WO2015015768A1 - Treated surface aluminum material and manufacturing method therefor - Google Patents

Treated surface aluminum material and manufacturing method therefor Download PDF

Info

Publication number
WO2015015768A1
WO2015015768A1 PCT/JP2014/003880 JP2014003880W WO2015015768A1 WO 2015015768 A1 WO2015015768 A1 WO 2015015768A1 JP 2014003880 W JP2014003880 W JP 2014003880W WO 2015015768 A1 WO2015015768 A1 WO 2015015768A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
aluminum material
aluminum
corrosion
porous
Prior art date
Application number
PCT/JP2014/003880
Other languages
French (fr)
Japanese (ja)
Inventor
達矢 三村
長谷川 真一
幸翁 本川
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to KR1020157035097A priority Critical patent/KR102155398B1/en
Priority to JP2015529376A priority patent/JP6563336B2/en
Priority to CN201480041347.9A priority patent/CN105408527B/en
Publication of WO2015015768A1 publication Critical patent/WO2015015768A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer

Definitions

  • the present invention relates to a surface-treated pure aluminum material or aluminum alloy material (hereinafter referred to as “aluminum material”) and a method for producing the same, and more specifically, a corrosion-resistant oxide film layer having excellent corrosion resistance on a part of the surface.
  • aluminum material a surface-treated pure aluminum material or aluminum alloy material
  • the present invention relates to a surface-treated aluminum material in which a porous oxide film layer having excellent adhesion and adhesion is formed at a portion of the surface where the corrosion-resistant oxide film layer is not formed and a method for producing the same.
  • Aluminum materials are lightweight, have appropriate mechanical properties, and have excellent characteristics such as aesthetics, moldability, and corrosion resistance, so they can be used in various containers, structural materials, mechanical parts, electronic parts, etc. Widely used.
  • functions such as corrosion resistance, abrasion resistance, resin adhesion, adhesion, hydrophilicity, water repellency, antibacterial properties, design properties, infrared radiation, high reflectivity, etc. Often added and improved.
  • anodizing treatment for improving corrosion resistance and wear resistance
  • anodizing treatment is widely used.
  • an anodized film is formed by immersing an aluminum material in an acidic electrolytic bath and performing electrolytic treatment with a direct current. Accordingly, various processing methods have been proposed.
  • Patent Document 1 proposes an alkaline alternating current electrolysis method. That is, using an alkaline solution of a bath temperature 35 ⁇ 85 ° C., the time that the quantity of electricity exceeds 80C / dm 2 at a current density of 4 ⁇ 50A / dm 2, and performs an AC electrolysis process. As a result, a printed wiring board on which an oxide film having a thickness of 500 to 5000 mm is formed is obtained.
  • the electrolytic treatment is performed by directly connecting to the aluminum material, the aluminum material itself becomes the electrode.
  • the surface treatment is applied to the entire area where the aluminum material is in contact with the electrolytic solution.
  • the surface portion not subjected to the treatment is covered with a masking tape or the like. Since the surface treatment is performed on the uncoated portion, the resin adhesion is improved. However, since the portion where the coating is removed after the surface treatment is not subjected to the surface treatment, it is desirable that the resin adhesion is not given, but there is a disadvantage that the corrosion resistance cannot be obtained.
  • the present inventors have formed a corrosion-resistant oxide film only on a specific portion, and a portion having no corrosion-resistant oxide film has a porous property having adhesion.
  • the present invention has been completed by finding a surface-treated aluminum material on which a porous oxide film is formed, and a method for producing the surface-treated aluminum material that simultaneously forms the corrosion-resistant oxide film and the porous oxide film.
  • the present invention according to claim 1 is formed at a site where the aluminum material, the corrosion-resistant oxide film having a single-layer structure formed on a part of the surface thereof, and the corrosion-resistant oxide film on the surface of the aluminum material are not formed.
  • the corrosion-resistant oxide film has a thickness of 10 to 100 nm, the peak absorption wave number by FT-IR analysis is b (cm ⁇ 1 ), and the peak absorption rate at the peak absorption wave number b Is a porous aluminum oxide film layer having a thickness of 20 to 500 nm, which satisfies the relationship of 1 ⁇ a ⁇ 95 and b ⁇ 3a + 710, and is formed on the surface side.
  • a barrier type aluminum oxide film layer having a thickness of 3 to 30 nm formed on the substrate side.
  • the porous aluminum oxide film layer has small holes with a diameter of 5 to 30 nm.
  • the fluctuation width of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer is an arithmetic average of the total thickness.
  • the surface-treated aluminum material was characterized by being within ⁇ 50% of the value.
  • the peak absorption wave number b (cm ⁇ 1 ) is a peak wave number resulting from the strongest stretching vibration of Al—O, and appears in a range of 720 ⁇ b ⁇ 995. It was supposed to be.
  • the ratio of the total hole area of the small holes to the apparent surface area of the porous aluminum oxide film layer in the first or second aspect is 25 to 75%.
  • the present invention according to claim 4 uses an aluminum material electrode to be surface-treated, a counter electrode, and a conductive material connected to the aluminum material electrode, has a pH of 9 to 13 and a liquid temperature of 35 to 85 ° C., and By using an aqueous alkaline solution having a dissolved aluminum concentration of 5 ppm or more and 1000 ppm or less as an electrolytic solution and subjecting it to an alternating current electrolytic treatment under conditions of a frequency of 10 to 100 Hz, a current density of 4 to 50 A / dm 2 and an electrolysis time of 5 to 60 seconds, A surface-treated aluminum material characterized by forming a porous oxide film on the surface of the facing aluminum material and simultaneously forming a corrosion-resistant oxide film on the surface of the aluminum material facing the conductive material connected to the aluminum material electrode. It was set as the manufacturing method.
  • the surface of the aluminum material to be surface-treated and the counter electrode are both flat, and the area of the conductive material connected to the aluminum material electrode in the electrolytic solution is as follows.
  • the area where the corrosion-resistant oxide film is to be formed is 80 to 150%, and the distance between the conductive material and the aluminum material is 1 to 50 mm.
  • the conductive material connected to the aluminum material electrode in claim 4 or 5 is made of a stainless steel material or a copper material.
  • a conductive material is disposed on one surface side of the aluminum material electrode so as to face this surface, and the other surface side of the aluminum material electrode By arranging the counter electrode so as to face this surface, a corrosion-resistant oxide film is formed on the one surface of the aluminum electrode, and a porous oxide film is formed on the other surface.
  • the counter electrode is disposed on the other surface side of the aluminum material electrode so as to face the surface, and the other surface and the counter electrode are arranged.
  • the conductive material is disposed so as to face a part of the other surface of the aluminum material electrode, and the pair of the conductive material is opposed to another part complementary to the part of the other surface of the aluminum material electrode.
  • a surface treatment is characterized in that a corrosion-resistant oxide film is formed on a part of the surface, and a porous oxide film having adhesion is formed in a portion where the corrosion-resistant oxide film is not formed.
  • a corrosion-resistant oxide film 3 is formed on a part of the surface of the surface-treated aluminum material 1 according to the present invention.
  • the porous oxide film 4 is formed in the site
  • A. About aluminum material As an aluminum material used for this invention, pure aluminum or an aluminum alloy is used. There is no restriction
  • Corrosion-resistant oxide film structure on aluminum material surface As shown in FIG. 1, an amorphous corrosion-resistant oxide film having a thickness of 10 to 100 nm, preferably 20 to 80 nm, is formed on a part of the surface of the aluminum material 2 used in the present invention. 3 is formed.
  • This corrosion-resistant oxide film 3 is a film having a single layer structure. In the case of a multi-layer structure that is not a single-layer structure, crevice corrosion occurs between the surface layer and the intermediate layer, so that sufficient corrosion resistance is not exhibited. Further, the corrosion-resistant oxide film 3 can be formed on the entire surface of the aluminum material 2. When the thickness of the corrosion resistant oxide film 3 is less than 10 nm, sufficient corrosion resistance cannot be obtained. On the other hand, when the thickness exceeds 100 nm, it is difficult to control the thickness of the corrosion-resistant oxide film, and processing unevenness occurs.
  • the film quality of the corrosion-resistant oxide film 3 is analyzed by FT-IR (Fourier transform infrared spectrophotometer), and the peak absorption wave number b (cm ⁇ 1 ) of the infrared absorption spectrum and the baseline at the peak absorption wave number Characterized by the peak absorption from (a%).
  • the peak absorption wave number b (cm ⁇ 1 ) refers to the peak absorption wave number resulting from the strongest stretching vibration of Al—O.
  • the peak absorption wave number b (cm ⁇ 1 ) usually appears in the range of 720 ⁇ b ⁇ 995.
  • the peak absorption rate a (%) when analyzed by FT-IR is defined as 1 ⁇ a ⁇ 95, preferably 2 ⁇ a ⁇ 75. If this peak absorption rate is less than 1%, the thickness of the corrosion-resistant oxide film is less than 10 nm, resulting in insufficient corrosion resistance. When the peak absorption rate exceeds 95%, the thickness of the corrosion-resistant oxide film exceeds 100 nm, and it becomes difficult to control the thickness of the corrosion-resistant oxide film, and processing unevenness is likely to occur.
  • the peak absorption rate a (%) and the peak absorption wave number b (cm ⁇ 1 ) satisfy the relationship of b ⁇ 3a + 710, preferably b ⁇ 3a + 720.
  • this relationship is not satisfied, the corrosion resistance is deteriorated because the film shape of the corrosion-resistant oxide film becomes a porous shape.
  • Porous oxide film structure on aluminum material surface As shown in FIG. 2, a porous oxide film 4 is formed on the surface of the aluminum material where the corrosion-resistant oxide film is not formed.
  • the porous oxide film 4 includes a barrier-type aluminum oxide film layer 41 on the base side of the aluminum material 2 and a porous aluminum oxide film layer 42 on the surface layer side.
  • the thickness of the porous aluminum oxide film layer 42 is 20 to 500 nm. If the thickness is less than 20 nm, the thickness is not sufficient, so that the formation of a small pore structure, which will be described later, is likely to be insufficient, and the adhesive force and adhesion force are reduced. On the other hand, when the thickness exceeds 500 nm, the porous aluminum oxide film layer itself tends to cohesively break down, and the adhesive force and adhesion force are reduced.
  • the thickness of the porous aluminum oxide film layer 42 is preferably 30 to 400 nm.
  • the porous aluminum oxide film layer 42 includes small holes 420 that extend from the surface in the depth direction.
  • the diameter of the small holes 420 is 5 to 30 nm, preferably 10 to 20 nm. This small hole increases the contact area between the resin layer, the adhesive, and the like and the aluminum oxide film, and exhibits the effect of increasing the adhesive force and the adhesive force. If the diameter of the small hole is less than 5 nm, the contact area is insufficient, and sufficient adhesive force and adhesion force cannot be obtained. On the other hand, if the diameter of the small holes exceeds 30 nm, the entire porous aluminum oxide film layer becomes brittle and causes cohesive failure, resulting in a decrease in adhesion and adhesion.
  • the ratio of the total hole area of the small holes to the surface area of the porous aluminum oxide film layer is not particularly limited.
  • the ratio of the total hole area of the small holes to the apparent surface area of the porous aluminum oxide film layer is 25 to 75%. preferable. If it is less than 25%, the contact area may be insufficient and sufficient adhesive force or adhesion may not be obtained. On the other hand, if it exceeds 75%, the porous aluminum oxide film layer as a whole becomes brittle, causing cohesive failure and reducing the adhesive strength and adhesion.
  • the barrier type aluminum oxide film layer 41 is a dense oxide film having a thickness of 3 to 30 nm. If the thickness is less than 3 nm, sufficient bonding force cannot be imparted to the bonding between the porous aluminum oxide film layer 4 and the aluminum substrate 2 as an intervening layer. It becomes insufficient. On the other hand, if the thickness exceeds 30 nm, the barrier type aluminum oxide film layer 3 tends to cohesively break due to its denseness, and on the contrary, the adhesive strength and the adhesive strength are lowered.
  • the thickness of the barrier type aluminum oxide film layer 41 is preferably 5 to 25 nm.
  • the fluctuation range must be within ⁇ 50%, preferably within ⁇ 20%, regardless of where the porous oxide film 4 is formed. That is, the arithmetic average value of the total thickness of the porous oxide film measured at any plurality of locations on the aluminum material surface (preferably 10 locations or more and preferably 10 or more measurement points in each location) is T In the case of (nm), the total thickness of the porous oxide film in all of the plurality of measurement locations needs to be in the range of (0.5 ⁇ T) to (1.5 ⁇ T).
  • the porous oxide film at that location becomes thinner than its surroundings. Then, in this thin area, a gap is likely to be generated between the porous oxide film and the adhesive to be adhered or the resin layer to be adhered, and the sufficient contact area cannot be secured and the adhesion and adhesion are reduced. To do.
  • the optical characteristics are different in the portion where the total thickness of the porous oxide film as described above is thin or thick, it may be visible as a change in color tone such as brown or cloudy color.
  • Corrosion-resistant oxide film is formed on this part, and the part on the surface of the aluminum material facing the counter electrode is porous And a method in which reduction film is formed.
  • only the corrosion-resistant oxide film can be formed on the surface by making the entire surface of the aluminum material face the conductive material.
  • the surface-treated aluminum material according to the present invention performs an alternating current electrolytic treatment using an aluminum material electrode to be surface treated, a conductive material connected to the aluminum material electrode, and a counter electrode.
  • the conductive material connected to the electrode of the aluminum material to be surface-treated is arranged in the electrolytic solution in the vicinity of the surface portion of the aluminum material on which the corrosion-resistant oxide film is to be formed so as to face the surface portion.
  • a porous oxide film is formed on the surface portion of the aluminum material that is not opposed to the conductive material.
  • the area of the conductive material facing the aluminum material is 80 to 150%, preferably 90 to 130%, of the area of the aluminum material on which the corrosion-resistant oxide film is to be formed.
  • the distance between the conductive material facing the aluminum material is 1 to 50 mm. If the area of the conductive material is less than 80% of the area of the aluminum material for which the corrosion-resistant oxide film is to be formed, a porous oxide film may be formed in a portion where the corrosion-resistant oxide film is to be formed. In some cases, the corrosion-resistant oxide film may be formed on the portion where the porous oxide film is to be formed.
  • the distance between the conductive material facing the aluminum material is less than 1 mm, convection of the electrolytic solution hardly occurs between the conductive material and the facing aluminum material, and uneven treatment of the corrosion-resistant oxide film is likely to occur.
  • the distance exceeds 50 mm the distance between the conductive material and the facing aluminum material is too wide, so that a porous oxide film is formed on the entire surface of the aluminum material.
  • the alkaline aqueous solution used as the electrolytic solution in the AC electrolytic treatment step is a phosphate such as sodium phosphate, potassium hydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate and sodium metaphosphate; sodium hydroxide and potassium hydroxide.
  • An alkali metal hydroxide such as sodium carbonate, a carbonate such as sodium carbonate, sodium hydrogen carbonate, or potassium carbonate; an ammonium hydroxide; or an aqueous solution of a mixture thereof can be used. Since it is necessary to keep the pH of the electrolytic solution in a specific range as will be described later, it is preferable to use an alkaline aqueous solution containing a phosphate-based substance that can be expected to have a buffer effect.
  • the concentration of the alkali component contained in such an alkaline aqueous solution is appropriately adjusted so that the pH of the electrolytic solution becomes a desired value, but is usually 1 ⁇ 10 ⁇ 4 to 1 mol / liter, preferably 1 ⁇ 10 6. -3 to 0.8 mol / liter.
  • the pH of the electrolytic solution needs to be 9 to 13, and preferably 9.5 to 12.
  • the pH is less than 9, the alkaline etching power of the electrolytic solution is insufficient, so that the porous oxide film becomes an amorphous film and the formation of the predetermined porous aluminum oxide film layer and the barrier type aluminum oxide film layer becomes incomplete.
  • the pH is less than 9, it is difficult to control the thickness of the corrosion-resistant oxide film, and uneven processing tends to occur.
  • the pH exceeds 13 the alkaline etching force becomes excessive, and the oxide film layer is difficult to grow, and the formation of a desired porous oxide film is hindered.
  • the electrolytic solution temperature needs to be 35 to 85 ° C, preferably 40 to 70 ° C.
  • the electrolytic bath temperature is less than 35 ° C.
  • the formation of the porous oxide film becomes incomplete because the alkaline etching power is insufficient.
  • the temperature exceeds 85 ° C. the alkali etching force becomes excessive, and thus the formation of the porous oxide film and the corrosion-resistant oxide film is hindered.
  • the concentration of dissolved aluminum contained in the electrolytic solution needs to be 5 ppm or more and 1000 ppm or less, and preferably 10 ppm or more and 500 ppm or less.
  • the dissolved aluminum concentration is less than 5 ppm, the formation reaction of the oxide film at the initial stage of the electrolytic reaction occurs abruptly, resulting in the formation of a locally thick porous oxide film and unevenness in the corrosion-resistant oxide film.
  • the dissolved aluminum concentration exceeds 1000 ppm, the viscosity of the electrolytic solution is increased, and uniform convection near the surface of the aluminum material is prevented in the electrolysis process, and at the same time, the dissolved aluminum suppresses the formation of a porous oxide film. Act on.
  • the concentration of dissolved aluminum deviates from the above range, the fluctuation width of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer in the entire porous oxide film formed on the surface of the aluminum material is determined as follows. It becomes difficult to make it within ⁇ 50% of the arithmetic average value of the total thickness. As a result, the resulting porous oxide film is deteriorated in adhesion and adhesion.
  • the frequency used is 10 to 100 Hz. If the frequency is less than 10 Hz, a direct current element increases as electrolysis, and as a result, the formation of the porous aluminum oxide film layer does not proceed and a dense structure is obtained. On the other hand, when the frequency exceeds 100 Hz, the reversal of the anode and the cathode is too fast, so that the formation of the entire oxide film becomes extremely slow, and it takes an extremely long time to obtain a predetermined thickness for both the porous oxide film and the corrosion-resistant oxide film. It will take.
  • the frequency used is preferably 20 to 80 Hz.
  • the current density needs to be 4 to 50 A / dm 2 .
  • the current density is less than 4 A / dm 2 , only the barrier type aluminum oxide film layer is preferentially formed in the porous oxide film, so that the porous type aluminum oxide film layer cannot be obtained.
  • the current density is preferably 5 to 30 A / dm 2 .
  • Electrolysis time should be 5-60 seconds. When the treatment time is less than 5 seconds, the porous oxide film is formed too rapidly, so that the porous aluminum oxide film layer is not sufficiently formed, resulting in an oxide film composed of amorphous aluminum oxide. On the other hand, if it exceeds 60 seconds, the oxide film is re-dissolved, so that the corrosion-resistant oxide film layer is not sufficiently formed, and the productivity is also lowered.
  • the electrolysis time is preferably 10 to 50 seconds.
  • One electrode of the pair of electrodes used for the alternating current electrolytic treatment is an aluminum material to be surface-treated by electrolytic treatment.
  • the other counter electrode for example, a known electrode such as a graphite, aluminum, or titanium electrode can be used.
  • the electrode does not deteriorate with respect to the alkaline component or temperature of the electrolytic solution, and has excellent conductivity. Must be made of a material that does not cause an electrochemical reaction. From such points, a graphite electrode is preferably used as the counter electrode. This is because the graphite electrode is chemically stable, inexpensive and easily available, and due to the action of many pores existing in the graphite electrode, the electric lines of force diffuse moderately in the AC electrolysis process. This is because the porous oxide film and the corrosion-resistant oxide film tend to be more uniform.
  • the conductive material connected to the portion where the corrosion-resistant oxide film is formed on the aluminum material by the electrolytic treatment needs to have a higher electrode potential than the aluminum material.
  • a conductive material having a higher electrode potential than the aluminum material is connected to the aluminum material, and is placed in the vicinity of the aluminum material to perform electrolysis, thereby causing the cathode reaction in the alternating current electrolysis to occur on the surface of the conductive material, and the anode reaction to the aluminum material and conductive It can occur on the surface of the material. Therefore, a corrosion-resistant oxide film is formed on the aluminum material surface by the anodic reaction.
  • the conductive material having a higher electrode potential than the aluminum material is, for example, gold, platinum, copper, iron, stainless steel, nickel or the like. In the present invention, stainless steel or copper is preferably used. This is because it is excellent in corrosion resistance in an alkaline solution, inexpensive and easy to process.
  • both the aluminum material to be electrolytically treated and the counter electrode are flat, and the opposing aluminum material and the opposing surface of the counter electrode have substantially the same dimensions, and both electrodes are electrolyzed in a stationary state. It is preferable to perform the operation. As shown in FIG. 3, it is preferable to prepare the counter electrode 5 and install the surface of the aluminum material 2 to be surface-treated so as to face the counter electrode plate 5 so as to be parallel to the surface of the counter electrode 5. .
  • 7 is an AC power source
  • 8 is an electrolytic solution.
  • the shape of the conductive material 6 connected to the flat plate-shaped aluminum material 2 to be subjected to electrolytic treatment does not have to be a flat plate shape, and may be a net shape or a multi-hole shape.
  • a conductive material 6 is disposed on one surface (the left surface in the drawing) side of the surface-treated aluminum material 2 so as to face this surface, and the other surface of the aluminum material 2 is disposed.
  • the counter electrode 5 is disposed so as to face this surface, and alternating current electrolysis is performed, whereby a corrosion-resistant oxide film is formed on the one surface of the aluminum material 2, and the other A porous oxide film can be formed on the surface.
  • a conductive material 6 is provided between the other surface (the right surface in the drawing) of the aluminum material 2 to be surface-treated and the counter electrode 5 corresponding to this surface. It can also be arranged.
  • a part (the upper half in the figure) of the other surface of the aluminum material 2 is opposed to the conductive material 6, and the other part (the lower half in the figure) of the other surface of the aluminum material 2 is The conductive material 6 is opposed to the counter electrode 5.
  • a corrosion-resistant oxide film is formed on a part of the other surface of the aluminum material facing the conductive material 6, and the other of the aluminum materials facing the counter electrode 5 instead of the conductive material 6 is formed.
  • a porous oxide film is formed on another part of the surface, and a corrosion-resistant oxide film and a porous oxide film can be formed on the same surface of the aluminum material 2.
  • a part of the other surface of the aluminum material 2 (the lower half in the drawing) is made to face the conductive material 6, and the other portion of the other surface of the aluminum material 2 (the upper half in the drawing). Is arranged so as to face the counter electrode 5 instead of the conductive material 6, thereby forming a corrosion-resistant oxide film on a part of the other surface and forming a porous oxide film on the other part of the other surface. May be.
  • the part facing the conductive material 6 as a part of the other surface of the aluminum material 2 can have any shape, size and position.
  • part of the other surface of the aluminum material 2 can be made into a part complementary to the said part in the other surface.
  • TEM transmission electron microscope
  • a JIS 5052 flat plate having a length of 500 mm, a width of 500 mm, and a thickness of 1.0 mm was used.
  • This aluminum plate was used as one electrode, and a graphite plate or a titanium plate having a length of 500 mm, a width of 550 mm, and a thickness of 2.0 mm was used as the counter electrode.
  • the counter electrode 5 and the aluminum material 2 were disposed so as to be parallel to each other.
  • a conductive material 6 is disposed in the vicinity of the surface of the aluminum alloy plate 2 opposite to the counter electrode 5, and a corrosion-resistant oxide film is provided on the entire surface of the aluminum alloy plate 2 on the conductive material 6 side, and the entire surface of the counter electrode side is porous. An oxide film was formed.
  • Example 24 as shown in FIG. 4, a part (the upper half in the drawing) of the other surface (the right-hand surface in the drawing) of the aluminum material 2 is opposed to the conductive material, The other part of the other surface (the lower half in the figure) is disposed so as to face the counter electrode 5 instead of the conductive material 6, and a corrosion-resistant oxide film and a porous oxide film are formed on the same surface of the aluminum material 2. Formed.
  • Example 1 a SUS304 stainless steel plate having a length of 500 mm, a width of 500 mm, and a thickness of 0.5 mm was used as the conductive material.
  • Example 15 a copper plate having a length of 500 mm, a width of 500 mm, and a thickness of 0.5 mm was used.
  • Example 16 a SUS304 stainless steel wire mesh having a length of 500 mm ⁇ width of 500 mm, a line diameter of 0.5 mm, a space ratio of 64.5%, and 10 mesh was used.
  • Example 17 SUS304 stainless steel punching metal having a length of 500 mm ⁇ width of 500 mm, a hole diameter of 6 mm, and a distance between holes (pitch) of 8 mm was used.
  • Example 22 a SUS304 stainless steel plate having a length of 480 mm, a width of 480 mm, and a thickness of 0.5 mm was used.
  • Example 23 a SUS304 stainless steel plate having a length of 570 mm, a width of 570 mm, and a thickness of 0.5 mm was used.
  • Example 24 a SUS304 stainless steel plate having a length of 250 mm, a width of 500 mm, and a thickness of 0.5 mm was used.
  • the distance between the conductive material and the aluminum alloy plate was 5 mm in Examples 1 to 17, 22 to 24, and Comparative Examples 1 to 13. In Example 18, it was 2 mm, in Example 19, 45 mm, in Example 20, 0.5 mm, and in Example 21, 55 mm. In addition, in the area ratio of the electrically conductive material with respect to the area of the aluminum material shown in Table 1, the area of the electrically conductive material was calculated
  • an alkaline aqueous solution mainly composed of sodium pyrophosphate having the pH, temperature, and dissolved aluminum concentration shown in Table 1 was used as the electrolytic solution.
  • the pH of the electrolytic solution was adjusted with a 0.1 mol / liter NaOH aqueous solution.
  • the alkaline component concentration of the alkaline aqueous solution was 0.1 mol / liter.
  • the test material of the surface treatment aluminum material which implemented the electrolysis process on the alternating current electrolysis process conditions shown in Table 1 formed the corrosion-resistant oxide film in one surface of the aluminum plate, and formed the porous oxide film in the other surface was made.
  • the cross section of the corrosion-resistant oxide film was observed by TEM for the test material produced as described above. Specifically, the thickness of the corrosion-resistant oxide film was measured, and the structure of the corrosion-resistant oxide film (whether the film layer has a single layer structure) was observed. In order to measure the thickness of the corrosion-resistant oxide film and observe the structure of the corrosion-resistant oxide film, a slice sample for cross-sectional observation was prepared from the test material using an ultramicrotome.
  • any 100 points in the observation field (1 ⁇ m ⁇ 1 ⁇ m) are selected, and the thickness of the corrosion-resistant oxide film is measured by TEM cross-sectional observation, and whether or not the corrosion-resistant oxide film has a single-layer structure.
  • the case of a single layer structure was marked with ⁇ , and the case of no single layer structure was marked with x).
  • the evaluation is acceptable ( ⁇ ), and the thickness of the corrosion-resistant oxide film is not in the range of 10 to 100 nm and The evaluation in at least one of the cases where the corrosion-resistant oxide film is not a single layer structure was determined to be rejected (x).
  • Table 2 The results are shown in Table 2.
  • the diameter of the small holes in the porous oxide film layer was measured at each point.
  • the maximum value, the minimum value, and the arithmetic average value of the total thickness of 100 porous aluminum oxide film layers and barrier aluminum oxide film layers thus measured were determined. Further, it was also examined whether or not the fluctuation range of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer was within ⁇ 50% of the arithmetic average value. Specifically, when the arithmetic average value is T (nm), the total thickness including the maximum value and the minimum value is in the range of (0.5 ⁇ T) to (1.5 ⁇ T). A case where it was acceptable was determined to be acceptable (O), and a case where it was not in range was regarded as unacceptable (x). In Example 24, the surface on the side facing the counter electrode was used. The results are shown in Table 2.
  • the lengthwise ends of the two specimens are pulled in the opposite direction along the length direction at a speed of 10 mm / min with a tensile tester, and the adhesive is changed depending on the load (converted to shear stress) and the peeled state.
  • the adhesion was evaluated according to the following criteria.
  • the shear test piece produced 10 sets of test pieces, and evaluated each.
  • the surface on the side facing the counter electrode was used.
  • The shear stress is 20 N / mm 2 or more and the adhesive layer itself is agglomerated and broken ⁇ : The shear stress is 20 N / mm 2 or more, but the adhesive layer and the test material are separated at the interface ⁇ : Shear stress is less than 20 N / mm 2 and the state where the adhesive layer and the specimen were peeled from each other The results are shown in Table 3. The table shows the number of pairs of the above-mentioned ⁇ , ⁇ , and ⁇ of 10 sets of test pieces, respectively.
  • the test piece was subjected to a peel test using a transparent pressure-sensitive adhesive tape.
  • the adhesion was evaluated according to the following criteria by the coating film residual ratio.
  • the adhesive test piece produced 10 test pieces from the same test material, and evaluated each.
  • the surface on the side facing the counter electrode was used.
  • The film remaining rate is 100%.
  • The film remaining rate is 75% or more and less than 100%.
  • X The film remaining rate is less than 75%.
  • the table shows the number of the above-mentioned ⁇ , ⁇ , and ⁇ among the 10 test pieces, respectively, and the case where all were ⁇ was determined to be acceptable, and the other was determined to be unacceptable.
  • Comparative Example 1 the pH of the electrolytic solution in AC electrolysis was too low, so that the alkaline etching power was insufficient. Therefore, the diameter of the small holes in the porous aluminum oxide film layer was insufficient, the thickness of the barrier type aluminum oxide film layer was increased, and the fluctuation range of the porous oxide film thickness was increased. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
  • Comparative Example 6 a large amount of dissolved aluminum was present in the electrolytic solution of AC electrolysis. Therefore, the formation of the barrier type aluminum oxide film layer became non-uniform, and a locally thick part was formed, and the diameter of the small hole of the porous type aluminum oxide film layer was reduced. Furthermore, the fluctuation range of the porous oxide film thickness was increased. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
  • Comparative Example 11 since the electrolysis time in AC electrolysis was too short, the thickness of the corrosion-resistant oxide film and the thickness of the porous aluminum oxide film layer were insufficient. Moreover, the fluctuation range of the porous oxide film thickness was increased. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
  • Comparative Example 13 the dissolved aluminum was less than 5 ppm in the electrolytic solution of AC electrolysis. Therefore, the formation reaction of the porous oxide film at the initial stage of the electrolytic reaction occurred rapidly, and the fluctuation range of the thickness of the porous oxide film became large. Moreover, the formation of the corrosion-resistant oxide film became non-uniform and the thickness was insufficient. As a result, the corrosion resistance of the corrosion resistant oxide film was rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, resulting in a failure of the overall evaluation.
  • the present invention it is possible to obtain a surface-treated aluminum material in which a part of the surface of the aluminum material is excellent in corrosion resistance and the other part of the surface of the aluminum material is excellent in adhesion and adhesion.
  • the surface-treated aluminum material according to the present invention is suitably used for an aluminum-resin bonding member, a printed wiring board, and the like that require adhesion and adhesion only to a part of the aluminum material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

[Problem] To provide a treated surface aluminum material, on a portion of the surface of which a corrosion-resistant oxide film layer is formed and on the other areas of the surface of which a porous oxide film layer of excellent adhesiveness and closeness of adhesion is formed. [Solution] A treated surface aluminum material and a manufacturing method therefor. The treated surface aluminum material comprises an aluminum material, a monolayer structure corrosion resistant oxide film formed on a portion of the surface of the aluminum material, and a porous oxide film formed on the other areas of the surface. The corrosion resistant oxide film has a 10- 100 nm thickness and has specified FT-IR analysis characteristics. The porous oxide film is obtained from a 20-500 nm thick porous aluminum oxide film layer formed on the surface side and 3-30 nm barrier aluminum oxide film layer formed on the base side. Pores of 5-30 nm diameter are formed in the porous aluminum oxide film layer. The range of fluctuation in thickness in the overall porous oxide film formed on the surface of the aluminum material is within ±50% of the arithmetic mean thereof.

