate.

以下、本発明の詳細を順に説明する。
A.アルミニウム基板表面の密着性酸化皮膜構造について
本発明に係るアルミニウム基板の一方の面には、密着性の酸化皮膜が形成される。本発明において「密着性」とは、例えば、後述する耐熱密着性評価において、剥離面積率が25%以下となる性能を言うものとする。この酸化皮膜の厚さは、10〜500nmである。皮膜厚さが10nm未満では、後述するポア構造の厚さが十分でないことから樹脂密着性が不足する。皮膜厚さが500nmを超えると、酸化膜自体が凝集破壊を生じ易くなり樹脂密着性が低下する。
Hereinafter, details of the present invention will be described in order.
A. Adhesive oxide film structure on aluminum substrate surface An adhesive oxide film is formed on one surface of the aluminum substrate according to the present invention. In the present invention, “adhesion” refers to, for example, the performance at which the peeled area ratio is 25% or less in the heat-resistant adhesion evaluation described below. The thickness of this oxide film is 10 to 500 nm. When the film thickness is less than 10 nm, the resin adhesion is insufficient because the thickness of the pore structure described later is not sufficient. When the film thickness exceeds 500 nm, the oxide film itself is liable to cause cohesive failure and the resin adhesion is lowered.

図1に示すように、密着性の酸化皮膜1は、アルミニウム素地2の側のバリア層3と表面側のポア構造4とから構成される。バリア層とは、3〜30nmの緻密な酸化皮膜の層である。このバリア層はアルミニウム素地に耐食性を付与すると共に、バリア層を介してアルミニウム素地とポア構造の強固な結合を付与する。酸化皮膜表面には、直径5〜30nmの小孔41から成るポア構造4が形成される。ポア構造4とは、酸化皮膜1の表面全体にわたって形成された小孔から成る構造を指す。この構造は、酸化皮膜上に樹脂層等を形成する際に両者の間に介在させる接着剤と酸化皮膜との接触面積を増大させ、酸化皮膜と樹脂層等との密着性を増大させるために重要なものである。小孔の直径が5nm未満では、接着剤等との接触面積が確保されず樹脂密着性が低下する。一方、30nmを超えると、酸化皮膜自身の強度が失われることによる凝集破壊が発生し易くなり、これまた樹脂密着性が低下する。   As shown in FIG. 1, the adhesive oxide film 1 is composed of a barrier layer 3 on the aluminum substrate 2 side and a pore structure 4 on the surface side. The barrier layer is a layer of a dense oxide film having a thickness of 3 to 30 nm. This barrier layer imparts corrosion resistance to the aluminum substrate and also provides a strong bond between the aluminum substrate and the pore structure via the barrier layer. On the surface of the oxide film, a pore structure 4 composed of small holes 41 having a diameter of 5 to 30 nm is formed. The pore structure 4 refers to a structure composed of small holes formed over the entire surface of the oxide film 1. This structure increases the contact area between the adhesive and the oxide film interposed between the two when forming a resin layer or the like on the oxide film, and increases the adhesion between the oxide film and the resin layer, etc. It is important. When the diameter of the small hole is less than 5 nm, the contact area with the adhesive or the like is not ensured, and the resin adhesion is lowered. On the other hand, when the thickness exceeds 30 nm, cohesive failure is likely to occur due to the loss of the strength of the oxide film itself, and the resin adhesion also decreases.

ポア構造4は、酸化皮膜の表面全体にわたって広がり、かつ、深さ方向においてバリア層3に達する。ポア構造4は深さ方向において分岐した構造を有する。図1において、分岐点を5で示す。これは、ポア構造4がその内部で分岐していることにより、接着剤等と酸化皮膜との接触面積が増大するとともに、一種のアンカー効果を発揮させるためである。具体的には、酸化皮膜1が形成・成長する過程において、ポア構造4が必ずしも深さ方向に垂直に形成されず、さまざまな方向に向かって形成された結果、小孔同士が合流して分岐構造をなすものである。分岐点5は、酸化皮膜最表面から5nmより深い領域に形成された場合において、密着性に特に有効である。一般にアルマイト処理と呼ばれる通常の陽極酸化皮膜におけるポア構造は、深さ方向に真っ直ぐ形成されるのみであり、分岐構造を有しない点において本発明と大きく相違する。   The pore structure 4 extends over the entire surface of the oxide film and reaches the barrier layer 3 in the depth direction. The pore structure 4 has a structure branched in the depth direction. In FIG. 1, the branch point is indicated by 5. This is because when the pore structure 4 is branched inside, the contact area between the adhesive or the like and the oxide film increases, and a kind of anchor effect is exhibited. Specifically, in the process in which the oxide film 1 is formed and grown, the pore structure 4 is not necessarily formed perpendicular to the depth direction, but is formed in various directions. As a result, the small holes merge and branch. It is a structure. The branch point 5 is particularly effective for adhesion when it is formed in a region deeper than 5 nm from the outermost surface of the oxide film. In general, the pore structure in a normal anodic oxide film called anodized is only formed straight in the depth direction, and is greatly different from the present invention in that it does not have a branched structure.

なお、酸化皮膜表面におけるポア構造4の小孔41の面積に特に制限はないものの、酸化皮膜表面の見かけ上の面積(表面の微小な凹凸等を考慮せず、長さと幅の乗算で表される面積)に対して25〜75%が好ましい。また、ポア構造の酸化皮膜表面からの深さについては、酸化皮膜の全体厚さの50%以上であるのが好ましい。   Although there is no particular limitation on the area of the small holes 41 of the pore structure 4 on the oxide film surface, the apparent area of the oxide film surface (expressed by multiplication of length and width without considering minute irregularities on the surface). The area is preferably 25 to 75%. Further, the depth of the pore structure from the surface of the oxide film is preferably 50% or more of the total thickness of the oxide film.

