JP3746212B2 - Method of processing magnesium alloy members for press forming - Google Patents

Method of processing magnesium alloy members for press forming Download PDF

Info

Publication number
JP3746212B2
JP3746212B2 JP2001261431A JP2001261431A JP3746212B2 JP 3746212 B2 JP3746212 B2 JP 3746212B2 JP 2001261431 A JP2001261431 A JP 2001261431A JP 2001261431 A JP2001261431 A JP 2001261431A JP 3746212 B2 JP3746212 B2 JP 3746212B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy member
injection material
abrasive grains
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001261431A
Other languages
Japanese (ja)
Other versions
JP2003071721A (en
Inventor
亨 松原
雅淑 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macoho Co Ltd
Original Assignee
Macoho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macoho Co Ltd filed Critical Macoho Co Ltd
Priority to JP2001261431A priority Critical patent/JP3746212B2/en
Publication of JP2003071721A publication Critical patent/JP2003071721A/en
Application granted granted Critical
Publication of JP3746212B2 publication Critical patent/JP3746212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形用のマグネシウム合金製部材の処理方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
マグネシウム合金は、比重がアルミニウムの2/3程度と実用金属中で最も軽く、更に、比強度も秀れ、更に、再溶解することでのリサイクルも容易であることから、最近、プラスチックの代わりに自動車部品や家電部品として利用されている。
【0003】
ところで、マグネシウム合金は非常に活性(反応性)が高く、そのままでは錆び易い為、防錆処理が必須である。
【0004】
この防錆処理は、マグネシウム合金製の部材にケミカルエッチング等の化成処理を前処理として行った後、該部材の表面に塗装処理を行うのが一般的である。
【0005】
しかし、この方法は、マグネシウム合金製の部材の成形の際に使用した潤滑剤の存在やマグネシウム合金中の不純物の偏析等の影響により、前記塗装が安定せず、多くの前処理を必要としている点も併せて歩留まりが悪いという問題点がある。
【0006】
更に、前記化成処理によってマグネシウム合金製の部材の表面に形成される皮膜は、非常に薄くて剥がれ易いという欠点や、該部材を茶〜灰色に着色してしまうという欠点や、該着色が不均一で体裁が悪化し易い等の欠点を有し、結局、前記塗装処理を二重,三重に行って該部材の表面に強固で厚い塗装を形成しなければならず、この点においても歩留まりが悪いという問題点がある。
【0007】
更に、塗装が厚いと、マグネシウム合金製の部材の表面は塗装色によって決定されることになり、金属特有の光沢による高級感が消失され、その質感がプラスチック製の部材と同程度になってしまうという問題点がある。
【0008】
本発明は、上記問題点を解決するもので、マグネシウム合金製の部材の表面を光沢面としたり、また、該表面に確実な防錆処理を施すことを可能としたりする極めて実用性に秀れたマグネシウム合金の処理方法を提供するものである。
【0009】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0010】
プレス成形用のマグネシウム合金製部材1の処理方法であって、前記部材1の表面に液体に微細砥粒が混入された第一噴射材を圧搾気体と共に噴射することで該部材1の表面を研磨し、続いて、この部材1の表面に液体に微細球形砥粒が混入された第二噴射材を圧搾気体と共に噴射することで該部材1の表面に光沢を付与せしめ、続いて、エッチングや酸洗浄等の前処理を行うことなく、該部材1をフッ化物の塩類及びリン酸若しくは該リン酸の塩類を含有する電解液中に保持し、電解処理することによって該部材1の表面に陽極酸化皮膜を直接形成したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0011】
また、請求項1記載のプレス成形用のマグネシウム合金製部材1の処理方法において、第二噴射材中の微細球形砥粒として、粒径20乃至100μmのものを採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0012】
また、請求項1,2いずれか1項に記載のプレス成形用のマグネシウム合金製部材1の処理方法において、第一噴射材中の微細砥粒として、多角形砥粒を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0013】
また、請求項1〜3いずれか1項に記載のプレス成形用のマグネシウム合金製部材1の処理方法において、第一噴射材中の微細砥粒として、粒径50乃至100μmのものを採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0014】
また、請求項1〜4いずれか1項に記載のプレス成形用のマグネシウム合金製部材1の処理方法において、電解液として、フッ化物の塩類の濃度が0.2乃至2モル/リットル、リン酸若しくは該リン酸の塩類の濃度が0.05乃至0.5モル/リットルに設定された電解液を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0015】
また、請求項1〜5いずれか1項に記載のプレス成形用のマグネシウム合金製部材1の処理方法において、電解液として、有機化合物を0.05乃至0.1モル/リットル含有する電解液を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法に係るものである。
【0016】
【発明の作用及び効果】
プレス成形用のマグネシウム合金製部材1の表面に、先ず、液体に微細砥粒が混入された第一噴射材を圧搾気体と共に噴射することで、該部材1の表面を研磨し、更に、該表面上に残存する該部材1の成形の際に使用した潤滑剤等の表面残渣物を除去した後、この部材1の表面に、液体に微細球形砥粒が混入された第二噴射材を圧搾気体と共に噴射すると、この微細球形砥粒等の当接によって該部材1の表面は平滑化且つ梨地化され、金属光沢を発する。
【0017】
この部材1は、ケミカルエッチング処理等の前処理を行わずに、そのまま防錆処理を行うことが可能であり、この防錆処理により得られたプレス成形用のマグネシウム合金製部材1を金属光沢を有するものとすることができる。
【0018】
本発明は上述のようにするから、プレス成形用のマグネシウム合金製部材の表面を光沢面とすることができ、更に、該部材の表面に確実な防錆処理を施すことも可能となる極めて実用性に秀れたプレス成形用のマグネシウム合金製部材の処理方法となる。
【0019】
【発明の実施の形態】
図面は本発明の一実施例を図示したものであり、以下に説明する。
【0020】
プレス成形用のマグネシウム合金製部材1の処理方法であって、前記部材1の表面に液体に微細砥粒が混入された第一噴射材を圧搾気体と共に噴射することで該部材1の表面を研磨し、続いて、この部材1の表面に液体に微細球形砥粒が混入された第二噴射材を圧搾気体と共に噴射することで該部材1の表面に光沢を付与せしめ、続いて、該部材1に防錆処理を施すものである。
【0021】
また、プレス成形用のマグネシウム合金は、Mg−Al系、Mg−Al−Zn系、Mg−Zn系、Mg−Zn−Zr系、希土類含有系等、種々のマグネシウム合金の内から適宜選択して使用できる。
【0022】
このマグネシウム合金製の部材1は、従来、成形は安価であるが防錆処理が困難で結局コスト高となっていたプレス成形用マグネシウム合金をプレス成形して得た部材1(筺体)である。
【0023】
第一噴射材に使用される液体は、水、アルコール、化学薬品溶液等、種々のものを選択できる。
【0024】
第一噴射材に使用される微細砥粒は、部材1の表面を良好に研磨できるように切削力のある多角形砥粒を採用すると良い。
【0025】
また、同様の理由から、微細砥粒の素材は、アルミナ等の硬質セラミックスを採用すると良い。
【0026】
また、微細砥粒の粒径は、量産時における加工効率,部材1の表面粗度の観点から、粒径50乃至100μmのものを採用すると良い。
【0027】
また、第一噴射材と共に噴射される圧搾気体は、空気、不活性ガス、窒素ガス等、種々のものを採用して良い。
【0028】
尚、圧搾気体として空気を採用しても、第一噴射材の液体によって部材1の表面の活性(反応性)は抑制され、該部材1と前記空気中の酸素とが反応したりしない。
【0029】
この第一噴射材及び圧搾気体は、図1に示す巾広のノズル体3によって部材1に噴射される。尚、図中、符号2は噴射材、4は噴射材導入部、5は圧搾気体導入部である。このノズル体3によれば、第一噴射材がカーテン状に噴射され、このノズル体3の下方で部材1を移動させるだけで、該部材1の表面(一面)全面を処理することができる。
【0030】
この第一噴射材の噴射によれば、部材1の表面の一部は切除され、この切除により、該部材1の表面の粗さは修正され、且つ、該部材1の成形時に使用した潤滑油等の表面不純物も除去されることになる。即ち、この第一噴射材の噴射により、部材1の表面は均一化されることになる。
【0031】
第二噴射材に使用される液体も、第一噴射材の液体同様のもの、即ち、水、アルコール、化学薬品溶液等、種々のものを選択できる。
【0032】
第二噴射材に使用される微細球形砥粒は、部材1の表面の微細凹凸を押し潰して平滑化できるものを採用すると良い。
【0033】
また、微細球形砥粒の素材は、ガラス、アルミナ、ジルコニア等の種々のものを採用できる。
【0034】
また、微細球形砥粒の粒径は、微細凹凸を良好に押し潰しできる粒径、具体的には、粒径20乃至100μmのもの(第一噴射材の微細砥粒より小さいものの方が良い)を採用する。
【0035】
また、第二噴射材と共に噴射される圧搾気体は、第一噴射材と共に噴射される圧搾気体と同様、空気、不活性ガス、窒素ガス等、種々のものを採用して良い。
【0036】
この第二噴射材及び圧搾気体は、図1に示すノズル体3によって部材1に噴射される。尚、このノズル体3は、噴射材の混同を回避する為、第一噴射材用と第二噴射材用とを夫々使い分けると良い。
【0037】
この第二噴射材の噴射によれば、部材1の表面の微細凹凸が微細球形砥粒によって押し潰され、従って、部材1の表面が平滑化且つ梨地化されて金属光沢を発揮することになる。
【0038】
尚、この第二噴射材を噴射する部位は、部材1(筺体)を製品とした際、若しくは、他の部材1に組み込んで製品とした際の露出部位だけでも良い。
【0039】
以上の第一噴射材による処理及び第二噴射材によれば、金属光沢を有するマグネシウム合金製の部材1が得られることになる。
【0040】
続いて、このマグネシウム合金製の部材1に防錆処理を施す。
【0041】
従来の技術でも記載したように、一般的には、マグネシウム合金製の部材に防錆処理を施す際には、該部材にケミカルエッチング処理や酸洗浄等の複数も前処理を施すが、本実施例では、前処理を行わず、部材1の表面に耐食皮膜を直接形成することで防錆処理を行う。これは、前記第一噴射材の噴射及び第二噴射材の噴射によって部材1の表面が均一化され、且つ、不純物等も除去される故に可能となったものである。
【0042】
この部材1の表面に耐食皮膜を形成する方法は、フッ化物の塩類及びリン酸若しくは該リン酸の塩類を含有する電解水溶液中に部材1を保持し、電解処理することによって該部材1の表面に陽極酸化皮膜を形成する方法を採用する。
【0043】
電解液中のフッ化物の塩類の濃度は、0.2乃至2モル/リットルに設定する。
【0044】
また、使用するフッ化物の塩類は、フッ化水素アンモニウム、フッ化水素ナトリウム、フッ化水素酸、フッ化ナトリウム、フッ化等、酸性塩及び塩基性塩のいずれも採用できる。
【0045】
電解液中のリン酸若しくは該リン酸の塩類の濃度は、0.05乃至0.5モル/リットルに設定する。
【0046】
また、使用するリン酸若しくは該リン酸の塩類は、リン酸水素ナトリウム、リン酸水素アンモニウム、リン酸ナトリウム、リン酸三カリウム等、酸性塩及び塩基性塩のいずれも採用できるが、前記フッ化物の塩類と、酸,塩基の対となるように(例えば、フッ化物の塩類として酸性塩を採用した場合は、リン酸の塩類として塩基性を採用するように)選択した方が良い。
【0047】
また、この電解液には、必要に応じて浴安定剤を添加しても良い。
【0048】
この浴安定剤は、例えば、ヒドロキシル基を有する有機化合物、具体的には、エチレングリコール、グリセリン等を採用する。
【0049】
また、この浴安定剤は、比較的少量で浴(電解液)の安定性に寄与し、多すぎると電解液の導電性に悪影響を及ぼして防錆皮膜が不良となるおそれがある為、その濃度は0.05乃至0.1モル/リットル程度に設定すると良い。
【0050】
電解処理する際に用いる電源は、一般のアルマイト処理に用いられる電源と同様、直流、交流、パルス電流、PR等、いずれも使用可能である。
【0051】
また、電源電圧は、部材1に生成する陽極酸化皮膜の厚さや処理時間を考慮して種々選択することができるが、急速な陽極酸化皮膜の形成は皮膜強度の低下や外観の悪化が懸念される為、該電源電圧は100ボルト以下に設定した方が良い。
【0052】
また、陽極酸化皮膜を形成した後、この陽極酸化皮膜の防錆性(耐食性)を更に向上せしめる為、通常のアルマイト処理後に行う封孔処理(皮膜の表面に形成された多くの孔を塞ぐ処理)を実施すると良い。
【0053】
この封孔処理は、例えば液温90℃以上のケイ酸ナトリウム水溶液や純水等に前記陽極酸化皮膜が形成された部材1を浸漬することにより、該陽極酸化皮膜の表面に水和物層を形成する方法を採用する。
【0054】
以上の防錆処理によれば、金属表面特有の高級感ある光沢を残し且つ防錆処理が施されたマグネシウム合金製の部材1が得られることになる。
【0055】
ところで、前記防錆処理によって部材1の表面に形成する陽極酸化皮膜は、他の公知の防錆皮膜のような強固な耐食性を発揮させようというものではなく、該部材1に金属光沢を残存せしめつつ必要最小限度の防錆を付与しようとするものである。従って、この陽極酸化皮膜だけでは部材1の表面の防錆は不完全といえ、よって、この防錆を更に高める為、続いて、該部材1に塗装処理を施すと良い。
【0056】
この塗装処理は、公知の種々の塗装処理が採用できる。唯、通常の塗装処理は複数回行われ、部材の表面に二層,三層と塗装層を形成していくものであるが、本実施例では、前記金属光沢を残存せしめる為、部材1の表面に一層だけ塗装層を形成する方法を採用する。
【0057】
本実施例は上述のようにするから、金属特有の高級感のある光沢を有し、更に、陽極酸化皮膜及び塗装層によって強固な耐食性を発揮し、更に、塗装によって様々な色に着色されたマグネシウム合金製の部材1が得られる極めて実用性に秀れたマグネシウム合金の処理方法となる。
【0058】
また、安価でありながら合金成分上の理由から耐食性が悪く、陽極酸化皮膜の形成や塗装層の形成等によっても十分な耐食性が得られなかったプレス成型による部材1であっても、本実施例によれば、良好な耐食性が発揮せしめられることになり、このプレス成型により得られた安価な部材1に実用性を付与することができる。
【0059】
また、部材1に光沢を付与する処理、防錆処理、塗装処理等において、特殊な薬品や有害な薬品を使用する必要はなく、よって、各処理はコスト安で行い、また、有害物質を廃棄する為の大掛かりな処理設備も不要であり、この点においても実用性,生産性,コスト安に秀れることになる。
【0060】
また、防錆処理の為の前処理は不要であるから、この点において処理工程が簡略化されることになり、実用性,生産性に秀れることになる。
【0061】
また、部材1の表面に形成される陽極酸化皮膜や塗装層は一層だけで十分であるから、この点においても工程が簡略化されることになり、実用性,生産性に秀れることになる。
【0062】
以下、本実施例の効果を確認した実験結果について説明する。
【0063】
実験例1
AZ31(アルミニウム約3%,亜鉛約1%を含有したプレス用のマグネシウム合金)製、寸法120×50×0.6(mm)のマグネシウム圧延板に第一噴射材を圧搾気体と共に噴射した。
【0064】
条件は下記の通りである。
【0065】
液体:水
微細砥粒:アルミナ♯120(100μm未満程度)
微細砥粒の濃度:18%(v/v)
圧搾気体:空気
圧搾気体圧力:0.2MPa
第一噴射材を噴射する為のポンプ圧:0.1MPa
部材1の移動速度:10mm/sec
【0066】
処理後、付着した微細砥粒等を洗い流し、乾燥した。
【0067】
得られた部材1の表面は、一様なつや消し梨地表面で、目視上、残渣物や表面の欠陥は認められなかった。
【0068】
続いて、同部材1に第二噴射材を圧搾気体と共に噴射した。
【0069】
条件は下記の通りである。
【0070】
液体:水
微細球形砥粒:ジルコニアビーズ粒径約50μm
微細球形砥粒の濃度:18%(v/v)
圧搾気体:空気
圧搾気体圧力:0.2MPa
第二噴射材を噴射する為のポンプ圧:0.1MPa
部材1の移動速度:30mm/sec
【0071】
処理後、付着した微細球形砥粒等を洗い流し、乾燥した。
【0072】
得られた部材1の表面は、高級感のある銀色の光沢を有していた。この表面を拡大して確認してみたところ、無数のディンプル状のくぼみと光点が見られ、前記光沢は微細球形砥粒の形状転写によるものであることが確認された。
【0073】
続いて、同部材1に直接防錆処理を施した。
【0074】
使用した電解液は、フッ化ナトリウム1モル/リットル、リン酸三ナトリウム0.05モル/リットル、グリセリン0.1モル/リットルで、直流電圧50ボルトで10分間、電解処理を行った。
【0075】
処理後、水洗,乾燥して陽極酸化皮膜の断面を観察したところ、厚さ2〜3μmの均一な陽極酸化皮膜が形成されていることが確認された。
【0076】
続いて、同部材1にプライマ無しでエポキシ塗料を厚さ15μmの厚さに塗布した。
【0077】
得られた部材1は、素地の粗さをわずかに残し、従来の二層,三層の塗装層が形成された部材の表面と比較して極めて高級感のある表面に仕上がった。
【0078】
この部材1に100マスのゴバン目試験(JIS−K5600、塗膜の密着力を評価する方法)を行ったところ、100/100と、塗装の剥離は発生しなかった。更に、この部材1に塩水噴霧試験を、8時間噴霧、16時間停止で2サイクル実施したが、腐食は認められなかった(図2参照)。
【0079】
比較例1
AZ31製試験板に実験例1と同様の方法で、第一噴射材の噴射及び第二噴射材の噴射を行い、更に、塩水噴霧試験を実施したところ、部材全面が腐食し、外形の一部が崩れていた。
【0080】
比較例2
AZ31製試験板に実験例1と同様の方法で、第一噴射材の噴射及び第二噴射材の噴射を行い、続いて、クロム酸化成処理を行ったものについて、塩水噴霧試験を実施したところ、無数の貫通孔が見られ、腐食面積率は25%に達していた。
【0081】
比較例3
AZ31製試験板に実験例1と同様の方法で、第一噴射材の噴射及び第二噴射材の噴射を行い、実験例1と同様の陽極酸化皮膜を形成したものについて、塩水噴霧試験を実施したところ、腐食面積率は8%であった。
【0082】
比較例4
AZ31製試験板に実験例1と同様の方法で、第一噴射材の噴射及び第二噴射材の噴射を行い、電圧のみ100ボルトとして実験例1と同様の陽極酸化皮膜を形成したものについて、塩水噴霧試験を実施したところ、腐食面積率は2%であった。
【0083】
以上の実験結果により、本実施例によれば、金属光沢を有しながら、極めて耐食性の高いプレス成形用のマグネシウム合金製部材1が得られることが確認された。
【図面の簡単な説明】
【図1】 本実施例のノズル体3の説明図である。
【図2】 実験例における塩水噴霧試験後の腐食面積を示す表である。
【符号の説明】
1 部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for processing a magnesium alloy member for press forming .
[0002]
[Prior art and problems to be solved by the invention]
