JPH04356694A - Heat exchanger aluminum fin material and manufacture thereof - Google Patents

Heat exchanger aluminum fin material and manufacture thereof

Info

Publication number
JPH04356694A
JPH04356694A JP3149391A JP3149391A JPH04356694A JP H04356694 A JPH04356694 A JP H04356694A JP 3149391 A JP3149391 A JP 3149391A JP 3149391 A JP3149391 A JP 3149391A JP H04356694 A JPH04356694 A JP H04356694A
Authority
JP
Japan
Prior art keywords
aluminum
film
oxide film
treatment
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3149391A
Other languages
Japanese (ja)
Inventor
Masahiro Kurata
正裕 倉田
Nobuyoshi Sasaki
佐々木 延義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP3149391A priority Critical patent/JPH04356694A/en
Publication of JPH04356694A publication Critical patent/JPH04356694A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To establish the development of a heat exchange aluminum material having excellent coated film bonding property and workability, and having corrosion resistance. CONSTITUTION:A fin material is roughened over its surface. Thereafter, there is performed an AC electrolytic treatment where the amount of electricity exceeds 80C/dm at 4-50A/dm current density in an alkali aqueous solution at 35-80 deg.C bath temperature. Hereby, an oxide film of 500-5000Angstrom thickness is formed. Thus, a porous oxide film having a branching structure and having a greater pore size is formed, and hence a fin material excellent in a film bonding property upon processing. Further, a processing method permits high current density electrolysis, and hence there are ensured degrease cleaning and production of a porous oxide film in the sam tank with a single treatment and further a fluid disposing treatment is facilitated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、家庭用、業務用及びカ
ーエアコン等のコンデンサー(凝縮器)、エバポレータ
ー等に使用する熱交換器用フィンに使用するアルミニウ
ムフィン用材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum fin material used for heat exchanger fins used in condensers, evaporators, etc. of household, commercial, and car air conditioners.

【0002】アルミニウム又はアルミニウム合金材に樹
脂又は水ガラス等の無機皮膜を塗装・焼付けた後、絞り
加工又はしごき加工によりフィン材を成形し、脱脂洗浄
(プレス油の除去)、組み立て(銅パイプ挿入、拡管)
により熱交換器フィンとして使用する際、アルミニウム
又はアルミニウム合金材と塗膜との密着性に優れ、耐食
性及び耐薬品性(耐溶剤性、耐アルカリ薬品性)が高く
、しかも生産性の高い(短時間処理、安価)熱交換器用
アルミニウムフィン材及びその製造方法を提供するもの
である。
[0002] After painting and baking an inorganic film such as resin or water glass on aluminum or aluminum alloy material, fin material is formed by drawing or ironing, degreasing and cleaning (removal of press oil), and assembly (copper pipe insertion). , tube expansion)
When used as a heat exchanger fin, it has excellent adhesion between the aluminum or aluminum alloy material and the coating, has high corrosion resistance and chemical resistance (solvent resistance, alkali chemical resistance), and is highly productive (short and short). The present invention provides an aluminum fin material for heat exchangers (time-processed, inexpensive) and a method for manufacturing the same.

【0003】0003

【従来の技術】家庭用、業務用を問わずエアコン、クー
ラー等のエバポレーター、コンデンサー等の熱交換器に
は、加工性、放熱性に優れ、また軽量かつ耐食性の良好
なアルミニウムフィン材が使われている。近年において
は熱交換器の小型化、省エネルギー化、熱効率をアップ
するためにフィン材を複雑な形状に加工し、また単位重
量あたりの表面積を増やしたり、冷房運転時の空気中水
分のフィン表面への結露及びそれに伴う通風抵抗の増加
を防止するためにアルミニウムフィン表面を親水化処理
(樹脂コーティング等)することが行なわれており、さ
らに耐食性を更に向上させるために耐食性塗膜をコーテ
ィングするといった処理を施している。
[Prior Art] Aluminum fin materials are used in heat exchangers such as evaporators and condensers for air conditioners and coolers, whether for home or commercial use, because they have excellent workability and heat dissipation, and are lightweight and have good corrosion resistance. ing. In recent years, in order to miniaturize heat exchangers, save energy, and increase thermal efficiency, fin materials have been processed into complex shapes, and the surface area per unit weight has been increased, and moisture in the air has been transferred to the fin surface during cooling operation. To prevent dew condensation and the resulting increase in ventilation resistance, aluminum fin surfaces are treated to make them hydrophilic (resin coating, etc.), and to further improve corrosion resistance, coating with a corrosion-resistant paint film is performed. is being carried out.

【0004】これらの塗装処理は、成形加工した材料を
塗装するポストコートと、成形加工前に塗装処理を行な
い、塗装済のアルミニウム板を成形加工するプレコート
があるが、複雑な形状に成形した後での塗装は極めて困
難であり、板の段階での塗装するプレコートが好ましい
ことは言うまでもない。
[0004] These painting treatments include post-coating, in which the molded material is painted, and pre-coating, in which the painted aluminum plate is molded after being painted before the molding process. It goes without saying that it is extremely difficult to apply a pre-coat coating at the board stage.

【0005】プレコート材は塗装処理を施したアルミニ
ウム板を成形加工して組み立てるもので、アルミ板上の
塗膜は成形加工に耐えうるものでなければならない。成
形は一般に次のごときフィンへの成形工程をとる。 成形(絞り加工またはしごき加工)→切断→銅パイプ挿
入→銅パイプ拡管→脱脂→乾燥→製造 ここで行なわれる成形は、絞り加工又はしごき加工によ
り行なわれるが、深絞り又は苛酷な成形に属し、通常フ
ィン用材の加工率(板厚減少率)は50%以上となる。 そのため、アルミニウム板と塗膜の密着性が不充分であ
ると塗膜にキレツを生じたり、塗膜の剥離が発生する。 このような状態では熱交換器冷房運転時の結露等により
、塗膜欠陥部に白錆、孔食が発生し易く、また銅パイプ
と直接に接触することによる電食も起こし易い。
[0005] The precoat material is assembled by molding a coated aluminum plate, and the coating film on the aluminum plate must be able to withstand the molding process. Molding generally involves the following steps for forming fins. Forming (drawing or ironing) → Cutting → Copper pipe insertion → Copper pipe expansion → Degreasing → Drying → Manufacturing The forming performed here is performed by drawing or ironing, but it belongs to deep drawing or harsh forming. Normally, the processing rate (plate thickness reduction rate) of fin materials is 50% or more. Therefore, if the adhesion between the aluminum plate and the coating film is insufficient, the coating film may crack or peel. Under such conditions, white rust and pitting corrosion are likely to occur in defective areas of the coating due to condensation during cooling operation of the heat exchanger, and electrolytic corrosion is also likely to occur due to direct contact with copper pipes.

【0006】また、熱交換器成形においてはプレス油が
使われるので、成形後脱脂洗浄が必要である。脱脂には
通常、1,1,1−トリクロルエタン、1,1,2−ト
リクロルエチレン等の有機溶剤、アルカリケイ酸塩等の
アルカリ脱脂剤、ノニオンあるいはアニオン性活性剤水
溶液に浸漬及び/または蒸気浴による洗浄が行なわれて
いる。このとき、アルミニウム板と塗膜の密着性が不充
分であると脱脂剤がアルミニウム板と塗膜の接着面に入
り込み、フクレ、剥離等の不良を起こしたり、脱脂剤が
最終製品においても残るために異臭の発生といった不都
合を生じる。
Furthermore, since press oil is used in heat exchanger molding, degreasing and cleaning is required after molding. Degreasing is usually done by immersion in an aqueous solution of an organic solvent such as 1,1,1-trichloroethane or 1,1,2-trichloroethylene, an alkaline degreaser such as an alkali silicate, a nonionic or anionic activator, and/or steam. Bath cleaning is being carried out. At this time, if the adhesion between the aluminum plate and the paint film is insufficient, the degreaser will enter the adhesive surface between the aluminum plate and the paint film, causing defects such as blistering and peeling, and the degreaser will remain in the final product. This causes inconveniences such as the generation of strange odors.

【0007】一方、熱交換器は使用中、時間の経過と共
にホコリ、空気中に漂っている油分、汚れ等が付着し、
目詰まり、細菌・黴の繁殖、熱交換性能の低下等が起こ
る。そのため、年に数回程度の割合でアルカリ性洗浄剤
でフィン表面を洗うことが行なわれる場合がある。この
場合もアルミニウム表面と塗膜の密着性が悪いと、洗浄
液がアルミニウムと塗膜の接着欠陥部界面に拡がり、ア
ルミニウムと反応し、溶解、腐食、フクレ、塗膜剥離を
生じる(このような欠陥はポストコート、プレコートを
問わず生じる)。
On the other hand, while the heat exchanger is in use, dust, oil floating in the air, dirt, etc. adhere to it over time.
This can lead to clogging, the growth of bacteria and mold, and a decrease in heat exchange performance. Therefore, the fin surface may be washed with an alkaline detergent several times a year. In this case, too, if the adhesion between the aluminum surface and the paint film is poor, the cleaning solution will spread to the interface between the aluminum and the paint film and react with the adhesive defects, causing dissolution, corrosion, blistering, and paint peeling (such defects occurs regardless of post-coat or pre-coat).

【0008】このような不都合を無くすためにアルミニ
ウム板と塗膜の密着性を高めることを目的として、従来
次のようなアルミニウム板の塗装下地表面処理が行なわ
れている。例えば、特公昭60−13428(特開昭5
7−19381)又は特開昭59−215564におい
ては、アルミニウム表面を硫酸、しゅう酸、リン酸等の
液中で陽極酸化処理する。このような酸性液中で形成さ
れた陽極酸化皮膜は緻密で、確かにそれ自体の耐食性は
高く、封孔処理を行なわない場合は細孔中への樹脂の拡
散−固化によるアンカー効果が期待でき、塗膜密着性が
向上する。
[0008] In order to eliminate such inconveniences and to improve the adhesion between the aluminum plate and the coating film, the following surface treatment for the coating base of the aluminum plate has been conventionally carried out. For example, Japanese Patent Publication No. 60-13428 (Japanese Patent Publication No. 5
No. 7-19381) or JP-A No. 59-215564, the aluminum surface is anodized in a solution such as sulfuric acid, oxalic acid, or phosphoric acid. The anodic oxide film formed in such an acidic solution is dense and certainly has high corrosion resistance, and if no sealing treatment is performed, an anchoring effect can be expected due to the diffusion and solidification of the resin into the pores. , paint film adhesion is improved.

【0009】しかし、このような酸性液中で生成した陽
極酸化皮膜は緻密であるが故に固く、深絞り、しごき加
工のような苛酷な成形を行なうとクラックを生じ易く、
腐食、塗膜剥離の原因となる。また、耐食性を満足させ
るには数μ以上の皮膜厚さが必要で、この膜厚とするた
めには数分〜10数分の長時間の処理時間を必要とし、
生産性が低い欠点がある。更に、薬剤価格が高くコスト
アップを招く等数多くの問題点を包蔵している。
[0009] However, the anodic oxide film formed in such an acidic solution is dense and hard, and is prone to cracking when subjected to severe forming such as deep drawing or ironing.
This may cause corrosion and peeling of the paint film. In addition, to satisfy corrosion resistance, a film thickness of several μ or more is required, and to achieve this film thickness, a long processing time of several minutes to several tens of minutes is required.
It has the disadvantage of low productivity. Furthermore, there are many problems, such as high drug prices, leading to increased costs.

【0010】また、特開昭59−211578及び特開
昭58−48676においては、アルミニウム表面上を
脱塩水あるいは、pH=9〜12の塩基性水溶液等で処
理し、アルミニウム表面に水和酸化皮膜(ベーマイト皮
膜)を形成させることが提案されている。この水和酸化
皮膜は針状結晶で、結晶間の隙間に樹脂が侵入すること
によりアンカー効果を発揮し、塗膜密着性が向上する。
Furthermore, in JP-A-59-211578 and JP-A-58-48676, the aluminum surface is treated with demineralized water or a basic aqueous solution with a pH of 9 to 12 to form a hydrated oxide film on the aluminum surface. It has been proposed to form a boehmite film. This hydrated oxide film has needle-like crystals, and when the resin penetrates into the gaps between the crystals, it exerts an anchoring effect and improves coating adhesion.

【0011】しかし、この方法でも充分な耐食性を有す
る皮膜厚を得るためには、厚いベーマイト皮膜が必要で
数分〜10数分の処理時間を必要とし、生産性が悪い。 また、皮膜が厚く、固いために深絞り、しごき加工のよ
うな苛酷な成形を行なうとクラックを生じ、腐食、塗膜
剥離の原因となる。
However, even with this method, in order to obtain a film with sufficient corrosion resistance, a thick boehmite film is required, and a processing time of several minutes to several tens of minutes is required, resulting in poor productivity. In addition, since the film is thick and hard, severe forming processes such as deep drawing and ironing can cause cracks, leading to corrosion and peeling of the paint film.

【0012】また、特公昭53−48177、特開昭5
4−2945においては、アルミニウム板表面をアルカ
リケイ酸塩水溶液、あるいは1種類以上の有機ケイ酸化
合物を添加したアルカリケイ酸塩溶液で処理することが
提案されている。この場合、ケイ酸塩化合物によりアル
ミニウム表面が覆われることにより耐食性が向上するが
、生成したケイ酸塩化合物は脆いので成形加工によりキ
レツ、剥離を生じ、腐食起点となると共に塗膜剥離の原
因となるためプレコートとしては極めて使用困難である
[0012] Also, Japanese Patent Publication No. 53-48177, Japanese Patent Publication No. 53-48177,
No. 4-2945 proposes treating the surface of an aluminum plate with an aqueous alkali silicate solution or an alkali silicate solution to which one or more organic silicate compounds are added. In this case, corrosion resistance is improved by covering the aluminum surface with a silicate compound, but since the silicate compound formed is brittle, it cracks and peels during the forming process, becoming a starting point for corrosion and a cause of paint peeling. Therefore, it is extremely difficult to use as a precoat.

【0013】更に特公昭60−13429においては、
アルミニウムを酸系処理液(クロム酸、クロム酸塩、重
クロム酸塩、クロム酸・リン酸、チタン酸塩、タンニン
酸−チタン酸塩)に、数秒〜20分程度浸漬する。この
ような処理によりアルミニウム表面にクロム酸、リン酸
クロム等の耐食性皮膜が形成されるので耐食性が向上す
るが、この場合もシゴキ率50%以上といった苛酷な成
形を行なうと上記皮膜にクラックが入り、腐食起点とな
ったり、塗膜剥離の原因となる。
Furthermore, in Japanese Patent Publication No. 60-13429,
Aluminum is immersed in an acid treatment solution (chromic acid, chromate, dichromate, chromic acid/phosphoric acid, titanate, tannic acid-titanate) for about a few seconds to 20 minutes. This treatment improves corrosion resistance by forming a corrosion-resistant film of chromic acid, chromium phosphate, etc. on the aluminum surface, but even in this case, if severe forming with an ironing rate of 50% or more is performed, the film may crack. , becoming a starting point for corrosion and causing paint film peeling.

【0014】また、化成型クロメートの使用に際しては
、化成処理後水洗を必要とするために、クロムを含んだ
多量の廃水が出るため能力の大きな廃液処理設備が必要
で多額の費用を要し、取扱い上も注意を要する等、公害
、安全性、コストの点で不利である。
[0014] Furthermore, when using chemically formed chromate, washing with water is required after the chemical conversion treatment, which generates a large amount of wastewater containing chromium, which requires wastewater treatment equipment with a large capacity and requires a large amount of cost. It is disadvantageous in terms of pollution, safety, and cost, as it requires careful handling.

【0015】[0015]

【発明が解決しようとする課題】本発明は、生産性の高
いプレコート用のアルミニウムフィン材の開発を目的と
し、■  下地と塗膜との密着性が高く、50%以上の
絞り加工又は50%以上のしごき加工を行なっても、塗
装した塗膜にキレツ、剥離等の不良を起こさず、加工成
形後も高い耐食性を維持できる塗装下地を得ること、■
  下地と塗膜との密着性が高く、プレス成形後の脱脂
洗浄においても塗膜にフクレ、剥離等を生じない塗装下
地を得ること、■  下地と塗膜との密着性が高く、ア
ルカリ性溶液により洗浄、浸漬しても塗膜剥離、フクレ
、腐食等を起こさない塗装下地を得ること、■  処理
時間が短時間で済み、生産性の高い塗装下地を得ること
、■  毒性が低く、安全性が高く、廃液処理等の点で
低公害性の塗装下地製造法を得ること、■  使用薬剤
コストが低く、低コストの塗装下地製造法を得ること、
の目標を掲げて研究を行ない、本発明を完成した。
[Problems to be Solved by the Invention] The purpose of the present invention is to develop an aluminum fin material for pre-coating with high productivity. To obtain a coating base that does not cause defects such as cracking or peeling in the painted coating even after the above ironing process and maintains high corrosion resistance even after processing and forming.■
To obtain a coating base that has high adhesion between the base and the paint film and does not cause blistering or peeling of the paint film even after degreasing and cleaning after press molding. To obtain a coating base that does not cause paint peeling, blistering, corrosion, etc. even when washed or immersed; ■ To obtain a coating base that requires short processing time and has high productivity; ■ To have low toxicity and safety. ■ Obtaining a method for manufacturing a paint base that is expensive and low pollution in terms of waste liquid treatment, etc.; ■ Obtaining a low-cost method for manufacturing a paint base that uses low chemical costs;
The present invention was completed by conducting research with the following goals in mind.

【0016】[0016]

【課題を解決するための手段】本発明は、アルミニウム
またはアルミニウム合金材に中心線平均粗さ(Ra)が
0.5〜5μmとなるように粗面化処理をし、更に該表
面に、アルカリ性水溶液中にて交流電解処理により膜厚
500〜5000Åの酸化皮膜が形成されていることを
特徴とする熱交換器用アルミニウムフィン用材を提供す
るものである。
[Means for Solving the Problems] The present invention roughens the surface of aluminum or aluminum alloy material so that the center line average roughness (Ra) becomes 0.5 to 5 μm, and further provides an alkaline solution to the surface. The present invention provides an aluminum fin material for a heat exchanger, characterized in that an oxide film with a thickness of 500 to 5000 Å is formed by alternating current electrolysis treatment in an aqueous solution.

