JP2010538268A - 4セクターのセンサー付き自動x線光学アライメント - Google Patents

4セクターのセンサー付き自動x線光学アライメント Download PDF

Info

Publication number
JP2010538268A
JP2010538268A JP2010523081A JP2010523081A JP2010538268A JP 2010538268 A JP2010538268 A JP 2010538268A JP 2010523081 A JP2010523081 A JP 2010523081A JP 2010523081 A JP2010523081 A JP 2010523081A JP 2010538268 A JP2010538268 A JP 2010538268A
Authority
JP
Japan
Prior art keywords
sensor
ray
optical
ray beam
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010523081A
Other languages
English (en)
Inventor
ボングレア キム、
Original Assignee
リガク イノベイティブ テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リガク イノベイティブ テクノロジーズ インコーポレイテッド filed Critical リガク イノベイティブ テクノロジーズ インコーポレイテッド
Publication of JP2010538268A publication Critical patent/JP2010538268A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

X線ビームの視準器に、自動光学アライメントを備えた光学アライメントの監視を組み合わせたX線光学アライメントのためのシステムを提供する。X線光学アライメントのためのシステム(10)である。該システムは、X線源(12)と、光学素子(22)と、視準素子(20)と、アラインメントセンサー(22)と、を含む。上記X線源は、前記光学素子によって試料に向かうX線ビーム(16)を生成する。上記視準素子は、前記X線ビームの断面を画定すべく、前記光学素子と、前記試料と、の間に配置される。前記複数のセンサーは、前記光学素子からのX線ビームを受け入れ、前記システムアラインメントを示す信号を生成する。また、前記複数のセンサーは、前記光学素子と対面する前記視準素子の表面(24)上に配置してもよい。前記センサーの内側端部は、該視準素子の周囲に等間隔に放射状に配置してもよいし、対称形状を有するアパーチャ(21)を形成してもよい。