Magnesium alloy is the lightest of all practical metals, with a specific gravity of about 2/3 that of aluminum. Furthermore, it has excellent specific strength and is easy to recycle by remelting. Used as automobile parts and household appliance parts.
[0003]
By the way, a magnesium alloy is very active (reactive) and easily rusts as it is, so that a rust prevention treatment is essential.
[0004]
In general, this rust prevention treatment is performed by subjecting a magnesium alloy member to a chemical treatment or other chemical conversion treatment as a pretreatment, followed by a coating treatment on the surface of the member.
[0005]
However, in this method, the coating is not stable due to the presence of the lubricant used in the molding of the magnesium alloy member and the segregation of impurities in the magnesium alloy, and many pretreatments are required. In addition, there is a problem that the yield is poor.
[0006]
Further, the film formed on the surface of the magnesium alloy member by the chemical conversion treatment has a drawback that it is very thin and easily peeled off, a disadvantage that the member is colored brown to gray, and the coloring is not uniform. In the end, the coating process must be performed twice or triple to form a strong and thick coating on the surface of the member, and the yield is poor in this respect as well. There is a problem.
[0007]
Furthermore, if the coating is thick, the surface of the magnesium alloy member will be determined by the coating color, and the high-class feeling due to the metal-specific luster will disappear, and the texture will be the same as that of the plastic member. There is a problem.
[0008]
The present invention solves the above-described problems, and is excellent in practicality, such as making the surface of a magnesium alloy member a glossy surface and allowing the surface to be reliably rust-proofed. A method for treating a magnesium alloy is also provided.
[0009]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0010]
A processing method for a magnesium alloy member 1 for press molding, the member 1 surface by ejecting with compressed gas a first injection material liquid fine abrasive grains are mixed into the surface of the member 1 polished, subsequently, the member gloss allowed imparted to the surface of the member 1 and the second injection material liquid into fine spherical abrasive grains are mixed in the first surface by ejecting with compressed gas, subsequently, Ya etching Without performing a pretreatment such as acid cleaning, the member 1 is held in an electrolyte containing fluoride salts and phosphoric acid or the phosphoric acid salts, and subjected to electrolytic treatment to form an anode on the surface of the member 1 The present invention relates to a method for treating a magnesium alloy member for press forming, wherein an oxide film is directly formed .
[0011]
Further, the processing method according to claim 1 magnesium alloy member for press molding according to 1, as a second injection material in the fine spherical abrasive, press molding, characterized in that it has adopted as a particle size of 20 to 100μm The present invention relates to a method for processing a magnesium alloy member for use .