B.アルミニウム基板表面の剥離性酸化皮膜構造について
上記密着性酸化皮膜が形成されるのとは反対側のアルミニウム基板表面には、剥離性の酸化皮膜が形成される。本発明において「剥離性」とは、例えばマスキングフィルムを手で剥がした際に、手で簡単に剥がれる性能を言うものとする。この酸化皮膜を低密着性とするには、上記密着性酸化皮膜の特徴のいずれか一つ以上を満たさなければよい。すなわち、(1)10nm未満又は500nmを超える厚さであること;(2)ポア構造を有していないこと;(3)ポア構造を有していても分岐構造を有していないこと、(4)ポア構造を有しており、かつ、分岐構造を有していても、小孔の直径が5nm未満又は30nmを超えること;のいずれかを満たせば達成されるものである。ポア構造を有していない場合には、仮接着可能な剥離性に特に優れる。なお、上記(2)〜(4)は重複して成立することはないが、(1)と(2)、(1)と(3)、(1)と(4)は、重複して成立する場合がある。
B. With respect to the peelable oxide film structure on the surface of the aluminum substrate, a peelable oxide film is formed on the surface of the aluminum substrate opposite to that on which the adhesive oxide film is formed. In the present invention, the term “peelability” refers to a performance that can be easily peeled off by hand when the masking film is peeled off by hand. In order to make this oxide film have low adhesion, any one or more of the above characteristics of the adhesion oxide film should be satisfied. That is, (1) the thickness is less than 10 nm or more than 500 nm; (2) it does not have a pore structure; (3) it does not have a branched structure even if it has a pore structure; 4) Even if it has a pore structure and has a branched structure, it is achieved if the diameter of the small hole is less than 5 nm or exceeds 30 nm. When it does not have a pore structure, it is particularly excellent in releasability capable of temporary adhesion. The above (2) to (4) do not hold redundantly, but (1) and (2), (1) and (3), and (1) and (4) overlap. There is a case.

C.アルミニウム基板の製造方法について
本発明に係るアルミニウム基板は、上述のような所定のポア構造を有するものであるが、以下のような製造方法によって製造される。すなわち、対向する一対の電極板間に、両電極板と結線しないアルミニウム基板をその基板面が両電極板面と平行になるように配設し、pH9〜13で温度35〜85℃のアルカリ性水溶液の電解液中で、一方の電極板の電位に対して他方の電極板の電位をそれ以上にして20〜100Hzの周期で変化させ、最高電流密度4〜50A/dmで、5〜60秒間電解処理する方法を挙げることができる。
C. About the manufacturing method of an aluminum substrate Although the aluminum substrate which concerns on this invention has the above predetermined pore structures, it is manufactured with the following manufacturing methods. That is, an aluminum substrate that is not connected to both electrode plates is disposed between a pair of opposing electrode plates so that the substrate surface is parallel to both electrode plate surfaces, and an alkaline aqueous solution having a pH of 9 to 13 and a temperature of 35 to 85 ° C. In the electrolyte solution, the potential of one electrode plate is made higher than the potential of one electrode plate, and is changed at a cycle of 20 to 100 Hz, and the maximum current density is 4 to 50 A / dm 2 , for 5 to 60 seconds. Examples of the method include electrolytic treatment.

従来、各種アルマイト処理に代表される電解処理では図4に示すような装置が用いられる。被処理アルミニウム基材板を一方の電極6とし、対極7との間を直接通電する方法である。図中8は交流電源であり、9は電解液である。これに対し本発明は、図2、3に示すように、被処理材であるアルミニウム基板6には結線せず、従ってアルミニウム基板自体に積極的に電流を流すものではない。代わりに、対向する一対の電極板7、10を用意し、アルミニウム基板6の基板面61を両電極板7、10の電極板面71、101と平行になるようにアルミニウム基板6を配設する。これにより、両電極板7、10間に流れる電流の向きに対してアルミニウム基板面61が垂直になることで、アルミニウム基板表面に間接的に電荷を供給する。この際、アルミニウム基板面61が電流の向きに垂直でない場合には、処理されるアルミニウム基板6の表面が、電極板間7、10を流れる電流に十分にさらされず、間接的な電荷供給が行われないので、目的とする酸化皮膜が形成されない。なお、図2において、一方の電極板7は11で接地(アース)または関数発生器等に接続される。他方の電極板10には、一方の電極板の電位以上において20〜100Hzの周期で変化させた電位が印加される。このような配置に加え、後述する電気分解条件を満たすことにより、アルミニウム基板の一方の面のみに密着性の酸化皮膜を形成させることができるものである。   Conventionally, an apparatus as shown in FIG. 4 is used in electrolytic treatment represented by various alumite treatments. In this method, the aluminum base plate to be treated is used as one electrode 6 and a current is directly passed between the counter electrode 7. In the figure, 8 is an AC power source, and 9 is an electrolytic solution. On the other hand, as shown in FIGS. 2 and 3, the present invention does not connect to the aluminum substrate 6 that is the material to be processed, and therefore does not actively flow current to the aluminum substrate itself. Instead, a pair of opposing electrode plates 7 and 10 are prepared, and the aluminum substrate 6 is disposed so that the substrate surface 61 of the aluminum substrate 6 is parallel to the electrode plate surfaces 71 and 101 of both the electrode plates 7 and 10. . As a result, the aluminum substrate surface 61 is perpendicular to the direction of the current flowing between the two electrode plates 7, 10, whereby charges are indirectly supplied to the aluminum substrate surface. At this time, if the aluminum substrate surface 61 is not perpendicular to the direction of current, the surface of the aluminum substrate 6 to be processed is not sufficiently exposed to the current flowing between the electrode plates 7 and 10, and indirect charge supply is performed. Therefore, the target oxide film is not formed. In FIG. 2, one electrode plate 7 is connected to ground (earth) or a function generator at 11. The other electrode plate 10 is applied with a potential changed at a cycle of 20 to 100 Hz above the potential of one electrode plate. In addition to such an arrangement, an adhesive oxide film can be formed only on one surface of the aluminum substrate by satisfying an electrolysis condition described later.

電解液として用いるアルカリ性水溶液としては、りん酸ナトリウム、りん酸水素カリウム、ピロりん酸ナトリウム、ピロりん酸カリウム及びメタりん酸ナトリウム等のりん酸塩の水溶液;水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物の水溶液;水酸化アンモニウム水溶液;ならびに、これらの混合物;が挙げられる。後述するように電解液のpHを特定範囲に保つ必要があることから、バッファー効果が得られるりん酸塩の水溶液が好ましい。なお、アルカリ水溶液には、汚れ除去能力の向上のために界面活性剤を加えてもよい。電解液中における電解質濃度は、所望の電解液抵抗となるように適宜選択されるが、通常、0.01〜0.5モル/リットルである。   Examples of the alkaline aqueous solution used as the electrolyte include aqueous solutions of phosphates such as sodium phosphate, potassium hydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate and sodium metaphosphate; alkalis such as sodium hydroxide and potassium hydroxide. Metal hydroxide aqueous solution; ammonium hydroxide aqueous solution; and mixtures thereof. As described later, since it is necessary to maintain the pH of the electrolytic solution in a specific range, an aqueous solution of a phosphate capable of obtaining a buffer effect is preferable. Note that a surfactant may be added to the alkaline aqueous solution in order to improve the dirt removing ability. The electrolyte concentration in the electrolytic solution is appropriately selected so as to obtain a desired electrolytic solution resistance, but is usually 0.01 to 0.5 mol / liter.