【0017】またこの熱交換器用アルミニウム用材は、
アルミニウムまたはアルミニウム合金材を中心線平均粗
さ(Ra)が0.5〜5μmとなるように粗面化処理を
施し、更にpH9〜13、浴温35〜85℃のアルカリ
性水溶液中で電流密度4〜50A/dm2 にて、電気
量が80C/dm2 を越えることとなる時間、交流電
解処理を行うことを特徴とする熱交換器用アルミニウム
フィン用材の製造方法によって得られ、この得られたア
ルミニウムフィン用材の酸化皮膜上に耐食性皮膜あるい
は親水性皮膜、又はまず耐食性皮膜を設けその上に親水
性皮膜を設けた熱交換器用アルミニウムフィン材を提供
する。
[0017] Moreover, this aluminum material for heat exchanger is
The aluminum or aluminum alloy material is roughened so that the center line average roughness (Ra) becomes 0.5 to 5 μm, and then the current density is 4 in an alkaline aqueous solution with a pH of 9 to 13 and a bath temperature of 35 to 85°C. The obtained aluminum fin material is obtained by a method for producing an aluminum fin material for a heat exchanger, which is characterized by performing an AC electrolytic treatment at ~50 A/dm2 for a time such that the amount of electricity exceeds 80 C/dm2. Provided is an aluminum fin material for a heat exchanger in which a corrosion-resistant film or a hydrophilic film is provided on an oxide film, or a corrosion-resistant film is first provided and a hydrophilic film is provided thereon.

【0018】本発明において、粗面化処理は機械的また
は電気化学的な手段によって行うことができる。機械的
な手段としては、粗面化したロールを用いた圧延(ロー
ル表面の粗さの転写)、ショットブラスト、エアブラス
ト、液体ホーニング、ブラシグレイニング等の方法が採
用できる。この中で特に200〜300メッシュのアラ
ンダムを研削材として用いたエアブラスト法が簡便でか
つ均一な凹凸形状を得るのに好ましい方法である。
In the present invention, the surface roughening treatment can be performed by mechanical or electrochemical means. As the mechanical means, methods such as rolling using a roughened roll (transferring the roughness of the roll surface), shot blasting, air blasting, liquid honing, brush graining, etc. can be adopted. Among these, the air blasting method using 200 to 300 mesh alundum as the abrasive material is particularly convenient and preferred for obtaining a uniform uneven shape.

【0019】電気化学的な手段としては硝酸、塩酸、硫
酸またはスルファミン酸等の無機酸、スルフォン酸等の
有機酸あるいはこれらの混合物中で交流または直流アノ
ード電解することによることができる。このような粗面
化により中心線平均粗さ(Ra)が0.5〜5μmの凹
凸が得られるようにする。表面粗さが0.5μm未満で
は凹凸が小さく、単に通常の圧延したアルミニウム板と
の差が少なく、形状効果による塗膜接着性の向上は充分
でない。また表面粗さが5μmを越えると、塗装時に塗
膜厚さの薄い部分の形成が避けられず、耐食性や親水性
が不十分となる。このように粗面化処理をしたアルミニ
ウム材料は次にアルカリ交流電解処理をし、酸化皮膜を
形成させる。
Electrochemical means include alternating current or direct current anodic electrolysis in an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid or sulfamic acid, an organic acid such as sulfonic acid, or a mixture thereof. Such surface roughening provides unevenness with a center line average roughness (Ra) of 0.5 to 5 μm. If the surface roughness is less than 0.5 μm, the unevenness is small and there is simply little difference from a normal rolled aluminum plate, and the improvement in coating film adhesion due to the shape effect is not sufficient. Moreover, if the surface roughness exceeds 5 μm, the formation of thin parts of the coating film during coating is unavoidable, resulting in insufficient corrosion resistance and hydrophilicity. The aluminum material thus roughened is then subjected to alkaline alternating current electrolysis treatment to form an oxide film.

【0020】本発明によるアルカリ交流電解で得られる
酸化皮膜は、ポア径が大きく(直径約200Å、通常の
硫酸陽極酸化皮膜では約50Å程度)、多数の枝分かれ
構造を有している。そのため、塗料樹脂等の有機物ある
いは水ガラス等の無機物を塗布した場合、これらの物質
がポアの内部まで侵入し易いので、高いアンカー効果が
得られ、塗膜とアルミニウム板との間で強い密着性が得
られる。また上記多孔質層の下には、バリヤー型皮膜層
が形成されており、樹脂等を塗装したときは相乗的に高
い耐食性が得られる。
The oxide film obtained by alkaline alternating current electrolysis according to the present invention has a large pore diameter (about 200 Å in diameter, about 50 Å for a normal sulfuric acid anodic oxide film) and has a large number of branched structures. Therefore, when organic substances such as paint resin or inorganic substances such as water glass are applied, these substances easily penetrate into the pores, resulting in a high anchoring effect and strong adhesion between the coating film and the aluminum plate. is obtained. Further, a barrier type film layer is formed under the porous layer, and when coated with a resin or the like, synergistically high corrosion resistance can be obtained.

【0021】本発明において酸化皮膜の膜厚が500〜
5000Åと薄いこと、また枝分かれを有する細孔構造
となっていること、表面に細い凹凸がある結果、該酸化
皮膜は柔軟性に富み、50%以上の絞りあるいは50%
以上のしごき加工等を行なっても該酸化皮膜にクラック
、剥離等を生ぜず、その結果その表面に塗布した樹脂、
無機塗膜等にクラック、剥離が生じないようになる。し
かし、膜厚が500Å以下ではポアの長さが短いため、
充分なアンカー効果が得られず、密着性が劣ることにな
る。また、5000Åを越えると塗膜密着性は5000
Åの場合と比較して特に向上しないばかりか、厚膜化に
伴い酸化皮膜の柔軟性が減少し、成形加工時にクラック
を生じ易くなるのでムダである。
[0021] In the present invention, the thickness of the oxide film is 500~
As a result of being as thin as 5000 Å, having a branched pore structure, and having fine irregularities on the surface, the oxide film is highly flexible and has a narrowing of 50% or more.
Even after the above ironing process, etc., no cracks or peeling occurred in the oxide film, and as a result, the resin applied to the surface,
Cracks and peeling will not occur in inorganic coatings, etc. However, when the film thickness is less than 500 Å, the pore length is short;
A sufficient anchor effect cannot be obtained, resulting in poor adhesion. In addition, if the thickness exceeds 5000 Å, the adhesion of the coating will be 5000 Å.
Not only is there no particular improvement compared to the case of Å, but the flexibility of the oxide film decreases as the film becomes thicker, making it more likely to cause cracks during molding, which is wasteful.

【0022】アルカリ性水溶液のアルカリ源としては、
特に限定はしないが、リン酸ナトリウム、リン酸カリウ
ム、ピロリン酸ナトリウム、ピロリン酸カリウム、リン
酸+水酸化ナトリウムといったリン酸塩を含むものが好
ましい。リン酸塩を含有する液の場合は、ポア径が大き
くなり易いので、特に高い密着性が得られる。他に炭酸
ナトリウム等のアルカリ又はアルカリ土類炭酸塩、水酸
化ナトリウム等のアルカリ又はアルカリ土類水酸化物の
水溶液、もしくはこれらのうちの2種以上の混合物であ
っても良い。
[0022] As the alkali source for the alkaline aqueous solution,
Although not particularly limited, those containing phosphates such as sodium phosphate, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, and phosphoric acid + sodium hydroxide are preferred. In the case of a liquid containing phosphate, the pore diameter tends to be large, so particularly high adhesion can be obtained. In addition, an aqueous solution of an alkali or alkaline earth carbonate such as sodium carbonate, an alkali or alkaline earth hydroxide such as sodium hydroxide, or a mixture of two or more of these may be used.

【0023】また、アルミニウム表面との液濡れ性及び
及び脱脂性を良くするために界面活性剤を含んでいても
良い。電解液のpHは9〜13、好ましくはpH10〜
12である。
[0023] Furthermore, a surfactant may be included in order to improve the liquid wettability with the aluminum surface and the degreasing property. The pH of the electrolyte is 9 to 13, preferably pH 10 to
It is 12.

【0024】pHが9未満では脱脂性が劣り、アルミニ
ウム板表面の圧延油、圧延中に形成された酸化皮膜の溶
解除去が出来ない。また、浴電圧が上昇して不均一な電
解(焼け)が起こり易く設備費用もかかる。pHが13
を越えると生成した酸化皮膜の溶解性が強すぎて、密着
性に優れた多孔性皮膜が形成されなくなる。
[0024] If the pH is less than 9, the degreasing property is poor, and the rolling oil on the surface of the aluminum plate and the oxide film formed during rolling cannot be dissolved and removed. In addition, the bath voltage increases and uneven electrolysis (burning) is likely to occur, increasing equipment costs. pH is 13
If it exceeds this value, the solubility of the formed oxide film will be too strong, making it impossible to form a porous film with excellent adhesion.

【0025】浴温は35〜85℃の範囲、好ましくは6
0〜80℃の範囲が良い。浴温が35℃未満では、脱脂
、洗浄効果が不充分で処理に時間がかかる。一方、浴温
が85℃を越えると溶解性が強すぎて必要な厚みの陽極
酸化皮膜が得られ難く、密着性に優れた多孔性皮膜が形
成されなくなる。
[0025] The bath temperature is in the range of 35 to 85°C, preferably 6
A range of 0 to 80°C is preferable. If the bath temperature is less than 35°C, the degreasing and cleaning effects will be insufficient and the treatment will take a long time. On the other hand, if the bath temperature exceeds 85°C, the solubility is too strong, making it difficult to obtain an anodic oxide film of the required thickness, and a porous film with excellent adhesion cannot be formed.