[0012]
Moreover, in the processing method of the magnesium alloy member 1 for press molding according to any one of claims 1 and 2, polygonal abrasive grains are employed as fine abrasive grains in the first injection material. The present invention relates to a method for processing a magnesium alloy member for press forming .
[0013]
Moreover, in the processing method of the magnesium alloy member 1 for press molding according to any one of claims 1 to 3, a fine abrasive grain in the first injection material having a particle diameter of 50 to 100 µm is adopted. The present invention relates to a method for treating a magnesium alloy member for press forming .
[0014]
Further, in the processing method of the magnesium alloy member 1 for press forming according to any one of claims 1 to 4, the concentration of fluoride salt is 0.2 to 2 mol / liter as an electrolyte, phosphoric acid Alternatively, the present invention relates to a method for treating a magnesium alloy member for press forming, wherein an electrolytic solution in which the concentration of the phosphoric acid salt is set to 0.05 to 0.5 mol / liter is employed.
[0015]
Moreover, in the processing method of the magnesium alloy member 1 for press molding according to any one of claims 1 to 5 , an electrolytic solution containing 0.05 to 0.1 mol / liter of an organic compound is used as the electrolytic solution. The present invention relates to a method of processing a magnesium alloy member for press forming, which is characterized by being adopted.
[0016]
[Action and effect of the invention]
A magnesium alloy member 1 of the surface of the press-molding, firstly, by injecting with compressed gas a first injection material liquid fine abrasive grains are mixed, and polishing the surface of the member 1, further wherein After removing surface residues such as lubricant used in molding the member 1 remaining on the surface, the surface of the member 1 is compressed with a second injection material in which fine spherical abrasive grains are mixed. When sprayed with gas, the surface of the member 1 is smoothed and textured by the contact of the fine spherical abrasive grains and the like, and emits a metallic luster.
[0017]
The member 1 without pre-treatment such as chemical etching process, it is possible to perform as anti-rust treatment, the magnesium alloy member 1 for press molding obtained by the rust-preventive treated metal gloss It can have.
[0018]
Since the present invention as described above, the surface of the magnesium alloy member for press-molding can be glossy surface, further, it is also possible to perform a reliable anticorrosive treatment on the surface of the member very the processing method for a magnesium alloy member of the press-molding Xiu was practical.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The drawings illustrate one embodiment of the present invention and are described below.
[0020]
A processing method for a magnesium alloy member 1 for press molding, the member 1 surface by ejecting with compressed gas a first injection material liquid fine abrasive grains are mixed into the surface of the member 1 Then, the surface of the member 1 is given a gloss by spraying the surface of the member 1 together with the compressed gas by spraying a second injection material in which fine spherical abrasive grains are mixed into the liquid. 1 is subjected to rust prevention treatment.
[0021]
Further, the magnesium alloy for press forming is appropriately selected from various magnesium alloys such as Mg—Al, Mg—Al—Zn, Mg—Zn, Mg—Zn—Zr, and rare earth-containing alloys. Can be used.
[0022]
Member 1 of the magnesium alloy is traditional, molding is a member is a low cost obtained by press-forming a press-molding magnesium alloys has been a end cost difficult anticorrosive treatment 1 (housing) .
[0023]
The liquid used for the first propellant can be selected from various types such as water, alcohol, chemical solution, and the like.
[0024]
As the fine abrasive grains used for the first spray material, polygonal abrasive grains having a cutting force are preferably employed so that the surface of the member 1 can be polished satisfactorily.
[0025]
For the same reason, hard ceramics such as alumina may be used as the material for the fine abrasive grains.
[0026]
The fine abrasive grains having a particle diameter of 50 to 100 μm are preferably used from the viewpoint of processing efficiency during mass production and the surface roughness of the member 1.
[0027]
Moreover, you may employ | adopt various things, such as air, an inert gas, nitrogen gas, as the compressed gas injected with a 1st injection material.
[0028]
Even if air is used as the compressed gas, the activity (reactivity) of the surface of the member 1 is suppressed by the liquid of the first propellant, and the member 1 does not react with oxygen in the air.
[0029]
The first injection material and the compressed gas are injected to the member 1 by the wide nozzle body 3 shown in FIG. In the figure, reference numeral 2 is an injection material, 4 is an injection material introduction part, and 5 is a compressed gas introduction part. According to the nozzle body 3, the first spray material is sprayed in a curtain shape, and the entire surface (one surface) of the member 1 can be treated simply by moving the member 1 below the nozzle body 3.
[0030]
According to the injection of the first injection material, a part of the surface of the member 1 is excised, the roughness of the surface of the member 1 is corrected by the excision, and the lubricating oil used at the time of molding the member 1 The surface impurities such as are also removed. That is, the surface of the member 1 is made uniform by the injection of the first injection material.
[0031]
The liquid used for the second propellant can be selected from the same liquid as the first propellant, that is, water, alcohol, chemical solution, and the like.
[0032]
As the fine spherical abrasive used for the second spray material, it is preferable to adopt a fine spherical abrasive that can crush and smooth the fine irregularities on the surface of the member 1.
[0033]
Various materials such as glass, alumina, and zirconia can be adopted as the material for the fine spherical abrasive grains.
[0034]
The fine spherical abrasive grains have a particle diameter that can satisfactorily crush fine irregularities, specifically, those having a particle diameter of 20 to 100 μm (smaller than the fine abrasive grains of the first injection material are better). Is adopted.
[0035]
Moreover, you may employ | adopt various things, such as air, an inert gas, nitrogen gas, as the compressed gas injected with a 2nd injection material similarly to the compression gas injected with a 1st injection material.
[0036]
This 2nd injection material and compressed gas are injected by the nozzle body 3 shown in FIG. In order to avoid confusion of the spray material, the nozzle body 3 is preferably used separately for the first spray material and the second spray material.