電解液のpHは9〜13であり、好ましくは9.5〜12である。pHが9未満では電解液のアルカリエッチング力が弱いため、酸化皮膜が不定形皮膜となり所定のポア構造及びバリア層の形成が不完全になる。一方、pHが13を超えると、アルカリエッチング力が過剰になるため酸化皮膜が成長し難く、所定のポア構造及びバリア層の形成も阻害される。   The pH of the electrolytic solution is 9 to 13, preferably 9.5 to 12. If the pH is less than 9, the alkaline etching power of the electrolytic solution is weak, so that the oxide film becomes an irregular film and the formation of the predetermined pore structure and barrier layer becomes incomplete. On the other hand, if the pH exceeds 13, the alkaline etching force becomes excessive, so that the oxide film is difficult to grow, and the formation of a predetermined pore structure and barrier layer is also inhibited.

電解液温度は35〜85℃であり、好ましくは40〜70℃である。電解液温度が35℃未満の場合、アルカリエッチング力が不足するため酸化皮膜の所定のポア構造及びバリア層の形成が不完全になり、85℃を超えるとアルカリエッチング力が過剰になるため酸化皮膜が成長し難く、所定のポア構造及びバリア層の形成も阻害される。   Electrolyte temperature is 35-85 degreeC, Preferably it is 40-70 degreeC. When the electrolyte temperature is less than 35 ° C., the alkaline etching power is insufficient, so that the predetermined pore structure of the oxide film and the formation of the barrier layer become incomplete, and when it exceeds 85 ° C., the alkaline etching power becomes excessive, the oxide film. Is difficult to grow, and the formation of a predetermined pore structure and barrier layer is also inhibited.

本発明の電解処理においては、所定のポア構造を有する酸化皮膜はアルミニウム基板の一方の面のみに形成させる必要がある。そして酸化皮膜の厚さは電気量、すなわち電流密度と電解時間の積によって制御され、基本的に電気量が多いほど酸化皮膜全体の厚さが増す。また、所定のポア構造は、適切な周波数の電流を通電することにより形成される。従って、電解処理条件は以下の通りとする必要がある。   In the electrolytic treatment of the present invention, the oxide film having a predetermined pore structure needs to be formed only on one surface of the aluminum substrate. The thickness of the oxide film is controlled by the quantity of electricity, that is, the product of the current density and the electrolysis time. Basically, the thickness of the oxide film increases as the quantity of electricity increases. The predetermined pore structure is formed by passing a current having an appropriate frequency. Therefore, the electrolytic treatment conditions must be as follows.

まず、電解処理の電位は、一方の電極板の電位に対して、他方の電極板の電位をそれ以上にして周期的に変化させる必要がある。これは例えば、一方の電極板を接地(アース)するとともに、他方の電極板に対して周期的に変化するプラスの電位を付加することにより達成される。このような電位付加により、両電極板間には、流れる向きは一方向のみで、かつ、周期的に量が変化する電流が流れることになる。この両電極板間にアルミニウム基板をさらすことで、電位の高い側のアルミニウム基板表面のみに電荷が供給され、その面に密着性の酸化皮膜が形成される。電極板間電位において、片方がマイナス、片方がプラスになるような周期的変化、例えば両電極板間に交流電圧を加えた場合などは、電流の向きが定期的に逆転するため、アルミニウム基板の両面に均等に電荷が供給され、結果として両面に密着性の酸化皮膜が形成されてしまう。   First, it is necessary to periodically change the potential of the electrolytic treatment with respect to the potential of one electrode plate with the potential of the other electrode plate being higher than that. This is achieved, for example, by grounding (grounding) one electrode plate and applying a positive potential that periodically changes to the other electrode plate. By applying such a potential, a current flowing in only one direction and periodically changing in amount flows between both electrode plates. By exposing the aluminum substrate between the two electrode plates, electric charge is supplied only to the surface of the aluminum substrate on the higher potential side, and an adhesive oxide film is formed on the surface. In the potential between the electrode plates, one side is negative and one side is positive. For example, when alternating voltage is applied between both electrode plates, the direction of the current is periodically reversed. Electric charges are evenly supplied to both surfaces, and as a result, an adhesive oxide film is formed on both surfaces.

電位を変化させる周期は、20〜100Hzである。20Hz未満では電解処理としては直流的要素が高まる結果、ポア構造の小孔の直径が5nm未満と小さくなり過ぎる。一方、100Hzを超えると、電流の変化が速すぎるために粗大なポアが形成されるため、30nm以下の小孔直径が達成されない。一周期内であれば、波形、最小電圧、最大電圧が任意に変化してもよい。   The period for changing the potential is 20 to 100 Hz. If it is less than 20 Hz, the direct current element increases as the electrolytic treatment, and as a result, the diameter of the pores having the pore structure becomes too small, less than 5 nm. On the other hand, when the frequency exceeds 100 Hz, the change in current is too fast and coarse pores are formed, so that a small hole diameter of 30 nm or less cannot be achieved. The waveform, the minimum voltage, and the maximum voltage may be arbitrarily changed within one period.