Description

表面処理アルミニウム材及びその製造方法Surface-treated aluminum material and method for producing the same
 本発明は、表面処理を施した純アルミニウム材又はアルミニウム合金材(以下、「アルミニウム材」と記す)及びその製造方法に関し、詳細には、表面の一部において耐食性に優れた耐食性酸化皮膜層が形成され、この耐食性酸化皮膜層が形成されていない表面の部位において、接着性及び密着性に優れた多孔性酸化皮膜層が形成されている表面処理アルミニウム材及びその製造方法に関する。 The present invention relates to a surface-treated pure aluminum material or aluminum alloy material (hereinafter referred to as “aluminum material”) and a method for producing the same, and more specifically, a corrosion-resistant oxide film layer having excellent corrosion resistance on a part of the surface. The present invention relates to a surface-treated aluminum material in which a porous oxide film layer having excellent adhesion and adhesion is formed at a portion of the surface where the corrosion-resistant oxide film layer is not formed and a method for producing the same.
 アルミニウム材は、軽量で適度な機械的特性を有し、かつ、美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類、構造材、機械部品、電子部品等に広く使われている。これらのアルミニウム材の一部分に表面処理を施すことで、耐食性、耐摩耗性、樹脂密着性、接着性、親水性、撥水性、抗菌性、意匠性、赤外放射性、高反射性等の機能を付加及び向上させて使用されることも多い。 Aluminum materials are lightweight, have appropriate mechanical properties, and have excellent characteristics such as aesthetics, moldability, and corrosion resistance, so they can be used in various containers, structural materials, mechanical parts, electronic parts, etc. Widely used. By applying a surface treatment to a part of these aluminum materials, functions such as corrosion resistance, abrasion resistance, resin adhesion, adhesion, hydrophilicity, water repellency, antibacterial properties, design properties, infrared radiation, high reflectivity, etc. Often added and improved.
 例えば、耐食性及び耐摩耗性を向上させる表面処理法として、陽極酸化処理(いわゆるアルマイト処理)が広く用いられている。具体的には、非特許文献1、2に記載されるように、アルミニウム材を酸性の電解浴に浸漬して直流電流により電解処理を行うことによって、陽極酸化皮膜を形成させるもので、用途に応じて種々の処理方法が提案されている。 For example, as a surface treatment method for improving corrosion resistance and wear resistance, anodizing treatment (so-called alumite treatment) is widely used. Specifically, as described in Non-Patent Documents 1 and 2, an anodized film is formed by immersing an aluminum material in an acidic electrolytic bath and performing electrolytic treatment with a direct current. Accordingly, various processing methods have been proposed.
 また、特に樹脂密着性を向上させる表面処理法として、特許文献1にはアルカリ交流電解法が提案されている。すなわち、浴温35~85℃のアルカリ性溶液を用いて、電流密度4~50A/dmにて電気量が80C/dmを超える時間、交流電解処理を行なうものである。これにより、膜厚500~5000Åの酸化皮膜が形成されたプリント配線用基板が得られるとしている。 In particular, as a surface treatment method for improving resin adhesion, Patent Document 1 proposes an alkaline alternating current electrolysis method. That is, using an alkaline solution of a bath temperature 35 ~ 85 ° C., the time that the quantity of electricity exceeds 80C / dm 2 at a current density of 4 ~ 50A / dm 2, and performs an AC electrolysis process. As a result, a printed wiring board on which an oxide film having a thickness of 500 to 5000 mm is formed is obtained.
特開平5-191001号公報Japanese Patent Laid-Open No. 5-19001
 上記のような従来技術では、アルミニウム材に直接結線して電解処理を行うことから、アルミニウム材自体が電極となる。よって、表面処理は、アルミニウム材が電解溶液に触れている領域全体に施される。 In the conventional technology as described above, since the electrolytic treatment is performed by directly connecting to the aluminum material, the aluminum material itself becomes the electrode. Thus, the surface treatment is applied to the entire area where the aluminum material is in contact with the electrolytic solution.
 アルミニウム材の一部分に樹脂密着性を付与する表面処理を施す際には、処理を施さない表面部分をマスキングテープ等で被覆する。被覆がされていない部分には表面処理が施されるので、樹脂密着性が向上する。しかしながら、表面処理後に被覆を取り外した部分は表面処理が施されていないため、樹脂密着性が付与されないことは所望の通りであるが、耐食性が得られないという不都合がある。 When applying a surface treatment for imparting resin adhesion to a part of the aluminum material, the surface portion not subjected to the treatment is covered with a masking tape or the like. Since the surface treatment is performed on the uncoated portion, the resin adhesion is improved. However, since the portion where the coating is removed after the surface treatment is not subjected to the surface treatment, it is desirable that the resin adhesion is not given, but there is a disadvantage that the corrosion resistance cannot be obtained.
 この場合には、アルミニウム材の表面の一部分に、樹脂密着性を向上させる表面処理が施された後、表面処理が施されていない部分に、耐食性を付与させる表面処理を行う必要がある。そこで、樹脂密着性を向上させる表面処理が施された部分を再度被覆し、2回目の表面処理を行うことになる。そのため、2回の被覆をすることによるコスト高を招くだけでなく、2回目の表面処理を行う工程が別に必要となるために生産性が低下するという問題があった。 In this case, after a surface treatment for improving resin adhesion is performed on a part of the surface of the aluminum material, it is necessary to perform a surface treatment for imparting corrosion resistance to a portion not subjected to the surface treatment. Therefore, the portion subjected to the surface treatment for improving the resin adhesion is again coated and the second surface treatment is performed. For this reason, there is a problem that not only the cost is increased by performing the coating twice, but also a step of performing the second surface treatment is separately required, so that productivity is lowered.
 本発明者らは、上記課題を解決すべく検討を重ねた結果、耐食性酸化皮膜を特定の部分にのみに形成し、かつ、耐食性酸化皮膜を形成させていない部分には、密着性を有する多孔性酸化皮膜が形成されている表面処理アルミニウム材、ならびに、これら耐食性酸化皮膜と多孔性酸化皮膜とを同時に形成する表面処理アルミニウム材の製造方法を見出し、本発明を完成するに至った。 As a result of repeated studies to solve the above-mentioned problems, the present inventors have formed a corrosion-resistant oxide film only on a specific portion, and a portion having no corrosion-resistant oxide film has a porous property having adhesion. The present invention has been completed by finding a surface-treated aluminum material on which a porous oxide film is formed, and a method for producing the surface-treated aluminum material that simultaneously forms the corrosion-resistant oxide film and the porous oxide film.
 すなわち、本発明は請求項1において、アルミニウム材と、その表面の一部に形成された単層構造を有する耐食性酸化皮膜と、前記アルミニウム材表面の耐食性酸化皮膜が形成されていない部位に形成された多孔性酸化皮膜とを含み、前記耐食性酸化皮膜は、10~100nmの厚さを有し、FT-IR分析によるピーク吸収波数をb(cm-1)とし、ピーク吸収波数bにおけるピーク吸収率をa(%)とした際に、1≦a≦95、かつ、b≧3a+710の関係を満たし、前記多孔性酸化皮膜は表面側に形成された厚さ20~500nmのポーラス型アルミニウム酸化皮膜層と素地側に形成された厚さ3~30nmのバリア型アルミニウム酸化皮膜層とから成り、前記ポーラス型アルミニウム酸化皮膜層には直径5~30nmの小孔が形成されており、アルミニウム材表面に形成された多孔性酸化皮膜全体において、前記ポーラス型アルミニウム酸化皮膜層とバリア型アルミニウム酸化皮膜層との合計厚さの変動幅が、当該合計厚さの算術平均値の±50%以内であることを特徴とする表面処理アルミニウム材とした。 That is, the present invention according to claim 1 is formed at a site where the aluminum material, the corrosion-resistant oxide film having a single-layer structure formed on a part of the surface thereof, and the corrosion-resistant oxide film on the surface of the aluminum material are not formed. The corrosion-resistant oxide film has a thickness of 10 to 100 nm, the peak absorption wave number by FT-IR analysis is b (cm −1 ), and the peak absorption rate at the peak absorption wave number b Is a porous aluminum oxide film layer having a thickness of 20 to 500 nm, which satisfies the relationship of 1 ≦ a ≦ 95 and b ≧ 3a + 710, and is formed on the surface side. And a barrier type aluminum oxide film layer having a thickness of 3 to 30 nm formed on the substrate side. The porous aluminum oxide film layer has small holes with a diameter of 5 to 30 nm. In the entire porous oxide film formed on the surface of the aluminum material, the fluctuation width of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer is an arithmetic average of the total thickness. The surface-treated aluminum material was characterized by being within ± 50% of the value.
 本発明は請求項2では請求項1において、前記ピーク吸収波数b(cm-1)が、Al-Oの最も強い伸縮振動に起因するピークの波数であり、720≦b≦995の範囲に現れるものとした。 According to a second aspect of the present invention, in the first aspect, the peak absorption wave number b (cm −1 ) is a peak wave number resulting from the strongest stretching vibration of Al—O, and appears in a range of 720 ≦ b ≦ 995. It was supposed to be.
 本発明は請求項3では請求項1又は2において、前記ポーラス型アルミニウム酸化皮膜層の見かけ上の表面積に対する小孔の全孔面積の比が25~75%であるものとした。 In the third aspect of the present invention, the ratio of the total hole area of the small holes to the apparent surface area of the porous aluminum oxide film layer in the first or second aspect is 25 to 75%.
 本発明は請求項4において、表面処理されるアルミニウム材の電極と、対電極と、前記アルミニウム材電極に結線された導電材とを用い、pH9~13で液温35~85℃であり、かつ、溶存アルミニウム濃度が5ppm以上1000ppm以下のアルカリ性水溶液を電解溶液とし、周波数10~100Hz、電流密度4~50A/dm及び電解時間5~60秒間の条件で交流電解処理することにより、対電極に対向する前記アルミニウム材表面に多孔性酸化皮膜を形成するとともに、アルミニウム材電極と結線された導電材に対向する前記アルミニウム材表面に耐食性酸化皮膜を同時に形成することを特徴とする表面処理アルミニウム材の製造方法とした。 The present invention according to claim 4 uses an aluminum material electrode to be surface-treated, a counter electrode, and a conductive material connected to the aluminum material electrode, has a pH of 9 to 13 and a liquid temperature of 35 to 85 ° C., and By using an aqueous alkaline solution having a dissolved aluminum concentration of 5 ppm or more and 1000 ppm or less as an electrolytic solution and subjecting it to an alternating current electrolytic treatment under conditions of a frequency of 10 to 100 Hz, a current density of 4 to 50 A / dm 2 and an electrolysis time of 5 to 60 seconds, A surface-treated aluminum material characterized by forming a porous oxide film on the surface of the facing aluminum material and simultaneously forming a corrosion-resistant oxide film on the surface of the aluminum material facing the conductive material connected to the aluminum material electrode. It was set as the manufacturing method.
 本発明は請求項5では請求項4において、前記表面処理されるアルミニウム材の電極と、対電極が共に平板状であり、電解溶液中の前記アルミニウム材電極に結線された導電材の面積は、耐食性酸化皮膜を形成させたい面積の80~150%であり、前記導電材とアルミニウム材との距離が1~50mmであるものとした。 In the present invention, the surface of the aluminum material to be surface-treated and the counter electrode are both flat, and the area of the conductive material connected to the aluminum material electrode in the electrolytic solution is as follows. The area where the corrosion-resistant oxide film is to be formed is 80 to 150%, and the distance between the conductive material and the aluminum material is 1 to 50 mm.
 本発明は請求項6では請求項4又は5において、前記アルミニウム材電極に結線された導電材がステンレス鋼材又は銅材からなるものとした。 In the sixth aspect of the present invention, the conductive material connected to the aluminum material electrode in claim 4 or 5 is made of a stainless steel material or a copper material.
 本発明は請求項7では請求項4~6のいずれか一項において、前記アルミニウム材電極の一方の面側にこの面と対向するように導電材を配置し、アルミニウム材電極の他方の面側にこの面と対向するように対電極を配置することにより、アルミニウム材電極の前記一方の面に耐食性酸化皮膜が形成され、前記他方の面に多孔性酸化皮膜が形成されるものとした。 According to a seventh aspect of the present invention, in the seventh aspect, in any one of the fourth to sixth aspects, a conductive material is disposed on one surface side of the aluminum material electrode so as to face this surface, and the other surface side of the aluminum material electrode By arranging the counter electrode so as to face this surface, a corrosion-resistant oxide film is formed on the one surface of the aluminum electrode, and a porous oxide film is formed on the other surface.
 本発明は請求項8では請求項4~6のいずれか一項において、前記アルミニウム材電極の他方の面側にこの面と対向するように対電極を配置し、当該他方の面と対電極との間において、アルミニウム材電極の他方の面の一部と対向するように導電材を配置し、アルミニウム材電極の他方の面の前記一部と相補的な他の部位と対向するように前記対電極を配置することにより、アルミニウム材電極の他方の面の前記一部に耐食性酸化皮膜が形成され、アルミニウム材電極の前記他の部位に多孔性酸化皮膜が形成されるものとした。 According to an eighth aspect of the present invention, in the eighth aspect, the counter electrode is disposed on the other surface side of the aluminum material electrode so as to face the surface, and the other surface and the counter electrode are arranged. The conductive material is disposed so as to face a part of the other surface of the aluminum material electrode, and the pair of the conductive material is opposed to another part complementary to the part of the other surface of the aluminum material electrode. By disposing the electrode, a corrosion-resistant oxide film was formed on the part of the other surface of the aluminum material electrode, and a porous oxide film was formed on the other part of the aluminum material electrode.
 本発明によって、表面の一部に耐食性酸化皮膜が形成されており、耐食性酸化皮膜が形成されていない部位には、密着性を有する多孔性酸化皮膜が形成されていることを特徴とする表面処理アルミニウム材及びその製造方法が提供される。 According to the present invention, a surface treatment is characterized in that a corrosion-resistant oxide film is formed on a part of the surface, and a porous oxide film having adhesion is formed in a portion where the corrosion-resistant oxide film is not formed. An aluminum material and a method for manufacturing the same are provided.
本発明に係る表面処理アルミニウム材の一部の断面模式図である。It is a partial cross section schematic diagram of the surface treatment aluminum material concerning the present invention. 本発明に係る表面処理アルミニウム材の他の部位の断面模式図である。It is a cross-sectional schematic diagram of the other site | part of the surface treatment aluminum material which concerns on this invention. 本発明に係るアルミニウム材の電解装置の一実施態様を示す正面図である。It is a front view which shows one embodiment of the electrolytic device of the aluminum material which concerns on this invention. 本発明に係るアルミニウム材の電解装置の他の実施態様を示す正面図である。It is a front view which shows the other embodiment of the electrolytic device of the aluminum material which concerns on this invention.
 以下、本発明の詳細を順に説明する。
 図1に示すように、本発明に係る表面処理アルミニウム材1の表面の一部には、耐食性酸化皮膜3が形成されている。また、図2に示すように、耐食性酸化皮膜3が形成されていないアルミニウム材2の表面の部位には、多孔性酸化皮膜4が形成されている。
Hereinafter, details of the present invention will be described in order.
As shown in FIG. 1, a corrosion-resistant oxide film 3 is formed on a part of the surface of the surface-treated aluminum material 1 according to the present invention. Moreover, as shown in FIG. 2, the porous oxide film 4 is formed in the site | part of the surface of the aluminum material 2 in which the corrosion-resistant oxide film 3 is not formed.
A.アルミニウム材について
 本発明に用いるアルミニウム材としては、純アルミニウム又はアルミニウム合金が用いられる。アルミニウム合金の成分には特に制限無く、JISに規定される合金をはじめとする各種合金を使用することができる。形状としては特に制限されるものではないが、安定して処理皮膜を形成できることから平板状のものが好適に用いられる。
A. About aluminum material As an aluminum material used for this invention, pure aluminum or an aluminum alloy is used. There is no restriction | limiting in particular in the component of an aluminum alloy, Various alloys including the alloy prescribed | regulated to JIS can be used. Although it does not restrict | limit especially as a shape, Since a processing film can be formed stably, a flat thing is used suitably.