Description

本発明は、X線光学システムのための自動アライメント装置に関する。
X線光学システムは、広範囲の用途に用いられるツールとして極めて有用である。X線光学システムは、例えば、半導体の製造および組立て、医療研究、材料分析など各分野で広く用いられている。
通常、これらX線光学システムでは、線源からは、X線ビームが付与されるが、多くの用途において、この線源から発せられるX線ビームのパターンのサイズ、および寸法を制御する必要がある場合が多い。用途によっては、X線の条件は、実在結晶又は合成結晶、アパーチャ、並びに、他の要素を用いることによって、設定される。望まれるX線源の条件は、各利用分野によって異なってくる。
多くのX線光学システムにおいて、アパーチャまたはスリット形状の視準器を用いて、適切なX線照射形状を画定している。アパーチャは、所定のエネルギーを持つX線ビームを通過させる開口部を有する。この開口部周辺の視準器の一部で、不要なX線を遮っている。アパーチャの位置は、例えば、特徴付けられる試料によって、送信するX線の範囲を調整するため、通常、変更可能である。
あるX線光学システムにおいては、多層膜光学素子などの光学素子は、定期的に検査されたり、必要に応じて、X線源との関係で光学素子又は光学素子との関係でX線源がアライメントされたりする。通常、光学素子のアライメント処理は、X線システムが作動していないときに行われる。このため、定期的なアライメント処理を行うには、特別な処理手順が必要になり、装置をオフラインにする必要がある。従って、X線ビームの視準器に、自動光学アライメントを備えた光学アライメントの監視を組み合わされたものが求められている。
関連技術の、上記列挙された短所、並びにその他制限を解消するとともに、上記必要性を満たすため、本発明は、X線光学アライメントのためのシステムを提供する。
本発明に係るシステムは、X線源と、光学素子と、視準素子と、アラインメントセンサーと、を含む。上記X線源は、光学素子によって試料に向かうX線ビームを生成する。上記視準素子は、光学素子と試料との間に配置され、X線ビームの視準を行う。上記複数のセンサーは、光学素子からX線ビームを受け、システムアラインメントを示す信号を生成する。これらセンサーは、光学素子と対面する視準素子の表面上に配置してもよい。センサーの内側端部は、視準素子の周囲に等間隔に放射状に配置してもよいし、対称形状を有するアパーチャを形成してもよい。
上記センサーは、光電子倍増管に結合されたシンチレーション材料から形成されてもよいし、フォトダイオードなどの光電子センサーに結合されたシンチレーション材料から形成されてもよい。複数のセンサー間、或いは、同一センサーからの後続の信号同士を比較して、上記システムをアラインメントするどうかを決定する制御装置が、センサーからの各信号を受信してもよい、
また、上記システムは、試料位置と検出器との間に配置されるビームストッパーを含んでもよい。このビームストッパーは、光学素子と対面してX線ビームの強度を測定するために構成されるセンサーを含んでもよい。
本発明の更なる特徴および利点は、以下の記載および請求項から明白となる。
X線ビームの視準器に、自動光学アライメントを備えた光学アライメントの監視を組み合わせたX線光学アライメントのためのシステムを提供する。
本発明に係るX線光学システムの概略図である。 図1のX線光学システムに関する一式のアライメントセンサー付き視準器の端面図である。 シンチレーション材料から形成された複数のセンサーを含むシステムの概略図である。 複数のフォトダイオードから形成された複数のセンサーを使用したシステムの概略図である。 ビームストッパーを含む光学システムの一部の上面図である。
本発明の一実施様態に従い、図1に、X線源12とX線光学素子14とを含むX線光学システム10を図示する。X線源12には、高輝度回転陽極、密閉型X線管、或いは微小焦点源など、研究用の線源を用いることができる。光学素子14には、ブラッグ回折素子といった反射体を用いることができる。例えば、一つまたは二つの反射平面を持つ多層膜光学素子、全反射光学素子、またはX線反射結晶が挙げられる。
作動時において、X線源12は、光学素子14に対してX線ビーム16を放射し、光学素子14は、試料SにX線ビーム16を向かわせる(方向付ける)。その後、試料SからのX線は、検出器18によって収集される。例えば、側面アライメントに関して、側面において段構造の多層膜光学素子を利用したシステム(即ち、Confocal Max−Flux(登録商標)(CMF)光学素子)における実施形態では、光学素子14から到来するX線ビーム16を成形するために、スリットまたはアパーチャ形状のビーム視準器を使用する場合が多い。従って、視準器20は、光学素子14から反射されたX線ビーム16を成形するように、光学素子14と試料Sとの間の位置に配置され、アパーチャ21を通じて所望のエネルギーを持つビームが生成される。
一実施例に従って、視準器20は、光学素子または線源を自動的にアライメントするために情報を与える光学素子14のアライメント変化を監視する複数のX線センサーを含む。複数のセンサー22は、光学素子14から反射されたビームの端部段面を検出するが、視準器22を通過するX線と干渉しない。従って、アラインメント処理は、通常のデータ収集時に行うことができる。更に、センサー22によって与えられた方向に関する情報は、より速くアライメント処理を行うために、軸や方向の決定に利用することができる。
システム10において、光学素子14から反射されたビームの寸法は、通常、視準器20のアパーチャ21の断面よりも大きい。図2に示すように、アパーチャ21の周囲に光学素子14と対面する視準器20の表面24上に、一式の4つのセンサー22が配置される。これらセンサー22は、アパーチャ21の周囲に、例えば90度毎に、放射状に等間隔に離間されてもよい。その一方で、すぐに使用できる検出器の数または離間間隔は、異なっていてもよい。通常、一つの反射表面を持つ光学素子には、一対のセンサーによる一次元のアラインメントが必要である。CMF光学素子は、二つの直交する反射表面を有するため、光学素子を二次元でアラインメントするには四つのセンサーが必要である。作動時において、センサー22は、センサー22の上に投影されるビームプロファイルの端部強度を測定する。従って、センサー22が受けるX線の一部は、視準器22を通過しない。最初の光学素子のアラインメント後、センサー22からは、一式の参照読み値が得られる。その後、センサー12からの読み値は、制御装置による参照読み値と比較される。記録された参照値からの偏差がある場合、光学アライメントを新たに行うことを提案する。アパーチャ21の反対側にある各センサーを更に比較する場合、視準器20の一方または他方にビームが向いている表示を行ってもよい。例えば、第3セクターからの信号の増加している場合(従って、第1セクターからの信号の低減している場合)は、センサー22の第3セクター側(即ち、図1に示す右側)にビームが向かっていることを表示する。ハードウェア構成によって、この症状を直すために適切な措置を講じてもよい。例えば、一つ以上の動力化された直線的に動く台または回転台といった移動装置によって、光学素子または線源を自動的に動かしてもよい。また、光学素子または線源の位置は、調節ネジ付きの直線的に動く台または回転台を使用して手動で調節されてもよい。上記制御装置は、上記光学素子または線源を移動させる方向を図示するグラフィック表示を行ってもよい。同様に、光学素子または線源の移動を案内する可聴信号を付与してもよい。一例において、この音の周波数および音質は、ビームのアラインメントと対応してもよい。(即ち、呼び出し音が高速になるにつれて、アラインメントがより良くなっているようにしてもよい。)
上記センサー22は、図2に示すように扇形状であってもよいし、アパーチャの内側外形およびセンサー22に利用可能な空間によっては、異なる形状を有してもよい。一般的に、各センサーに対する等間隔の位置ずれが、センサーが受けるX線束における同等の変化に対応するように、センサー22の内側端部によって形成されたアパーチャ21は、対称形状である。従って、アパーチャ21は、円形状や四角形状を有していてもよい。各センサーは、それぞれの光ファイバーの一端に結合されるシンチレーション材料から形成されてもよい。この光ファイバーの他端は、光電子増倍管などの読み出し装置と結合してもよい。また、フォトダイオードなどの固定状態の光電子センサーを使用してもよい。
図3に示すように、センサー22は、視準器20からX線を収集すべく構成されるシンチレーション材料42から形成されてもよい。シンチレーション材料42は、光ファイバー46を通じて光電子増倍管48と連通する。センサー22が受け取ったフォトンに、各パルスが対応する場合、光電子増倍管48は、パルス信号を生成する。電子機器50は、このパルス信号を受信し、シンチレーション材料42上に投影されるX線ビームの一部および強度に対応して受け取られたフォトンの数をカウントする。電子機器50は、コンピュータまたはマイクロプロセッサなどの制御装置52に信号を送り、システムのアラインメントにおける更なる自動化または支援を行う。
図4に示すように、X線ビームを受け、受けたX線ビームの線束に対応するアナログ電気信号を生成するフォトダイオード62から、センサー22は、形成されてもよい。このアナログ電気信号は、電気ワイヤまたは配線トレースなどの導線64経由で増幅用電子機器66に送られてもよい。あるいは、電子機器66は、二つの相対するセンサー(即ち、第1セクターおよび第3セクター)で受けた線束の比較を表示してもよい。そのような場合には、この比較値は、光学素子または線源のアラインメントまたはアライメントミスについての示唆を行ってもよい。電子機器66からの信号は、制御装置68に送られる。制御装置68は、電子機器66からの信号を利用し、上述のように光学システムの更なる自動化または支援を行ってもよい。
図5に示すように、図1に図示される光学システムの一部は、ビームストッパー72を含んで設けられる。このビームストッパー72は、上記光学素子と対面して、視準器20を通過するX線ビームを受けるために構成される、センサー76を含む。また、ビームストッパー72およびセンサー76は、視準器20と検出器18との間に配置される。より具体的には、ビームストッパー72およびセンサー76は、試料位置74と、検出器18との間に配置してもよい。ただし、センサー76がX線ビームの強度を測定している間、該試料は、通常撤去される。(図1及び図2から)センサー22は、上記視準器の反対側に配置される複数の素子を利用しているが、センサー76は、X線ビームの強度を決定するために単一の素子を用いてもよい。この素子によってX線源と、光学素子と、視準器との間の光学アライメントの効率が表示される。そのような場合には、上記制御装置は、X線ビームの強度を示すセンサー76から信号を受信し、自動的にアライメントを調節したり、上述のように調整支援をしたりしてもよい。
当業者であれば容易に理解できるように、上記の記載事項は、本発明の動作原理の実施を図示したものとして解釈される。この記載事項は、本発明の範囲または適用を限定するものではなく、以下の請求項に記載のように、本発明の意図を逸脱しない限り、如何なる改良、改変、および変更も可能である。

Claims (24)

  1. X線光学アライメントのためのシステムであって、
    X線ビームを生成するためのX線源と、
    前記X線ビームを試料に向かわせるように構成される光学素子と、
    前記光学素子と前記試料との間に配置される視準素子と、を備え、
    前記視準素子は、前記光学素子からX線ビームを受けるために構成される少なくとも一つのセンサーを有し、前記少なくとも一つのセンサーからの信号は、システムアラインメントを示すシステム。
  2. 前記視準素子は、アパーチャを含む請求項1に記載のシステム。
  3. 前記アパーチャは、前記X線ビームが該アパーチャを通過可能にし、前記センサーは、前記光学素子に対面する視準素子の表面に固定される請求項2に記載のシステム。
  4. 前記少なくとも一つのセンサーは、前記視準素子の周囲に等間隔に放射状に配置される、複数のセンサーである請求項1に記載のシステム。
  5. 前記少なくとも一つのセンサーの各センサーは、対称形状を有するアパーチャを形成する請求項4に記載のシステム。
  6. 前記少なくとも一つのセンサーは、前記視準素子を中心に略90度の間隔で配置される、少なくとも四つのセンサーである請求項1に記載のシステム。
  7. 前記少なくとも一つのセンサーからの信号を収集するように構成される制御装置を更に備える請求項1に記載のシステム。
  8. 前記制御装置は、前記信号を前記少なくとも一つのセンサーによって生成される後続の信号と比較し、前記システムがアラインメントするかどうか決定するように構成される請求項7に記載のシステム。
  9. 前記少なくとも一つのセンサーは、光ファイバーに結合されるシンチレーション材料を含む請求項1に記載のシステム。
  10. 前記光ファイバーは、光電子増倍管に接続される請求項9に記載のシステム。
  11. 前記少なくとも一つのセンサーは、光電子センサーを含む請求項1に記載のシステム。
  12. ビームストッパーと検出器とを更に備え、該検出器は、前記試料からのX線を受けるように構成され、前記ビームストッパーは、前記試料と前記検出器との間に配置され、前記光学素子に対面する前記ビームストッパーの表面は、前記X線ビームの強度を測定するように構成されるセンサーを含む請求項1に記載のシステム。
  13. X線光学アライメントのための方法であって、
    X線ビームを生成する工程と、
    光学素子を使用して前記X線ビームを成形する工程と、
    視準素子を通じて前記X線ビームを方向付ける工程と、
    前記視準素子を中心にX線ビームを感知する工程と、
    前記X線ビームを感知する工程に基づいて、信号を生成する工程と、
    前記信号に基づいて、前記システムのアラインメントを決定する工程と、を有する方法。
  14. 前記視準素子は、アパーチャを含む請求項13に記載の方法。
  15. 前記アパーチャは、前記X線ビームが該アパーチャを通過可能にし、前記センサーは、前記光学素子に対面する視準素子の表面に固定される請求項14に記載の方法。
  16. 前記少なくとも一つのセンサーは、前記視準素子の周囲に等間隔に放射状に配置される、複数のセンサーである請求項13に記載の方法。
  17. 前記少なくとも一つのセンサーの各センサーは、対称形状を有するアパーチャを形成する請求項16に記載の方法。
  18. 前記少なくとも一つのセンサーは、前記視準素子を中心に略90度の間隔で配置される、少なくとも四つのセンサーである請求項13に記載の方法。
  19. 前記少なくとも一つのセンサーからの信号を収集するように構成される、制御装置を更に備える請求項13に記載の方法。
  20. 前記制御装置は、前記信号を前記少なくとも一つのセンサーによって生成される後続の信号と比較し、前記システムがアラインメントするかどうか決定するように構成される請求項19に記載の方法。
  21. 前記少なくとも一つのセンサーは、光ファイバーに結合されるシンチレーション材料を含む請求項13に記載の方法。
  22. 前記光ファイバーは、光電子増倍管に接続される請求項21に記載の方法。
  23. 前記少なくとも一つのセンサーは、光電子センサーを含む請求項13に記載の方法。
  24. ビームストッパーと、検出器と、を設ける工程と、該検出器を使用して前記試料からのX線を受ける工程と、前記試料と、前記検出器と、の間に前記ビームストッパーを配置する工程と、前記光学素子に対面する前記ビームストッパーの表面に含まれるセンサーを使用して、前記X線ビームの強度を測定する工程と、を更に有する請求項13に記載の方法。
JP2010523081A 2007-08-31 2008-08-26 4セクターのセンサー付き自動x線光学アライメント Pending JP2010538268A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/848,700 US7651270B2 (en) 2007-08-31 2007-08-31 Automated x-ray optic alignment with four-sector sensor
PCT/US2008/074274 WO2009032609A1 (en) 2007-08-31 2008-08-26 Automated x-ray optic alignment with four-sector sensor

Publications (1)

Publication Number Publication Date
JP2010538268A true JP2010538268A (ja) 2010-12-09

Family

ID=39939658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010523081A Pending JP2010538268A (ja) 2007-08-31 2008-08-26 4セクターのセンサー付き自動x線光学アライメント

Country Status (4)

Country Link
US (1) US7651270B2 (ja)
EP (1) EP2193358A1 (ja)
JP (1) JP2010538268A (ja)
WO (1) WO2009032609A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050851B4 (de) * 2008-10-08 2010-11-11 Incoatec Gmbh Röntgenanalyseinstrument mit verfahrbarem Aperturfenster
US10610494B2 (en) 2016-08-30 2020-04-07 Georgetown University Mint mask and methods of use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223384A (ja) * 1987-12-28 1989-09-06 Siemens Ag 透過電離箱組立体、電離放射線ビームのずれ検出、補正装置とずれ検出方法、及び線形電子加速器
JPH065237A (ja) * 1992-06-19 1994-01-14 Hitachi Ltd 位置検出器及びそれを備えた電子顕微鏡装置
JPH08297166A (ja) * 1995-04-26 1996-11-12 Rikagaku Kenkyusho 放射光位置モニターとその位置検出方法
JPH10132945A (ja) * 1996-10-24 1998-05-22 Siemens Medical Syst Inc 電離箱
JP2003315466A (ja) * 2002-04-19 2003-11-06 Seiko Instruments Inc 放射線検出器
JP2004165669A (ja) * 2002-11-13 2004-06-10 Asml Netherlands Bv リソグラフィ装置並びにビームサイズおよび発散性を決めるための方法
JP2006236601A (ja) * 2005-02-22 2006-09-07 Kobe Steel Ltd 軌道位置検出装置,組成分析装置,荷電粒子ビームの軌道調整方法及び位置座標検出装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955089A (en) * 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
US5285488A (en) 1989-09-21 1994-02-08 Canon Kabushiki Kaisha Exposure apparatus
EP0737856B1 (en) * 1995-04-14 2010-04-28 J.A. Woollam Co. Inc. A method of investigating samples by changing polarisation
US5757882A (en) 1995-12-18 1998-05-26 Osmic, Inc. Steerable x-ray optical system
US6389100B1 (en) 1999-04-09 2002-05-14 Osmic, Inc. X-ray lens system
DE19954664B4 (de) 1999-11-13 2006-06-08 Smiths Heimann Gmbh Vorrichtung zur Bestimmung von kristallinen und polykristallinen Materialien eines Gegenstandes
DE10162093A1 (de) 2001-12-18 2003-07-10 Bruker Axs Gmbh Röntgen-optisches System mit Blende im Fokus einer Röntgen-Spiegels
US6778636B1 (en) 2002-06-06 2004-08-17 Varian Medical Systems, Inc. Adjustable x-ray beam collimator for an x-ray tube
CN100458563C (zh) 2003-11-20 2009-02-04 Ge医疗系统环球技术有限公司 准直器及x光照射装置和x光摄影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223384A (ja) * 1987-12-28 1989-09-06 Siemens Ag 透過電離箱組立体、電離放射線ビームのずれ検出、補正装置とずれ検出方法、及び線形電子加速器
JPH065237A (ja) * 1992-06-19 1994-01-14 Hitachi Ltd 位置検出器及びそれを備えた電子顕微鏡装置
JPH08297166A (ja) * 1995-04-26 1996-11-12 Rikagaku Kenkyusho 放射光位置モニターとその位置検出方法
JPH10132945A (ja) * 1996-10-24 1998-05-22 Siemens Medical Syst Inc 電離箱
JP2003315466A (ja) * 2002-04-19 2003-11-06 Seiko Instruments Inc 放射線検出器
JP2004165669A (ja) * 2002-11-13 2004-06-10 Asml Netherlands Bv リソグラフィ装置並びにビームサイズおよび発散性を決めるための方法
JP2006236601A (ja) * 2005-02-22 2006-09-07 Kobe Steel Ltd 軌道位置検出装置,組成分析装置,荷電粒子ビームの軌道調整方法及び位置座標検出装置

Also Published As

Publication number Publication date
WO2009032609A1 (en) 2009-03-12
US7651270B2 (en) 2010-01-26
EP2193358A1 (en) 2010-06-09
US20090060144A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
EP1840596B1 (en) Radiation directivity detector, and radiation monitoring method and device
EP3032288B1 (en) Alignment system and method for container or vehicle inspection system
US3936638A (en) Radiology
JP2017223539A (ja) X線回折装置
US10073048B2 (en) Apparatus and method for scanning a structure
US20140270070A1 (en) X-ray recording system for differential phase contrast imaging of an examination object by way of phase stepping
TWI439664B (zh) 放射線厚度計
JP5051300B2 (ja) 放射線断層撮影装置の製造方法
JPH05256950A (ja) X線コンピュータトモグラフィ装置用固体検出器
CN108692659A (zh) 使用位置敏感检测器的线性位移传感器
JP2010538268A (ja) 4セクターのセンサー付き自動x線光学アライメント
JPH05264479A (ja) X線分析装置
US6285736B1 (en) Method for X-ray micro-diffraction measurement and X-ray micro-diffraction apparatus
JP2007240168A (ja) 検査装置
JP3596561B2 (ja) X線応力測定方法及びその装置
JP6924349B2 (ja) X線回折測定装置
JP2000258366A (ja) 微小部x線回折装置
WO2024090412A1 (ja) X線撮像システムのx線検出器
JP2002333409A (ja) X線応力測定装置
JP3626965B2 (ja) X線装置及びx線測定方法
WO2024090411A1 (ja) X線撮像システムのx線検出器
JP2933316B2 (ja) X線検出器
JP2023118009A (ja) X線回折装置及び計測方法
JPH09119905A (ja) X線小角散乱装置
JP2020128946A (ja) X線回折測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416