アルミニウム基板における電流密度は、電流の周期的変化における最高値が4〜50A/dmとする必要がある。アルミニウム基板における電流密度とは、電流値を電流が通るアルミニウム基板の面積で割ったものである。この電流密度が周期的変化中において4A/dmに達しない場合、皮膜形成反応が不完全になり所定のポア構造が得られない。一方、最高電流密度が50A/dmを超えると、電流密度が過大になるため酸化皮膜形状の制御が困難となり、所定のポア構造が安定して得られない。なお、電流密度を制御するためには、電源電圧、電極板間距離、電極板面積、電解液抵抗などの種々の因子があるが、技術的常識として電源電圧を制御するのが最も容易で確実である。 Current density in the aluminum substrate, the maximum value in the periodic variation of the current is required to be 4~50A / dm 2. The current density in the aluminum substrate is the current value divided by the area of the aluminum substrate through which the current passes. When this current density does not reach 4 A / dm 2 during the periodic change, the film formation reaction becomes incomplete and a predetermined pore structure cannot be obtained. On the other hand, when the maximum current density exceeds 50 A / dm 2 , the current density becomes excessive, so that it is difficult to control the oxide film shape, and a predetermined pore structure cannot be stably obtained. Although there are various factors such as power supply voltage, distance between electrode plates, electrode plate area, and electrolyte resistance to control the current density, it is the easiest and most reliable to control the power supply voltage as technical common sense. It is.

電解時間は5〜60秒である。5秒未満の処理時間では、酸化皮膜の形成が急激過ぎるため、所定のポア構造が十分に形成されず不定形のアルミニウム酸化物から構成される酸化皮膜となるためである。一方、60秒を超えると、酸化皮膜が再溶解して所定のポア構造が得られず、生産性も低下するため好ましくない。   The electrolysis time is 5 to 60 seconds. This is because if the treatment time is less than 5 seconds, the formation of the oxide film is too rapid, and the predetermined pore structure is not sufficiently formed, resulting in an oxide film composed of amorphous aluminum oxide. On the other hand, if it exceeds 60 seconds, the oxide film is redissolved and a predetermined pore structure cannot be obtained, and productivity is also lowered, which is not preferable.

周期的に電圧を変化させるには、関数発生器(ファンクションジェネレータ)等が用いられる。良好な酸化皮膜を得るには、関数発生器により容易に得られる波形として、例えば正弦波、矩形波、台形波ならびに三角波などを用いることが挙げられる。   In order to change the voltage periodically, a function generator or the like is used. In order to obtain a good oxide film, for example, a sine wave, a rectangular wave, a trapezoidal wave, or a triangular wave can be used as a waveform that can be easily obtained by a function generator.

更に一周期の電流密度において、最高電流密度と最低電流密度との差が2A/dm以上であれば、電流を周期的に変化させる効果が十分に発揮され、更に安定して密着性酸化膜を形成することができる。 Furthermore, if the difference between the maximum current density and the minimum current density is 2 A / dm 2 or more in one cycle current density, the effect of periodically changing the current is sufficiently exhibited, and the adhesion oxide film is more stable. Can be formed.

なお、本発明における酸化皮膜の構造を確認するためには、その断面を約5万〜10万倍に拡大して観察する必要があるが、その目的のためには断面TEM観察が好適に用いられる。断面TEM観察は、観察対象物をウルトラミクロトーム等で薄片に加工することにより実施される。
本発明で用いるアルミニウム基板の材質としては、純アルミニウム又はアルミニウム合金が用いられ、要求特性に応じて適宜選択することができる。アルミニウム合金としては、特に1000系、3000系、5000系および6000系等が好適に用いられる。アルミニウム基板は、通常0.1〜2.0mmの厚さのアルミニウム板が好適に用いられる。
In addition, in order to confirm the structure of the oxide film in the present invention, it is necessary to observe the cross section by magnifying it about 50,000 to 100,000 times. For this purpose, cross-sectional TEM observation is preferably used. It is done. Cross-sectional TEM observation is performed by processing an observation object into a thin piece with an ultramicrotome or the like.
As a material of the aluminum substrate used in the present invention, pure aluminum or an aluminum alloy is used, and can be appropriately selected according to required characteristics. As the aluminum alloy, 1000 series, 3000 series, 5000 series, 6000 series and the like are particularly preferably used. As the aluminum substrate, an aluminum plate having a thickness of usually 0.1 to 2.0 mm is preferably used.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する   Hereinafter, preferred embodiments of the present invention will be specifically described based on examples and comparative examples.

実施例1〜19及び比較例1〜13
アルミニウム基板として、縦100mm×横100mm×板厚1.0mmのJIS5052合金板を使用した。対向する一対の電極板間において、これらと結線しないようにアルミニウム基板をその基板面が両電極板面と平行になるように配設して電解処理した。電解液には、表1に示すpHと温度を有するピロりん酸ナトリウムを主成分とするアルカリ性水溶液を用いた。アルカリ性水溶液の電解質濃度は、0.05モル/リットルとした。また両電極には黒鉛板を用いた。
Examples 1-19 and Comparative Examples 1-13
As the aluminum substrate, a JIS 5052 alloy plate measuring 100 mm long × 100 mm wide × 1.0 mm thick was used. An aluminum substrate was disposed between a pair of opposing electrode plates so that they were not connected to each other so that the substrate surface was parallel to both electrode plate surfaces and subjected to electrolytic treatment. As the electrolytic solution, an alkaline aqueous solution mainly composed of sodium pyrophosphate having the pH and temperature shown in Table 1 was used. The electrolyte concentration of the alkaline aqueous solution was 0.05 mol / liter. A graphite plate was used for both electrodes.

Figure 2011021260
Figure 2011021260

表2に示す電解条件にて電解処理を実施した。一方の電極電位を常に0V一定とし、他方の電極では電位を0V以上の範囲で周期的に変化させた。表2に示す「電位(V)」、「周期(Hz)」、「波形」は、この他方の電極への印加特性である。他方の電極板に面したアルミニウム基板面を「オモテ面」、電位が常に0Vである電極板に面したアルミニウム基板面を「ウラ面」とした。但し、比較例1においては、一対の電極間に試料であるアルミニウム基板を配設せず、電位が0V以上の範囲で周期的に変化する電極としてアルミニウム基板を用い、常に0V一定とした黒鉛板をこの対極として用いた。そして、このアルミニウム基板のうち対極に面した面を「オモテ面」とし、その反対側を「ウラ面」とした。また、比較例2においては、「オモテ面」と「ウラ面」の区別を設けていない。   Electrolytic treatment was carried out under the electrolytic conditions shown in Table 2. One electrode potential was always kept constant at 0 V, and the potential of the other electrode was periodically changed in a range of 0 V or more. The “potential (V)”, “period (Hz)”, and “waveform” shown in Table 2 are the application characteristics to the other electrode. The aluminum substrate surface facing the other electrode plate was referred to as the “front surface”, and the aluminum substrate surface facing the electrode plate whose potential was always 0 V was referred to as the “back surface”. However, in Comparative Example 1, an aluminum substrate as a sample is not disposed between a pair of electrodes, an aluminum substrate is used as an electrode whose potential changes periodically in a range of 0 V or higher, and the graphite plate is always kept at 0 V. Was used as this counter electrode. And the surface which faced the counter electrode among this aluminum substrate was made into the "front surface", and the other side was made into the "back surface". Further, in Comparative Example 2, there is no distinction between “front side” and “back side”.