B.アルミニウム材表面の耐食性酸化皮膜構造について
 図1に示すように、本発明に用いるアルミニウム材2の表面の一部には、厚さが10~100nm、好ましくは20~80nmの不定形の耐食性酸化皮膜3が形成される。この耐食性酸化皮膜3は単層構造の皮膜である。単層構造ではない複層構造の場合には、表層と中間層の間ですき間腐食が発生するため、十分な耐食性を示さない。また、アルミニウム材2の全面に耐食性酸化皮膜3を形成させることもできる。耐食性酸化皮膜3の厚さが10nm未満の場合には、十分な耐食性が得られない。一方、100nmを超える場合には、耐食性酸化皮膜厚さの制御が困難となり処理ムラが発生する。
B. 1. Corrosion-resistant oxide film structure on aluminum material surface As shown in FIG. 1, an amorphous corrosion-resistant oxide film having a thickness of 10 to 100 nm, preferably 20 to 80 nm, is formed on a part of the surface of the aluminum material 2 used in the present invention. 3 is formed. This corrosion-resistant oxide film 3 is a film having a single layer structure. In the case of a multi-layer structure that is not a single-layer structure, crevice corrosion occurs between the surface layer and the intermediate layer, so that sufficient corrosion resistance is not exhibited. Further, the corrosion-resistant oxide film 3 can be formed on the entire surface of the aluminum material 2. When the thickness of the corrosion resistant oxide film 3 is less than 10 nm, sufficient corrosion resistance cannot be obtained. On the other hand, when the thickness exceeds 100 nm, it is difficult to control the thickness of the corrosion-resistant oxide film, and processing unevenness occurs.
 この耐食性酸化皮膜3の膜質はFT‐IR(フーリエ変換式赤外分光光度計)により分析した際の、赤外吸収スペクトルのピーク吸収波数b(cm-1)ならびに、当該ピーク吸収波数におけるベースラインからのピーク吸収率(a%)によって特徴付けられる。ここで、ピーク吸収波数b(cm-1)とは、Al-Oの最も強い伸縮振動に起因するピークの吸収波数をいう。なお、ピーク吸収波数b(cm-1)は、通常、720≦b≦995の範囲に現れる。 The film quality of the corrosion-resistant oxide film 3 is analyzed by FT-IR (Fourier transform infrared spectrophotometer), and the peak absorption wave number b (cm −1 ) of the infrared absorption spectrum and the baseline at the peak absorption wave number Characterized by the peak absorption from (a%). Here, the peak absorption wave number b (cm −1 ) refers to the peak absorption wave number resulting from the strongest stretching vibration of Al—O. The peak absorption wave number b (cm −1 ) usually appears in the range of 720 ≦ b ≦ 995.
 本発明で用いる耐食性酸化皮膜においては、FT‐IRによって分析した際の上記ピーク吸収率a(%)を1≦a≦95、好ましくは2≦a≦75と規定する。このピーク吸収率が1%未満では、耐食性酸化皮膜の厚さが10nm未満となり耐食性が不足する。このピーク吸収率が95%を超えると、耐食性酸化皮膜の厚さが100nmを超え、耐食性酸化皮膜厚さの制御が困難となり処理ムラが起こり易い。更に本発明では、ピーク吸収率a(%)とピーク吸収波数b(cm-1)は、b≧3a+710、好ましくはb≧3a+720の関係を満たす。この関係を満たさない場合には、耐食性酸化皮膜の皮膜形状が多孔質形状になるため、耐食性が低下してしまう。 In the corrosion-resistant oxide film used in the present invention, the peak absorption rate a (%) when analyzed by FT-IR is defined as 1 ≦ a ≦ 95, preferably 2 ≦ a ≦ 75. If this peak absorption rate is less than 1%, the thickness of the corrosion-resistant oxide film is less than 10 nm, resulting in insufficient corrosion resistance. When the peak absorption rate exceeds 95%, the thickness of the corrosion-resistant oxide film exceeds 100 nm, and it becomes difficult to control the thickness of the corrosion-resistant oxide film, and processing unevenness is likely to occur. Furthermore, in the present invention, the peak absorption rate a (%) and the peak absorption wave number b (cm −1 ) satisfy the relationship of b ≧ 3a + 710, preferably b ≧ 3a + 720. When this relationship is not satisfied, the corrosion resistance is deteriorated because the film shape of the corrosion-resistant oxide film becomes a porous shape.
C.アルミニウム材表面の多孔性酸化皮膜構造について
 耐食性酸化皮膜が形成されていない部位のアルミニウム材表面には、図2に示すように、多孔性酸化皮膜4が形成されている。多孔性酸化皮膜4は、アルミニウム材2の素地側のバリア型アルミニウム酸化皮膜層41と、表層側のポーラス型アルミニウム酸化皮膜層42とから構成される。
C. 2. Porous oxide film structure on aluminum material surface As shown in FIG. 2, a porous oxide film 4 is formed on the surface of the aluminum material where the corrosion-resistant oxide film is not formed. The porous oxide film 4 includes a barrier-type aluminum oxide film layer 41 on the base side of the aluminum material 2 and a porous aluminum oxide film layer 42 on the surface layer side.
C-1.ポーラス型アルミニウム酸化皮膜層
 ポーラス型アルミニウム酸化皮膜層42の厚さは、20~500nmである。20nm未満では厚さが十分でないため、後述する小孔構造の形成が不十分になり易く接着力や密着力が低下する。一方、500nmを超えると、ポーラス型アルミニウム酸化皮膜層自体が凝集破壊し易くなり接着力や密着力が低下する。ポーラス型アルミニウム酸化皮膜層42の厚さは、好ましくは30~400nmである。
C-1. Porous Aluminum Oxide Film Layer The thickness of the porous aluminum oxide film layer 42 is 20 to 500 nm. If the thickness is less than 20 nm, the thickness is not sufficient, so that the formation of a small pore structure, which will be described later, is likely to be insufficient, and the adhesive force and adhesion force are reduced. On the other hand, when the thickness exceeds 500 nm, the porous aluminum oxide film layer itself tends to cohesively break down, and the adhesive force and adhesion force are reduced. The thickness of the porous aluminum oxide film layer 42 is preferably 30 to 400 nm.
 また、ポーラス型アルミニウム酸化皮膜層42は、その表面から深さ方向に向かう小孔420を備える。小孔420の直径は5~30nmであり、好ましくは10~20nmである。この小孔は、樹脂層や接着剤などとアルミニウム酸化皮膜との接触面積を増大させ、その接着力や密着力を増大させる効果を発揮するものである。小孔の直径が5nm未満であると、接触面積が不足するため十分な接着力や密着力が得られない。一方、小孔の直径が30nmを超えると、ポーラス型アルミニウム酸化皮膜層全体が脆くなって凝集破壊を生じ接着力や密着力が低下する。 Moreover, the porous aluminum oxide film layer 42 includes small holes 420 that extend from the surface in the depth direction. The diameter of the small holes 420 is 5 to 30 nm, preferably 10 to 20 nm. This small hole increases the contact area between the resin layer, the adhesive, and the like and the aluminum oxide film, and exhibits the effect of increasing the adhesive force and the adhesive force. If the diameter of the small hole is less than 5 nm, the contact area is insufficient, and sufficient adhesive force and adhesion force cannot be obtained. On the other hand, if the diameter of the small holes exceeds 30 nm, the entire porous aluminum oxide film layer becomes brittle and causes cohesive failure, resulting in a decrease in adhesion and adhesion.
 ポーラス型アルミニウム酸化皮膜層の表面積に対する小孔の全孔面積の比については、特に制限されるものではない。ポーラス型アルミニウム酸化皮膜層の見かけ上の表面積(表面の微小な凹凸等を考慮せず、長さと幅の乗算で表される面積)に対する小孔の全孔面積の比として、25~75%が好ましい。25%未満では、接触面積が不足して十分な接着力や密着力が得られない場合がある。一方、75%を超えると、ポーラス型アルミニウム酸化皮膜層全体が脆くなって凝集破壊を生じ接着力や密着力が低下する場合がある。 The ratio of the total hole area of the small holes to the surface area of the porous aluminum oxide film layer is not particularly limited. The ratio of the total hole area of the small holes to the apparent surface area of the porous aluminum oxide film layer (the area represented by multiplication of the length and width without considering minute irregularities on the surface) is 25 to 75%. preferable. If it is less than 25%, the contact area may be insufficient and sufficient adhesive force or adhesion may not be obtained. On the other hand, if it exceeds 75%, the porous aluminum oxide film layer as a whole becomes brittle, causing cohesive failure and reducing the adhesive strength and adhesion.
C-2.バリア型アルミニウム酸化皮膜層
 バリア型アルミニウム酸化皮膜層41とは、厚さ3~30nmの緻密な酸化皮膜である。厚さが3nm未満では、介在層としてポーラス型アルミニウム酸化皮膜層4とアルミニウム素地2との結合に十分な結合力を付与することができず、特に、高温・多湿等の過酷環境における結合力が不十分となる。一方、30nmを超えると、その緻密性ゆえにバリア型アルミニウム酸化皮膜層3が凝集破壊し易くなり、かえって接着力や密着力が低下する。なお、バリア型アルミニウム酸化皮膜層41の厚さは、好ましくは5~25nmである。
C-2. Barrier type aluminum oxide film layer The barrier type aluminum oxide film layer 41 is a dense oxide film having a thickness of 3 to 30 nm. If the thickness is less than 3 nm, sufficient bonding force cannot be imparted to the bonding between the porous aluminum oxide film layer 4 and the aluminum substrate 2 as an intervening layer. It becomes insufficient. On the other hand, if the thickness exceeds 30 nm, the barrier type aluminum oxide film layer 3 tends to cohesively break due to its denseness, and on the contrary, the adhesive strength and the adhesive strength are lowered. The thickness of the barrier type aluminum oxide film layer 41 is preferably 5 to 25 nm.
C-3.多孔性酸化皮膜の全体厚さの変動幅
 多孔性酸化皮膜4全体の厚さ、すなわち、C-1に記載のポーラス型アルミニウム酸化皮膜層42とC-2に記載のバリア型アルミニウム酸化皮膜層41との厚さの合計は、多孔性酸化皮膜4が形成されたいかなる場所で測定しても、その変動幅が±50%以内でなければならず、好ましくは±20%以内である。すなわち、アルミニウム材表面における任意の複数箇所(10箇所以上が望ましく、これら各箇所においても10点以上の測定点とするのが望ましい)で測定した多孔性酸化皮膜全体厚さの算術平均値をT(nm)とした場合、これら複数測定箇所の全てにおける多孔性酸化皮膜全体厚さが(0.5×T)~(1.5×T)の範囲にある必要がある。(0.5×T)未満の箇所が存在すると、その箇所の多孔性酸化皮膜がその周囲より薄くなる。そうすると、この薄い箇所では、接着すべき接着剤や密着すべき樹脂層などと多孔性酸化皮膜との間に隙間が生じ易くなり、十分な接触面積を確保できずに接着力や密着力が低下する。
C-3. Fluctuation width of the total thickness of the porous oxide film The thickness of the entire porous oxide film 4, that is, the porous aluminum oxide film layer 42 described in C-1 and the barrier type aluminum oxide film layer 41 described in C-2 As for the total thickness, the fluctuation range must be within ± 50%, preferably within ± 20%, regardless of where the porous oxide film 4 is formed. That is, the arithmetic average value of the total thickness of the porous oxide film measured at any plurality of locations on the aluminum material surface (preferably 10 locations or more and preferably 10 or more measurement points in each location) is T In the case of (nm), the total thickness of the porous oxide film in all of the plurality of measurement locations needs to be in the range of (0.5 × T) to (1.5 × T). If a location less than (0.5 × T) is present, the porous oxide film at that location becomes thinner than its surroundings. Then, in this thin area, a gap is likely to be generated between the porous oxide film and the adhesive to be adhered or the resin layer to be adhered, and the sufficient contact area cannot be secured and the adhesion and adhesion are reduced. To do.
 一方、(1.5×T)を超える箇所が存在すると、その箇所の多孔性酸化皮膜が周囲の周囲より厚くなる。そうすると、この厚い箇所では、密着すべき樹脂層などからの応力が集中し、多孔性酸化皮膜での凝集破壊を誘発して接着力や密着力が低下する。 On the other hand, if a location exceeding (1.5 × T) exists, the porous oxide film at that location becomes thicker than the surrounding area. Then, in this thick portion, stress from a resin layer or the like that should be in close contact concentrates to induce cohesive failure in the porous oxide film, resulting in a decrease in adhesive strength and close contact strength.
 なお、上記のような多孔性酸化皮膜の全体厚さが薄い箇所や厚い箇所では、周囲と比較して光学的特性が異なるため、茶褐色や白濁色といった色調の変化として目視可能な場合がある。 In addition, since the optical characteristics are different in the portion where the total thickness of the porous oxide film as described above is thin or thick, it may be visible as a change in color tone such as brown or cloudy color.
D.アルミニウム材の製造方法について
 以上のような条件を満たした耐食性酸化皮膜と多孔性酸化皮膜を表面に備えた表面処理アルミニウム材を製造するための一つの方法として、表面処理されるアルミニウム材の電極と、アルミニウム材に結線されてアルミニウム材表面近傍に設置される導電材と、対電極として後述の材質の電極とを用い、pH9~13で液温35~85℃であり、かつ、溶存アルミニウム濃度が5ppm以上1000ppm以下のアルカリ性水溶液を電解溶液とし、周波数10~100Hz、電流密度4~50A/dm及び電解時間5~60秒間の条件で交流電解処理することにより、導電材に対向するアルミニウム材表面の部位には耐食性酸化皮膜が形成され、対電極に対向するアルミニウム材表面の部位には多孔性酸化皮膜が形成される方法を挙げることができる。なお、アルミニウム材の全表面を導電材に対向させることで、その表面に耐食性酸化皮膜のみを形成させることもできる。
D. About the manufacturing method of an aluminum material As one method for manufacturing the surface treatment aluminum material which provided the corrosion-resistant oxide film and porous oxide film which satisfy | filled the above conditions on the surface, the electrode of the surface-treated aluminum material, A conductive material connected to the aluminum material and installed near the surface of the aluminum material, and an electrode made of a material described later as a counter electrode, a liquid temperature of 35 to 85 ° C. at a pH of 9 to 13, and a dissolved aluminum concentration The surface of the aluminum material facing the conductive material by AC electrolytic treatment using an alkaline aqueous solution of 5 ppm or more and 1000 ppm or less as the electrolytic solution under conditions of a frequency of 10 to 100 Hz, a current density of 4 to 50 A / dm 2 and an electrolysis time of 5 to 60 seconds. Corrosion-resistant oxide film is formed on this part, and the part on the surface of the aluminum material facing the counter electrode is porous And a method in which reduction film is formed. In addition, only the corrosion-resistant oxide film can be formed on the surface by making the entire surface of the aluminum material face the conductive material.
 本発明に係る表面処理アルミニウム材は、表面処理されるアルミニウム材の電極と、アルミニウム材の電極に結線された導電材と、対電極とを用いて、交流電解処理を行う。表面処理されるアルミニウム材の電極に結線された導電材は、電解溶液中において、耐食性酸化皮膜を形成させたいアルミニウム材の表面部分の近傍に、当該表面部分に対向するように配置される。導電材が対向していないアルミニウム材の表面部分には、多孔性酸化皮膜が形成される。また、電解溶液中において、アルミニウム材と対向する導電材の面積は、耐食性酸化皮膜を形成させたいアルミニウム材の面積の80~150%であり、好ましくは90~130%である。また、アルミニウム材と対向する導電材の距離は1~50mmである。導電材の面積が耐食性酸化皮膜を形成させたいアルミニウム材の面積の80%未満では、耐食性酸化皮膜を形成させたい部分に多孔性酸化皮膜が形成されてしまう場合があり、150%を超えると、多孔性酸化皮膜を形成させたい部分にも耐食性酸化皮膜が形成してしまう場合がある。アルミニウム材と対向する導電材の距離が1mm未満では、導電材と、対向するアルミニウム材との間で電解溶液の対流が起こり難く、耐食性酸化皮膜の処理ムラが発生し易い。一方、この距離が50mmを超えると、導電材と対向するアルミニウム材との間隔が広過ぎるために、アルミニウム材の全面に多孔性酸化皮膜が形成されてしまう。 The surface-treated aluminum material according to the present invention performs an alternating current electrolytic treatment using an aluminum material electrode to be surface treated, a conductive material connected to the aluminum material electrode, and a counter electrode. The conductive material connected to the electrode of the aluminum material to be surface-treated is arranged in the electrolytic solution in the vicinity of the surface portion of the aluminum material on which the corrosion-resistant oxide film is to be formed so as to face the surface portion. A porous oxide film is formed on the surface portion of the aluminum material that is not opposed to the conductive material. In the electrolytic solution, the area of the conductive material facing the aluminum material is 80 to 150%, preferably 90 to 130%, of the area of the aluminum material on which the corrosion-resistant oxide film is to be formed. The distance between the conductive material facing the aluminum material is 1 to 50 mm. If the area of the conductive material is less than 80% of the area of the aluminum material for which the corrosion-resistant oxide film is to be formed, a porous oxide film may be formed in a portion where the corrosion-resistant oxide film is to be formed. In some cases, the corrosion-resistant oxide film may be formed on the portion where the porous oxide film is to be formed. When the distance between the conductive material facing the aluminum material is less than 1 mm, convection of the electrolytic solution hardly occurs between the conductive material and the facing aluminum material, and uneven treatment of the corrosion-resistant oxide film is likely to occur. On the other hand, if the distance exceeds 50 mm, the distance between the conductive material and the facing aluminum material is too wide, so that a porous oxide film is formed on the entire surface of the aluminum material.