【0026】交流電解時の電流密度は4〜50A/dm
2 、好ましくは5〜30A/dm2が良い。電流密度
が4A/dm2 未満では電解時に発生する気泡の量が
不充分で、表面洗浄効果が劣り、また密着性に優れた多
孔性酸化皮膜の生成が不充分で好ましくない。電流密度
50A/dm2 を越えると電解電圧が高くなりすぎ、
漏電等の生産上の不具合を起こし易く、反応熱による電
解ムラ(焼け)が発生し易く、設備費用もかさむ。電気
量(総電気量)は80c/dm2 を越える電気量とす
る必要がある。電気量が80c/dm2 以下では多孔
性酸化皮膜が薄く、その上に形成させる塗膜との密着性
が不充分で、また脱脂・洗浄作用も劣る。
[0026] The current density during AC electrolysis is 4 to 50 A/dm.
2, preferably 5 to 30 A/dm2. If the current density is less than 4 A/dm2, the amount of bubbles generated during electrolysis will be insufficient, the surface cleaning effect will be poor, and the formation of a porous oxide film with excellent adhesion will be insufficient, which is undesirable. If the current density exceeds 50A/dm2, the electrolytic voltage will become too high.
Production problems such as electrical leakage are likely to occur, uneven electrolysis (burning) due to reaction heat is likely to occur, and equipment costs are high. The amount of electricity (total amount of electricity) must exceed 80 c/dm2. If the amount of electricity is less than 80 c/dm2, the porous oxide film will be thin, the adhesion to the coating film formed thereon will be insufficient, and the degreasing and cleaning effects will also be poor.

【0027】更に細かく見ると、極性がプラスの時の電
気量(アノード電気量とする)は40c/dm2 を越
える範囲が好ましい。アノード電気量が40c/dm2
 以下では、多孔性酸化皮膜の成長が不充分で、洗浄作
用も充分に行なわれない。極性がマイナスの時の電気量
(カソード電気量とする)は40c/dm2 以上が好
ましい。カソード電気量が40c/dm2 未満では洗
浄作用が不充分である。電流波形は交流波形であればよ
く、正弦波交流、矩形波、台形波、三角波等でよく、ま
たアノード電気量とカソード電気量が異なっていても良
い。電解時間は必要電気量と電流密度の関係から設定す
れば良い。高電流密度であれば短時間の処理で済む。
Looking more closely, it is preferable that the amount of electricity when the polarity is positive (referred to as the amount of electricity at the anode) exceeds 40 c/dm2. Anode electricity amount is 40c/dm2
Below this, the growth of the porous oxide film will be insufficient and the cleaning action will not be sufficient. The amount of electricity when the polarity is negative (referred to as the amount of cathode electricity) is preferably 40 c/dm2 or more. If the amount of electricity at the cathode is less than 40 c/dm2, the cleaning action will be insufficient. The current waveform may be an alternating current waveform, such as a sine wave alternating current, a rectangular wave, a trapezoidal wave, a triangular wave, etc., and the amount of electricity at the anode and the amount of electricity at the cathode may be different. The electrolysis time may be set based on the relationship between the required amount of electricity and the current density. If the current density is high, the process can be done in a short time.

【0028】5182等の厚い自然酸化皮膜の形成され
るアルミニウム合金に対しては、あらかじめ酸性溶液等
で自然酸化皮膜を除去した後に電解処理を行なうように
すると、電解液寿命の延長及び電解による多孔性皮膜形
成において均一性が増すので効果的である。電解前の清
浄化処理は必要に応じて行なっても良い。例えば、圧延
油等が極めて多量に存在する場合は、トリクロルエタン
等の溶剤洗浄、苛性ソーダ水溶液等のアルカリ性溶液に
よる浸漬洗浄等が有効である。
For aluminum alloys such as 5182, which have a thick natural oxide film, it is recommended to remove the natural oxide film with an acidic solution before electrolytic treatment, which will extend the life of the electrolyte and reduce the porosity caused by electrolysis. This is effective because it increases the uniformity in the formation of a sexual film. Cleaning treatment before electrolysis may be performed as necessary. For example, if a very large amount of rolling oil is present, cleaning with a solvent such as trichloroethane or immersion cleaning with an alkaline solution such as an aqueous solution of caustic soda is effective.

【0029】本発明に使用する耐食性有機塗料としては
、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸
誘導体、ポリメタクリル酸誘導体、ウレタン樹脂、ウレ
タン樹脂誘導体、エポキシ樹脂、エポキシ樹脂誘導体、
ポリアミド、ポリアミド誘導体等のいずれか、またはこ
れらのうちの2種以上の共重合体又は混合物を含んでい
る塗料でよく、更にSiO2 、ケイ酸塩、ジルコニウ
ム塩、クロム等を含んでいても良い。
Corrosion-resistant organic paints used in the present invention include polyacrylic acid, polymethacrylic acid, polyacrylic acid derivatives, polymethacrylic acid derivatives, urethane resins, urethane resin derivatives, epoxy resins, epoxy resin derivatives,
The paint may contain polyamide, polyamide derivatives, etc., or a copolymer or mixture of two or more of these, and may further contain SiO2, silicate, zirconium salt, chromium, etc.

【0030】例えば、特開昭61−101798に開示
されているようなアクリル共重合体メラミン樹脂、特開
平1−174438に開示されているようなアクリル樹
脂、特開昭63−168473に開示されているような
6価クロムとポリアクリルアミドの混合物等があげられ
る。塗膜厚は5g/m2 以下が良い。5g/m2 を
越えると熱伝導性が低下するので好ましくない。焼付け
温度は塗布する塗料により適宜選択すればよいが、通常
80〜320℃の範囲のものが選ばれる。焼付け時間も
塗料により適宜選択すれば良いが、生産性を考慮して5
〜300秒程度になる塗料を選択することが好ましい。 塗装方法は浸漬、ロールコーター等のいずれでも良い。
For example, acrylic copolymer melamine resin as disclosed in JP-A-61-101798, acrylic resin as disclosed in JP-A-1-174438, and acrylic resin as disclosed in JP-A-63-168473. Examples include mixtures of hexavalent chromium and polyacrylamide. The coating thickness is preferably 5 g/m2 or less. If it exceeds 5 g/m2, thermal conductivity decreases, which is not preferable. The baking temperature may be appropriately selected depending on the paint to be applied, but is usually selected from a range of 80 to 320°C. Baking time can be selected appropriately depending on the paint, but considering productivity,
It is preferable to select a paint that lasts approximately 300 seconds. The coating method may be dipping, roll coater, or the like.

【0031】本発明において、熱効率を向上するため酸
化皮膜の上に親水性皮膜を形成させることが好ましい。 使用する親水性皮膜としては、ケイ酸塩、ポリアクリル
酸誘導体、ポリアミド誘導体、セルロース誘導体等、ポ
リビニルアルコール及びポリビニルアルコール誘導体等
のいずれか、またはこれらのうちの2種以上の共重合体
又は混合物でよく、またポリオキシエチレン誘導体、ソ
ルビタン誘導体、ショ糖脂肪酸エステル、硫酸エステル
、スルホン酸エステル、リン酸エステル等の界面活性剤
の1種又は2種以上を含んでいても良い。
In the present invention, it is preferable to form a hydrophilic film on the oxide film in order to improve thermal efficiency. The hydrophilic film to be used is one of silicates, polyacrylic acid derivatives, polyamide derivatives, cellulose derivatives, polyvinyl alcohol and polyvinyl alcohol derivatives, etc., or a copolymer or mixture of two or more of these. It may also contain one or more surfactants such as polyoxyethylene derivatives, sorbitan derivatives, sucrose fatty acid esters, sulfuric acid esters, sulfonic acid esters, and phosphoric acid esters.

【0032】例えば、特開平1−201487に開示さ
れているような、重合度が1,000〜10,000の
範囲にあるポリアクリル酸、ポリメタクリル酸あるいは
これらの混合物;特開昭61−8598に開示されてい
るようなスチレン−マレイン酸共重合体、ポリアクリル
アミド、ブチレン−マレイン酸共重合体、ポリアクリル
酸あるいはこれらの塩の1種又は2種以上の水溶性有機
高分子とケイ酸塩化合物の混合物;特公昭53−481
77に開示されているようなSiO2 /M2 O(M
=Li,Na,K,Ca等)比が1以上のアルカリケイ
酸塩皮膜;特開平1−299877に開示されているよ
うなポリビニルアルコール、ポリアミド樹脂、尿素樹脂
混合物;特開昭61−101798に例示されているよ
うなセルロース誘導体等がある。
For example, polyacrylic acid, polymethacrylic acid, or a mixture thereof having a degree of polymerization in the range of 1,000 to 10,000, as disclosed in JP-A-1-201487; JP-A-61-8598; styrene-maleic acid copolymer, polyacrylamide, butylene-maleic acid copolymer, polyacrylic acid, or one or more water-soluble organic polymers and silicate salts as disclosed in . Mixture of compounds; Japanese Patent Publication No. 53-481
SiO2/M2O(M
= Li, Na, K, Ca, etc.) ratio is 1 or more; polyvinyl alcohol, polyamide resin, urea resin mixture as disclosed in JP-A-1-299877; JP-A-61-101798 Examples include cellulose derivatives.

【0033】界面活性剤としては、特開昭64−612
39に例示されているような、疎水基部分の分子量が4
00以下のリン酸エステル系界面活性剤;特開昭63−
304067に開示されているようなHLB値8〜20
の非イオン性界面活性剤等がある。
[0033] As a surfactant, JP-A-64-612
39, the molecular weight of the hydrophobic group is 4.
00 or less phosphate ester surfactant; JP-A-63-
HLB value 8-20 as disclosed in 304067
There are nonionic surfactants, etc.

【0034】親水性皮膜厚は0.1〜5g/m2 が良
い。0.1g/m2 未満では親水性が不充分で、5g
/m2 を越えると熱伝導性が低下するので、好ましく
ない。
[0034] The thickness of the hydrophilic film is preferably 0.1 to 5 g/m2. If it is less than 0.1g/m2, hydrophilicity is insufficient, and 5g/m2
/m2 is not preferable because thermal conductivity decreases.

【0035】焼付け温度は塗布する塗料により適宜選択
すればよいが通常150〜300℃の範囲から選べば良
い。150℃未満では焼付けが不充分になり易く、一方
300℃を越えると親水基が破壊されるので親水性が低
下する。焼付け時間も塗料により適宜選択すればよいが
、生産性を考慮して5〜300秒程度の範囲になるもの
を選ぶことが好ましい。界面活性剤添加量は樹脂固型分
に対して0〜50%、好ましくは0〜20%程度が良い
。50%を越えると、塗料の硬化が妨げられる。塗装方
法は、浸漬、ロールコーター等のいずれでも良い。
[0035] The baking temperature may be appropriately selected depending on the coating material to be applied, but it is usually selected from the range of 150 to 300°C. If the temperature is less than 150°C, baking tends to be insufficient, while if it exceeds 300°C, the hydrophilic groups are destroyed, resulting in a decrease in hydrophilicity. The baking time may be appropriately selected depending on the coating material, but it is preferable to select a baking time in the range of about 5 to 300 seconds in consideration of productivity. The amount of surfactant added is preferably about 0 to 50%, preferably about 0 to 20%, based on the resin solid content. If it exceeds 50%, curing of the paint will be hindered. The coating method may be dipping, roll coater, or the like.

【0036】また、上記の耐食皮膜、親水性皮膜には防
黴剤、防腐剤、消臭剤のうちの1種又は2種以上を含ん
でいてもよい。防黴剤としては特開昭58−10207
3に例示されているようなTBZ、2−(2−フリル)
−3−(5−ニトロ−2−フリル)−アクリル酸アミド
、5,6−テトラクロロイソフタロニトリル、N−ジメ
チル−N’−フェノール−(N’フルオロジクロロメチ
ルチオ)−アクリル酸スルファミド等がある。防腐剤と
しては特開昭62−129695に例示されているよう
な安息香酸又はその塩類、ソルビン酸、またはその塩類
、サリチル酸又はその塩類等がある。消臭剤としては特
開昭61−129694に例示されているような過酸化
ナトリウム、過酸化カルシウム、ベンイルパーオキサイ
ド等がある。添加量は各々50%以下がよく、50%を
越えると成膜が妨げられるので不適当である。
Further, the above-mentioned corrosion-resistant coating and hydrophilic coating may contain one or more of a fungicide, a preservative, and a deodorizing agent. As a fungicide, JP-A-58-10207
TBZ, 2-(2-frill) as exemplified in 3.
-3-(5-nitro-2-furyl)-acrylic acid amide, 5,6-tetrachloroisophthalonitrile, N-dimethyl-N'-phenol-(N'fluorodichloromethylthio)-acrylic acid sulfamide, etc. . Examples of preservatives include benzoic acid or its salts, sorbic acid or its salts, and salicylic acid or its salts, as exemplified in JP-A-62-129695. Examples of deodorants include sodium peroxide, calcium peroxide, and benyl peroxide as exemplified in JP-A-61-129694. The amount of each added is preferably 50% or less, and if it exceeds 50%, film formation will be hindered, which is inappropriate.

【0037】[0037]

【作用】本発明は、粗面化によりアルミニウム材表面に
中心線平均粗さ(Ra)で0.5〜5μmの凹凸を与え
、更にアルカリ性溶液中で交流を用いて電解処理をする
ことによりアルミニウム材表面の脱脂、洗浄をすると共
に塗膜密着性に優れた多孔性酸化皮膜が形成されたアル
ミニウムフィン用材およびその製造法に関するものであ
り、幾何学的な凹凸と相まって優れた塗膜密着性及び耐
食性を有するフィン材を提供するものである。以下、本
発明の作用を説明する。
[Function] The present invention roughens the surface of the aluminum material to give it an unevenness of 0.5 to 5 μm in terms of center line average roughness (Ra), and then electrolytically treats the aluminum material using alternating current in an alkaline solution. This relates to an aluminum fin material in which the surface of the material is degreased and washed, and a porous oxide film with excellent paint film adhesion is formed, and its manufacturing method. The present invention provides a fin material having corrosion resistance. The operation of the present invention will be explained below.

【0038】■  粗面化されたため、表面の凹凸によ
り表面積増大効果および塗膜密着性が改善される。
(2) Since the surface is roughened, the surface roughness increases the surface area and improves the adhesion of the coating.

【0039】■  アルカリ性溶液はそれ自体脱脂性を
有している。更に交流波形による電解処理が同時に行な
われるので、より強い洗浄作用が働く。すなわち、アノ
ード反応時には酸素ガスが発生するのでアルミニウム表
面に付着している圧延油等の有機物が酸化除去され、強
い脱脂、洗浄性を発揮する。また、カソード洗浄時には
水素気泡が発生し、気泡の膨張による機械的洗浄作用が
働き、通常の脱脂において認められるスマットが付着し
にくく、強力な洗浄作用が発現される。以上の各作用の
相乗効果により強力な脱脂、洗浄効果が発揮され、短時
間で塗膜密着性に悪影響を与えるアルミニウム板表面の
圧延油、スマット等を除去すると同時に清浄、均一な表
面を有する多孔性酸化皮膜が形成される。
(2) The alkaline solution itself has degreasing properties. Furthermore, since electrolytic treatment using an alternating current waveform is performed at the same time, a stronger cleaning effect is exerted. That is, since oxygen gas is generated during the anode reaction, organic substances such as rolling oil adhering to the aluminum surface are oxidized and removed, resulting in strong degreasing and cleaning properties. Further, during cathode cleaning, hydrogen bubbles are generated, and the expansion of the bubbles acts as a mechanical cleaning action, making it difficult for smut to adhere, which is the case in normal degreasing, and thus exhibiting a strong cleaning action. The synergistic effect of each of the above functions produces a strong degreasing and cleaning effect, and removes rolling oil, smut, etc. from the aluminum plate surface that adversely affects paint film adhesion in a short time, and at the same time provides a clean and uniform surface with porous pores. oxidized film is formed.

【0040】■  通常の陽極酸化処理は35℃未満で
行われる場合が多く、硫酸陽極酸化では20℃以下の場
合が多い。これに対して本法は35〜85℃の高温で交
流電解するものであり、高電流密度での電解が可能とな
り、高速の化学反応がおこる。すなわち、電解液温度が
高いために液抵抗が小さく、電流密度を高い値に設定で
きるので、酸化皮膜生成速度が大きい。アルカリ性溶液
中での交流電流によって生成する酸化皮膜は、一般的な
酸性水溶液中での直流電解により陽極酸化して形成させ
た酸化皮膜に比べると、この電解液のエッチング性が大
きいために非常に多孔性でポア径が大きく、また交流電
解であるために枝分かれ構造を有したものとなる。
[0040] Normal anodization is often carried out at a temperature below 35°C, and sulfuric acid anodization is often carried out at a temperature below 20°C. On the other hand, this method performs alternating current electrolysis at a high temperature of 35 to 85° C., which enables electrolysis at a high current density and causes a high-speed chemical reaction. That is, since the electrolyte temperature is high, the liquid resistance is low, and the current density can be set to a high value, so the oxide film formation rate is high. The oxide film formed by alternating current in an alkaline solution is much more difficult to etch than the oxide film formed by anodic oxidation by direct current electrolysis in a general acidic aqueous solution because of the greater etching properties of this electrolyte. It is porous and has a large pore diameter, and because it uses AC electrolysis, it has a branched structure.

【0041】これに対し、一般的な酸性浴での直流電解
では、時間と共に浴電圧が急激に上昇し、高速処理に必
要な高電流密度の電解が困難になる。また酸化皮膜が枝
分かれ構造をとらないため、皮膜がアルカリ性浴からの
酸化皮膜に比して柔軟性に欠けることとなる。
On the other hand, in direct current electrolysis in a general acidic bath, the bath voltage increases rapidly over time, making it difficult to conduct electrolysis at the high current density necessary for high-speed processing. Furthermore, since the oxide film does not have a branched structure, the film lacks flexibility compared to an oxide film from an alkaline bath.