Figure 2011021260
Figure 2011021260

このようにして電解処理したアルミニウム基板のオモテ面とウラ面を断面TEMで観察し、酸化皮膜の厚さ、小孔径、分岐構造の有無を調べた。結果を表3に示す。なお、表3において、オモテ面及びウラ面の小孔径に関して「なし」とは、ポア構造が形成されなかったことを意味する。   The front and back surfaces of the electrolytically treated aluminum substrate were observed with a cross-sectional TEM to examine the thickness of the oxide film, the small pore diameter, and the presence or absence of a branched structure. The results are shown in Table 3. In Table 3, “None” with respect to the small hole diameters on the front and back surfaces means that no pore structure was formed.

Figure 2011021260
Figure 2011021260

上記電解処理を行ったアルミニウム基板に対し、まずウラ面にマスキングフィルム(フィルム基材:塩化ビニル系樹脂、接着剤:アクリル系樹脂)を貼り、次にオモテ面にエポキシ系樹脂接着剤を20μmの厚さに塗布し、その上に厚さ35μmの電解銅箔を積層した後、ホットプレスにて165℃×90分の加熱圧着を行うことにより、プリント配線基板サンプルを作製した。   A masking film (film substrate: vinyl chloride resin, adhesive: acrylic resin) is first applied to the back surface of the aluminum substrate subjected to the electrolytic treatment, and then an epoxy resin adhesive of 20 μm is applied to the front surface. After coating to a thickness and laminating an electrolytic copper foil having a thickness of 35 μm thereon, a printed wiring board sample was prepared by performing thermocompression bonding at 165 ° C. for 90 minutes with a hot press.

このようにして作製したサンプルに対し、以下の評価を実施した。
(耐熱密着性試験)
上記のサンプルを55mm×25mmの大きさに切断し、オートクレーブ中にて121℃×16時間吸湿処理した。次いで、260℃の溶融はんだ浴上に30秒間フロートし、銅箔が剥離した面積率により、樹脂に対するアルミニウム基板の耐熱密着性を評価した。判定基準は以下の通りである。
◎:剥離面積率0%
○:剥離面積率0%を超えて10%以下
△:剥離面積率10%を超えて25%以下
×:剥離面積率25%を超えて50%以下
××:剥離面積率50%を超える
The following evaluation was performed on the samples thus prepared.
(Heat resistance adhesion test)
The sample was cut into a size of 55 mm × 25 mm and subjected to moisture absorption treatment in an autoclave at 121 ° C. for 16 hours. Subsequently, it floated on a 260 degreeC molten solder bath for 30 second, and the heat resistant adhesiveness of the aluminum substrate with respect to resin was evaluated by the area ratio from which copper foil peeled. Judgment criteria are as follows.
A: Peeling area ratio 0%
○: Peeling area ratio exceeding 0% and 10% or less △: Peeling area ratio exceeding 10% and 25% or less ×: Peeling area ratio exceeding 25% and 50% or less XX: Peeling area ratio exceeding 50%

(マスキングフィルム除去性試験)
サンプルのウラ面に貼り付けられたままになっているマスキングフィルムを手で剥がし、アルミニウム基板の接着剤塗布面積に対するアルミニウ基板に残存した接着剤の占有面積割合を測定した。判定基準は以下の通りである。
○:残存する接着剤の占有面積割合が5%以下
×:残存する接着剤の占有面積割合が5%を上回る
(Masking film removability test)
The masking film still attached to the back surface of the sample was peeled off by hand, and the ratio of the area occupied by the adhesive remaining on the aluminum substrate to the adhesive coating area of the aluminum substrate was measured. Judgment criteria are as follows.
○: Occupied area ratio of remaining adhesive is 5% or less ×: Occupied area ratio of remaining adhesive exceeds 5%

耐熱密着性及びマスキングフィルム除去性の総合評価は、以下の通りである。
◎:耐熱密着性が◎で、マスキングフィルム除去性が○
○:耐熱密着性が○で、マスキングフィルム除去性が○
△:耐熱密着性が△で、マスキングフィルム除去性が○
×:耐熱密着性が×又は××、或いは、マスキングフィルム除去性が×
◎、○及び△を合格とし、×を不合格とした。結果を表4に示す
Comprehensive evaluation of heat-resistant adhesion and masking film removability is as follows.
◎: Heat-resistant adhesion is ◎, masking film removability is ○
○: heat-resistant adhesion is ○, masking film removability is ○
Δ: heat resistant adhesion is Δ, masking film removability is ○
X: heat-resistant adhesion is x or xx, or masking film removability is x
◎, ○, and Δ were accepted, and x was rejected. The results are shown in Table 4.

Figure 2011021260
Figure 2011021260

表4から明らかなように、本発明例1〜19は本発明要件を満たすため、オモテ面の耐熱密着性及びウラ面のマスキングフィルム除去性とも良好で、総合評価が合格であった。一方、比較例1〜13は本発明要件を満たしていないため、オモテ面の耐熱密着性、或いは、ウラ面のマスキングフィルム除去性が不良で、総合評価は不合格であった。   As is apparent from Table 4, Examples 1 to 19 of the invention satisfy the requirements of the invention, so that the heat-resistant adhesion on the front surface and the removability of the masking film on the back surface are good, and the overall evaluation is acceptable. On the other hand, since Comparative Examples 1 to 13 did not satisfy the requirements of the present invention, the heat-resistant adhesion on the front surface or the masking film removability on the back surface was poor, and the overall evaluation was unacceptable.