[0037]
According to the injection of the second injection material, the fine irregularities on the surface of the member 1 are crushed by the fine spherical abrasive grains, and thus the surface of the member 1 is smoothed and textured to exhibit a metallic luster. .
[0038]
In addition, the site | part which injects this 2nd injection material may be only the exposure site | part when the member 1 (casing) is made into a product, or it integrates into the other member 1 and makes it a product.
[0039]
According to the above treatment with the first propellant and the second propellant, the magnesium alloy member 1 having a metallic luster is obtained.
[0040]
Subsequently, the magnesium alloy member 1 is subjected to rust prevention treatment.
[0041]
As described in the prior art, in general, when a rust preventive treatment is applied to a magnesium alloy member, a plurality of pretreatments such as chemical etching treatment and acid cleaning are applied to the member. In the example, the rust prevention treatment is performed by directly forming a corrosion-resistant film on the surface of the member 1 without performing the pretreatment. This is possible because the surface of the member 1 is made uniform by the injection of the first injection material and the injection of the second injection material, and impurities and the like are removed.
[0042]
A method of forming a corrosion-resistant film on the surface of the member 1 is obtained by holding the member 1 in an electrolytic aqueous solution containing fluoride salts and phosphoric acid or salts of the phosphoric acid, and subjecting the surface of the member 1 to electrolytic treatment. A method of forming an anodic oxide film is employed.
[0043]
The concentration of fluoride salts in the electrolyte is set to 0.2 to 2 mol / liter.
[0044]
As the fluoride salts to be used, any of acidic salts and basic salts such as ammonium hydrogen fluoride, sodium hydrogen fluoride, hydrofluoric acid, sodium fluoride, and fluoride can be adopted.
[0045]
The concentration of phosphoric acid or salts of phosphoric acid in the electrolytic solution is set to 0.05 to 0.5 mol / liter.
[0046]
The phosphoric acid or salts of phosphoric acid used may be any of acidic salts and basic salts such as sodium hydrogen phosphate, ammonium hydrogen phosphate, sodium phosphate, tripotassium phosphate, etc. It is better to select the acid salt to be a pair of an acid and a base (for example, when an acid salt is employed as a fluoride salt, a basic salt is employed as a phosphate salt).
[0047]
Moreover, you may add a bath stabilizer to this electrolyte solution as needed.
[0048]
As the bath stabilizer, for example, an organic compound having a hydroxyl group, specifically, ethylene glycol, glycerin or the like is employed.
[0049]
In addition, this bath stabilizer contributes to the stability of the bath (electrolytic solution) in a relatively small amount, and if it is too much, the conductivity of the electrolytic solution may be adversely affected and the rust preventive film may be defective. The concentration is preferably set to about 0.05 to 0.1 mol / liter.
[0050]
As the power source used for the electrolytic treatment, any of direct current, alternating current, pulse current, PR, and the like can be used in the same manner as a power source used for general anodizing treatment.
[0051]
The power supply voltage can be variously selected in consideration of the thickness of the anodic oxide film produced on the member 1 and the processing time. However, rapid formation of the anodic oxide film is liable to decrease the film strength or deteriorate the appearance. Therefore, it is better to set the power supply voltage to 100 volts or less.
[0052]
In addition, after forming the anodized film, in order to further improve the rust prevention (corrosion resistance) of this anodized film, a sealing process performed after the normal anodizing process (a process of closing many holes formed on the surface of the film) ) Should be implemented.
[0053]
This sealing treatment is performed by, for example, immersing the member 1 on which the anodized film is formed in a sodium silicate aqueous solution or pure water having a liquid temperature of 90 ° C. or higher to form a hydrate layer on the surface of the anodized film. The method of forming is adopted.
[0054]
According to the above rust prevention treatment, the magnesium alloy member 1 is obtained which retains the high-grade gloss peculiar to the metal surface and is subjected to the rust prevention treatment.
[0055]
By the way, the anodic oxide film formed on the surface of the member 1 by the rust-proofing treatment is not intended to exhibit strong corrosion resistance like other known rust-proof coatings, but leaves the metallic luster on the member 1. While trying to give the minimum necessary rust prevention. Therefore, it can be said that the rust prevention of the surface of the member 1 is incomplete with this anodized film alone. Therefore, in order to further enhance the rust prevention, the member 1 may be subsequently subjected to a coating treatment.
[0056]
Various known coating processes can be employed for this coating process. However, the normal coating process is performed a plurality of times, and two layers, three layers, and a coating layer are formed on the surface of the member. In this embodiment, in order to leave the metallic luster, the member 1 A method of forming a single coating layer on the surface is adopted.
[0057]
Since the present embodiment is as described above, it has a high-grade gloss peculiar to metal, further exhibits strong corrosion resistance due to the anodized film and the coating layer, and is further colored in various colors by painting. It becomes the processing method of the magnesium alloy excellent in the practicality from which the member 1 made from a magnesium alloy is obtained.
[0058]
Further, even in the case of the member 1 by press molding, which is inexpensive but has poor corrosion resistance due to the alloy component, and sufficient corrosion resistance was not obtained even by formation of an anodized film or formation of a coating layer, this example Therefore, good corrosion resistance can be exhibited, and practicality can be imparted to the inexpensive member 1 obtained by this press molding.
[0059]
In addition, it is not necessary to use special chemicals or harmful chemicals in the process of imparting gloss to the member 1, rust prevention treatment, painting treatment, etc. Therefore, each treatment is performed at a low cost and hazardous substances are discarded. Large-scale processing equipment is not required for this purpose, and in this respect also, it is excellent in practicality, productivity, and cost reduction.