【0042】一方酸性水溶液を用いた場合は、バリヤー
型の酸化皮膜が厚くなり易く、高電流密度で短時間処理
しようとすると、アルカリ性水溶液に比べ、5倍以上の
高電圧が必要となる。また、このような液中で無理に高
電圧を掛けると、“焼け”と称される不均一な反応(部
分的な電気抵抗不均一に基づく電流の集中に伴う発熱に
よる溶解)が起こり易く、外観を損なうばかりか塗膜密
着性も劣り、スパークの発生等安全性の点においても問
題が多い。また、酸性水溶液では通常酸濃度は10%以
上、pH=1〜2以下で、廃液処理、薬液取扱い上の点
でも不利である。
On the other hand, when an acidic aqueous solution is used, the barrier type oxide film tends to become thicker, and when processing at a high current density for a short time, a voltage five times or more is required as compared to an alkaline aqueous solution. In addition, if a high voltage is forcibly applied in such a liquid, an uneven reaction called "burning" (dissolution due to heat generation due to concentration of current due to uneven electrical resistance) is likely to occur. Not only does it spoil the appearance, but the adhesion of the paint film is also poor, and there are many safety problems such as the generation of sparks. Further, the acidic aqueous solution usually has an acid concentration of 10% or more and a pH of 1 to 2 or less, which is disadvantageous in terms of waste liquid treatment and chemical solution handling.

【0043】このように、あらかじめ粗面化したアルミ
ニウム材をアルカリ性水溶液中で交流電解処理すること
により形成された酸化皮膜は、表面が清浄であり、また
非常に多孔質でしかも枝分かれ構造を有し、塗膜との密
着性が著しく改善され、しかも柔軟性に富むため、50
%以上といった苛酷な絞り成形又はしごき成形を行なっ
ても割れ、塗膜剥離を生じないため、加工後も強固な塗
膜密着性を維持できることとなる。
[0043] As described above, the oxide film formed by subjecting a pre-roughened aluminum material to AC electrolytic treatment in an alkaline aqueous solution has a clean surface and is extremely porous and has a branched structure. , because the adhesion with the paint film is significantly improved and it is highly flexible,
Even when subjected to severe drawing or ironing such as % or more, no cracking or peeling of the paint film occurs, so strong paint film adhesion can be maintained even after processing.

【0044】また、脱脂洗浄と多孔性酸化皮膜の生成が
同一槽で同一の電解処理により同時に行なわれ、しかも
その電解時間が短いため、従来よりも作業時間が短縮さ
れ、生産性が向上すると共に、設備コストも安価となる
。更に、化成処理と異なりクロム水溶液のような人体に
有害な物質を使用しないので操業面及び保全上大きな利
点となる。
Furthermore, since degreasing and cleaning and the formation of a porous oxide film are carried out simultaneously in the same tank through the same electrolytic treatment, and the electrolytic time is short, the working time is shorter than before, and productivity is improved. , equipment costs are also low. Furthermore, unlike chemical conversion treatment, it does not use substances harmful to the human body, such as a chromium aqueous solution, which is a great advantage in terms of operation and maintenance.

【0045】[0045]

【実施例】試験法 ■  耐溶剤性試験 試験片を74℃の1,1,1−トリクロルエタンに30
分間浸漬した後、室温で1時間乾燥した。この試験片の
外観観察及びゴバン目密着試験を行なった。ゴバン目密
着試験は1mm間隔でカットして作った10×10個の
升目にセロテープ(セキスイ製25mm幅)を貼った後
引き剥がし、塗膜が残存する升目の個数を数えた。
[Example] Test method ■ Solvent resistance test A test piece was placed in 1,1,1-trichloroethane at 74°C for 30 minutes.
After being immersed for a minute, it was dried at room temperature for 1 hour. The appearance of this test piece was observed and a goban adhesion test was conducted. For the grid adhesion test, cellophane tape (25 mm width, manufactured by Sekisui) was pasted on 10 x 10 squares cut at 1 mm intervals, then peeled off, and the number of squares with remaining paint film was counted.

【0046】■  耐アルカリクリーナー性試験試験片
を■の方法でトリクロルエタンで洗浄、乾燥する。次に
アルミフィンクリーナー(正和工業製:アルミフィンク
リーナーW5倍希釈液、pH=12〜13)に10分間
浸漬(室温)した後、流水洗15分間を1サイクルとし
、合計10サイクル処理した後、外観観察と■の方法で
のゴバン目密着試験を行なった。
(2) Alkali cleaner resistance test The test piece was washed with trichloroethane and dried according to the method (2). Next, after immersing in aluminum fin cleaner (manufactured by Seiwa Kogyo: Aluminum Fin Cleaner W 5 times diluted solution, pH = 12 to 13) for 10 minutes (room temperature), one cycle was 15 minutes of washing under running water, and a total of 10 cycles were performed. Appearance observation and goblin adhesion test were conducted using method (2).

【0047】■  成形性試験 塗装後の試験片をフィンプレス機(日高精機製)でフィ
ンピッチ25mm、カラーハイト2mmのフィンに成形
し、フィン表面及びカラー内外面の塗膜付着状態をSE
M観察した。塗膜付着面積100%を◎、100%未満
80%以上を△、80%未満50%以上を▽、50%未
満を×として評価した。
■ Formability test The coated test piece was formed into fins with a fin pitch of 25 mm and a collar height of 2 mm using a fin press machine (manufactured by Hidaka Seiki), and the state of coating film adhesion on the fin surface and the inner and outer surfaces of the collar was evaluated by SE.
M observed. A coating film adhesion area of 100% was evaluated as ◎, 80% or more of less than 100% was evaluated as △, 50% or more of less than 80% was evaluated as ▽, and less than 50% was evaluated as ×.

【0048】■  耐食性試験 ■で成形したフィンに9.8mmφの銅パイプを通した
後、銅パイプを拡管し、モデル熱交換機を作成した。こ
のモデル熱交換機を■の方法で脱脂、洗浄した後、SS
T試験(35℃、NaCl濃度=5%,2000h,J
IS−Z  2371−1988)を行ない、腐食面積
により評価した。
■ Corrosion Resistance Test After passing a 9.8 mm diameter copper pipe through the fins formed in ■, the copper pipe was expanded to create a model heat exchanger. After degreasing and cleaning this model heat exchanger using method ■,
T test (35°C, NaCl concentration = 5%, 2000h, J
IS-Z 2371-1988) and evaluated based on the corrosion area.

【0049】(実施例1、比較例1)JIS  A12
00−H24(0.115mmt )にモランダム(#
240)を研削材としてエアブラスト処理(エア圧=3
キログラム/cm2 )を行い、測定長さ=2.5mm
、Ra=2.5μmの粗面化アルミニウム板を得た。
(Example 1, Comparative Example 1) JIS A12
00-H24 (0.115mmt) with morundum (#
240) as an abrasive material (air pressure = 3
kilogram/cm2), measurement length = 2.5mm
, a roughened aluminum plate with Ra=2.5 μm was obtained.

【0050】次に表1に示すような条件でアルカリ交流
電解(正弦波、2%−ピロリン酸ナトリウム水溶液、周
波数50Hz、NaOHでpH調整)した。水洗、乾燥
後、各表面処理板にアクリル樹脂(神東塗料社製:エス
ビアAL−50B)を塗布(塗膜量=1g/m2 )し
、290℃で焼付けて試験片とした。結果を表1に示す
Next, alkaline alternating current electrolysis (sine wave, 2% sodium pyrophosphate aqueous solution, frequency 50 Hz, pH adjusted with NaOH) was performed under the conditions shown in Table 1. After washing with water and drying, an acrylic resin (manufactured by Shinto Toyo Co., Ltd.: Esbia AL-50B) was applied to each surface-treated board (coating amount = 1 g/m2), and the test pieces were baked at 290°C. The results are shown in Table 1.

【0051】[0051]

【0052】(実施例2)JIS  A1200−H2
4(0.115mmt )に表2に示すような条件でア
ルミニウム板をエアブラスト処理し、測定長さ=2.5
mm、Ra=0.6〜4.8μmの粗面化アルミニウム
板を得た。
(Example 2) JIS A1200-H2
4 (0.115 mmt), an aluminum plate was air blasted under the conditions shown in Table 2, and the measured length = 2.5
A roughened aluminum plate with Ra=0.6 to 4.8 μm was obtained.

【0053】次にアルカリ交流電解(正弦波、2%−ピ
ロリン酸ナトリウム水溶液、周波数50Hz,NaOH
でpH調整)し、水洗、乾燥後、各表面処理板にアクリ
ル樹脂とSiO2 の混合物(日本ペイント社製:サー
フアルコート131)を塗布し(塗膜量=0.3g/m
2 )、250℃で焼付け、試験片とした。結果を表2
に示す。
Next, alkaline alternating current electrolysis (sine wave, 2% sodium pyrophosphate aqueous solution, frequency 50Hz, NaOH
After washing with water and drying, a mixture of acrylic resin and SiO2 (manufactured by Nippon Paint Co., Ltd.: Surf Alcoat 131) was applied to each surface-treated board (coating amount = 0.3 g/m).
2), baked at 250°C and used as a test piece. Table 2 shows the results.
Shown below.

【0054】(比較例2)JIS  A1200−H2
4(0.115mmt )に表2に示すような条件でア
ルミニウム板をエアブラスト処理し、測定長さ=2.5
mm、Ra=0.3,5.5および10μmの粗面化ア
ルミニウム板を得た。
(Comparative Example 2) JIS A1200-H2
4 (0.115 mmt), an aluminum plate was air blasted under the conditions shown in Table 2, and the measured length = 2.5
Roughened aluminum plates with Ra = 0.3, 5.5 and 10 μm were obtained.