具体的には、比較例1では、アルミニウム基板に結線し電極として直接作用させたため、アルミニウム基板の両面に密着性の酸化皮膜が形成された。その結果、ウラ面のマスキングフィルム除去性が劣り、総合評価は不合格であった。
比較例2では、アルミニウム基板が電流の向きに平行に配設されているため、基板表面に電荷が供給されず、オモテ面にポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例3では、アルミニウム基板には結線されていないものの、他方の電極板電位にプラスからマイナスに電位変化する正弦波を印加したために、アルミニウム基板の両面に密着性の酸化皮膜が形成された。その結果、ウラ面のマスキングフィルム除去性が劣り、総合評価は不合格であった。
比較例4では、電解液のpHが高過ぎたため電解時のエッチング過多で酸化皮膜厚さが薄過ぎ、オモテ面に分岐したポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例5では、電解液のpHが低過ぎたため電解時のエッチングが不足して酸化皮膜が不定形状になり、オモテ面にポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例6では、電解液の温度が低過ぎたため電解時のエッチングが不足して酸化皮膜が不定形状になり、オモテ面にポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例7では、電解液の温度が高過ぎたため電解時のエッチング過多で酸化皮膜厚さが薄過ぎ、オモテ面に分岐したポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例8では、電極間の電位が周期的に変化しなかったため、オモテ面にポア構造が形成さなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例9では、電流の周波数が低過ぎたため、オモテ面に分岐したポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例10では、電流の周波数が高過ぎたため、オモテ面の分岐したポア構造の小孔直径が大き過ぎた。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例11では、最大電流密度が低過ぎ、かつ、電解時間も長過ぎたため、オモテ面に形成された酸化皮膜が不定形状になり、オモテ面にポア構造が得られなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例12では、電流密度が高過ぎ、かつ、電解時間も短過ぎたため、オモテ面に分岐したポア構造が形成されなかった。その結果、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
比較例13では、比較例1と同様にアルミニウム基板に結線し電極として直接作用させたため、アルミニウム基板の両面に密着性の酸化皮膜が形成されている。ただし電解時間が長過ぎたため、両面の酸化皮膜の厚みが500nmを上回っている。その結果、ウラ面のマスキングフィルム除去性は優れるものの、オモテ面の耐熱密着性が劣り、総合評価は不合格であった。
Specifically, in Comparative Example 1, since an aluminum substrate was connected and directly acted as an electrode, an adhesive oxide film was formed on both surfaces of the aluminum substrate. As a result, the masking film removability on the back surface was inferior, and the overall evaluation was unacceptable.
In Comparative Example 2, since the aluminum substrate was disposed in parallel with the direction of current, no charge was supplied to the substrate surface, and no pore structure was formed on the front surface. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 3, although not connected to the aluminum substrate, an adhesive oxide film was formed on both surfaces of the aluminum substrate because a sine wave that changed from positive to negative was applied to the other electrode plate potential. As a result, the masking film removability on the back surface was inferior, and the overall evaluation was unacceptable.
In Comparative Example 4, since the pH of the electrolytic solution was too high, the oxide film thickness was too thin due to excessive etching during electrolysis, and the pore structure branched to the front surface was not formed. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 5, since the pH of the electrolyte was too low, etching during electrolysis was insufficient and the oxide film became indefinite, and no pore structure was formed on the front surface. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 6, since the temperature of the electrolytic solution was too low, etching during electrolysis was insufficient and the oxide film became indefinite, and no pore structure was formed on the front surface. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 7, since the temperature of the electrolytic solution was too high, the oxide film thickness was too thin due to excessive etching during electrolysis, and the pore structure branched to the front surface was not formed. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 8, since the potential between the electrodes did not change periodically, no pore structure was formed on the front surface. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 9, since the current frequency was too low, the pore structure branched to the front surface was not formed. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 10, since the frequency of the current was too high, the small hole diameter of the pore structure with the branched front surface was too large. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 11, since the maximum current density was too low and the electrolysis time was too long, the oxide film formed on the front surface was indefinite, and no pore structure was obtained on the front surface. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 12, since the current density was too high and the electrolysis time was too short, the pore structure branched to the front surface was not formed. As a result, the heat-resistant adhesion on the front side was inferior and the overall evaluation was unacceptable.
In Comparative Example 13, as in Comparative Example 1, since the wire was connected to the aluminum substrate and directly acted as an electrode, an adhesive oxide film was formed on both surfaces of the aluminum substrate. However, since the electrolysis time is too long, the thickness of the oxide film on both sides exceeds 500 nm. As a result, although the masking film removability on the back surface was excellent, the heat-resistant adhesion on the front surface was inferior and the overall evaluation was unacceptable.

以上のように、本発明の請求項に従って作られたアルミニウム基板は、片面のみにポア構造を有する密着性の酸化膜を有するため、アルミニウム基板の片面のみに銅箔を貼り合せるプリント配線基板に対し好適に使用できる。   As described above, since an aluminum substrate made according to the claims of the present invention has an adhesive oxide film having a pore structure only on one side, the printed circuit board in which copper foil is bonded only to one side of the aluminum substrate is used. It can be used suitably.

1‥‥‥酸化皮膜
2‥‥‥アルミニウム素地
3‥‥‥バリア層
4‥‥‥ポア構造
41‥‥‥小孔
5‥‥‥分岐点
6‥‥‥アルミニウム基板
61‥‥‥アルミニウム基板面
7‥‥‥電極板
71‥‥‥電極板面
8‥‥‥電源
9‥‥‥電解液
10‥‥‥電極板
101‥‥‥電極板面
11‥‥‥接地
DESCRIPTION OF SYMBOLS 1 ... Oxide film 2 ......... Aluminum substrate 3 ... Barrier layer 4 ... Pore structure 41 ... Small hole 5 ... Branch point 6 ... Aluminum substrate 61 ... Aluminum substrate surface 7 ... Electrode plate 71 ... Electrode plate surface 8 ... Power supply 9 ... Electrolyte 10 ... Electrode plate 101 ... Electrode plate surface 11 ... Ground

Claims (5)

両面に酸化皮膜を備えたアルミニウム基板であって、一方の面の酸化皮膜は10〜500nmの全体厚さを有する密着性酸化皮膜であり、アルミニウム素地側のバリア層と表面側のポア構造とを備え、当該ポア構造は内部に分岐した直径5〜30nmの小孔を有し、他方の面の酸化皮膜は剥離性酸化皮膜であることを特徴とするアルミニウム基板。   An aluminum substrate provided with an oxide film on both sides, the oxide film on one side being an adhesive oxide film having an overall thickness of 10 to 500 nm, comprising an aluminum substrate side barrier layer and a surface side pore structure The aluminum substrate is characterized in that the pore structure has a small hole with a diameter of 5 to 30 nm branched into the inside, and the oxide film on the other surface is a peelable oxide film. 前記剥離性酸化皮膜が、(1)10nm未満又は500nmを超える厚さであること;(2)ポア構造を有していないこと;(3)ポア構造を有していても分岐構造を有していないこと、(4)ポア構造を有しており、かつ、分岐構造を有していても、小孔の直径が5nm未満又は30nmを超えること;のいずれかを満たす、請求項1に記載のアルミニウム基板。   The peelable oxide film (1) has a thickness of less than 10 nm or more than 500 nm; (2) has no pore structure; (3) has a branched structure even if it has a pore structure. Or (4) having a pore structure and having a branched structure, the diameter of the small hole is less than 5 nm or more than 30 nm. Aluminum substrate. 対向する一対の電極板間に、両電極板と結線しないアルミニウム基板をその基板面が両電極板面と平行になるように配設し、pH9〜13で温度35〜85℃のアルカリ性水溶液の電解液中で、一方の電極板の電位に対して、他方の電極板の電位をそれ以上にして20〜100Hzの周期で変化させ、最高電流密度4〜50A/dmで、5〜60秒間電解処理するアルミニウム基板の製造方法。 An aluminum substrate that is not connected to both electrode plates is disposed between a pair of opposing electrode plates so that the substrate surface is parallel to both electrode plate surfaces, and electrolysis of an alkaline aqueous solution at a pH of 9 to 13 and a temperature of 35 to 85 ° C. In liquid, with respect to the potential of one electrode plate, the potential of the other electrode plate is increased and changed at a cycle of 20 to 100 Hz, and electrolysis is performed at a maximum current density of 4 to 50 A / dm 2 for 5 to 60 seconds. A method of manufacturing an aluminum substrate to be processed. 電位の周期的変化が正弦波、矩形波、台形波及び三角波から成る群から選択される少なくとも一種であり、最低電流密度を示す時間が1周期の中の80%以下である、請求項3に記載のアルミニウム基板の製造方法。   The periodic change of the potential is at least one selected from the group consisting of a sine wave, a rectangular wave, a trapezoidal wave, and a triangular wave, and the time showing the minimum current density is 80% or less in one period. The manufacturing method of the aluminum substrate of description. 前記最高電流密度と最低電流密度との差が2A/dm以上である、請求項4に記載のアルミニウム基板の製造方法。 The method for producing an aluminum substrate according to claim 4, wherein a difference between the highest current density and the lowest current density is 2 A / dm 2 or more.
JP2009168776A 2009-07-17 2009-07-17 Aluminum substrate and manufacturing method thereof Active JP5545707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168776A JP5545707B2 (en) 2009-07-17 2009-07-17 Aluminum substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168776A JP5545707B2 (en) 2009-07-17 2009-07-17 Aluminum substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011021260A true JP2011021260A (en) 2011-02-03
JP5545707B2 JP5545707B2 (en) 2014-07-09

Family

ID=43631576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168776A Active JP5545707B2 (en) 2009-07-17 2009-07-17 Aluminum substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5545707B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251653A (en) * 2011-06-07 2012-12-20 Furukawa-Sky Aluminum Corp Aluminum joint product, and method for manufacturing aluminum pipe used for aluminum joint product
JP2013170288A (en) * 2012-02-20 2013-09-02 Furukawa-Sky Aluminum Corp Aluminum material for welding and method for producing the same, and welded structure using the aluminum material for welding
JP2014028454A (en) * 2012-07-31 2014-02-13 Uacj Corp Aluminum composite material and method for manufacturing the same
KR20140123589A (en) * 2012-02-12 2014-10-22 가부시키가이샤 유에이씨제이 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
WO2015015768A1 (en) * 2013-08-01 2015-02-05 株式会社Uacj Treated surface aluminum material and manufacturing method therefor
JP2015513611A (en) * 2012-02-24 2015-05-14 シェンチェン ビーワイディー オート アールアンドディー カンパニーリミテッド Aluminum alloy resin composite and preparation method thereof
JP2016020519A (en) * 2014-07-12 2016-02-04 株式会社Uacj Surface-treated aluminum material and production method thereof
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
US9802388B2 (en) 2012-02-24 2017-10-31 Shenzhen Byd Auto R&D Company Limited Aluminum alloy resin composite and method of preparing the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
CN107709631A (en) * 2015-08-13 2018-02-16 株式会社Uacj The excellent surface treated aluminum material of resin adhesion and its conjugant of manufacture method and surface treated aluminum material/resin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106796A (en) * 1984-10-17 1986-05-24 アルカン・インターナシヨナル・リミテツド Porous aluminum oxide film and its production
JPH02258619A (en) * 1989-03-31 1990-10-19 Univ Kyoto Alumina porous film of fine pore shape at central part and production thereof
JPH04356694A (en) * 1991-01-31 1992-12-10 Sky Alum Co Ltd Heat exchanger aluminum fin material and manufacture thereof
JPH05191001A (en) * 1991-02-26 1993-07-30 Sky Alum Co Ltd Board for printed wiring and manufacture thereof
JPH0918140A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Production of printed wiring board
JP2000017499A (en) * 1998-06-26 2000-01-18 Fuji Photo Film Co Ltd Electrolyzer of metallic strip
JP2001140100A (en) * 1999-11-12 2001-05-22 Fuji Photo Film Co Ltd Device for electrolyzing metallic sheet and electrode for electrolyzing metallic sheet
JP2003113497A (en) * 2001-10-09 2003-04-18 Canon Inc Porous structure and manufacturing method therefor
JP2006024906A (en) * 2004-06-10 2006-01-26 Showa Denko Kk Aluminum substrate for printed circuit and manufacturing method of the substrate, and printed circuit board and manufacturing method of the board
JP2006083467A (en) * 2004-08-20 2006-03-30 Suzuki Motor Corp Anodized film and anodizing method
JP2006283157A (en) * 2005-04-01 2006-10-19 Showa Denko Kk Tool for surface treatment and surface treatment method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106796A (en) * 1984-10-17 1986-05-24 アルカン・インターナシヨナル・リミテツド Porous aluminum oxide film and its production
JPH02258619A (en) * 1989-03-31 1990-10-19 Univ Kyoto Alumina porous film of fine pore shape at central part and production thereof
JPH04356694A (en) * 1991-01-31 1992-12-10 Sky Alum Co Ltd Heat exchanger aluminum fin material and manufacture thereof
JPH05191001A (en) * 1991-02-26 1993-07-30 Sky Alum Co Ltd Board for printed wiring and manufacture thereof
JPH0918140A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Production of printed wiring board
JP2000017499A (en) * 1998-06-26 2000-01-18 Fuji Photo Film Co Ltd Electrolyzer of metallic strip
JP2001140100A (en) * 1999-11-12 2001-05-22 Fuji Photo Film Co Ltd Device for electrolyzing metallic sheet and electrode for electrolyzing metallic sheet
JP2003113497A (en) * 2001-10-09 2003-04-18 Canon Inc Porous structure and manufacturing method therefor
JP2006024906A (en) * 2004-06-10 2006-01-26 Showa Denko Kk Aluminum substrate for printed circuit and manufacturing method of the substrate, and printed circuit board and manufacturing method of the board
JP2006083467A (en) * 2004-08-20 2006-03-30 Suzuki Motor Corp Anodized film and anodizing method
JP2006283157A (en) * 2005-04-01 2006-10-19 Showa Denko Kk Tool for surface treatment and surface treatment method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251653A (en) * 2011-06-07 2012-12-20 Furukawa-Sky Aluminum Corp Aluminum joint product, and method for manufacturing aluminum pipe used for aluminum joint product
KR102098576B1 (en) * 2012-02-12 2020-04-08 가부시키가이샤 유에이씨제이 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
KR20140123589A (en) * 2012-02-12 2014-10-22 가부시키가이샤 유에이씨제이 Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
JP2013170288A (en) * 2012-02-20 2013-09-02 Furukawa-Sky Aluminum Corp Aluminum material for welding and method for producing the same, and welded structure using the aluminum material for welding
US9770884B2 (en) 2012-02-24 2017-09-26 Shenzhen Byd Auto R&D Company Limited Metal-resin composite and method for producing the same
US9808974B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9889588B2 (en) 2012-02-24 2018-02-13 Shenzhen Byd Auto R&D Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US9862131B2 (en) 2012-02-24 2018-01-09 Byd Company Limited Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
JP2015513611A (en) * 2012-02-24 2015-05-14 シェンチェン ビーワイディー オート アールアンドディー カンパニーリミテッド Aluminum alloy resin composite and preparation method thereof
US9809895B2 (en) 2012-02-24 2017-11-07 Shenzhen Byd Auto R&D Company Limited Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
US9802388B2 (en) 2012-02-24 2017-10-31 Shenzhen Byd Auto R&D Company Limited Aluminum alloy resin composite and method of preparing the same
US9783894B2 (en) 2012-05-28 2017-10-10 Byd Company Limited Metal composite and method of preparing the same, metal-resin composite and method of preparing the same
JP2014028454A (en) * 2012-07-31 2014-02-13 Uacj Corp Aluminum composite material and method for manufacturing the same
JPWO2015015768A1 (en) * 2013-08-01 2017-03-02 株式会社Uacj Surface-treated aluminum material and method for producing the same
WO2015015768A1 (en) * 2013-08-01 2015-02-05 株式会社Uacj Treated surface aluminum material and manufacturing method therefor
KR20160040458A (en) * 2013-08-01 2016-04-14 가부시키가이샤 유에이씨제이 Treated surface aluminum material and manufacturing method therefor
CN105408527A (en) * 2013-08-01 2016-03-16 株式会社Uacj Treated surface aluminum material and manufacturing method therefor
TWI656223B (en) * 2013-08-01 2019-04-11 日商Uacj股份有限公司 Surface-treated aluminum material and manufacturing method thereof
KR102155398B1 (en) 2013-08-01 2020-09-11 가부시키가이샤 유에이씨제이 Treated surface aluminum material and manufacturing method therefor
JP2016020519A (en) * 2014-07-12 2016-02-04 株式会社Uacj Surface-treated aluminum material and production method thereof
CN107709631A (en) * 2015-08-13 2018-02-16 株式会社Uacj The excellent surface treated aluminum material of resin adhesion and its conjugant of manufacture method and surface treated aluminum material/resin
CN107709631B (en) * 2015-08-13 2019-10-29 株式会社Uacj The excellent surface treated aluminum material of resin adhesion and its manufacturing method and surface treated aluminum material/resin conjugant
US11560641B2 (en) 2015-08-13 2023-01-24 Uacj Corporation Surface-treated aluminum material having excellent adhesiveness to resins, method for manufacturing the same, and surface-treated aluminum material-resin bonded body

Also Published As

Publication number Publication date
JP5545707B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5545707B2 (en) Aluminum substrate and manufacturing method thereof
JP5275701B2 (en) Aluminum material for printed wiring board and method for producing the same
TW545093B (en) Copper foil with low profile bond enhancement
US9758890B2 (en) Production method and device of surface roughened copper plate, and surface roughened copper plate
JP4144711B2 (en) Surface treated copper foil for low dielectric substrate, copper-clad laminate and printed wiring board using the same
KR101574475B1 (en) Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
JP6894811B2 (en) Method for manufacturing electrolytic copper foil and circuit board parts having villous copper particles
US10299374B2 (en) Flexible electronic substrate
KR102098576B1 (en) Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2013147688A (en) Surface-treated copper foil for use in copper-clad laminated board, and copper-clad laminated board employing the same
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
JP5145092B2 (en) Aluminum material for printed wiring board and method for producing the same
JP5345955B2 (en) Adhesive flexible laminate
JP5393903B1 (en) Copper foil with carrier, and printed wiring board, printed circuit board and copper-clad laminate using the same
JP2009214308A (en) Copper foil with carrier
JP2007046095A (en) Copper foil, and surface treatment method therefor
JP2630858B2 (en) Manufacturing method of printed wiring board
JP2006269706A (en) Laminate substrate and its manufacturing method
JPH04202796A (en) Copper foil for printed circuit board and its production
TW574441B (en) Electrolytic copper foil for copper-clad laminate, and manufacturing method thereof
JP2014013883A (en) Copper foil for printed wiring board and manufacturing method thereof, and printed wiring board using the same
JP2005340635A (en) Rolled copper foil for printed wiring board, and its production process
WO2021200874A1 (en) Bonded body and insulating circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5545707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150