[0060]
In addition, since no pretreatment for rust prevention treatment is required, the treatment process is simplified in this respect, and the utility and productivity are excellent.
[0061]
Moreover, since only one layer of the anodized film or coating layer formed on the surface of the member 1 is sufficient, the process is simplified in this respect, and the practicality and productivity are excellent. .
[0062]
The experimental results confirming the effects of this example will be described below.
[0063]
Experimental example 1
The first injection material was injected together with the compressed gas onto a magnesium rolled plate made of AZ31 (magnesium alloy for press containing about 3% aluminum and about 1% zinc) and having dimensions of 120 × 50 × 0.6 (mm).
[0064]
The conditions are as follows.
[0065]
Liquid: Water Fine abrasive: Alumina # 120 (less than about 100 μm)
Concentration of fine abrasive grains: 18% (v / v)
Compressed gas: air Compressed gas pressure: 0.2 MPa
Pump pressure for injecting the first injection material: 0.1 MPa
Movement speed of member 1: 10 mm / sec
[0066]
After the treatment, the attached fine abrasive grains were washed away and dried.
[0067]
The surface of the obtained member 1 was a uniform matte surface, and no residue or surface defects were observed visually.
[0068]
Then, the 2nd injection material was injected to the same member 1 with compressed gas.
[0069]
The conditions are as follows.
[0070]
Liquid: Water Fine spherical abrasive: Zirconia bead particle size of about 50 μm
Concentration of fine spherical abrasive grains: 18% (v / v)
Compressed gas: air Compressed gas pressure: 0.2 MPa
Pump pressure for injecting the second injection material: 0.1 MPa
Movement speed of member 1: 30 mm / sec
[0071]
After the treatment, the adhered fine spherical abrasive grains were washed away and dried.
[0072]
The surface of the obtained member 1 had a high-quality silver gloss. When this surface was enlarged and confirmed, countless dimple-like dents and light spots were observed, and it was confirmed that the gloss was due to the shape transfer of fine spherical abrasive grains.
[0073]
Subsequently, the member 1 was directly subjected to rust prevention treatment.
[0074]
The electrolytic solution used was 1 mol / liter of sodium fluoride, 0.05 mol / liter of trisodium phosphate, 0.1 mol / liter of glycerin, and an electrolytic treatment was performed for 10 minutes at a DC voltage of 50 volts.
[0075]
After the treatment, it was washed with water and dried, and the cross section of the anodized film was observed, and it was confirmed that a uniform anodized film having a thickness of 2 to 3 μm was formed.
[0076]
Subsequently, an epoxy paint was applied to the member 1 to a thickness of 15 μm without a primer.
[0077]
The obtained member 1 was finished with a very high-quality surface compared with the surface of the member on which the conventional two-layer or three-layer coating layer was formed, leaving a slight roughness of the substrate.
[0078]
When this member 1 was subjected to a 100 square gobang test (JIS-K5600, a method for evaluating the adhesion of a coating film), 100/100 and no peeling of the coating occurred. Further, a salt spray test was carried out on this member 1 for 2 hours by spraying for 8 hours and stopping for 16 hours, but no corrosion was observed (see FIG. 2).
[0079]
Comparative Example 1
The AZ31 test plate was sprayed with the first spray material and the second spray material in the same manner as in Experimental Example 1 and further subjected to the salt spray test. Was crumbled.
[0080]
Comparative Example 2
In the same manner as in Experimental Example 1 on a test plate made of AZ31, the first spray material and the second spray material were sprayed, followed by the chrome oxidation treatment, and the salt spray test was performed. Innumerable through-holes were observed, and the corrosion area ratio reached 25%.
[0081]
Comparative Example 3
In the same manner as in Experimental Example 1 on the AZ31 test plate, injection of the first injection material and injection of the second injection material was performed, and a salt spray test was performed on the same anodized film as in Experimental Example 1. As a result, the corrosion area ratio was 8%.
[0082]
Comparative Example 4
In the same manner as in Experimental Example 1 on a test plate made of AZ31, the first injection material and the second injection material were injected, and only the voltage was set to 100 volts to form the same anodized film as in Experimental Example 1. When the salt spray test was carried out, the corrosion area ratio was 2%.
[0083]
The above experimental results, according to this embodiment, while having a metallic luster, it was confirmed that the very magnesium alloy member 1 of high corrosion resistance press molding can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a nozzle body 3 of the present embodiment.
FIG. 2 is a table showing corrosion areas after a salt spray test in an experimental example.