【0055】次にアルカリ交流電解(正弦波、2%−ピ
ロリン酸ナトリウム水溶液、周波数50Hz,NaOH
でpH調整)し、水洗、乾燥後、各表面処理板にアクリ
ル樹脂とSiO2 の混合物(日本ペイント社製:サー
フアルコート131)を塗布し(塗膜量=0.3g/m
2 )、250℃で焼付け、試験片とした。結果を表2
に示す。
Next, alkaline AC electrolysis (sine wave, 2% sodium pyrophosphate aqueous solution, frequency 50Hz, NaOH
After washing with water and drying, a mixture of acrylic resin and SiO2 (Surf Al Coat 131, manufactured by Nippon Paint Co., Ltd.) was applied to each surface-treated board (coating amount = 0.3 g/m).
2), baked at 250°C and used as a test piece. Table 2 shows the results.
Shown below.

【0056】[0056]

【0057】(実施例3)JIS  A1200−H2
4(0.115mmt )をモランダム(#240)を
研磨剤としてエアブラスト処理(エア圧=3Kg/cm
2 )を行い、測定長さ=2.5mm、Ra=2.5μ
mの粗面化アルミニウム板を得た。
(Example 3) JIS A1200-H2
4 (0.115mmt) was air blasted using Morundum (#240) as an abrasive (air pressure = 3Kg/cm).
2), measurement length = 2.5mm, Ra = 2.5μ
A roughened aluminum plate of m was obtained.

【0058】次に表3に示すような条件でアルカリ交流
電解した。水洗、乾燥後、各表面処理板にセルロース樹
脂(三井東圧社製:ソリダイトWH−10)に界面活性
剤(リン酸エステル系)を樹脂固形分に対して3%及び
メラミン硬化剤(三井東圧社製:サイメル272)を樹
脂固形分に対して30%添加した混合物を塗布(塗膜量
=1g/m2 )し、220℃で焼き付け、試験片とし
た。結果を表3に示す。
Next, alkaline alternating current electrolysis was carried out under the conditions shown in Table 3. After washing with water and drying, each surface-treated board was coated with a cellulose resin (Solidite WH-10 manufactured by Mitsui Toatsu Co., Ltd.), a surfactant (phosphoric acid ester type) in an amount of 3% based on the solid content of the resin, and a melamine curing agent (Mitsui Toatsu Co., Ltd.: Solidite WH-10). A mixture containing 30% Cymel 272 (manufactured by Tensha Co., Ltd.) based on the resin solid content was applied (coating amount = 1 g/m2) and baked at 220°C to prepare a test piece. The results are shown in Table 3.

【0059】(比較例3)JIS  A1200−H2
4(0.115mmt )をモランダム(#240)を
研磨剤としてエアブラスト処理(エア圧=3Kg/cm
2 )を行い、測定長さ=2.5mm、Ra=2.5μ
mの粗面化アルミニウム板を得た。
(Comparative Example 3) JIS A1200-H2
4 (0.115mmt) was air blasted using Morundum (#240) as an abrasive (air pressure = 3Kg/cm).
2), measurement length = 2.5mm, Ra = 2.5μ
A roughened aluminum plate of m was obtained.

【0060】次に苛性エッチング(エッチング量4μ)
→デスマット(20wt%−硝酸、室温)処理した試料
及びリン酸クロメート処理(クロム付着量=30mg/
m2)した試料の2種類を作製した。この試料にセルロ
ース樹脂(三井東圧社製:ソリダイトWH−10)に界
面活性剤(リン酸エステル系)を樹脂固形分に対して3
%及びメラミン硬化剤(三井東圧社製:サイメル272
)を樹脂固形分に対して30%添加した混合物を塗布(
塗膜量=1g/m2 )し、220℃で焼き付け、試験
片とした。結果を表3に示す。
Next, caustic etching (etching amount 4μ)
→Desmut (20wt% - nitric acid, room temperature) treated sample and phosphoric acid chromate treatment (chromium adhesion amount = 30mg/
Two types of samples were prepared. For this sample, a cellulose resin (Solidite WH-10 manufactured by Mitsui Toatsu Co., Ltd.) was mixed with a surfactant (phosphate ester type) at a ratio of 3% to the solid content of the resin.
% and melamine curing agent (manufactured by Mitsui Toatsu Co., Ltd.: Cymel 272
) was added at 30% based on the resin solid content.
Amount of coating film = 1 g/m2) was baked at 220°C to obtain a test piece. The results are shown in Table 3.

【0061】[0061]

【0062】(実施例4)JIS  A1200−H2
4(0.115mmt )にモランダム(#240)を
研磨剤としてエアブラスト処理(エア圧=3Kg/cm
2 )を行い、測定長さ=2.5mm、Ra=2.5μ
の粗面化アルミニウム板を得た。
(Example 4) JIS A1200-H2
4 (0.115mmt ) using Morundum (#240) as an abrasive and air blasting (air pressure = 3Kg/cm).
2), measurement length = 2.5mm, Ra = 2.5μ
A roughened aluminum plate was obtained.

【0063】次に表3に示すような条件でアルカリ交流
電解した。水洗、乾燥後、各表面処理板にCr3+,C
r6+,SiO2 及びアクリル樹脂混合物(日本ペイ
ント社製NRC−300)を塗布(塗膜厚=1μ)し、
100℃で乾燥し更にその上に親水性アクリル樹脂(三
井東圧社製:XCE−1847)と界面活性剤(第一工
業製薬製:ノイゲンET120)の混合物を塗布(塗膜
量1g/m2 )し、270℃で焼きつけた。結果を表
4に示す。
Next, alkaline alternating current electrolysis was carried out under the conditions shown in Table 3. After washing with water and drying, each surface treated board has Cr3+,C
r6+, SiO2 and an acrylic resin mixture (NRC-300 manufactured by Nippon Paint Co., Ltd.) was applied (film thickness = 1μ),
After drying at 100°C, a mixture of a hydrophilic acrylic resin (Mitsui Toatsu Co., Ltd.: XCE-1847) and a surfactant (Daiichi Kogyo Seiyaku Co., Ltd.: Neugen ET120) was coated (coating amount: 1 g/m2). and baked at 270℃. The results are shown in Table 4.

【0064】(比較例4)JIS  A1200−H2
4(0.115mmt )にモランダム(#240)を
研磨剤としてエアブラスト処理(エア圧=3Kg/cm
2 )を行い、測定長さ=2.5mm、Ra=2.5μ
の粗面化アルミニウム板を得た。
(Comparative Example 4) JIS A1200-H2
4 (0.115mmt ) using Morundum (#240) as an abrasive and air blasting (air pressure = 3Kg/cm).
2), measurement length = 2.5mm, Ra = 2.5μ
A roughened aluminum plate was obtained.

【0065】溶剤洗浄(メチルエチルケトン、室温浸漬
)し、乾燥後、各表面処理板にCr3+,Cr6+,S
iO2 及びアクリル樹脂混合物(日本ペイント社製N
RC−300)を塗布(塗膜厚=1μ)し、100℃で
乾燥し更にその上に親水性アクリル樹脂(三井東圧社製
:XCE−1847)と界面活性剤(第一工業製薬製:
ノイゲンET120)の混合物を塗布(塗膜量1g/m
2 )し、270℃で焼きつけた。結果を表4に示す。
After cleaning with solvent (methyl ethyl ketone, room temperature immersion) and drying, each surface treated plate was coated with Cr3+, Cr6+, S.
iO2 and acrylic resin mixture (Nippon Paint Co., Ltd. N
RC-300) (coating film thickness = 1μ), dried at 100°C, and further coated with hydrophilic acrylic resin (Mitsui Toatsu: XCE-1847) and surfactant (Daiichi Kogyo Seiyaku: XCE-1847).
Apply a mixture of Neugen ET120 (coating amount: 1 g/m
2) and baked at 270°C. The results are shown in Table 4.

【0066】[0066]

【0067】[0067]

【発明の効果】本発明は粗面化処理、アルカリ水溶液中
での交流電解により酸化皮膜が形成されたアルミニウム
フィン材であり、このフィン材を製造するために中心線
平均粗さ(Ra)が0.5〜5μmとなるように粗面化
処理をした後、特定の水溶液、電解温度、電流密度、電
気量で交流電解処理をすることが必要であることを見い
だした。
Effects of the Invention The present invention is an aluminum fin material on which an oxide film is formed by roughening treatment and AC electrolysis in an alkaline aqueous solution, and in order to manufacture this fin material, the center line average roughness (Ra) It has been found that after roughening the surface to a thickness of 0.5 to 5 μm, it is necessary to perform an AC electrolytic treatment using a specific aqueous solution, electrolysis temperature, current density, and quantity of electricity.

【0068】このような処理方法は、粗面化による表面
積増大効果、アンカー効果による塗膜の密着性の向上に
加え、アルカリ水溶液の交流電解処理による強力な洗浄
作用、枝分かれ構造を有し、多孔性でポア径が大きく、
かつ比較的柔軟性のある酸化皮膜の形成による塗膜密着
性に優れたアルミニウムフィン用材を提供する。
[0068] In addition to increasing the surface area by roughening the surface and improving the adhesion of the coating film by the anchor effect, this treatment method has a strong cleaning effect by AC electrolytic treatment with an aqueous alkaline solution, and has a branched structure and a porous structure. The pore diameter is large due to
The present invention also provides an aluminum fin material that has excellent coating film adhesion due to the formation of a relatively flexible oxide film.

【0069】更に該製造法は液抵抗の少ない高温の交流
電解をするため、高電流密度で短時間で必要な酸化皮膜
を形成させることができ、また脱脂工程と酸化皮膜生成
工程を同一の処理で同時に行えるため設備コストも安価
となり、クロム等の有害物質の使用もないので廃液処理
、薬液の取り扱いでも極めて有利である。
Furthermore, since this manufacturing method uses high-temperature alternating current electrolysis with low liquid resistance, the necessary oxide film can be formed in a short time at high current density, and the degreasing process and oxide film forming process are performed in the same process. Because it can be done simultaneously, equipment costs are low, and since no harmful substances such as chromium are used, it is extremely advantageous in waste liquid treatment and handling of chemical solutions.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  アルミニウムまたはアルミニウム合金
材に中心線平均粗さ(Ra)が0.5〜5μmとなるよ
うに粗面化処理をし、更に該表面に、アルカリ性水溶液
中にて交流電解処理により膜厚500〜5000Åの酸
化皮膜が形成されていることを特徴とする熱交換器用ア
ルミニウムフィン用材。
Claim 1: The surface of aluminum or aluminum alloy material is roughened so that the center line average roughness (Ra) becomes 0.5 to 5 μm, and the surface is further subjected to AC electrolysis treatment in an alkaline aqueous solution. An aluminum fin material for a heat exchanger, characterized in that an oxide film with a film thickness of 500 to 5000 Å is formed.
【請求項2】  アルミニウムまたはアルミニウム合金
材を中心線平均粗さ(Ra)が0.5〜5μmとなるよ
うに粗面化処理をしたのち表面に、アルカリ性水溶液中
にて交流電解処理により膜厚500〜5000Åの酸化
皮膜を形成させ、さらに耐食性皮膜を設けたことを特徴
とする熱交換器用アルミニウムフィン用材。
2. After roughening the aluminum or aluminum alloy material so that the center line average roughness (Ra) is 0.5 to 5 μm, the surface is subjected to AC electrolysis treatment in an alkaline aqueous solution to reduce the film thickness. An aluminum fin material for a heat exchanger, characterized by forming an oxide film of 500 to 5000 Å and further providing a corrosion-resistant film.
【請求項3】  アルミニウムまたはアルミニウム合金
材を中心線平均粗さ(Ra)が0.5〜5μmとなるよ
うに粗面化処理した後該表面に、アルカリ性水溶液中に
て交流電解処理により膜厚500〜5000Åの酸化皮
膜を形成させ、さらに親水性皮膜を設けたことを特徴と
する熱交換器用アルミニウムフィン用材。
3. After roughening the aluminum or aluminum alloy material so that the center line average roughness (Ra) is 0.5 to 5 μm, the surface is subjected to AC electrolysis treatment in an alkaline aqueous solution to increase the film thickness. An aluminum fin material for a heat exchanger, characterized in that an oxide film of 500 to 5000 Å is formed and a hydrophilic film is further provided.
【請求項4】  アルミニウムまたはアルミニウム合金
材を中心線平均粗さ(Ra)が0.5〜5μmとなるよ
うに粗面化処理した後該表面に、アルカリ性水溶液中に
て交流電解処理により膜厚500〜5000Åの酸化皮
膜を形成させ、ついでその上に耐食性皮膜を設け、更に
該表面に親水性皮膜を設けたことを特徴とする熱交換器
用アルミニウムフィン用材。
4. After roughening the aluminum or aluminum alloy material so that the center line average roughness (Ra) is 0.5 to 5 μm, the surface is subjected to AC electrolysis treatment in an alkaline aqueous solution to reduce the film thickness. An aluminum fin material for a heat exchanger, characterized in that an oxide film of 500 to 5000 Å is formed, a corrosion-resistant film is provided thereon, and a hydrophilic film is further provided on the surface.
【請求項5】  アルミニウムまたはアルミニウム合金
材を中心線平均粗さ(Ra)が0.5〜5μmとなるよ
うに粗面化処理を施し、更にpH9〜13、浴温35〜
85℃のアルカリ性水溶液中で電流密度4〜50A/d
m2 にて、電気量が80C/dm2 を越えることと
なる時間、交流電解処理を行うことを特徴とする熱交換
器用アルミニウムフィン用材の製造方法。
5. The aluminum or aluminum alloy material is subjected to surface roughening treatment so that the center line average roughness (Ra) becomes 0.5 to 5 μm, and further the pH is 9 to 13 and the bath temperature is 35 to 5 μm.
Current density 4-50A/d in alkaline aqueous solution at 85℃
1. A method for producing an aluminum fin material for a heat exchanger, characterized in that AC electrolytic treatment is performed for a time such that the amount of electricity exceeds 80 C/dm2.
JP3149391A 1991-01-31 1991-01-31 Heat exchanger aluminum fin material and manufacture thereof Pending JPH04356694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3149391A JPH04356694A (en) 1991-01-31 1991-01-31 Heat exchanger aluminum fin material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3149391A JPH04356694A (en) 1991-01-31 1991-01-31 Heat exchanger aluminum fin material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04356694A true JPH04356694A (en) 1992-12-10

Family

ID=12332780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3149391A Pending JPH04356694A (en) 1991-01-31 1991-01-31 Heat exchanger aluminum fin material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04356694A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169500A (en) * 2004-11-22 2006-06-29 Furukawa Sky Kk Hydrophilic coating composition, coated aluminum plate and precoated aluminum fin material
JP2006348105A (en) * 2005-06-14 2006-12-28 Furukawa Sky Kk Coating composition, painted aluminum plate and pre-coated aluminum fin material
JP2009097032A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Method for producing surface treated aluminum material, and surface treated aluminum material production device
JP2009270181A (en) * 2008-05-10 2009-11-19 Furukawa-Sky Aluminum Corp Coated aluminum alloy
JP2011021260A (en) * 2009-07-17 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum substrate and method of manufacturing the same
JP2012077987A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Heat transfer fin, and heat exchanger
JP2012225536A (en) * 2011-04-15 2012-11-15 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2014029248A (en) * 2012-07-31 2014-02-13 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
JP2014182872A (en) * 2013-03-18 2014-09-29 Uacj Corp Sheath material for batteries, and aluminum foil
JP2014188768A (en) * 2013-03-27 2014-10-06 Uacj Corp Coated aluminum material and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169500A (en) * 2004-11-22 2006-06-29 Furukawa Sky Kk Hydrophilic coating composition, coated aluminum plate and precoated aluminum fin material
JP2006348105A (en) * 2005-06-14 2006-12-28 Furukawa Sky Kk Coating composition, painted aluminum plate and pre-coated aluminum fin material
JP2009097032A (en) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd Method for producing surface treated aluminum material, and surface treated aluminum material production device
JP2009270181A (en) * 2008-05-10 2009-11-19 Furukawa-Sky Aluminum Corp Coated aluminum alloy
JP2011021260A (en) * 2009-07-17 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum substrate and method of manufacturing the same
JP2012077987A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Heat transfer fin, and heat exchanger
JP2012225536A (en) * 2011-04-15 2012-11-15 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2014029248A (en) * 2012-07-31 2014-02-13 Mitsubishi Alum Co Ltd Aluminum fin material for heat exchanger
JP2014182872A (en) * 2013-03-18 2014-09-29 Uacj Corp Sheath material for batteries, and aluminum foil
JP2014188768A (en) * 2013-03-27 2014-10-06 Uacj Corp Coated aluminum material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6183570B1 (en) Surface treatment process of metallic material and metallic material obtained thereby
CN101423967A (en) Surface treating method of aluminum alloy material
JPS61139698A (en) Production of element
JPH04356694A (en) Heat exchanger aluminum fin material and manufacture thereof
JP2011106024A (en) Method for surface treatment of magnesium or magnesium alloy by anodization
CN109183113A (en) A kind of processing method of aluminium alloy anode oxide
CN103249870A (en) Etching agent for aluminium and aluminium alloys
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JP4087051B2 (en) Aluminum material and fin material for fin material provided with microporous anodic oxide film
JP2007107069A (en) Surface treatment method for aluminum-based substrate
JP2579234B2 (en) Aluminum fin material for heat exchanger and method for producing the same
JP2004042482A (en) Aluminum material for heat-exchanger, and heat-exchanger using the same
JP3828446B2 (en) Magnesium alloy surface cleaning method
WO2022206588A1 (en) Method for preparing welding joint protective coating, and use thereof
JP5143416B2 (en) Method for producing surface-treated aluminum material
JP2002053977A (en) Hydrophilization method for metallic surface
JPH05191001A (en) Board for printed wiring and manufacture thereof
JP3506826B2 (en) Aluminum material and manufacturing method thereof
JPH1161433A (en) Aluminum coating material
JP6352087B2 (en) Surface-treated aluminum material and method for producing the same
JPH0765234B2 (en) Pretreatment method for aluminum plate before painting
CN113755938B (en) Method for removing metal surface coating by using ultrasonic-assisted electrolytic plasma
JPH0413894A (en) Aluminum alloy material to be coated for automobile and its production
JP5086688B2 (en) Method for producing surface-treated aluminum
JP3746212B2 (en) Method of processing magnesium alloy members for press forming