 交流電解処理工程において、電解溶液として用いるアルカリ性水溶液は、りん酸ナトリウム、りん酸水素カリウム、ピロりん酸ナトリウム、ピロりん酸カリウム及びメタりん酸ナトリウム等のりん酸塩;水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物;炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等の炭酸塩;水酸化アンモニウム;或いは、これらの混合物の水溶液を用いることができる。後述するように電解溶液のpHを特定の範囲に保つ必要があることから、バッファー効果の期待できるりん酸塩系物質を含有するアルカリ水溶液を用いるのが好ましい。このようなアルカリ性水溶液に含まれるアルカリ成分の濃度は、電解溶液のpHが所望の値になるように適宜調整されるが、通常、1×10-4~1モル/リットル、好ましくは1×10-3~0.8モル/リットルである。なお、これらのアルカリ性水溶液には、汚れ除去能力の向上のために界面活性剤を添加してもよい。 The alkaline aqueous solution used as the electrolytic solution in the AC electrolytic treatment step is a phosphate such as sodium phosphate, potassium hydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate and sodium metaphosphate; sodium hydroxide and potassium hydroxide. An alkali metal hydroxide such as sodium carbonate, a carbonate such as sodium carbonate, sodium hydrogen carbonate, or potassium carbonate; an ammonium hydroxide; or an aqueous solution of a mixture thereof can be used. Since it is necessary to keep the pH of the electrolytic solution in a specific range as will be described later, it is preferable to use an alkaline aqueous solution containing a phosphate-based substance that can be expected to have a buffer effect. The concentration of the alkali component contained in such an alkaline aqueous solution is appropriately adjusted so that the pH of the electrolytic solution becomes a desired value, but is usually 1 × 10 −4 to 1 mol / liter, preferably 1 × 10 6. -3 to 0.8 mol / liter. In addition, you may add surfactant to these alkaline aqueous solution for the improvement of dirt removal capability.
 電解溶液のpHは9~13とする必要があり、9.5~12とするのが好ましい。pHが9未満の場合には、電解溶液のアルカリエッチング力が不足するため多孔性酸化皮膜が不定形皮膜となり所定のポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の形成が不完全になる。また、pHが9未満では、耐食性酸化皮膜の厚さ制御が困難となり、処理ムラが発生し易くなる。一方、pHが13を超えると、アルカリエッチング力が過剰になるため酸化皮膜層が成長し難くなり、所望の多孔性酸化皮膜形成が阻害される。 The pH of the electrolytic solution needs to be 9 to 13, and preferably 9.5 to 12. When the pH is less than 9, the alkaline etching power of the electrolytic solution is insufficient, so that the porous oxide film becomes an amorphous film and the formation of the predetermined porous aluminum oxide film layer and the barrier type aluminum oxide film layer becomes incomplete. . On the other hand, if the pH is less than 9, it is difficult to control the thickness of the corrosion-resistant oxide film, and uneven processing tends to occur. On the other hand, when the pH exceeds 13, the alkaline etching force becomes excessive, and the oxide film layer is difficult to grow, and the formation of a desired porous oxide film is hindered.
 電解溶液温度は35~85℃とする必要があり、40~70℃とするのが好ましい。電解浴温度が35℃未満の場合には、アルカリエッチング力が不足するため多孔性酸化皮膜の形成が不完全となる。一方、85℃を超えるとアルカリエッチング力が過剰になるため、多孔性酸化皮膜及び耐食性酸化皮膜の形成が阻害される。 The electrolytic solution temperature needs to be 35 to 85 ° C, preferably 40 to 70 ° C. When the electrolytic bath temperature is less than 35 ° C., the formation of the porous oxide film becomes incomplete because the alkaline etching power is insufficient. On the other hand, when the temperature exceeds 85 ° C., the alkali etching force becomes excessive, and thus the formation of the porous oxide film and the corrosion-resistant oxide film is hindered.
 電解溶液に含有される溶存アルミニウム濃度は、5ppm以上1000ppm以下とする必要があり、10ppm以上500ppm以下とするのが好ましい。溶存アルミニウム濃度が5ppm未満の場合は、電解反応初期における酸化皮膜の形成反応が急激に生起するため、局部的に厚い多孔性酸化皮膜が形成されてしまう上、耐食性酸化皮膜にムラが生じてしまう。一方、溶存アルミニウム濃度が1000ppmを超える場合は、電解溶液の粘度が増大して電解工程においてアルミニウム材表面付近の均一な対流が妨げられるのと同時に、溶存アルミニウムが多孔性酸化皮膜形成を抑制する方向に作用する。その結果、局部的に薄い多孔性酸化皮膜が形成されることになる。溶存アルミニウムの濃度が上記範囲から外れると、アルミニウム材表面に形成された多孔性酸化皮膜全体において、前記ポーラス型アルミニウム酸化皮膜層とバリア型アルミニウム酸化皮膜層との合計厚さの変動幅を、この合計厚さの算術平均値の±50%以内にすることが困難となる。その結果、得られる多孔性酸化皮膜の接着力・密着力の低下を招く。 The concentration of dissolved aluminum contained in the electrolytic solution needs to be 5 ppm or more and 1000 ppm or less, and preferably 10 ppm or more and 500 ppm or less. When the dissolved aluminum concentration is less than 5 ppm, the formation reaction of the oxide film at the initial stage of the electrolytic reaction occurs abruptly, resulting in the formation of a locally thick porous oxide film and unevenness in the corrosion-resistant oxide film. . On the other hand, when the dissolved aluminum concentration exceeds 1000 ppm, the viscosity of the electrolytic solution is increased, and uniform convection near the surface of the aluminum material is prevented in the electrolysis process, and at the same time, the dissolved aluminum suppresses the formation of a porous oxide film. Act on. As a result, a locally thin porous oxide film is formed. When the concentration of dissolved aluminum deviates from the above range, the fluctuation width of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer in the entire porous oxide film formed on the surface of the aluminum material is determined as follows. It becomes difficult to make it within ± 50% of the arithmetic average value of the total thickness. As a result, the resulting porous oxide film is deteriorated in adhesion and adhesion.
 用いる周波数は10~100Hzである。10Hz未満では、電気分解としては直流的要素が高まる結果、ポーラス型アルミニウム酸化皮膜層の形成が進行せず、緻密構造となってしまう。一方、100Hzを超えると、陽極と陰極の反転が速すぎるため、酸化皮膜全体の形成が極端に遅くなり、多孔性酸化皮膜及び耐食性酸化皮膜ともに、所定の厚さを得るには極めて長時間を要することになる。なお、用いる周波数は20~80Hzとするのが好ましい。 The frequency used is 10 to 100 Hz. If the frequency is less than 10 Hz, a direct current element increases as electrolysis, and as a result, the formation of the porous aluminum oxide film layer does not proceed and a dense structure is obtained. On the other hand, when the frequency exceeds 100 Hz, the reversal of the anode and the cathode is too fast, so that the formation of the entire oxide film becomes extremely slow, and it takes an extremely long time to obtain a predetermined thickness for both the porous oxide film and the corrosion-resistant oxide film. It will take. The frequency used is preferably 20 to 80 Hz.
 電流密度は4~50A/dmとする必要がある。電流密度が4A/dm未満では、多孔性酸化皮膜のうち、バリア型アルミニウム酸化皮膜層のみが優先的に形成されるためにポーラス型アルミニウム酸化皮膜層が得られない。一方、50A/dmを超えると、電流が過大になるため多孔性酸化皮膜及び耐食性酸化皮膜の厚さ制御が困難となり処理ムラが起こり易い。なお、電流密度は5~30A/dmとするのが好ましい。 The current density needs to be 4 to 50 A / dm 2 . When the current density is less than 4 A / dm 2 , only the barrier type aluminum oxide film layer is preferentially formed in the porous oxide film, so that the porous type aluminum oxide film layer cannot be obtained. On the other hand, if it exceeds 50 A / dm 2 , the current becomes excessive, so that it is difficult to control the thickness of the porous oxide film and the corrosion-resistant oxide film, and processing unevenness is likely to occur. The current density is preferably 5 to 30 A / dm 2 .
 電解時間は5~60秒とする必要がある。5秒未満の処理時間では、多孔性酸化皮膜の形成が急激過ぎるため、ポーラス型アルミニウム酸化皮膜層が十分に形成されず、不定形のアルミニウム酸化物から構成される酸化皮膜となってしまう。一方、60秒を超えると、酸化皮膜が再溶解するために耐食性酸化皮膜層が十分に形成されず、生産性も低下するため好ましくない。なお、電解時間は10~50秒とするのが好ましい。 Electrolysis time should be 5-60 seconds. When the treatment time is less than 5 seconds, the porous oxide film is formed too rapidly, so that the porous aluminum oxide film layer is not sufficiently formed, resulting in an oxide film composed of amorphous aluminum oxide. On the other hand, if it exceeds 60 seconds, the oxide film is re-dissolved, so that the corrosion-resistant oxide film layer is not sufficiently formed, and the productivity is also lowered. The electrolysis time is preferably 10 to 50 seconds.
 交流電解処理に使用する一対の電極のうち一方の電極は、電解処理によって表面処理されるべきアルミニウム材である。他方の対電極としては、例えば、黒鉛、アルミニウム、チタン電極等の公知の電極を用いることができるが、電解溶液のアルカリ成分や温度に対して劣化せず、導電性に優れ、更に、それ自身が電気化学的反応を起こさない材質のものを使用する必要がある。このような点から、対電極としては黒鉛電極が好適に用いられる。これは、黒鉛電極が化学的に安定であり、かつ、安価で入手が容易であることに加え、黒鉛電極に存在する多くの気孔の作用により交流電解工程において電気力線が適度に拡散するため、多孔性酸化皮膜及び耐食性酸化皮膜が共により均一になり易いためである。 One electrode of the pair of electrodes used for the alternating current electrolytic treatment is an aluminum material to be surface-treated by electrolytic treatment. As the other counter electrode, for example, a known electrode such as a graphite, aluminum, or titanium electrode can be used. However, the electrode does not deteriorate with respect to the alkaline component or temperature of the electrolytic solution, and has excellent conductivity. Must be made of a material that does not cause an electrochemical reaction. From such points, a graphite electrode is preferably used as the counter electrode. This is because the graphite electrode is chemically stable, inexpensive and easily available, and due to the action of many pores existing in the graphite electrode, the electric lines of force diffuse moderately in the AC electrolysis process. This is because the porous oxide film and the corrosion-resistant oxide film tend to be more uniform.
 電解処理によって、アルミニウム材に耐食性酸化皮膜を形成させる部分に結線される導電材は、アルミニウム材より電極電位が貴である必要がある。アルミニウム材より電極電位が貴な導電材をアルミニウム材と結線し、アルミニウム材の近傍に設置して電解することで、交流電解におけるカソード反応を導電材表面で起こさせ、アノード反応をアルミニウム材および導電材表面で起こすことができる。よって、アルミニウム材表面にはアノード反応による耐食性酸化皮膜が形成する。アルミニウム材より電極電位が貴な導電材は、例えば、金、白金、銅、鉄、ステンレス鋼、ニッケル等であるが、本発明においては、ステンレス鋼または銅が好適に用いられる。これは、アルカリ溶液中での耐食性に優れ、安価でかつ加工がしやすいためである。 The conductive material connected to the portion where the corrosion-resistant oxide film is formed on the aluminum material by the electrolytic treatment needs to have a higher electrode potential than the aluminum material. A conductive material having a higher electrode potential than the aluminum material is connected to the aluminum material, and is placed in the vicinity of the aluminum material to perform electrolysis, thereby causing the cathode reaction in the alternating current electrolysis to occur on the surface of the conductive material, and the anode reaction to the aluminum material and conductive It can occur on the surface of the material. Therefore, a corrosion-resistant oxide film is formed on the aluminum material surface by the anodic reaction. The conductive material having a higher electrode potential than the aluminum material is, for example, gold, platinum, copper, iron, stainless steel, nickel or the like. In the present invention, stainless steel or copper is preferably used. This is because it is excellent in corrosion resistance in an alkaline solution, inexpensive and easy to process.
 本発明においては、電解処理されるべきアルミニウム材及び対電極には共に平板状のものを用い、対向するアルミニウム材と対電極の対向面同士の寸法をほぼ同一として、両電極を静止状態で電解操作を行なうのが好ましい。図3に示すように、対電極5を用意し、対電極板5と対向するように表面処理されるアルミニウム材2の表面を、対電極5の表面と平行になるように設置することが好ましい。なお、図中7は交流電源、図中8は電解溶液である。 In the present invention, both the aluminum material to be electrolytically treated and the counter electrode are flat, and the opposing aluminum material and the opposing surface of the counter electrode have substantially the same dimensions, and both electrodes are electrolyzed in a stationary state. It is preferable to perform the operation. As shown in FIG. 3, it is preferable to prepare the counter electrode 5 and install the surface of the aluminum material 2 to be surface-treated so as to face the counter electrode plate 5 so as to be parallel to the surface of the counter electrode 5. . In the figure, 7 is an AC power source, and 8 is an electrolytic solution.
 平板状の電解処理されるアルミニウム材2と結線された導電材6の形状は、平板状である必要はなく、網状や多穴状であってもよい。図3に示すように、例えば、表面処理されるアルミニウム材2の一方の面(図中左側の面)側に、この面と対向するように導電材6を配置し、アルミニウム材2の他方の面(図中右側の面)側に、この面と対向するように対電極5を配置して交流電解を行うことにより、アルミニウム材2の上記一方の面に耐食性酸化皮膜が形成され、上記他方の面に多孔性酸化皮膜を形成させることができる。 The shape of the conductive material 6 connected to the flat plate-shaped aluminum material 2 to be subjected to electrolytic treatment does not have to be a flat plate shape, and may be a net shape or a multi-hole shape. As shown in FIG. 3, for example, a conductive material 6 is disposed on one surface (the left surface in the drawing) side of the surface-treated aluminum material 2 so as to face this surface, and the other surface of the aluminum material 2 is disposed. On the surface (the surface on the right side in the figure), the counter electrode 5 is disposed so as to face this surface, and alternating current electrolysis is performed, whereby a corrosion-resistant oxide film is formed on the one surface of the aluminum material 2, and the other A porous oxide film can be formed on the surface.
 図3の場合に替わって図4に示すように、表面処理されるアルミニウム材2の他方の面(図中右側の面)と、この面に対応する対電極5との間に導電材6を配置することもできる。この場合には、アルミニウム材2の他方の面の一部(図中の上側半分)を導電材6と対向させ、アルミニウム材2の他方の面の他の部位(図中の下側半分)は導電材6ではなく対電極5と対向させる。このような配置で交流電解を行うことにより、導電材6と対向するアルミニウム材の他方の面の一部に耐食性酸化皮膜が形成され、導電材6ではなく対電極5と対するアルミニウム材における他方の面の他の部位に多孔性酸化皮膜が形成され、アルミニウム材2の同一面に耐食性酸化皮膜と多孔性酸化皮膜を形成することができる。また、図4において、アルミニウム材2の他方の面の一部(図中の下側半分)を導電材6と対向させ、アルミニウム材2の他方の面の他の部位(図中の上側半分)は導電材6ではなく対電極5と対向させるように配置することにより、前記他方の面の一部に耐食性酸化皮膜を形成し、前記他方の面の他の部位に多孔性酸化皮膜を形成してもよい。 As shown in FIG. 4 instead of the case of FIG. 3, a conductive material 6 is provided between the other surface (the right surface in the drawing) of the aluminum material 2 to be surface-treated and the counter electrode 5 corresponding to this surface. It can also be arranged. In this case, a part (the upper half in the figure) of the other surface of the aluminum material 2 is opposed to the conductive material 6, and the other part (the lower half in the figure) of the other surface of the aluminum material 2 is The conductive material 6 is opposed to the counter electrode 5. By performing alternating current electrolysis in such an arrangement, a corrosion-resistant oxide film is formed on a part of the other surface of the aluminum material facing the conductive material 6, and the other of the aluminum materials facing the counter electrode 5 instead of the conductive material 6 is formed. A porous oxide film is formed on another part of the surface, and a corrosion-resistant oxide film and a porous oxide film can be formed on the same surface of the aluminum material 2. 4, a part of the other surface of the aluminum material 2 (the lower half in the drawing) is made to face the conductive material 6, and the other portion of the other surface of the aluminum material 2 (the upper half in the drawing). Is arranged so as to face the counter electrode 5 instead of the conductive material 6, thereby forming a corrosion-resistant oxide film on a part of the other surface and forming a porous oxide film on the other part of the other surface. May be.
 更に、アルミニウム材2の他方の面の一部として導電材6と対向させる部分は、任意の形状、大きさ及び位置とすることができる。そして、アルミニウム材2の他方の面の他の部位として対電極5と対向させる部位は、他方の面において前記一部と相補的な部分とすることができる。 Furthermore, the part facing the conductive material 6 as a part of the other surface of the aluminum material 2 can have any shape, size and position. And the site | part made to oppose the counter electrode 5 as another site | part of the other surface of the aluminum material 2 can be made into a part complementary to the said part in the other surface.
 本発明における多孔性酸化皮膜と耐食性酸化皮膜の構造観察と厚さの測定には、透過型電子顕微鏡(TEM)による断面観察が好適に用いられる。具体的には、多孔性酸化皮膜及び耐食性酸化皮膜の厚さ、ならびに、多孔性酸化皮膜層の小孔の直径は、ウルトラミクロトーム等により薄片に加工し、TEM観察することによって測定できる。 For observation of the structure and thickness of the porous oxide film and the corrosion-resistant oxide film in the present invention, cross-sectional observation using a transmission electron microscope (TEM) is preferably used. Specifically, the thickness of the porous oxide film and the corrosion-resistant oxide film, and the diameter of the small holes in the porous oxide film layer can be measured by processing into thin pieces with an ultramicrotome or the like and observing them with a TEM.
 以下、実施例および比較例に基づいて、本発明における好適な実施の形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described based on examples and comparative examples.
 電解処理されるアルミニウム材として、縦500mm×横500mm×板厚1.0mmのJIS5052の平板を使用した。このアルミニウム板を一方の電極に用い、対電極には、縦500mm×横550mm×板厚2.0mmの黒鉛板又はチタン板を用いた。実施例1~23及び比較例1~13では、図3に示すように、対電極5とアルミニウム材2を互いに平行になるように配設した。アルミニウム合金板2の対電極5とは反対側の面の近傍には、導電材6を配置し、アルミニウム合金板2の導電材6側の全面に耐食性酸化皮膜を、対電極側全面に多孔性酸化皮膜を形成させた。なお、実施例24では、図4に示すように、アルミニウム材2の表面他方の面(図中右側の面)の一部(図中の上側半分)を導電材と対向させ、アルミニウム材2の表面他方の面の他の部位(図中の下側半分)は導電材6ではなく対電極5と対向させるように配設し、アルミニウム材2の同一面に耐食性酸化皮膜と多孔性酸化皮膜を形成させた。 As an aluminum material to be electrolytically treated, a JIS 5052 flat plate having a length of 500 mm, a width of 500 mm, and a thickness of 1.0 mm was used. This aluminum plate was used as one electrode, and a graphite plate or a titanium plate having a length of 500 mm, a width of 550 mm, and a thickness of 2.0 mm was used as the counter electrode. In Examples 1 to 23 and Comparative Examples 1 to 13, as shown in FIG. 3, the counter electrode 5 and the aluminum material 2 were disposed so as to be parallel to each other. A conductive material 6 is disposed in the vicinity of the surface of the aluminum alloy plate 2 opposite to the counter electrode 5, and a corrosion-resistant oxide film is provided on the entire surface of the aluminum alloy plate 2 on the conductive material 6 side, and the entire surface of the counter electrode side is porous. An oxide film was formed. In Example 24, as shown in FIG. 4, a part (the upper half in the drawing) of the other surface (the right-hand surface in the drawing) of the aluminum material 2 is opposed to the conductive material, The other part of the other surface (the lower half in the figure) is disposed so as to face the counter electrode 5 instead of the conductive material 6, and a corrosion-resistant oxide film and a porous oxide film are formed on the same surface of the aluminum material 2. Formed.
 導電材には、実施例1~14、18~21及び比較例1~13では、縦500mm×横500mm×板厚0.5mmのSUS304ステンレス鋼板を使用した。実施例15では、縦500mm×横500mm×板厚0.5mmの銅板を使用した。実施例16では、縦500mm×横500mm、線経0.5mm、空間率64.5%、10メッシュのSUS304ステンレス鋼金網を使用した。実施例17では、縦500mm×横500mm、孔径6mm、孔間距離(ピッチ)8mmのSUS304ステンレス鋼パンチングメタルを使用した。実施例22では、縦480mm×横480mm×板厚0.5mmのSUS304ステンレス鋼板を使用した。実施例23では、縦570mm×横570mm×板厚0.5mmのSUS304ステンレス鋼板を使用した。実施例24では、縦250mm×横500mm×板厚0.5mmのSUS304ステンレス鋼板を使用した。なお、導電材とアルミニウム合金板との距離は、実施例1~17、22~24及び比較例1~13では5mmとした。実施例18では2mmとし、実施例19では45mmとし、実施例20では0.5mmとし、実施例21では55mmとした。なお、表1に示した、アルミニウム材の面積に対する導電材の面積比において、導電材の面積は空間部を無視した縦横の長さから求めた。 In Examples 1 to 14, 18 to 21, and Comparative Examples 1 to 13, a SUS304 stainless steel plate having a length of 500 mm, a width of 500 mm, and a thickness of 0.5 mm was used as the conductive material. In Example 15, a copper plate having a length of 500 mm, a width of 500 mm, and a thickness of 0.5 mm was used. In Example 16, a SUS304 stainless steel wire mesh having a length of 500 mm × width of 500 mm, a line diameter of 0.5 mm, a space ratio of 64.5%, and 10 mesh was used. In Example 17, SUS304 stainless steel punching metal having a length of 500 mm × width of 500 mm, a hole diameter of 6 mm, and a distance between holes (pitch) of 8 mm was used. In Example 22, a SUS304 stainless steel plate having a length of 480 mm, a width of 480 mm, and a thickness of 0.5 mm was used. In Example 23, a SUS304 stainless steel plate having a length of 570 mm, a width of 570 mm, and a thickness of 0.5 mm was used. In Example 24, a SUS304 stainless steel plate having a length of 250 mm, a width of 500 mm, and a thickness of 0.5 mm was used. The distance between the conductive material and the aluminum alloy plate was 5 mm in Examples 1 to 17, 22 to 24, and Comparative Examples 1 to 13. In Example 18, it was 2 mm, in Example 19, 45 mm, in Example 20, 0.5 mm, and in Example 21, 55 mm. In addition, in the area ratio of the electrically conductive material with respect to the area of the aluminum material shown in Table 1, the area of the electrically conductive material was calculated | required from the length and width which disregarded the space part.
 電解溶液には、表1に示すpHと温度及び溶存アルミニウム濃度を有するピロりん酸ナトリウムを主成分とする、アルカリ性水溶液を使用した。なお、0.1モル/リットルのNaOH水溶液で電解溶液のpHを調整した。アルカリ性水溶液のアルカリ成分濃度は0.1モル/リットルとした。更に、表1に示す交流電解処理条件で電解処理を実施し、アルミニウム板の一方の表面に耐食性酸化皮膜を形成し、他方の表面に多孔性酸化皮膜を形成した表面処理アルミニウム材の供試材を作製した。 As the electrolytic solution, an alkaline aqueous solution mainly composed of sodium pyrophosphate having the pH, temperature, and dissolved aluminum concentration shown in Table 1 was used. The pH of the electrolytic solution was adjusted with a 0.1 mol / liter NaOH aqueous solution. The alkaline component concentration of the alkaline aqueous solution was 0.1 mol / liter. Furthermore, the test material of the surface treatment aluminum material which implemented the electrolysis process on the alternating current electrolysis process conditions shown in Table 1, formed the corrosion-resistant oxide film in one surface of the aluminum plate, and formed the porous oxide film in the other surface Was made.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[耐食性酸化皮膜の厚さ測定]
 以上のようにして作製した供試材に対し、TEMにより耐食性酸化皮膜の断面観察を実施した。具体的には、耐食性酸化皮膜の厚さを測定し、更に、耐食性酸化皮膜の構造(皮膜層が単層構造であるか否か)を観察した。耐食性酸化皮膜の厚さの測定、ならびに、耐食性酸化皮膜の構造の観察のために、ウルトラミクロトームを用いて供試材から断面観察用薄片試料を作製した。次に、この薄片試料において観察視野(1μm×1μm)中の任意の100点を選択してTEM断面観察により、耐食性酸化皮膜の厚さの測定、ならびに、耐食性酸化皮膜が単層構造でるか否かを観察した(単層構造の場合を○、単層構造でない場合を×とした)。耐食性酸化皮膜の厚さが10~100nmであり、かつ、耐食性酸化皮膜が単層構造である場合の評価が合格(○)とし、耐食性酸化皮膜の厚さが10~100nmの範囲にない場合及び耐食性酸化皮膜が単層構造でない場合の少なくともいずれかの場合の評価を不合格(×)とした。以上の結果を、表2に示す。
[Measurement of thickness of corrosion-resistant oxide film]
The cross section of the corrosion-resistant oxide film was observed by TEM for the test material produced as described above. Specifically, the thickness of the corrosion-resistant oxide film was measured, and the structure of the corrosion-resistant oxide film (whether the film layer has a single layer structure) was observed. In order to measure the thickness of the corrosion-resistant oxide film and observe the structure of the corrosion-resistant oxide film, a slice sample for cross-sectional observation was prepared from the test material using an ultramicrotome. Next, in this thin sample, any 100 points in the observation field (1 μm × 1 μm) are selected, and the thickness of the corrosion-resistant oxide film is measured by TEM cross-sectional observation, and whether or not the corrosion-resistant oxide film has a single-layer structure. (The case of a single layer structure was marked with ◯, and the case of no single layer structure was marked with x). When the thickness of the corrosion-resistant oxide film is 10 to 100 nm and the corrosion-resistant oxide film has a single-layer structure, the evaluation is acceptable (◯), and the thickness of the corrosion-resistant oxide film is not in the range of 10 to 100 nm and The evaluation in at least one of the cases where the corrosion-resistant oxide film is not a single layer structure was determined to be rejected (x). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[多孔性酸化皮膜の膜厚測定]
 多孔性酸化皮膜層においても、TEMにより断面観察を実施した。具体的には、多孔性酸化皮膜層におけるポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の厚さ、ならびに、多孔性酸化皮膜層の小孔の直径を測定した。これらを測定するために、ウルトラミクロトームを用いて供試材から断面観察用薄片試料を作製した。次に、この薄片試料において観察視野(1μm×1μm)中の任意の100点を選択してTEM断面観察により、多孔性酸化皮膜層におけるポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の厚さ、多孔性酸化皮膜層の小孔の直径を各点で測定した。このようにして測定した100点のポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の合計厚さの最大値、最小値及び算術平均値を求めた。また、ポーラス型アルミニウム酸化皮膜層とバリア型アルミニウム酸化皮膜層との合計厚さの変動幅が算術平均値の±50%以内にあるか否かについても調べた。具体的には、算術平均値をT(nm)とした場合に、最大値及び最小値を含めた全ての合計厚さが(0.5×T)~(1.5×T)の範囲にある場合を合格(○)とし、範囲にない場合を不合格(×)とした。なお、実施例24では、対電極と対向する側の面を用いた。以上の結果を、表2に示す。
[Measurement of film thickness of porous oxide film]
Also in the porous oxide film layer, cross-sectional observation was performed by TEM. Specifically, the thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer in the porous oxide film layer, and the diameter of the small holes of the porous oxide film layer were measured. In order to measure these, a slice sample for cross-sectional observation was prepared from the test material using an ultramicrotome. Next, in this thin piece sample, arbitrary 100 points in the observation field (1 μm × 1 μm) are selected, and the thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer in the porous oxide film layer is determined by TEM cross-sectional observation. The diameter of the small holes in the porous oxide film layer was measured at each point. The maximum value, the minimum value, and the arithmetic average value of the total thickness of 100 porous aluminum oxide film layers and barrier aluminum oxide film layers thus measured were determined. Further, it was also examined whether or not the fluctuation range of the total thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer was within ± 50% of the arithmetic average value. Specifically, when the arithmetic average value is T (nm), the total thickness including the maximum value and the minimum value is in the range of (0.5 × T) to (1.5 × T). A case where it was acceptable was determined to be acceptable (O), and a case where it was not in range was regarded as unacceptable (x). In Example 24, the surface on the side facing the counter electrode was used. The results are shown in Table 2.
[耐食性酸化皮膜の耐食性評価]
 各供試材から、長さ50mmで幅50mmに切断したものを10枚用意した。耐食性試験は、塩水噴霧試験方法(JIS Z 2371)に記載のCASS試験によって行った。得られた陽極酸化処理品をCASS試験にかけて3時間後に取出し、耐食性酸化皮膜における腐食面積を測定して腐食面積率の評価を行った。ここで、腐食面積率(%)とは、[(腐食面積)/(耐食性酸化皮膜の全面積)]×100とした。
 ○:腐食面積率が10%未満のもの
 △:腐食面積率が10%以上50%未満のもの
 ×:腐食面積率が50%以上のもの
 結果を表3に示す。同表には、10個の試験片のうちの上記○、△、×の個数をそれぞれ示すが、全てが○の場合を合格、それ以外を不合格と判定した。
[Evaluation of corrosion resistance of corrosion resistant oxide film]
Ten specimens were cut from each test piece to a length of 50 mm and a width of 50 mm. The corrosion resistance test was conducted by the CASS test described in the salt spray test method (JIS Z 2371). The obtained anodized product was taken out after 3 hours in the CASS test, and the corrosion area ratio was evaluated by measuring the corrosion area in the corrosion-resistant oxide film. Here, the corrosion area ratio (%) was [(corrosion area) / (total area of the corrosion-resistant oxide film)] × 100.
○: Corrosion area ratio is less than 10% Δ: Corrosion area ratio is 10% or more and less than 50% ×: Corrosion area ratio is 50% or more The results are shown in Table 3. The table shows the number of the above-mentioned ○, Δ, and × among the 10 test pieces, respectively, and the case where all were ○ was determined to be acceptable, and the other was determined to be unacceptable.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[耐食性酸化皮膜の膜質評価]
 FT-IRにより、耐食性酸化皮膜のピーク吸収波数b(cm-1)と、ピーク吸収波数bにおけるピーク吸収率a(%)を測定した。FT-IRのディテクター(検出器)は、測定可能な波数が広範囲(400~4000cm-1)のものを使用した、試料面積は、30mm×50mmとした。結果を表3に示す。同表には、ピーク吸収率a(%)とピーク吸収波数b(cm-1)が、1≦a≦95、かつ、ピーク吸収率a(%)及びピーク吸収波数b(cm-1)の関係がb≧3a+710を満たす場合を合格(○)とし、範囲にない場合を不合格(×)とした。
[Film quality evaluation of corrosion-resistant oxide film]
The peak absorption wave number b (cm −1 ) of the corrosion-resistant oxide film and the peak absorption rate a (%) at the peak absorption wave number b were measured by FT-IR. An FT-IR detector (detector) having a measurable wave number in a wide range (400 to 4000 cm −1 ) was used, and the sample area was 30 mm × 50 mm. The results are shown in Table 3. The table shows that the peak absorption rate a (%) and the peak absorption wave number b (cm −1 ) are 1 ≦ a ≦ 95, and the peak absorption rate a (%) and the peak absorption wave number b (cm −1 ). A case where the relationship satisfies b ≧ 3a + 710 was determined to be acceptable (◯), and a case where the relationship was not within the range was determined to be unacceptable (×).
[多孔性酸化皮膜の接着剤接着性評価]
 供試材から、長さ50mmで幅25mmに切断したものを2枚用意した。これら2枚の供試材同士を全幅方向に沿って接着幅10mmをもって、多孔性酸化皮膜の形成面同士を重ね合わせ、市販の2液型エポキシ接着剤(主剤=変性エポキシ樹脂、硬化剤=変性ポリイミド、重量混合比=主剤100/硬化剤100)によって重ね合わせ部分を接着して、せん断試験片を作製した。2枚の供試材の長さ方向の端部を引張試験機により10mm/分の速度にて長さ方向に沿って反対向きに引張り、その荷重(せん断応力に換算)と剥離状態によって接着剤接着性を下記の基準で評価した。なお、せん断試験片は10組の試験片を作製して、それぞれについて評価した。なお、実施例24では、対電極と対向する側の面を用いた。
 ○:せん断応力が20N/mm以上で、かつ、接着剤層自身が凝集破壊した状態
 △:せん断応力が20N/mm以上であるものの、接着剤層と供試材が界面剥離した状態
 ×:せん断応力が20N/mm未満で、かつ、接着剤層と供試材が界面剥離した状態
 結果を表3に示す。同表には、10組の試験片のうちの上記○、△、×の組数をそれぞれ示すが、全てが○の場合を合格、それ以外を不合格と判定した。
[Adhesive adhesion evaluation of porous oxide film]
Two samples cut from the test material to a length of 50 mm and a width of 25 mm were prepared. These two test materials are bonded to each other with a bonding width of 10 mm along the entire width direction, and the formation surfaces of the porous oxide film are overlapped, and a commercially available two-component epoxy adhesive (main component = modified epoxy resin, curing agent = modified) A superposed portion was adhered by polyimide, weight mixing ratio = main agent 100 / curing agent 100) to prepare a shear test piece. The lengthwise ends of the two specimens are pulled in the opposite direction along the length direction at a speed of 10 mm / min with a tensile tester, and the adhesive is changed depending on the load (converted to shear stress) and the peeled state. The adhesion was evaluated according to the following criteria. In addition, the shear test piece produced 10 sets of test pieces, and evaluated each. In Example 24, the surface on the side facing the counter electrode was used.
○: The shear stress is 20 N / mm 2 or more and the adhesive layer itself is agglomerated and broken Δ: The shear stress is 20 N / mm 2 or more, but the adhesive layer and the test material are separated at the interface × : Shear stress is less than 20 N / mm 2 and the state where the adhesive layer and the specimen were peeled from each other The results are shown in Table 3. The table shows the number of pairs of the above-mentioned ○, Δ, and × of 10 sets of test pieces, respectively.
[多孔性酸化皮膜の塗膜密着性評価]
 上記供試材の多孔性酸化皮膜側の表面に大日本塗料(株)製「Vフロン#2000」を塗布しこれを乾燥して(160℃,20分)、30μmの厚さの樹脂塗膜を形成した密着性試験片を作製した。JIS-K5600-5-6に準拠した方法で、この密着性試験片の樹脂塗膜にカッターナイフを用いて1mm角の碁盤目カットを入れた。次いで、試験片に125℃で30分のレトルト浸漬処理を施した後に、直ちに処理液から取り出して水分をふき取った。この試験片に対して、透明感圧付着テープによる剥離試験を実施した。塗膜残存率によって密着性を下記の基準で評価した。なお、密着性試験片は同じ供試材から10個の試験片を作製して、それぞれについて評価した。なお、実施例24では、対電極と対向する側の面を用いた。
 ○:塗膜残存率が100%のもの
 △:塗膜残存率が75%以上100%未満のもの
 ×:塗膜残存率が75%未満のもの
 結果を表3に示す。同表には、10個の試験片のうちの上記○、△、×の個数をそれぞれ示すが、全てが○の場合を合格、それ以外を不合格と判定した。
[Evaluation of adhesion of porous oxide film]
“V Freon # 2000” manufactured by Dainippon Paint Co., Ltd. was applied to the surface of the above test material on the porous oxide film side, dried (160 ° C., 20 minutes), and a resin coating having a thickness of 30 μm. An adhesion test piece having a shape was prepared. Using a cutter knife, a 1 mm square grid cut was made in the resin coating film of this adhesion test piece by a method according to JIS-K5600-5-6. Next, the test piece was subjected to a retort immersion treatment at 125 ° C. for 30 minutes, and then immediately removed from the treatment liquid to wipe off moisture. The test piece was subjected to a peel test using a transparent pressure-sensitive adhesive tape. The adhesion was evaluated according to the following criteria by the coating film residual ratio. In addition, the adhesive test piece produced 10 test pieces from the same test material, and evaluated each. In Example 24, the surface on the side facing the counter electrode was used.
○: The film remaining rate is 100%. Δ: The film remaining rate is 75% or more and less than 100%. X: The film remaining rate is less than 75%. The table shows the number of the above-mentioned ○, Δ, and × among the 10 test pieces, respectively, and the case where all were ○ was determined to be acceptable, and the other was determined to be unacceptable.
[総合評価]
 耐食性酸化皮膜の耐食性評価と膜質評価、ならびに、多孔性酸化皮膜の接着剤接着性評価と塗膜密着性評価の全てが合格であったものの総合評価を合格とし、これら各評価の少なくともいずれか一つが不合格のものの総合評価を不合格とした。
[Comprehensive evaluation]
Corrosion resistance evaluation and film quality evaluation of the corrosion resistant oxide film, and adhesive evaluation and coating film adhesion evaluation of the porous oxide film were all passed, and the overall evaluation was passed, and at least one of these evaluations An overall evaluation of one that failed was rejected.
 表2、3に示すように、実施例1~24では、本発明要件を満たすため、耐食性酸化皮膜の耐食性及び膜質が良好であり、かつ、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が良好であり、総合評価が合格であった。一方、比較例1~13では本発明要件を満たしていないため、上記各評価の少なくとも一つが不合格であり、総合評価が不合格となった。 As shown in Tables 2 and 3, in Examples 1 to 24, in order to satisfy the requirements of the present invention, the corrosion resistance and film quality of the corrosion-resistant oxide film are good, and the adhesiveness and coating adhesion of the porous oxide film The properties were good and the overall evaluation was acceptable. On the other hand, since Comparative Examples 1 to 13 did not satisfy the requirements of the present invention, at least one of the above evaluations failed, and the overall evaluation failed.
 具体的には、比較例1では、交流電解における電解溶液のpHが低過ぎたため、アルカリエッチング力が不足した。そのため、ポーラス型アルミニウム酸化皮膜層における小孔の直径が不足し、バリア型アルミニウム酸化皮膜層の厚さが厚くなり、多孔性酸化皮膜厚さの変動幅が大きくなった。その結果、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 Specifically, in Comparative Example 1, the pH of the electrolytic solution in AC electrolysis was too low, so that the alkaline etching power was insufficient. Therefore, the diameter of the small holes in the porous aluminum oxide film layer was insufficient, the thickness of the barrier type aluminum oxide film layer was increased, and the fluctuation range of the porous oxide film thickness was increased. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例2では、交流電解における電解溶液のpHが高過ぎたため、アルカリエッチングが過剰に起こった。そのため、耐食性酸化皮膜の厚さが不足し、ポーラス型アルミニウム酸化皮膜層の厚さが不足し小孔の直径が大きくなり、またバリア型アルミニウム酸化皮膜層の厚さが不足した。その結果、耐食性酸化皮膜の耐食性が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 2, alkaline etching occurred excessively because the pH of the electrolytic solution in AC electrolysis was too high. For this reason, the thickness of the corrosion-resistant oxide film is insufficient, the thickness of the porous aluminum oxide film layer is insufficient, the diameter of the small holes is increased, and the thickness of the barrier aluminum oxide film layer is insufficient. As a result, the corrosion resistance of the corrosion resistant oxide film was rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, resulting in a failure of the overall evaluation.
 比較例3では、交流電解における電解溶液の温度が低過ぎたため、アルカリエッチング力が不足した。そのため、バリア型アルミニウム酸化皮膜層の厚さが厚くなった。また、ポーラス型アルミニウム酸化皮膜層の小孔の直径が小さくなった。その結果、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 3, the alkaline etching power was insufficient because the temperature of the electrolytic solution in AC electrolysis was too low. Therefore, the thickness of the barrier type aluminum oxide film layer was increased. Moreover, the diameter of the small hole of the porous aluminum oxide film layer was reduced. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例4では、交流電解における電解溶液の温度が高過ぎたため、アルカリエッチングが過剰に起こった。そのため、耐食性酸化皮膜の厚さ、ならびに、ポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の厚さが不足した。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 4, alkaline etching occurred excessively because the temperature of the electrolytic solution in AC electrolysis was too high. Therefore, the thickness of the corrosion-resistant oxide film and the thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer are insufficient. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例5では、交流電解の電解溶液中に溶存アルミニウムが存在していなかった。そのため、電解反応初期における多孔性酸化皮膜の形成反応が急激に生起し、多孔性酸化皮膜厚さの変動幅が大きくなった。また、耐食性酸化皮膜の形成も不均一となり、厚さが不足した。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 5, no dissolved aluminum was present in the electrolytic solution for AC electrolysis. Therefore, the formation reaction of the porous oxide film at the initial stage of the electrolytic reaction occurred rapidly, and the fluctuation range of the thickness of the porous oxide film became large. Moreover, the formation of the corrosion-resistant oxide film became non-uniform and the thickness was insufficient. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例6では、交流電解の電解溶液中に多量の溶存アルミニウムが存在した。そのため、バリア型アルミニウム酸化皮膜層の形成が不均一となり局所的に厚い部分が形成し、ポーラス型アルミニウム酸化皮膜層の小孔の直径が小さくなった。更に多孔性酸化皮膜厚さの変動幅が大きくなった。その結果、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 6, a large amount of dissolved aluminum was present in the electrolytic solution of AC electrolysis. Therefore, the formation of the barrier type aluminum oxide film layer became non-uniform, and a locally thick part was formed, and the diameter of the small hole of the porous type aluminum oxide film layer was reduced. Furthermore, the fluctuation range of the porous oxide film thickness was increased. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例7では、交流電解における周波数が低過ぎたため、電流の直流成分が強くなった。そのため、ポーラス型アルミニウム酸化皮膜層の形成が抑制されて厚さが不足した。その結果、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 7, the DC component of the current became stronger because the frequency in AC electrolysis was too low. Therefore, the formation of the porous aluminum oxide film layer was suppressed and the thickness was insufficient. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例8では、交流電解における周波数が高過ぎたため、耐食性酸化皮膜及びポーラス型アルミニウム酸化皮膜層の形成が抑制されて、それぞれの厚さが不足した。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 8, since the frequency in AC electrolysis was too high, the formation of the corrosion-resistant oxide film and the porous aluminum oxide film layer was suppressed, and the respective thicknesses were insufficient. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例9では、交流電解における電流密度が低過ぎたため、耐食性酸化皮膜及びポーラス型アルミニウム酸化皮膜層の形成が抑制されて、それぞれの厚さが不足した。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 9, since the current density in AC electrolysis was too low, the formation of the corrosion-resistant oxide film and the porous aluminum oxide film layer was suppressed, and the respective thicknesses were insufficient. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例10では、交流電解における電流密度が高過ぎたため、多孔性酸化皮膜及び耐食性酸化皮膜の形成が不均一になった。そのため、耐食性酸化皮膜の厚さ、ならびに、ポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の厚さが厚くなった。また、多孔性酸化皮膜厚さの変動幅が大きくなった。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 10, the formation of the porous oxide film and the corrosion-resistant oxide film became non-uniform because the current density in AC electrolysis was too high. For this reason, the thickness of the corrosion-resistant oxide film and the thicknesses of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer are increased. Moreover, the fluctuation range of the porous oxide film thickness was increased. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例11では、交流電解における電解時間が短過ぎたため、耐食性酸化皮膜の厚さ、ならびに、ポーラス型アルミニウム酸化皮膜層の厚さが不足した。また、多孔性酸化皮膜厚さの変動幅が大きくなった。その結果、耐食性酸化皮膜の耐食性及び膜質が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 11, since the electrolysis time in AC electrolysis was too short, the thickness of the corrosion-resistant oxide film and the thickness of the porous aluminum oxide film layer were insufficient. Moreover, the fluctuation range of the porous oxide film thickness was increased. As a result, the corrosion resistance and film quality of the corrosion-resistant oxide film were rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例12では、交流電解における電解時間が長過ぎたため、多孔性酸化皮膜の形成が進み過ぎた。そのため、ポーラス型アルミニウム酸化皮膜層及びバリア型アルミニウム酸化皮膜層の厚さが厚くなった。その結果、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 12, the formation of the porous oxide film progressed too much because the electrolysis time in AC electrolysis was too long. Therefore, the thickness of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer was increased. As a result, the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, and the overall evaluation was rejected.
 比較例13では、交流電解の電解溶液中に溶存アルミニウムが5ppm未満であった。そのため、電解反応初期における多孔性酸化皮膜の形成反応が急激に生起し、多孔性酸化皮膜厚さの変動幅が大きくなった。また、耐食性酸化皮膜の形成も不均一となり、厚さが不足した。その結果、耐食性酸化皮膜の耐食性が不合格となり、ならびに、多孔性酸化皮膜の接着剤接着性及び塗膜密着性が不合格となり、総合評価が不合格となった。 In Comparative Example 13, the dissolved aluminum was less than 5 ppm in the electrolytic solution of AC electrolysis. Therefore, the formation reaction of the porous oxide film at the initial stage of the electrolytic reaction occurred rapidly, and the fluctuation range of the thickness of the porous oxide film became large. Moreover, the formation of the corrosion-resistant oxide film became non-uniform and the thickness was insufficient. As a result, the corrosion resistance of the corrosion resistant oxide film was rejected, and the adhesive adhesion and coating film adhesion of the porous oxide film were rejected, resulting in a failure of the overall evaluation.
 本発明によれば、アルミニウム材表面の一部が耐食性に優れ、アルミニウム材表面の他の部位が接着性及び密着性に優れた表面処理アルミニウム材を得ることができる。これにより、本発明に係る表面処理アルミニウム材は、アルミニウム材の一部分にのみ接着性及び密着性が求められるアルミニウム-樹脂接合部材やプリント配線基板等に好適に用いられる。 According to the present invention, it is possible to obtain a surface-treated aluminum material in which a part of the surface of the aluminum material is excellent in corrosion resistance and the other part of the surface of the aluminum material is excellent in adhesion and adhesion. Thus, the surface-treated aluminum material according to the present invention is suitably used for an aluminum-resin bonding member, a printed wiring board, and the like that require adhesion and adhesion only to a part of the aluminum material.
 1・・・表面処理アルミニウム材
 2・・・アルミニウム材
 3・・・耐食性酸化皮膜
 4・・・多孔性酸化皮膜
 41・・・バリア型アルミニウム酸化皮膜層
 42・・・ポーラス型アルミニウム酸化皮膜層
 420・・・小孔
 5・・・対電極
 6・・・導電材
 7・・・交流電源
 8・・・電解溶液
DESCRIPTION OF SYMBOLS 1 ... Surface treatment aluminum material 2 ... Aluminum material 3 ... Corrosion-resistant oxide film 4 ... Porous oxide film 41 ... Barrier type aluminum oxide film layer 42 ... Porous type aluminum oxide film layer 420 ... Small hole 5 ... Counter electrode 6 ... Conductive material 7 ... AC power supply 8 ... Electrolytic solution

Claims (8)

  1.  アルミニウム材と、その表面の一部に形成された単層構造を有する耐食性酸化皮膜と、前記アルミニウム材表面の耐食性酸化皮膜が形成されていない部位に形成された多孔性酸化皮膜とを含み、
     前記耐食性酸化皮膜は、10~100nmの厚さを有し、FT-IR分析によるピーク吸収波数をb(cm-1)とし、ピーク吸収波数bにおけるピーク吸収率をa(%)とした際に、1≦a≦95、かつ、b≧3a+710の関係を満たし、
     前記多孔性酸化皮膜は表面側に形成された厚さ20~500nmのポーラス型アルミニウム酸化皮膜層と素地側に形成された厚さ3~30nmのバリア型アルミニウム酸化皮膜層とから成り、前記ポーラス型アルミニウム酸化皮膜層には直径5~30nmの小孔が形成されており、アルミニウム材表面に形成された多孔性酸化皮膜全体において、前記ポーラス型アルミニウム酸化皮膜層とバリア型アルミニウム酸化皮膜層との合計厚さの変動幅が、当該合計厚さの算術平均値の±50%以内であることを特徴とする表面処理アルミニウム材。
    Including an aluminum material, a corrosion-resistant oxide film having a single-layer structure formed on a part of the surface thereof, and a porous oxide film formed on a portion where the corrosion-resistant oxide film on the surface of the aluminum material is not formed,
    The corrosion-resistant oxide film has a thickness of 10 to 100 nm. When the peak absorption wave number by FT-IR analysis is b (cm −1 ) and the peak absorption rate at the peak absorption wave number b is a (%). 1 ≦ a ≦ 95 and b ≧ 3a + 710 are satisfied,
    The porous oxide film comprises a porous aluminum oxide film layer having a thickness of 20 to 500 nm formed on the surface side and a barrier type aluminum oxide film layer having a thickness of 3 to 30 nm formed on the substrate side. Small pores having a diameter of 5 to 30 nm are formed in the aluminum oxide film layer, and the total of the porous aluminum oxide film layer and the barrier type aluminum oxide film layer in the entire porous oxide film formed on the surface of the aluminum material. A surface-treated aluminum material characterized in that the variation width of the thickness is within ± 50% of the arithmetic average value of the total thickness.
  2.  前記ピーク吸収波数b(cm-1)が、Al-Oの最も強い伸縮振動に起因するピークの波数であり、720≦b≦995の範囲に現れる、請求項1に記載の表面処理アルミニウム材。 2. The surface-treated aluminum material according to claim 1, wherein the peak absorption wave number b (cm −1 ) is a peak wave number due to the strongest stretching vibration of Al—O and appears in a range of 720 ≦ b ≦ 995.
  3.  前記ポーラス型アルミニウム酸化皮膜層の見かけ上の表面積に対する小孔の全孔面積の比が25~75%である、請求項1又は2に記載の表面処理アルミニウム材。 The surface-treated aluminum material according to claim 1 or 2, wherein the ratio of the total pore area of the small pores to the apparent surface area of the porous aluminum oxide film layer is 25 to 75%.
  4.  表面処理されるアルミニウム材の電極と、対電極と、前記アルミニウム材電極に結線された導電材とを用い、pH9~13で液温35~85℃であり、かつ、溶存アルミニウム濃度が5ppm以上1000ppm以下のアルカリ性水溶液を電解溶液とし、周波数10~100Hz、電流密度4~50A/dm及び電解時間5~60秒間の条件で交流電解処理することにより、対電極に対向する前記アルミニウム材表面に多孔性酸化皮膜を形成するとともに、アルミニウム材電極と結線された導電材に対向する前記アルミニウム材表面に耐食性酸化皮膜を同時に形成することを特徴とする表面処理アルミニウム材の製造方法。 Using an aluminum material electrode to be surface-treated, a counter electrode, and a conductive material connected to the aluminum material electrode, the pH is 9 to 13, the liquid temperature is 35 to 85 ° C., and the dissolved aluminum concentration is 5 ppm to 1000 ppm. The following alkaline aqueous solution is used as the electrolytic solution, and AC electrolytic treatment is performed under the conditions of a frequency of 10 to 100 Hz, a current density of 4 to 50 A / dm 2, and an electrolysis time of 5 to 60 seconds. A method for producing a surface-treated aluminum material, comprising forming a corrosion-resistant oxide film and simultaneously forming a corrosion-resistant oxide film on the surface of the aluminum material facing the conductive material connected to the aluminum material electrode.
  5.  前記表面処理されるアルミニウム材の電極と、対電極が共に平板状であり、電解溶液中の前記アルミニウム材電極に結線された導電材の面積は、耐食性酸化皮膜を形成させたい面積の80~150%であり、前記導電材とアルミニウム材との距離が1~50mmである、請求項4に記載の表面処理アルミニウム材の製造方法。 The surface-treated aluminum material electrode and the counter electrode are both flat, and the area of the conductive material connected to the aluminum material electrode in the electrolytic solution is 80 to 150 of the area where the corrosion-resistant oxide film is to be formed. The method for producing a surface-treated aluminum material according to claim 4, wherein the distance between the conductive material and the aluminum material is 1 to 50 mm.
  6.  前記アルミニウム材電極に結線された導電材がステンレス鋼材又は銅材からなる、請求項4又は5に記載の表面処理アルミニウム材の製造方法。 The method for producing a surface-treated aluminum material according to claim 4 or 5, wherein the conductive material connected to the aluminum material electrode is made of a stainless steel material or a copper material.
  7.  前記アルミニウム材電極の一方の面側にこの面と対向するように導電材を配置し、アルミニウム材電極の他方の面側にこの面と対向するように対電極を配置することにより、アルミニウム材電極の前記一方の面に耐食性酸化皮膜が形成され、前記他方の面に多孔性酸化皮膜が形成される、請求項4~6のいずれか一項に記載の表面処理アルミニウム材の製造方法。 An aluminum material electrode is formed by disposing a conductive material on one surface side of the aluminum material electrode so as to face this surface and disposing a counter electrode on the other surface side of the aluminum material electrode so as to face this surface. The method for producing a surface-treated aluminum material according to any one of claims 4 to 6, wherein a corrosion-resistant oxide film is formed on the one surface and a porous oxide film is formed on the other surface.
  8.  前記アルミニウム材電極の他方の面側にこの面と対向するように対電極を配置し、当該他方の面と対電極との間において、アルミニウム材電極の他方の面の一部と対向するように導電材を配置し、アルミニウム材電極の他方の面の前記一部と相補的な他の部位と対向するように前記対電極を配置することにより、アルミニウム材電極の他方の面の前記一部に耐食性酸化皮膜が形成され、アルミニウム材電極の前記他の部位に多孔性酸化皮膜が形成される、請求項4~6のいずれか一項に記載の表面処理アルミニウム材の製造方法。 A counter electrode is disposed on the other surface side of the aluminum material electrode so as to face this surface, and between the other surface and the counter electrode, so as to face a part of the other surface of the aluminum material electrode. A conductive material is disposed, and the counter electrode is disposed so as to face the other part complementary to the part of the other surface of the aluminum material electrode. The method for producing a surface-treated aluminum material according to any one of claims 4 to 6, wherein a corrosion-resistant oxide film is formed, and a porous oxide film is formed on the other part of the aluminum material electrode.
PCT/JP2014/003880 2013-08-01 2014-07-23 Treated surface aluminum material and manufacturing method therefor WO2015015768A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157035097A KR102155398B1 (en) 2013-08-01 2014-07-23 Treated surface aluminum material and manufacturing method therefor
JP2015529376A JP6563336B2 (en) 2013-08-01 2014-07-23 Surface-treated aluminum material and method for producing the same
CN201480041347.9A CN105408527B (en) 2013-08-01 2014-07-23 Surface treated aluminum material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160561 2013-08-01
JP2013160561 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015015768A1 true WO2015015768A1 (en) 2015-02-05

Family

ID=52431327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003880 WO2015015768A1 (en) 2013-08-01 2014-07-23 Treated surface aluminum material and manufacturing method therefor

Country Status (6)

Country Link
JP (1) JP6563336B2 (en)
KR (1) KR102155398B1 (en)
CN (1) CN105408527B (en)
MY (1) MY177082A (en)
TW (1) TWI656223B (en)
WO (1) WO2015015768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026461A1 (en) * 2015-08-13 2017-02-16 株式会社Uacj Surface-treated aluminum material having excellent resin adhesion, method for manufacturing same, and surface-treated aluminum material/resin joined body
US11560641B2 (en) 2015-08-13 2023-01-24 Uacj Corporation Surface-treated aluminum material having excellent adhesiveness to resins, method for manufacturing the same, and surface-treated aluminum material-resin bonded body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110312824B (en) * 2017-02-22 2022-03-22 株式会社Uacj Preparation method of surface-treated aluminum material
JP7026547B2 (en) * 2018-03-22 2022-02-28 株式会社Uacj Surface-treated aluminum alloy material and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413894A (en) * 1990-05-03 1992-01-17 Sky Alum Co Ltd Aluminum alloy material to be coated for automobile and its production
JP2001020082A (en) * 1999-07-07 2001-01-23 Kobe Steel Ltd Aluminum alloy material for zinc phosphate treatment
JP2011021260A (en) * 2009-07-17 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum substrate and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630858B2 (en) 1991-02-26 1997-07-16 スカイアルミニウム株式会社 Manufacturing method of printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413894A (en) * 1990-05-03 1992-01-17 Sky Alum Co Ltd Aluminum alloy material to be coated for automobile and its production
JP2001020082A (en) * 1999-07-07 2001-01-23 Kobe Steel Ltd Aluminum alloy material for zinc phosphate treatment
JP2011021260A (en) * 2009-07-17 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum substrate and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026461A1 (en) * 2015-08-13 2017-02-16 株式会社Uacj Surface-treated aluminum material having excellent resin adhesion, method for manufacturing same, and surface-treated aluminum material/resin joined body
US11560641B2 (en) 2015-08-13 2023-01-24 Uacj Corporation Surface-treated aluminum material having excellent adhesiveness to resins, method for manufacturing the same, and surface-treated aluminum material-resin bonded body

Also Published As

Publication number Publication date
CN105408527B (en) 2018-07-13
KR20160040458A (en) 2016-04-14
TW201510233A (en) 2015-03-16
JP6563336B2 (en) 2019-08-21
JPWO2015015768A1 (en) 2017-03-02
TWI656223B (en) 2019-04-11
KR102155398B1 (en) 2020-09-11
CN105408527A (en) 2016-03-16
MY177082A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
JP6001573B2 (en) Surface-treated aluminum material, method for producing the same, and resin-coated surface-treated aluminum material
JP6563336B2 (en) Surface-treated aluminum material and method for producing the same
JP5077479B1 (en) Contacts and electronic parts using the same
KR102547165B1 (en) Sn plating material and its manufacturing method
Song et al. Influence of graphene oxide content on the Zn-Gr composite layer prepared by pulse reverse electro-plating
EP3162920A1 (en) Sn-PLATED STAINLESS STEEL SHEET
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
Mahdavi et al. Characteristics and properties of Cr coatings electrodeposited from Cr (III) baths
Singh et al. Establishing environment friendly surface treatment for AZ91 magnesium alloy for subsequent electroless nickel plating
JP2014091845A (en) Nickel plating material and method for manufacturing the same
JP6575968B2 (en) Surface-treated aluminum material, method for producing the same, and surface-treated aluminum material / resin layer assembly
Deqing et al. Composite plating of hard chromium on aluminum substrate
JP6168723B2 (en) Surface-treated aluminum material and method for producing the same
JP2019026924A (en) Surface treated aluminum alloy material and manufacturing method thereof
JP6352087B2 (en) Surface-treated aluminum material and method for producing the same
WO2017026461A1 (en) Surface-treated aluminum material having excellent resin adhesion, method for manufacturing same, and surface-treated aluminum material/resin joined body
US11560641B2 (en) Surface-treated aluminum material having excellent adhesiveness to resins, method for manufacturing the same, and surface-treated aluminum material-resin bonded body
JP6570168B2 (en) Surface-treated aluminum material and method for producing the same
Dušek et al. Evaluation of Electrolytically Manufactured Copper Foils Properties
JP2009197257A (en) Roller plating method and roller plating apparatus
POROCH-SERIŢAN et al. Influence of pH galvanic baths on the nickel deposits
JP2017078185A (en) Surface-treated aluminum material and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041347.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529376

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157035097

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831311

Country of ref document: EP

Kind code of ref document: A1