[Explanation of symbols]
1 member

Claims (6)

プレス成形用のマグネシウム合金製部材の処理方法であって、前記部材の表面に液体に微細砥粒が混入された第一噴射材を圧搾気体と共に噴射することで該部材の表面を研磨し、続いて、この部材の表面に液体に微細球形砥粒が混入された第二噴射材を圧搾気体と共に噴射することで該部材の表面に光沢を付与せしめ、続いて、エッチングや酸洗浄等の前処理を行うことなく、該部材をフッ化物の塩類及びリン酸若しくは該リン酸の塩類を含有する電解液中に保持し、電解処理することによって該部材の表面に陽極酸化皮膜を直接形成したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。A method for processing magnesium for press forming alloy member, by polishing the surface of the member by injecting with compressed gas a first injection material liquid fine abrasive grains are mixed into the surface of the member, Subsequently, the surface of the member is given a gloss by injecting a second injection material, in which fine spherical abrasive grains are mixed into the liquid, together with the compressed gas , and then, before etching, acid cleaning, etc. Without performing the treatment, the member was held in an electrolyte containing fluoride salts and phosphoric acid or the phosphoric acid salts, and an anodized film was directly formed on the surface of the member by electrolytic treatment. A method for treating a magnesium alloy member for press forming . 請求項1記載のプレス成形用のマグネシウム合金製部材の処理方法において、第二噴射材中の微細球形砥粒として、粒径20乃至100μmのものを採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。In the processing method of the magnesium alloy member for press molding according to claim 1 wherein magnesium for press molding as fine spherical abrasive grains in a second injection material, characterized by being adopted as the particle size 20 to 100μm A method for processing an alloy member . 請求項1,2いずれか1項に記載のプレス成形用のマグネシウム合金製部材の処理方法において、第一噴射材中の微細砥粒として、多角形砥粒を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。In the processing method of the magnesium alloy member for press molding according to any one of claims 1, 2, press forming as fine abrasive grains in the first injection material, characterized in that employing a polygonal abrasive grains Of processing magnesium alloy members for use in a process. 請求項1〜3いずれか1項に記載のプレス成形用のマグネシウム合金製部材の処理方法において、第一噴射材中の微細砥粒として、粒径50乃至100μmのものを採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。In the processing method of the magnesium alloy member for press molding of any one of Claims 1-3, The thing with a particle size of 50 thru | or 100 micrometers was employ | adopted as a fine abrasive grain in a 1st injection material, A method for processing a magnesium alloy member for press forming . 請求項1〜4いずれか1項に記載のプレス成形用のマグネシウム合金製部材の処理方法において、電解液として、フッ化物の塩類の濃度が0.2乃至2モル/リットル、リン酸若しくは該リン酸の塩類の濃度が0.05乃至0.5モル/リットルに設定された電解液を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。5. The method for treating a magnesium alloy member for press molding according to claim 1, wherein the electrolyte has a concentration of fluoride salt of 0.2 to 2 mol / liter, phosphoric acid or the phosphorous. A method for treating a magnesium alloy member for press forming , characterized in that an electrolytic solution having an acid salt concentration of 0.05 to 0.5 mol / liter is employed. 請求項1〜5いずれか1項に記載のプレス成形用のマグネシウム合金製部材の処理方法において、電解液として、有機化合物を0.05乃至0.1モル/リットル含有する電解液を採用したことを特徴とするプレス成形用のマグネシウム合金製部材の処理方法。In the processing method of the magnesium alloy member for press molding of any one of Claims 1-5 , the electrolyte solution containing 0.05 thru | or 0.1 mol / l of organic compounds was employ | adopted as electrolyte solution A method for treating a magnesium alloy member for press forming .
JP2001261431A 2001-08-30 2001-08-30 Method of processing magnesium alloy members for press forming Expired - Fee Related JP3746212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261431A JP3746212B2 (en) 2001-08-30 2001-08-30 Method of processing magnesium alloy members for press forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261431A JP3746212B2 (en) 2001-08-30 2001-08-30 Method of processing magnesium alloy members for press forming

Publications (2)

Publication Number Publication Date
JP2003071721A JP2003071721A (en) 2003-03-12
JP3746212B2 true JP3746212B2 (en) 2006-02-15

Family

ID=19088480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261431A Expired - Fee Related JP3746212B2 (en) 2001-08-30 2001-08-30 Method of processing magnesium alloy members for press forming

Country Status (1)

Country Link
JP (1) JP3746212B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491371C2 (en) * 2009-01-09 2013-08-27 Сумитомо Электрик Индастриз, Лтд. Structural element from magnesium alloy
JP2010280036A (en) * 2009-06-04 2010-12-16 Takashi Sato Air blast treatment method and device

Also Published As

Publication number Publication date
JP2003071721A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US6884336B2 (en) Color finishing method
US4148204A (en) Process of mechanically shaping metal articles
US3969195A (en) Methods of coating and surface finishing articles made of metals and their alloys
EP1824675B1 (en) Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
JP3404286B2 (en) Metal surface treatment method, and metal member having a surface obtained by the surface treatment method
CN101423967B (en) Surface treating method of aluminum alloy material
KR101346014B1 (en) Surface treating method of internal/external metal material, and internal/external metal material comprising surface structure manufactured using the same
CN1292098C (en) Casing of electronic device
CN105297104A (en) Aluminum alloy hard anode oxidation technology
JP4418985B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
EP1233084A2 (en) "Anodizing process, with low environmental impact, for a workpiece of aluminium or aluminium alloys"
KR100680255B1 (en) The coating method of magnesium-alloy for the protection of environment
CN1226453C (en) Technology for generating vein on Al alloy surface by direct chemical etching
JP3746212B2 (en) Method of processing magnesium alloy members for press forming
JPS60181282A (en) Surface treatment of aluminum alloy
JP3828446B2 (en) Magnesium alloy surface cleaning method
KR20080035851A (en) Chemical coating solutions for magnesium alloys, environmental-affinitive surface treating methods using the same, and magnesium alloy substrates thereby
Kurze Corrosion and surface protections
US20190316270A1 (en) Dark colored electroceramic coatings for magnesium
CN100381615C (en) Two-step pigmenting method for green oxidation film layer on magnesium alloy surface
US3791943A (en) Process for after treatment of anodic oxide or chemical conversion coatings of aluminum or aluminum alloys
US20230321688A1 (en) Method of producing magnesium-containing components having visual metallic surfaces
KR101135371B1 (en) Chemical Coating Solutions for Magnesium Alloys and Magnesium Alloy Substrates thereby
KR20190034910A (en) Surface treating method of magnesium metal
JP3212754B2 (en) Water-based inorganic paint coating pretreatment method for aluminum-based metal surfaces

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees