JP2010517055A - 原子間力顕微鏡法用のビデオレートを可能とするプローブ - Google Patents

原子間力顕微鏡法用のビデオレートを可能とするプローブ Download PDF

Info

Publication number
JP2010517055A
JP2010517055A JP2009548316A JP2009548316A JP2010517055A JP 2010517055 A JP2010517055 A JP 2010517055A JP 2009548316 A JP2009548316 A JP 2009548316A JP 2009548316 A JP2009548316 A JP 2009548316A JP 2010517055 A JP2010517055 A JP 2010517055A
Authority
JP
Japan
Prior art keywords
silicon
cantilever
probe
etching
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009548316A
Other languages
English (en)
Other versions
JP2010517055A5 (ja
JP5249245B2 (ja
Inventor
チャン フン リー
Original Assignee
チャン フン リー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チャン フン リー filed Critical チャン フン リー
Publication of JP2010517055A publication Critical patent/JP2010517055A/ja
Publication of JP2010517055A5 publication Critical patent/JP2010517055A5/ja
Application granted granted Critical
Publication of JP5249245B2 publication Critical patent/JP5249245B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

高速AFMイメージングを対象とした高い共振周波数および低バネ定数を備える、窒化シリコンカンチレバーおよび一体化された四面体の単結晶シリコン先端を備える原子間力顕微鏡法用のプローブを製造する方法。

Description

発明の背景
本発明は、高速イメージング(ビデオレートまで)が所望される用途を含む、プローブベースの機器に使用するためのプローブを製造する方法に関する。
便宜のために、本記載は、プローブベースの機器である原子間力顕微鏡(AFM)の特定の態様のために実現され得るプローブに焦点を合わせている。プローブベースの機器は、AFM、三次元分子間力プローブ機器、高分解能プロフィルメーター(機械的スタイラスプロフィルメーターを含む)、表面改質機器、化学的または生物学的検知プローブ、およびマイクロ駆動デバイスのような機器を含む。本明細書に記載されるプローブは、そのような他のプローブベースの機器用に実現され得る。
AFMは、試料の表面に対してカンチレバーの端部上の鋭い先端を走査(例えばラスタリング)して得られる情報に基づいて、表面トポグラフィー(および/または他の試料特性)の像を作製するのに使用される機器である。表面の形態的なおよび/または他の特徴は、表面の特徴に対するプローブの機械的応答の変化を検知して、システムを基準状態に戻すためにフィードバックを使用することによって検出される。試料に対してプローブを走査することにより、試料のトポグラフィーまたは他の試料特性の「マップ」が得られ得る。
プローブの機械的応答の変化は、通常、光ビームが光てこと同じ基準フレーム内のカンチレバー上に向けられる光てこ配置によって検出される。カンチレバーから反射されたビームは、位置検知形検出器(PSD)を照らす。プローブの機械的応答が変化するのに伴い、PSDからの出力における変化が引き起こされる。PSD信号におけるこれらの変化は、通常、一つまたは複数のプローブの機械的応答に対して一定のプリセット値を維持するために、試料に対するプローブの基部の垂直位置における変化(本明細書においてZ位置における変化と称され、Zは一般に、試料によって画定されるXY平面に直交している)を誘引するために使用される。これは、AFM像を発生させるために通常使用されるフィードバックである。
AFMは、プローブの先端が試料表面と常時接触するコンタクトモード、および先端が表面と接触しないかまたは間欠的にのみ接触するACモードを含む、多数の異なる試料特性解析モードで操作され得る。これらの2つのモードは、ユーザがシステムフィードバックに対してプローブベースの作動パラメータを設定するのを可能とする、フィードバックループにおいて使用され得るプローブの2つの機械的応答を規定する。
コンタクトモードにおいて、プローブと試料表面との間の相互作用は、例えばカンチレバーの撓み等のプローブベースの作動パラメータに認識できる効果を引き起こす。ACモードにおいて、関心対象の効果は、カンチレバーの振動振幅、振動を励振する信号に対するカンチレバーの振動の位相、またはカンチレバーの振動の周波数を含む。これらのプローブベースの作動パラメータの全ては、PSDによって検出可能であり、得られたPSD信号は、指定されたプローブベースの作動パラメータを一定に維持するためにZアクチュエータ用のフィードバック制御信号として使用される。
フィードバック制御信号はまた、関心対象の試料特性の計測を提供する。例えば、ACモードにおいて指定されたパラメータが振動振幅である場合には、フィードバック信号は、試料表面の高さまたは他の試料特性の変化を計測するためにカンチレバーの振動の振幅を一定に維持するのに使用され得る。
現在のいくつかのAFMは、最大で100um2まで撮像することができるが、通常は1〜10um2型で使用される。そのような像は、通常、取得するのに4〜10分を要する。現在、ビデオレートイメージングに近付くように多くの取り組みが行われている。これらの取り組みのための理由は、移動する試料を撮像する、より短時間の事象を撮像する、および、単により適時にイメージングを完了する要望を含む。ビデオレートイメージングに近付く一つの有力な手段は、プローブの質量を低減することであり、これにより、より高い共振周波数を備える、より低いバネ定数を実現することである。
現在、従来のプローブは、0.01〜200N/mのバネ定数および10〜500kHzの基本共振周波数fRを備え、長さが50〜450μである。物理法則は、許容雑音レベルを前提として、従来のプローブの実現可能な分解能および走査速度に下限を設けている。
最良の分解能の計測を得るためには、試料上に低い力のみを及ぼすプローブの先端が必要となる。生物学において、例えば、大抵は、10pNを上回る力が試料を改変または損傷することができるほど軟かい試料を取り扱う。より高い力は先端を試料内に押し込む効果を有し、相互作用領域を増加させ、したがって、分解能を低下させるので、これはまた、無機結晶等の「硬い」試料における高分解能計測にも当てはまる。プローブの所与の撓みについて、力は、プローブのバネ定数kによって増加する。先端が試料表面と間欠的にのみ接触するACモードにおいて空気中で作動する場合には、30N/mを下回るバネ定数が望ましい。一般的な流体中での作動については、非常に小さいバネ定数(約0.1N/m未満)が望ましい。
より高い走査速度による計測を得るためには、高いfRを備えるプローブが必要となる。試料の特徴を過ぎた後、プローブ応答は、コンタクトモードについては約1/fR秒であり、ACモードについてはQ/fR秒である(Qは、プローブについてのQ値である)。これは、走査速度における基本的限界を設定する。プローブの応答時間が低下する場合、fRを引き上げなければならない。
プローブの熱雑音は、最大でおよそfRまでの周波数範囲に広がる固定した雑音エネルギー(kTオーダー)を伴う。ここで、kはボルツマン定数であり、Tはケルビンでの温度である。したがって、fRが高ければ高いほど、単位帯域幅あたりの雑音がfR未満に低くなる。
ビデオレートイメージング用の理想的なプローブは、5〜10MHzの範囲内のfRを有するであろう。それはまた、1〜40N/mの範囲内の力定数も有するであろう。従来のプローブは、この目標を実現するために、およそ5〜8μmの長さまたは幅まで1桁縮小する必要があると考えられる。
半導体集積回路製造技術が今日のAFMに使用するのに必要である均一なカンチレバーおよび先端形状を備えるプローブを一括製造する方式を提供するように、プローブは、半導体集積回路製造技術を使用することによって微細加工される。これらの技術は、非限定的に、薄膜付着、光学マスクを用いたフォトリソグラフィ、プラズマを用いた反応性イオンエッチング(RIE)、シリコンのウェットエッチング、およびウエハ間(wafer-to-wafer)ボンディングを含む。シリコンおよび窒化シリコンは、AFMプローブが製作される2つの主要な半導体材料である。シリコンプローブは、窒化シリコンプローブよりも高い共振周波数および力定数を与える、より厚いカンチレバーを有する。これは、化学気相成長法(CVD)を用いて窒化シリコンを付着させることと比較した、バルクシリコンをエッチングする場合のより大きな厚み変動に起因し、より高い生産力を保証するために、より厚いカンチレバーにおいてシリコン処理を強制的に停止させる。シリコン・オン・インシュレータ(SOI)ウェハを使用することによってこれらの難題を克服することができるが、これは、非常により高いコストを生じる。窒化シリコンプローブは、窒化シリコンが機械加工および作業が困難であるシリコン型において付着されるので、シリコンプローブよりも鈍くて短い先端を有する。
現在のプローブ製作処理は、プローブ長が比較的小さい場合にも、プローブ長を5〜8umまで再現性よく縮小する当業者の能力、およびそれらの寸法までプローブ幅を縮小する当業者の能力を制限する。これは、(i)シリコンウェハの両面を処理する場合のフォトリソグラフィの配列の問題、(ii)ウェハボンディングの配列の問題、または(iii)大幅に不均一なウェハ表面上のフォトリソグラフィの変動を含む、複数の要因に起因する。プローブ製作処理は、通常これらの技術の少なくとも一つを組み入れ、5umの寸法変動は稀である。さらにまた、より短いプローブは、AFMにとって必要とされる範囲内に力定数を保つために比較的薄いカンチレバーを必要とすると考えられる。これらの要因の全ては、ここで想定される目的のために現在の処理を実行不可能とする。
したがって、一体的な鋭い先端を備え、且つ原子スケールにおいてAFMに適合する適度な力定数を備える長さおよび幅が8umのまたは8um未満の高速カンチレバーの製造を可能とする、改善されたAFMプローブ製造プロセスを提供することが本発明の目的である。
本発明の目的である高周波低バネ定数のプローブは、取っ手、カンチレバーおよび鋭い先端からなる。別の態様はまた、必要に応じてカスタマイズされた異なる先端を追加することができるか、または力センサとして先端なしのカンチレバーを使用することができる、先端がないプローブを含む。取っ手は、シリコン基板から形成され、(100)面内で取っ手の上端と鋭角を形成する(111)面内で傾斜して延在している端縁を有する。カンチレバーは、傾斜した(111)端縁を横切り、且つ(100)面内の[110]方位に外側に延在する適切な薄いフィルムから形成されている。カンチレバーの自由端は、一般に外側に、且つ基部から離れるように突出している頂点を備える、(100)面に基部が取り付けられた、一体化されたシリコンの先端を有する。
図面において使用される結晶学的な表記法の全ての方位および面は、ウェハ製造業者の表記法を使用し、且つ同等の方位および面であるように意図されている。
本発明の第1の態様の起点を形成する、各側面上に二酸化シリコンおよび窒化シリコンを備えるシリコン(100)ウェハを示す断面図である。 底面側の膜のエッチングマスクのパターニング後に膜を形成するためのシリコン基板の異方性エッチングを示す断面図である。 図3Aおよび3Bはそれぞれ、窒化シリコンおよび二酸化シリコン層の除去後の膜を備えるシリコン基板の断面図および底面図である。 両側面における窒化シリコンの付着後の膜を備えるシリコン基板を示す断面図である。 図5Aおよび5Bはそれぞれ、シャドーマスクによって基板の底面側に形成されたエッチングマスクを示す断面図および底面図である。 図6Aおよび6Bはそれぞれ、窒化シリコンのエッチングおよびマスク除去後の基板の底面側にパターニングされた窒化シリコンを示す断面図および底面図である。 図7Aおよび7Bはそれぞれ、シリコン基板の露出した底面側における二酸化シリコンの成長を示す断面図および底面図である。 図8Aおよび8Bはそれぞれ、シャドーマスクによって基板の底面側に形成されたカンチレバーエッチングマスクを示す断面図および底面図である。 図9Aおよび9Bはそれぞれ、犠牲二酸化シリコン延伸部を備えるパターニングされた窒化シリコンカンチレバーを示す基板の断面図および底面図である。 図10Aおよび10Bはそれぞれ、底面側のシリコンの異方性エッチングを示す基板の断面図および底面図である。 窒化シリコンカンチレバーの端部のすぐ先にアンダーカットを備える異方性シリコンエッチングの底面側の拡大斜視図である。 犠牲酸化物カンチレバー延伸部の除去後に基板の底面側における露出したシリコン表面において二酸化シリコンを再成長させた後の断面図である。 上側の窒化シリコン層の除去後の基板の断面図である。 図示するために除去された閉塞シリコン薄膜を備える、犠牲酸化物カンチレバー延伸部の除去後の基板の、上側の拡大斜視図である。 図14Aおよび14Bはそれぞれ、シリコン膜が異方性エッチングにおいて完全に除去され、底面側の窒化物のカンチレバーおよび底面側の酸化物に取り付けられた四面体のシリコン先端のみを残した後の基板の断面図および拡大断面図である。 底面側の酸化物を除去した後の、四面体のシリコン先端および窒化物カンチレバーの拡大斜視図である。 底面側の酸化物を除去した後の、シリコン取っ手、窒化物カンチレバー、およびシリコン先端の断面図である。 図108Aおよび108Bはそれぞれ、本発明の第2の態様の一部である、シャドーマスクによって基板の底面側に形成されたカンチレバーエッングチマスクを示す断面図および底面図である。 図109Aおよび109Bはそれぞれ、パターニングされた窒化シリコンカンチレバーを示す基板の断面図および底面図である。 図110Aおよび110Bはそれぞれ、底面側のシリコンの異方性エッチングを示す基板の断面図および底面図である。 窒化シリコンカンチレバーのアンダーカットエッチングを備える、異方性シリコンエッチングの底側面の拡大斜視図である。 図210Aおよび210Bはそれぞれ、本発明の第3の態様の一部である、形成された窒化シリコンカンチレバーを包囲しているシリコン基板の露出した底側における二酸化シリコンの成長を示す基板の断面図および底面図である。 底面側の窒化シリコンカンチレバーの端部に位置合わせされた先端エッチングマスクに形成された上側の窒化シリコン層を示す断面図である。 図212Aおよび212Bは、露出した上側のシリコン表面をエッチングし、シリコン膜が完全に除去された場合に停止することによるシリコン先端の形成を示す断面図である。 底面側の酸化物を除去した後のシリコン取っ手、窒化物カンチレバー、およびシリコン先端の断面図である。 本発明の第3の態様の一部である、三角形状の取っ手を備える最適化されたカンチレバーのシャドーマスクの平面図である。 最適化されたカンチレバーエッチングマスクの臨界配置を示す基板の底面図である。 図311Aは、過度の窒化シリコンフィルムの除去用の、底面側におけるエッチングマスク層の付着を示す、基板の断面図である。図311Bおよび311Cは、AFMに使用する最適形状へのカンチレバーのエッチングを示す底面側の拡大斜視図である。 基板がシリコン・オン・インシュレータ(SOI)である他の基板の態様を示している。 基板がシリコン・オン・インシュレータ(SOI)である他の基板の態様を示している。 基板がシリコン・オン・インシュレータ(SOI)である他の基板の態様を示している。
好ましい態様の詳細な説明
本発明の目的である高周波低バネ定数のプローブを製造するプロセスは、上面側および底面側を有する(100)シリコン基板に端を発する。(111)面に制約される(100)表面を備える膜は、任意の適切なリソグラフィ処理によって形成された一つまたは複数のフィルムによってマスクされているシリコン基板の底面側を異方性ウェットエッチングすることにより、この基板から形成されている。膜の厚みは、タイムドエッチング(timed etch)を使用して選択され、その結果、所望の高さの先端が膜から形成され得る。基板の底面側は、カンチレバー形成に適している一つまたは複数のフィルムで被覆されている。一つまたは複数のフィルムは、膜の(111)面および(100)面の交差直線に対してシリコン基板の底面側にシャドーマスクを位置合わせすることによってカンチレバーに形成され、その結果、制御された長さのカンチレバーが、この交差部分でありかつ[110]方位の点から延在する。この長さは、カンチレバーをアンダーカットエッチングする処理においてさらに短縮され得る。これは、カンチレバーによって被覆される領域を除いて底面側のシリコン膜を露出する。最後の工程は、シリコン膜から先端を形成することである。
一つの先端形成プロセスは、シリコン基板の底面側からの先端の一部、および上面側から一部をエッチングすることである。この処理において、露出された底面側のシリコンは、カンチレバーをアンダーカットエッチングする処理工程で異方性エッチングされる。エッチングの時間は、カンチレバーの有効長を短縮すると共に、先端の高さを制御すると考えられる。アンダーカットエッチングは、シリコンにおける2つの交差{411}面が形成された後に停止される。これらの面は、先端の2つの小面となる。そのようにして露出されたシリコンは、後のエッチング中にシリコンを保護するために酸化される。その後、上面側の一つまたは複数のフィルムは、上側の(100)シリコン表面を露出するように選択的に除去される。露出されたシリコンは、異方性エッチングされ、カンチレバーの自由端に形成された四面体のシリコン先端を除いて残っているシリコン膜を完全に除去する。このエッチングは、四面体の先端の最後の小面である(111)面を露出する。最後の工程は、適当な酸を用いたウェットエッチングによってウェハ上の任意の残っている酸化物を選択的に除去することである。
他の先端形成処理は、シリコン基板の上面側から完全に先端をエッチングすることである。この処理において、カンチレバーを包囲している露出された底面側のシリコンが酸化される。上側面から底面側へのリソグラフィツールは、シリコン膜の底面側におけるカンチレバーに対して、上面側の一つの膜または複数の膜上に先端エッチングマスクをパターニングするために使用され得る。数多くの先端形状を、先端エッチングマスク形状およびシリコンエッチング処理を適当に調整することによって作り出すことができる。例えば、面が刻まれた多面体先端または丸みを帯びた円錐状の先端を形成するために、等方性および/または異方性の双方の、プラズマ(RIE)および/またはウェットエッチング処理が使用され得る。これらの場合、エッチングは、シリコン膜の底面側で、酸化フィルムおよび窒化物カンチレバーの接合部に到達した場合に停止される。最後の工程は、適当な酸を用いたウェットエッチングによってウェハ上の任意の残っている酸化物を選択的に除去することである。
シャドーマスク技術は、微細加工の当業者にとって一般的である。カンチレバーのシャドーマスクは、(100)シリコン基板または他の任意の適切な基板において所望のカンチレバーの形状を備える開口を微細加工することによって容易に製造され得る。基板の上面側における単純なリソグラフィおよびエッチングは、小さく且つ制御可能なカンチレバー形状の溝を作ることができる。シリコン基板の底面側における単純なリソグラフィおよび貫通基板エッチングは、この溝をカンチレバー形状の開口に変えることができる。
図1は、本発明の目的である高周波低バネ定数のプローブを製造する最初の2つの処理工程の断面図を示している。第1の工程において、熱二酸化シリコン(本明細書において酸化物と称される)フィルムの2つの層11および12が、モノクリスタル(100)シリコン基板10の各表面に成長する。ピンホールがなく均一であり、且つ一般にクリーンな処理から得られるので、酸化物が好ましい。酸化物は、シリコン基板10の表面をクリーンに保つ役割を果たし、また、図2において示されるように、窒化シリコンフィルム(本明細書において窒化物と称される)の部分を除去するのに使用される反応性イオンエッチング(RIE)からシリコン表面を保護する役割も果たす。
図1の第2の処理工程において、窒化フィルムの2つの層13および14が、それぞれ、酸化フィルム11および12上に付着される。プラズマ化学気相成長法(PECVD)または低圧化学気相成長法(LPCVD)のいずれかが、この工程のために使用され得る。窒化物は、化学量論フィルム(Si3N4)とすることができるが、低応力の異形(SixNy)が好ましい。同様に、図2において示されるウェット異方性シリコンエッチング用のエッチングマスクとしての役割を果たすことができる限り、窒化物の代わりに、当業者に公知の、例えばポリマーまたは任意の他の半導体材料等の他の材料が使用され得る。
図2は、次の3つの処理工程の断面図を示している。これらの工程のうち第1の工程において、その後にRIEが続く従来のリソグラフィが、パターニングして底面側の窒化フィルム14を貫通して矩形の開口部をエッチングするために使用される;RIEは、エッチングが下層の酸化フィルム12に到達した場合に停止される。これらの工程のうち第2の工程において、例えばHFまたは緩衝酸化エッチング(BOE)といった、酸化物に選択的であり、且つシリコンまたは窒化物に非反応性である化学的エッチング剤が、酸化フィルム12を貫通して矩形の開口部をエッチングするために使用される。これら3つの工程のうち第3の工程において、ウェット異方性シリコンエッチングが、シリコン基板10内にピット20をエッチングし、タイムドエッチングによって所望の厚みの薄いシリコン膜21を形成するために使用される。任意の他の適切な異方性シリコンエッチング剤で十分であると考えられるが、水酸化カリウム(KOH)が好ましいエッチング剤である。膜21の厚みは、本明細書に記載される全ての工程の完了によって生じるプローブに含まれることになるシリコン先端の高さを、膜21の厚みまたはそれよりも若干薄い厚みに限定すると考えられる。これら3つの工程のうち第1の工程で生じるパターニングされた窒化フィルム14は、このウェット異方性エッチング用のエッチングマスクとしての役割を果たす。シリコン基板10に形成されたピット20の4つの側壁は、{111}結晶学的シリコン表面である。
図3Aは、残っている窒化フィルム13および14、ならびに酸化フィルム11および12を除去して、裸のエッチングされたシリコン基板10を残した図を示している。濃縮されたHF(49%)が、残っているフィルムの全てを同時に除去するために使用され得る。あるいは、煮沸したリン酸(H3PO4)が、残っている窒化フィルム13および14を除去するために使用されることができ、その後、希釈したHFまたはBOEが、残っている酸化フィルム11および12を除去するために使用され得る。残っているシリコン基板10は、本明細書に記載される全ての工程の完了によって生じるであろうプローブの3つの領域として見ることができる。すなわち、22は、シリコン取っ手に形成され、21は、四面体のシリコン先端に形成され、10は、残っているバルクシリコン基板である。図3Bは、前の処理工程によって生じる矩形ピット20を備える、残っているシリコン基板10の底面図を示している。
図4は、図3Aにおいて示された処理工程によって生じるシリコン基板10の両側面における低応力窒化物(SixNy)フィルム30および31の付着を図示する断面図である。PECVDまたはLPCVDのいずれかがこの工程のために使用され得る。本明細書において記載される全ての工程の完了によって生じるプローブは、窒化フィルム31から作られるカンチレバーを含むと考えられる。処理における適切な変更により、例えば、当業者に公知の化学量論窒化物、ポリマー、金属、合成物、または他の半導体材料といった、シリコン処理に適合する他の材料が低応力窒化物の代わりに使用され得る。このフィルムの厚みは、共振周波数およびバネ定数を含むプローブの所望の仕様の関数である。この工程の重要な部分は、窒化物付着の直前におけるシリコン基板10の入念な洗浄である。二酸化シリコンの薄層が、業界標準の拡散洗浄処理、ウェット化学的ウェハ洗浄中に形成される場合がある。この層は結果として、本明細書に記載される全ての工程の完了によって生じるプローブのシリコン先端が、後の酸化物エッチング処理工程においてエッチングされて窒化物カンチレバーから遊離することを招く。この結果を防止するために、酸化物エッチングが、拡散洗浄処理の終わりに追加されるべきであり、その結果、窒化物は、2つの材料間に二酸化シリコン層が存在することなくシリコン上に直接付着され得る。
図5Aは、微細加工されたシャドーマスク(図示しない)を介して窒化フィルム31の一部の上にマスク層32を付着させる処理の断面図を示している。マスク層は、RIE中に窒化フィルムを保護するであろう金属、誘電体、ポリマー、または当業者に公知の他の材料から形成され得る。比較的深い矩形ピット20が、接触式アライナについて激しい回折、または投射リソグラフィ(ステッパ)についての焦点制限を引き起こすので、マスク層を規定するのに従来のリソグラフィを使用することは適当ではないと考えられる。電子ビームリソグラフィを使用することもまた、その非常に高いコストのために、これらのプローブの大量生産のためには不適当であると考えられる。この工程の完了は、本明細書において記載される全ての工程の完了によって生じるプローブの長さを規定し、その長さは、マスク層32上の点33から点34までの距離であると考えられる。図5Bは、マスク層32が窒化フィルム31の一部の上に付着されているシリコン基板10の表面の底面図を示している。
図6Aは、エッチングが下層のシリコン表面に到達した場合に停止されるRIEパターニングされた窒化フィルム31の断面図を示している。RIEは、膜21の一部を含むシリコン基板10の底面の一部を露出する。図6Bは、マスクされていない窒化フィルム31が除去されているシリコン基板10の表面の底面図を示している。
図7Aは、底面の露出された部分において成長した酸化物層35を備えるシリコン基板10の断面図を示している。窒化フィルム30および31は、それらが被覆する領域の下および上における酸化物の成長を防止している。窒化物と酸化物が交わる部分36は、窒化物カンチレバーの終端でありかつ犠牲酸化物カンチレバー延伸部の始端である部分を示す。図7Bは、酸化物層35が成長したシリコン基板10の底面図を示している。
図8Aは、微細加工されたシャドーマスク(図示しない)を介して窒化フィルム31および酸化フィルム35の一部の上にカンチレバーマスク層40を付着する処理の断面図を示している。そのようなマスク層は、図5Aにおいて表された処理に関連して述べられている。マスク層40は、本明細書に記載される全ての工程の完了によって生じるプローブのパターニングをもたらす。シリコン基板10の底面図である図8Bは、[110]結晶面方位を向いているカンチレバーマスク層40を示している。酸化物層35上に延在しているカンチレバーマスク層40の端部42は、所望の側壁エッチング面を露出しながら、図10Aにおいて表される異方性シリコンウェットエッチング中にアンダーカットエッチングされるように設計されている。カンチレバーの端部は四角形とすることができるが、アンダーカットエッチング時間を短くするために、例えば[410]方位または他の所望の方位等の結晶学的方位に沿って、2本の線を備える三角形とすることもできる。
図9Aは、それぞれ31および35である窒化フィルムおよび酸化フィルムに転写されたカンチレバーのパターンの断面図を示している。窒化物パターン41は、RIEでパターニングされた部分41を除いて全ての窒化フィルム31の除去によって生じる。酸化物パターン45は、希釈したHFまたはBOE溶液によるパターニングされた部分45を除いた全ての酸化フィルム35の除去によって生じる。窒化物パターン41は、本明細書において記載される全ての工程の完了によって生じるプローブのカンチレバーとなる。シリコン基板10の底面図である図9Bは、より明瞭なパターニングを示している。
図10Aは、ウェット異方性シリコンエッチング後のシリコン基板10の断面図を示している。エッチング中に、2つの主なエッチング面{411}は、酸化物パターン45の下層のシリコンをゆっくりとアンダーカットエッチングする。エッチングは、これらの2つのアンダーカット{411}エッチング面の交差直線52が、窒化物パターン41および酸化物パターン45の接合部36に到達する(または用途に応じて通過する)まで進められる。2つのエッチング面は、本明細書に記載される全ての工程の完了によって生じるプローブの四面体のシリコン先端の2つの外側小面を後に形成する。エッチングは、ピットの底部がより薄いシリコン膜51であるエッチングピット50を作り出し、シリコン膜21のマスクされていない部分をさらに薄化する。シリコン基板10の底面図である図10Bは、より明瞭な異方性シリコンエッチングの結果を示している。
図11は、異方性シリコンエッチングの結果の底面方向から見た拡大斜視図を示している。図11の前面は、接合部36において接触している窒化物パターン41および酸化物パターン45を示している。酸化物パターン45の端部43は、矢印44の側面が[410]シリコン結晶方位と一致する矢印点に形成されている。{411}結晶面であるシリコン表面53および54の交差直線52は、[110]シリコン結晶方位に対しておよそ74°の角度を形成している。酸化物パターン45の矢印点外形は、四角形の端部外形における結果と比較した場合に、アンダーカットエッチングにおいて{411}結晶面53および54がより早くそれら自身を露呈するのを強制するように設計されている。酸化物パターン45の端縁44はまた、アンダーカットエッチング中に表面53および54の形成を最適化するために、[310]のような他の結晶方位またはさらには非結晶面方位と一致され得る。しかしながら、表面53および54の最後のエッチング輪郭は、{411}結晶面配向性をなお選択すると考えられる。実際には、表面55および56は特定の結晶面ではない。代わりに、それらは多様で不規則なエッチング面としてそれら自身を露呈する。便宜上、それらは単一面としてここでは表される。
図12は、次の2つの工程、すなわち、酸化物エッチング工程とその後に続く酸化物成長工程の後のシリコン基板10の断面図を示している。第1の工程において、酸化物パターン45がHFまたはBOE溶液を用いて除去される。第2の工程において、酸化フィルム60がシリコン基板10の底面側における全ての露出したシリコン表面上に成長する。この第2の工程の結果は、窒化フィルム31および41の2つの区域ならびに酸化フィルム60の区域から形成された、完成した底面側のエッチングマスクである。
図13Aは、RIEによって上側の窒化フィルム30を除去してシリコン基板10の上側表面を露出した結果の断面図を示している。図13Bは、図13Aにおいて表される工程後の上方向からの拡大斜視図を示している。図11における描写とは異なり、本明細書に記載される全ての工程の完了によって生じるプローブのカンチレバーとなるここでの窒化物パターン41は、前面よりもむしろ背面にある。前面21におけるシリコン表面は、図示する目的のみで剥ぎ取られたシリコン膜51と共に示されている。図12において表された酸化フィルムの成長は、他の(111)結晶面(図示しない)、ならびに表面54および56(同じく図示しない)と共に、(111)結晶面、ならびに表面53および55にまで及ぶ。このフィルムは、図14Aにおいて表されるウェット異方性シリコンエッチング中において、四面体のシリコン先端の形成に関連してエッチングマスクとしての役割を果たす。
図14Aは、ウェット異方性シリコンエッチングによってシリコン基板10の露出した上側表面をエッチングすることによる、窒化物パターン41におけるシリコン先端63の形成処理の断面図を示している。エッチングは、窒化物パターン41の上面に至るまで継続し、小さいシリコン先端63を除いて薄いシリコン膜21および51を完全に除去し、窒化物パターン41および酸化フィルム60を露出するのを可能とする。本明細書において記載される全ての工程の完了によって生じるプローブの取っ手22は、この時点でシリコン基板10の残りから分離される。図14Bは、図14Aにおいて表された工程の拡大断面図を示している。プローブの取っ手22は示されていない。プローブの先端の表面65は、ウェットシリコンエッチング中に形成され、且つ(111)結晶面である。酸化物層60は、先端63、および今やカンチレバーである窒化物パターン41を解放するように、希釈したHFまたはBOE溶液を用いて除去される。図4において表された処理に関連して述べられたような窒化物カンチレバー41とシリコン先端63との間に介在する酸化物層がないので、先端63とカンチレバー41との間の結合は、酸化物フィルム60のエッチング中に保持されると考えられる。
図15は、三つの側面を有する四面体のシリコン先端63を備えるシリコン窒化物カンチレバー41の拡大斜視図を示している。表面65は、(111)結晶面であり、ウェット異方性シリコンエッチングにおいて最も遅いエッチング面である。表面53および54は、交差直線52が窒化物カンチリバー41に対しておよそ74°の角度を形成する{411}結晶面である。
図16は、最終的なプローブの断面図を示している。プローブのシリコン取っ手22、窒化物カンチレバー41、および三つの側面を有する四面体の単結晶シリコン先端63が示されている。
図108A〜図111は、本発明の目的である高周波低バネ定数のプローブを製造する他の態様の断面図、底面図、および拡大斜視図を示している。この態様において、犠牲酸化物延伸部(図9A〜図11の45)の形成に一部必要である図5A〜図11において表された第1の態様の処理工程は省略され、図108A〜図111において表された処理工程がそれらの代わりに代用される。この態様についての全体のプローブ製造処理は、この言及された省略および代用を除き、第1の態様の処理工程に続く。
図210A〜図213は、本発明の目的である高周波低バネ定数のプローブを製造する他の態様の断面図および底面図を示している。この態様は、第1の態様の図1〜図4において表された処理工程から始まり、その後に第2の態様の図108A〜図109Bにおいて表された処理工程が続き、図210A〜図213において表された処理工程で終わる。図210Aおよび図210Bは、図109Aおよび図109Bにおいて表された処理工程の完了によって生じる、露出した底面側のシリコンにおける二酸化シリコンフィルムの成長を示している。図211において示される次の工程は、基板の底面側の窒化物カンチレバー43の端部に位置合わせされる、基板の上面側におけるリソグラフィ工程である。これは、当業者に公知のリソグラフィツールを用いて実現され得る。このツールおよびRIEを使用することにより、窒化物層30が、シリコン膜21上で選択的に停止される先端マスク81に形成される。この先端マスクは、円形および任意の数の側面を備える多角形を含む多数の形状とすることができる。図212Aおよび212Bは、基板の上側面に露出したシリコンのエッチングを示している。エッチングは、ウェット等方性化学、ウェット異方性化学、またはプラズマRIEによって行われ得る。この発想は、異なるAFMイメージングの要望に有益であり得る多数の異なる先端形状が、シリコン基板の上側面から全体に行われる先端エッチング処理によって製造され得ることである。図213は、いかなる残っている酸化物80もウェットHFベースのエッチング剤を用いて選択的に除去された後の、最終的なプローブの断面図を示している。プローブのシリコン取っ手22、窒化物カンチレバー41、および単結晶シリコン先端82が示されている。
図308A〜図311Bは、本発明の目的である高周波低バネ定数のプローブを製造する他の態様の断面図、底面図、および拡大斜視図を示している。この態様は、AFMでの使用に効果をもたらし得るカンチレバー最適化技術である。AFMは、大抵は、一体化された光学顕微鏡を含み、その結果、プローブ先端が関心対象の試料における特定の場所に着地することができる。この態様は、先端の最外側の小面に一致する三角形の点を有する先端端部を備えるカンチレバーをもたらし、これにより、AFM操作者が試料の特定の場所に先端を着地させるのを可能とするプローブの最適な平面図を与える。
図308Aは、プローブ基板上のカンチレバーエッチングマスクを形成するシャドーマスク341の平面図を示している。シャドーマスク341の、カンチレバーの形をした開口部340は、基部において広く、その長さに沿って矩形に狭く、且つ三角形の端部で終結している。この態様は、第1の態様の図1〜図4において表された処理工程から始まり、シャドーマスク341が、図108B、図109B、および図110Bにおいて表された形状の代わりに図308Aにおいて表される形状340をもたらすことを除き、第2の態様の図108A〜図110Bにおいて表された処理工程が後に続く。図308Bは、前述の文章において言及された処理工程を完了した結果である図108Bにおいて表されたものと等価な、基板の底面図を示している。図308Bは、プローブ基板の(111)面の直前の(100)膜の平坦な下面に着地しているマスクの広い部分を備える臨界配置47を示している。図110Aおよび図11OBにおいて表された処理工程の完了後、この態様は、図311Aにおいて示される処理工程を続ける。この工程において、クロム/金または他の任意の適切な薄いフィルム材料90は、カンチレバー用の成形エッチングマスクとして使用するために基板の底面側に付着される。その後、基板は、外側にある張り出したカンチレバー材料を除去するために、高温のリン酸、またはカンチレバー材料に対して選択的なRIEのような、ウェットエッチング剤に露出され得る。カンチレバー材料は、カンチレバーフィルムが露出されたいかなる場所からも除去される。その後、クロム/金の層は、適当な化学的エッチング剤を使用して選択的に除去され得る。図311Bおよび図311Cは、エッチング中に除去されるカンチレバー材料の底面側の拡大斜視図であり、前者はエッチング前であり、後者はエッチング後である。シリコン取っ手22に結合するカンチレバー基部48の広い部分は、図110において表された先端のエッチング工程中に、シリコン取っ手がカンチレバー基部の近くに不規則なアンダーカットエッチング面を形成するのを防止するのに必要であった。広いカンチレバー基部が使用されなかった場合には、アンダーカットエッチング面は、シリコン取っ手22の(111)面から延在するカンチレバーに切り込みを作り出したであろう。その理由は、RIE中のシリコンに対する窒化物の正確さにかける選択性に起因して、図109において表された処理工程中に窒化フィルムがRIEによって除去された場合に、不定のシリコン面が露出されると考えられるからである。
簡単に概説された処理工程の完了後、この態様は、図12〜図16において表された処理工程で終了する。
図401〜図403は、出発基板がシリコン・オン・インシュレータ(SOI)基板である、本発明の目的である高周波低バネ定数のプローブを製造する他の態様の断面図を示している。この基板は、SOIウェハがシリコン基板の代わりとされることを除き、先の任意の図面において表された全ての処理工程に適している。図401は、酸化フィルム11および12、ならびに窒化フィルム13および14が追加された後の出発SOI基板110を示している。シリコン膜21が出発SOI基板の一部であり、酸化物絶縁体15によってバルクシリコン10から分離されていることに留意されたい。図402は、ウェット異方性シリコンエッチングが後に続く、底面側の窒化フィルム14および酸化フィルム12のパターニングを示している。この場合、ウェットエッチングは、埋め込まれた酸化物層15に到達した場合に自動的に停止する。図2において表された対応する処理工程によって与えられる結果と比較した場合にエッチングの欠陥がないシリコン膜21を保つと考えられることから、SOI基板に対する重要な利点は、この、余分の酸化物層15である。ウェットエッチングシリコンの場合にありふれているエッチングの欠陥は、標準のシリコン基板処理における最終的なカンチレバー表面まで広がり、プローブの性能に悪影響を及ぼす可能性がある。図403は、窒化フィルム13および14、ならびに酸化物フィルム11および12が適当な酸を用いて基板から除去された図3に対応するSOIである。埋め込まれた酸化物絶縁層15はその露出した表面領域が最小であることに起因して、酸化物エッチング中に損なわれないことに留意されたい。
本発明の記載された態様は、単に本発明の概念の好ましく且つ例示的なものであるとみなされる。本発明の範囲は、そのような態様に限定されるわけではない。様々な多数の他の構成は、本発明の精神および範囲から逸脱することなく、当業者によって工夫され得る。

Claims (1)

  1. エッチング変動を区別するようにシリコン基板を通してエッチングする工程、エッチング処理変動を把握しながらエッチングされた表面にシャドーマスクを位置合わせする工程、および蒸着を使用して不均一な表面上に先端と共にカンチレバーを印刷する工程により、取っ手、カンチレバーおよび先端を含む、高周波低バネ定数のプローブを製造する方法。
JP2009548316A 2007-01-31 2008-01-31 原子間力顕微鏡法用のビデオレートを可能とするプローブ Expired - Fee Related JP5249245B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US89849207P 2007-01-31 2007-01-31
US60/898,492 2007-01-31
PCT/US2008/001370 WO2008094688A1 (en) 2007-01-31 2008-01-31 Video rate-enabling probes for atomic force microscopy

Publications (3)

Publication Number Publication Date
JP2010517055A true JP2010517055A (ja) 2010-05-20
JP2010517055A5 JP2010517055A5 (ja) 2011-03-24
JP5249245B2 JP5249245B2 (ja) 2013-07-31

Family

ID=39674440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548316A Expired - Fee Related JP5249245B2 (ja) 2007-01-31 2008-01-31 原子間力顕微鏡法用のビデオレートを可能とするプローブ

Country Status (4)

Country Link
US (3) US8062535B2 (ja)
EP (1) EP2108118A4 (ja)
JP (1) JP5249245B2 (ja)
WO (1) WO2008094688A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1304768B1 (it) * 1998-10-05 2001-03-29 Esaote Spa Lettino porta paziente o simili, e macchina, in particolare macchinaper il rilevamento d'immagini in risonanza magnetica nucleare in
US8062535B2 (en) 2007-01-31 2011-11-22 Chung Hoon Lee Video rate-enabling probes for atomic force microscopy
CN102279289B (zh) * 2011-03-09 2012-12-26 大连理工大学 一种基于(110)单晶硅的微悬臂梁探针制作方法
US8756710B2 (en) 2012-08-31 2014-06-17 Bruker-Nano, Inc. Miniaturized cantilever probe for scanning probe microscopy and fabrication thereof
US8689361B1 (en) 2012-10-29 2014-04-01 Oicmicro, LLC Method of making thin film probe tip for atomic force microscopy
US9038269B2 (en) * 2013-04-02 2015-05-26 Xerox Corporation Printhead with nanotips for nanoscale printing and manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369418A (ja) * 1991-06-17 1992-12-22 Canon Inc カンチレバー型プローブ及び原子間力顕微鏡、情報記録再生装置
JPH0792173A (ja) * 1993-09-24 1995-04-07 Agency Of Ind Science & Technol 原子間力顕微鏡用カンチレバーとその製造方法
JPH08262040A (ja) * 1995-03-17 1996-10-11 Olympus Optical Co Ltd Afmカンチレバー
JPH1048226A (ja) * 1996-08-06 1998-02-20 Olympus Optical Co Ltd 梁構造体
JP2005265420A (ja) * 2004-03-16 2005-09-29 Olympus Corp Afmカンチレバー及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066358A (en) * 1988-10-27 1991-11-19 Board Of Trustees Of The Leland Stanford Juninor University Nitride cantilevers with single crystal silicon tips
DE68903951T2 (de) 1989-08-16 1993-07-08 Ibm Verfahren fuer die herstellung mikromechanischer messfuehler fuer afm/stm-profilometrie und mikromechanischer messfuehlerkopf.
US5021364A (en) * 1989-10-31 1991-06-04 The Board Of Trustees Of The Leland Stanford Junior University Microcantilever with integral self-aligned sharp tetrahedral tip
US5264696A (en) * 1991-05-20 1993-11-23 Olympus Optical Co., Ltd. Cantilever chip for scanning probe microscope having first and second probes formed with different aspect ratios
US5444244A (en) * 1993-06-03 1995-08-22 Park Scientific Instruments Corporation Piezoresistive cantilever with integral tip for scanning probe microscope
JPH08313541A (ja) * 1995-05-16 1996-11-29 Olympus Optical Co Ltd 走査型プローブ顕微鏡用カンチレバー及びその製造方法
WO1997009584A1 (en) * 1995-09-01 1997-03-13 International Business Machines Corporation Cantilever with integrated deflection sensor
US6274198B1 (en) 1997-02-24 2001-08-14 Agere Systems Optoelectronics Guardian Corp. Shadow mask deposition
US6139759A (en) 1997-07-08 2000-10-31 International Business Machines Corporation Method of manufacturing silicided silicon microtips for scanning probe microscopy
EP1359593B1 (de) * 2002-03-20 2004-05-19 Nanoworld AG SPM-Sensor und Verfahren zur Herstellung desselben
US8062535B2 (en) 2007-01-31 2011-11-22 Chung Hoon Lee Video rate-enabling probes for atomic force microscopy
US8701211B2 (en) * 2009-08-26 2014-04-15 Advanced Diamond Technologies, Inc. Method to reduce wedge effects in molded trigonal tips
US8828243B2 (en) * 2010-09-02 2014-09-09 Applied Nanostructures, Inc. Scanning probe having integrated silicon tip with cantilever

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369418A (ja) * 1991-06-17 1992-12-22 Canon Inc カンチレバー型プローブ及び原子間力顕微鏡、情報記録再生装置
JPH0792173A (ja) * 1993-09-24 1995-04-07 Agency Of Ind Science & Technol 原子間力顕微鏡用カンチレバーとその製造方法
JPH08262040A (ja) * 1995-03-17 1996-10-11 Olympus Optical Co Ltd Afmカンチレバー
JPH1048226A (ja) * 1996-08-06 1998-02-20 Olympus Optical Co Ltd 梁構造体
JP2005265420A (ja) * 2004-03-16 2005-09-29 Olympus Corp Afmカンチレバー及びその製造方法

Also Published As

Publication number Publication date
US8398867B2 (en) 2013-03-19
US8695111B2 (en) 2014-04-08
US20080223823A1 (en) 2008-09-18
EP2108118A1 (en) 2009-10-14
US20120036602A1 (en) 2012-02-09
US8062535B2 (en) 2011-11-22
JP5249245B2 (ja) 2013-07-31
US20120090058A1 (en) 2012-04-12
WO2008094688A1 (en) 2008-08-07
WO2008094688A9 (en) 2008-12-24
EP2108118A4 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US6668628B2 (en) Scanning probe system with spring probe
US6066265A (en) Micromachined silicon probe for scanning probe microscopy
US8756710B2 (en) Miniaturized cantilever probe for scanning probe microscopy and fabrication thereof
US7823216B2 (en) Probe device for a metrology instrument and method of fabricating the same
JP5249245B2 (ja) 原子間力顕微鏡法用のビデオレートを可能とするプローブ
US8857247B2 (en) Probe for a scanning probe microscope and method of manufacture
JP4751190B2 (ja) 温度測定用プローブ
US7861315B2 (en) Method for microfabricating a probe with integrated handle, cantilever, tip and circuit
US11719719B2 (en) Metrology probe with built-in angle and method of fabrication thereof
WO2003102966A2 (en) Method of forming atomic force microscope tips
JP2007192589A (ja) 温度測定用プローブ
WO2003087709A1 (en) Nanowire microscope probe tips
JP2005114509A (ja) 走査型プローブ顕微鏡用カンチレバーおよびその製造方法
JPH08285868A (ja) 走査型プローブ顕微鏡用カンチレバーの製造方法
JPH1123590A (ja) カンチレバー及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees