JP2010287638A - 固体撮像装置とその製造方法および撮像装置 - Google Patents

固体撮像装置とその製造方法および撮像装置 Download PDF

Info

Publication number
JP2010287638A
JP2010287638A JP2009138746A JP2009138746A JP2010287638A JP 2010287638 A JP2010287638 A JP 2010287638A JP 2009138746 A JP2009138746 A JP 2009138746A JP 2009138746 A JP2009138746 A JP 2009138746A JP 2010287638 A JP2010287638 A JP 2010287638A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
bonding pad
copper wiring
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138746A
Other languages
English (en)
Inventor
Tetsuo Gocho
哲雄 牛膓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009138746A priority Critical patent/JP2010287638A/ja
Publication of JP2010287638A publication Critical patent/JP2010287638A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】配線層に銅配線層を用い、かつボンディングパッドにボンディング性に優れたアルミニウムのボンディングパッドを用いて信頼性を高めることを可能にする。
【解決手段】第1面S1側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層13と、前記シリコン層13の前記第1面S1とは反対の第2面S2側に形成されていて第2層間絶縁膜42中に形成されている複数の銅配線層71と、前記第2面S2に最も近い前記銅配線層71と同一層の位置もしくはその銅配線層71よりも前記第2面S2側の位置の前記第2層間絶縁膜42中に形成されたアルミニウムもしくはアルミニウム合金からなるボンディングパッド51と、前記第1面側に前記ボンディングパッド51に達する開口部52を有する。
【選択図】図1

Description

本発明は、固体撮像装置とその製造方法および撮像装置に関するものである。
図14に示すように、銅配線層151を用いた裏面照射型イメージセンサ150では、組み立て時のワイヤボンディングは銅配線層151より後に形成したボンディング専用の配線層、例えばアルミニウム配線層で形成されたパッド152に対して行われる。このパッド152は、ウエハプロセス時点では最上層に形成されるものである。
上記パッド152にワイヤボンディングを行うためには、シリコン基板161と層間絶縁膜162に開口部163を形成しておく必要がある。そのため開口部163が形成される部分には銅配線層151を形成することができない(例えば、特許文献1参照。)。
そして図15に示すように、ワイヤボンディング用のパッド152は、受光素子等が形成された画素部および画素部周辺に形成された周辺回路部等の形成領域170の外側、すなわちチップの最外部に配置されている。
銅配線層を用いる裏面照射型イメージセンサでは、銅配線層を全て形成した後にワイヤボンディング用のパッドを形成している。そのため、銅配線層と重ならないようパッド開口部を横方向に伸ばす必要があることからチップ面積が増大する。またウエハ状態で特性の測定をするとき、開口部底部にあるパッドまでの距離が深いため、プロービング測定用針をパッドに当てることが難しくなり、測定不良が発生し易くなる。さらに、開口部が深いため、ワイヤボンディングが不十分となる不良が発生し易くなる。このような問題があった。
そこで、ボンディング用のパッドを浅い位置に配置することが求められている。
例えば、配線層の最上層(光入射側)と同一層で、ワイヤボンディング用の電極層が形成されていることが開示されている。しかしながら、この電極層の下部(光入射側とは反対方向)には、信号線や電源線等の配線を有する配線層は形成されていない(例えば、特許文献2,3等参照。)。このため、平面レイアウト的には、配線層の形成領域とボンディングパッドの形成領域が分けられているため、チップ面積の増大につながっていた。
また、配線層を銅配線で形成した場合、ワイヤボンディング用の電極層も銅で形成されることになる。この場合、電極層にボンディングワイヤが接着しにくくなりボンディングが困難になる。
特開2005-209677号公報 特開2006‐32497号公報 特開2005‐209671号公報
解決しようとする問題点は、配線信頼性の高い銅配線層と、ボンディング性に優れたアルミニウムのボンディングパッドとを同一層に形成すること、もしくはアルミニウムのボンディングパッドを銅配線層よりも光入射側に形成することが困難な点である。また銅配線層の一部をボンディングパッドに用いると、ボンディングワイヤの接着性がアルミニウムのボンディングパッドより劣る点である。
本発明は、配線層に銅配線層を用い、かつボンディング性に優れたアルミニウムのボンディングパッドを用いて信頼性を高めることを可能にする。
本発明の固体撮像装置は、第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層と、前記シリコン層の前記第1面とは反対の第2面側に形成されていて層間絶縁膜中に形成された複数の銅配線層と、前記第2面に最も近い前記銅配線層と同一層の位置もしくはその銅配線層よりも前記第2面側の位置の前記層間絶縁膜中に形成されたアルミニウムもしくはアルミニウム合金からなるボンディングパッドと、前記第1面側に前記ボンディングパッドに達する開口部を有する。
本発明の固体撮像装置では、ボンディングパッドは、シリコン層に最も近い前記銅配線層と同一層の位置もしくはその銅配線層よりもシリコン層側の位置の層間絶縁膜中に形成されていることから、光入射側の浅い位置に形成されている。このため、ボンディングパッド上の開口部の深さが浅くなるので、プロービング針を確実にボンディングパッドに接触させることができる。またボンディングワイヤを開口部の側部に邪魔されることなく確実にボンディングパッドに接続させることができる。
また、銅配線層とは異なるアルミニウムもしくはアルミニウム合金でボンディングパッドが形成されているので、ボンディングワイヤの接続が容易になる。
さらに、銅配線層が用いられていることから、アルミニウム配線よりもマイグレーション耐性が高くなる。
本発明の固体撮像装置の製造方法は、第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層を前記第1面側で支持する第1支持基板を有する基板を用意し、前記シリコン層の前記第1面とは反対の第2面に第1層間絶縁膜を形成する工程と、前記第1層間絶縁膜上にアルミニウムもしくはアルミニウム合金からなるボンディングパッドを形成する工程と、前記第1層間絶縁膜上に前記ボンディングパッドを被覆する第2層間絶縁膜を形成する工程と、前記第2層間絶縁膜中に銅配線層を形成する工程を有し、前記第2層間絶縁膜を形成する工程と前記銅配線層を形成する工程を複数回繰り返し行った後、前記複数層に形成された第2層間絶縁膜の最上層の銅配線層を被覆する第3層間絶縁膜を形成する工程と、前記第3層間絶縁膜側に第2支持基板を形成した後に前記シリコン層から前記第1支持基板を除去する工程と、前記第1面側から前記ボンディングパッドに達する開口部を形成する工程を有する。
本発明の固体撮像装置の製造方法では、ボンディングパッドは、少なくともシリコン層に最も近い前記銅配線層と同一層の位置の層間絶縁膜中に形成されることから、光入射側の浅い位置に形成されることになる。このため、ボンディングパッド上に形成される開口部の深さが浅くなるので、プロービング針を確実にボンディングパッドに接触させることができる。またボンディングワイヤを開口部の側部に邪魔されることなく確実にボンディングパッドに接続させることができる。
また、銅配線層とは異なるアルミニウムもしくはアルミニウム合金でボンディングパッドが形成されているので、ボンディングワイヤの接続が容易になる。
さらに、銅配線層が用いられていることから、アルミニウム配線よりもマイグレーション耐性が高くなる。
本発明の撮像装置は、入射光を集光する集光光学部と、前記集光光学部で集光した光を受光して光電変換する固体撮像装置を有する撮像部と、前記撮像部の信号を処理する信号処理部を有し、前記固体撮像装置は、第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層と、前記シリコン層の前記第1面とは反対の第2面側に形成されていて層間絶縁膜中に形成された銅配線層と、前記第2面に最も近い前記銅配線層と同一層の位置もしくはその銅配線層よりも前記第2面側の位置の前記層間絶縁膜中に形成されたアルミニウムもしくはアルミニウム合金からなるボンディングパッドと、前記第1面側に前記ボンディングパッドに達する開口部を有する。
本発明の撮像装置では、本発明の固体撮像装置が用いられることから、配線信頼性の高い固体撮像装置が搭載される。
本発明の固体撮像装置は、ボンディングパッドに対するボンディングワイヤの接続が容易になること、銅配線層のマイグレーション耐性が高いこと等により、配線信頼性が高められるという利点がある。
本発明の固体撮像装置の製造方法は、ボンディングパッドに対するボンディングワイヤの接続が容易になるとともに、銅配線層のマイグレーション耐性が高いことにより、配線信頼性が高められるという利点がある。
本発明の撮像装置は、配線信頼性が高い固体撮像装置が搭載されているので、撮像装置の信頼性が向上されるという利点がある。
本発明の第1実施の形態に係る固体撮像装置の構成の一例を示した概略構成断面図である。 固体撮像装置のチップの面積削減率を説明する図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を示した製造工程断面図である。 固体撮像装置の製造方法の課題を示した製造工程断面図である。 固体撮像装置の製造方法の第1変形例を示した製造工程断面図である。 固体撮像装置の製造方法の第1変形例を示した製造工程断面図である。 固体撮像装置の製造方法の第2変形例を示した製造工程断面図である。 本発明の第3実施の形態に係る撮像装置の構成の一例を示したブロック図である。 従来の固体撮像装置の構成を示した概略構成断面図である。 従来の固体撮像装置の構成を示した平面レイアウト図である。
以下、発明を実施するための形態(以下、実施の形態とする)について説明する。
<1.第1の実施の形態>
[固体撮像装置の構成の一例]
本発明の第1実施の形態に係る固体撮像装置の構成の一例を、図1の概略構成断面図によって説明する。
図1に示すように、シリコン層13には、その第1面S1側から入射された光を信号電荷に変換する光電変換部21が形成されていて、また、上記第1面S1とは反対の第2面S2にトランジスタ部22が形成されている。
このトランジスタ部22は、例えば、上記光電変換部21で生成された信号電荷を読み出す転送トランジスタ23を有し、また転送トランジスタ23で読み出した信号電荷を増幅する画素内トランジスタ24(一部図示)を有する。これらのトランジスタは、例えばゲート絶縁膜25を酸化シリコン膜で形成し、そのゲート絶縁膜25上にゲート電極26をポリシリコンで形成している。また図示はしていないが、上記シリコン層13には、上記トランジスタ部22のトランジスタやフローティングディフュージョン等の拡散層が形成されている。
このように、シリコン層13には入射光を光電変換して信号電荷を得る画素部20が形成されている。
上記シリコン層13の上記第2面S2には、配線部40が形成されている。この配線部40は以下のように構成されている。
上記シリコン層13の第2面S2側には、上記トランジスタ部22を被覆する第1層間絶縁膜41が形成されている。
上記第1層間絶縁膜41には、上記シリコン層13や上記トランジスタ部22等に接続されるプラグ61、62が形成されている。このプラグ61、62は、例えばタングステンプラグで形成されている。
また、上記第1層間絶縁膜41の上記シリコン層13とは反対側の面には、アルミニウムもしくはアルミニウム合金からなるボンディングパッド51が形成されている。このボンディングパッド51は、例えば、上記第1層間絶縁膜41側より、窒化チタン(TiN)膜、アルミニウム(Al)膜、窒化チタン(TiN)膜、チタン(Ti)膜を順に積層した構造となっていて、主要部がアルミニウム膜で形成されている。また、主要部は、アルミニウム合金膜で形成されていてもよい。なお、主要部表面の窒化チタン膜やチタン膜は主要部と比較して膜厚が薄い膜となっているので、ワイヤボンディング時には、ボンディングワイヤ(図示せず)が直接、アルミニウムもしくはアルミニウム合金からなるボンディングパッド51の主要部に接合される。
上記第1層間絶縁膜41には、上記ボンディングパッド51を被覆する第2層間絶縁膜42が形成されている。なお、第2層間絶縁膜42が形成される第1層間絶縁膜41表面は平坦面に形成されていることが好ましい。
上記第2層間絶縁膜42は、例えば、第2層間絶縁膜42(42−1)、第2層間絶縁膜42(42−2)および第2層間絶縁膜42(42−3)の3層に形成されている。したがって、ボンディングパッド51は、第2層間絶縁膜42−1中に形成されていることになる。
上記第2層間絶縁膜42(42−1)には、上記ボンディングパッド51に接続するプラグ63が形成されている。また上記銅配線層71(銅配線71−1A)に接続する上記プラグ61、このプラグ61に接続する銅配線層71(銅配線71−1A)、上記銅配線層71(銅配線71−1B)に接続する上記プラグ62、このプラグ62に接続する銅配線層71(銅配線71−1A)が形成されている。
上記第2層間絶縁膜42−1には、上記銅配線層71、プラグ63等を被覆する第2層間絶縁膜42(42−2)が形成されている。
上記第2層間絶縁膜42−2には、上記銅配線層71(71−1)に接続するプラグ64が形成されている。また上記プラグ64に接続する銅配線層71(71−2)が形成されている。なお、銅配線層71−2の一部はプラグ64に接続されていないものもある。
上記第2層間絶縁膜42−2には、上記銅配線層71−2を被覆する第2層間絶縁膜42(42−3)が形成されている。
上記第2層間絶縁膜42−3には、上記銅配線層71(71−2)に接続するプラグ65が形成されている。また上記プラグ65に接続する銅配線層71(71−3)が形成されている。なお、銅配線層71−3の一部はプラグ65に接続されていないものもある。
なお、上記各銅配線層71、各プラグ61〜65の周囲には、バリアメタル(図示せず)が形成されていることが好ましい。
このように、上記第2層間絶縁膜42は、複数層(ここでは3層)に形成されていて、例えばそれぞれの第2層間絶縁膜42には銅配線層71が形成されている。そして、上記ボンディングパッド51より第2層間絶縁膜42方向(例えば、光入射方向とは反対方向)に、すなわち、平面レイアウト的に見てボンディングパッド51と重なるように、上記銅配線層71−2,71−3の一部が形成されている。
また、平面レイアウト的に見て、上記画素部20およびこの画素部20の周辺に形成されている周辺回路部(図示せず)の一部に上記ボンディングパッド51が重なるように配置されていてもよい。例えば、画素部20と周辺回路部とを接続する配線と上記ボンディングパッド51の少なくとも一部が重なるように配置されていてもよい。または、画素部20や周辺回路部のトランジスタと上記ボンディングパッド51の少なくとも一部が重なるように配置されていてもよい。
また、上記第2層間絶縁膜42および銅配線層71は、上記例では3層に形成したが、4層以上に形成することも可能である。
さらに、上記第2層間絶縁膜42−3には、上記最上層の銅配線層71−3を被覆する第3層間絶縁膜43が形成されている。
このように、プラグ61、62を形成した第1層間絶縁膜41、銅配線層71やプラグ63〜65を形成した第2層間絶縁膜42および第3層間絶縁膜43を積層した配線部40が形成されている。
また、上記第3層間絶縁膜43には、第2支持基板14が張り合わされている。
上記第2支持基板14は、例えば樹脂接着剤によって張り合わされている。この樹脂接着剤には、例えばベンゾシクロブテン(BCB)が用いられている。
一方、上記シリコン層13の第1面S1側には、絶縁層44が形成されている。この絶縁層44は、例えば酸化シリコンで形成されている。
上記絶縁層44上には、所望のカラーフィルター層91が形成されている。またカラーフィルター層91上には、入射光を光電変換部21に導くオンチップレンズ93が形成されている。
さらに、上記第1面S1側から上記シリコン層13および上記第1層間絶縁膜41を貫通して上記ボンディングパッド51に達する開口部52が形成されている。
なお、上記固体撮像装置1では、第2層間絶縁膜42―1に銅配線層71−1を形成しないで、第2層間絶縁膜42−2から銅配線層71を形成する構成としてもよい。この場合、後に説明するが、ボンディングパッド51が形成されていない領域に、ボンディングパッド51が形成されている領域とほぼ同等なパターン密度となるようにダミーパターン(図示せず)を形成しておいてもよい。またそのダミーパターンの一部は、上層と下層との間を電気的に接続する接続電極とすることもできる。
上記固体撮像装置1では、シリコン層13に最も近い銅配線層71−1と同一層の位置の第2層間絶縁膜42−1中にボンディングパッド51が形成されていることから、ボンディングパッド51上の開口部52の深さが浅くなる。よって、プロービング針を確実にボンディングパッド51に接触させることができる。またボンディングワイヤ(図示せず)を開口部52の側部に邪魔されることなく確実にボンディングパッド51に接続させることができる。
また、銅配線層71とは異なるアルミニウムもしくはアルミニウム合金でボンディングパッド51が形成されているので、例えば、金線で形成されているボンディングワイヤ(図示せず)の接続が容易になる。
さらに、配線部40の配線層が銅配線層71で形成されていることから、アルミニウム配線よりもマイグレーション耐性が高くなる。このように、上記固体撮像装置1では、ボンディングパッド51に対するボンディングワイヤの接続が容易になること、配線部40の配線のマイグレーション耐性が高くなること等により、配線信頼性が高められるという利点がある。
また、従来の固体撮像装置では、銅配線層71の形成領域とボンディングパッド51の形成領域が分けられているためにチップ面積が大きくなる問題点があった。一方、上記固体撮像装置1では、ボンディングパッド51の下部方向(光入射方向とは反対方向)に銅配線層71の一部が形成されていることから、ボンディングパッド51と銅配線層71が重なり合う分だけチップサイズを小さくできるという利点がある。この点については、以下に詳細に説明する。
次に、本発明の固体撮像装置1によるチップの面積削減率について、以下に説明する。
図2(1)に示すように、上記固体撮像装置1では、チップ5の周囲にボンディングパッド51が配置されている。
また固体撮像装置1では、前記図1によって説明したように、ボンディングパッド51の下部(光入射方向とは反対方向)に、銅配線層71が配置されている。言い換えれば、銅配線層71が形成される領域上のボンディングパッド51が形成されている。
例えば、ボンディングパッド51と銅配線層71を重なるように配置することで、図2(2)に示すように、チップ5のサイズが各矢印方向に0.1mm縮小したとして、各チップサイズに対するチップの面積削減率を求めた。
この面積削減率の計算方法は、例えば、チップサイズが3mm四方のチップでは、各矢印方向に0.1mm縮小するとチップサイズが2.8mm四方のチップになるので、そのチップ面積は7.84mm2になる。3mm四方のチップのチップ面積は9mm2であるから、面積削減率は(9−7.84)/9≒13%となる。
以下同様に、従来のチップサイズが4mm四方のチップでは面積削減率がおよそ10%となり、従来のチップサイズが5mm四方のチップでは面積削減率がおよそ8%となり、従来のチップサイズが6mm四方のチップでは面積削減率がおよそ7%となる。また従来のチップサイズが7mm四方のチップでは面積削減率がおよそ6%となり、従来のチップサイズが8mm四方のチップでは面積削減率がおよそ5%となり、従来のチップサイズが10mm四方のチップでは面積削減率がおよそ4%となる。さらに従来のチップサイズが12mm四方のチップでは、面積削減率がおよそ3%となる。
上記各チップサイズの面積削減率を求めた結果を、図2(3)に示した。
平面レイアウト上、ボンディングパッドと銅配線層が重なる様に設計できるため、図2(3)に示すように、チップ面積の削減が可能となる。そして、チップサイズが小さくなるほど、面積削減の効果が大きくなる。(3)図の縦軸は、従来のチップの面積からの面積削減率を%で表したものであり、横軸は従来のチップサイズをmmで表したものである。ここでのチップサイズは正方形チップの1辺のサイズである。
以上、正方形チップの場合を説明したが、長方形チップでも同様にチップ面積の削減効果が得られる。
例えば、面積削減効果が大きい小型の固体撮像装置1を搭載する小型カメラ(図示せず)では、カメラをさらに小型にすることができるという大きな利点がある。
また、チップサイズをもとのままにした状態で、面積削減率の分だけ光電変換部の受光面積を増大させることもできる。このように光電変換部の受光面積が増大することにより、感度の向上、ダイナミックレンジの向上が図れる。
<2.第2の実施の形態>
[固体撮像装置の製造方法の一例]
本発明の第2実施の形態に係る固体撮像装置の製造方法の一例を、図3〜図8の製造工程断面図によって説明する。
図3(1)に示すように、シリコン基板からなる第1支持基板11上に絶縁層12が形成され、その上にシリコン層13が形成されたSOI構造の基板10を用意する。したがって、上記シリコン層13は上記絶縁層12を介して上記第1支持基板11によって支持されている。
上記シリコン層13には、その第1面S1側から入射された光を信号電荷に変換する光電変換部21を形成しておく。また、この第1面S1とは反対の第2面S2にトランジスタ部22を形成しておく。このトランジスタ部22は、例えば、上記光電変換部21で生成された信号電荷を読み出す転送ゲート23を有し、また転送ゲート23で読み出した信号電荷を増幅する画素内トランジスタ24(一部図示)を有する。これらのトランジスタは、例えばゲート絶縁膜25を酸化シリコン膜で形成し、そのゲート絶縁膜25上にゲート電極26をポリシリコンで形成している。また図示はしていないが、上記シリコン層13には、上記トランジスタ部22のトランジスタやフローティングディフュージョン等の拡散層が形成されている。
このように、シリコン層13には入射光を光電変換して信号電荷を得る画素部20が形成されている。
まず、上記構成のシリコン層13の上記第2面S2に、上記トランジスタ部22を被覆する第1層間絶縁膜41を形成する。
次に、上記第1層間絶縁膜41に上記シリコン層13や上記トランジスタ部22等に接続されるプラグ61、62を形成する。このプラグ61、62は、通常のタングステンプラグの形成技術によって形成される。すなわち、第1層間絶縁膜41のプラグが形成される部分に孔を形成し、その孔タングステン膜を埋め込んで形成した後、第1層間絶縁膜41上の余剰なタングステン膜を、例えば化学的機械研磨によって除去することで形成される。
次に、上記第1層間絶縁膜41上にアルミニウムもしくはアルミニウム合金からなるボンディングパッド51を形成する。例えば、上記第1層間絶縁膜41上にボンディングパッドを形成する膜を成膜する。この成膜方法は、例えばスパッタリング法を用いる。もちろん、蒸着法等の他の成膜方法であってもかまわない。ここでは、窒化チタン(TiN)膜、アルミニウム(Al)膜、窒化チタン(TiN)膜、チタン(Ti)膜の順に成膜する。
その後、通常のレジスト塗布、リソグラフィ技術によって、ボンディングパッドを形成するレジストマスク(図示せず)を形成する。続いて、このレジストマスクをエッチングマスクに用いたドライエッチングによって、上記ボンディングパッドを形成する膜をパターニングして、ボンディングパッド51を形成する。
図3(2)に示すように、上記第1層間絶縁膜41上に上記ボンディングパッド51を被覆する第2層間絶縁膜42(42−1)を形成する。そして、上記第2層間絶縁膜42−1の表面を平坦化する。この平坦化工程は、例えば化学的機械研磨(CMP: Chemical Mechanical Polishing)によって行うことができる。
図4(3)に示すように、上記第2層間絶縁膜42−1中に銅配線層を形成するための配線溝81、上記ボンディングパッド51に達する接続孔82を形成する。例えば、上記配線溝81(81−1)はプラグ61上面が露出されるように形成され、上記配線溝81(81−2)はプラグ62上面が露出されるように形成される。
上記配線溝81および接続孔82は以下のように形成される。例えば、通常のレジスト塗布、リソグラフィ技術によって、第2層間絶縁膜42−1上にレジストマスク(図示せず)を形成した後、このレジストマスクをエッチングマスクに用いたドライエッチングによって、上記第2層間絶縁膜42−1に形成される。
その後、上記レジストマスクを除去する。
図4(4)に示すように、上記第2層間絶縁膜42−1中に銅配線層71を形成する。
この銅配線層71は以下のように形成する。
例えば、上記配線溝81および接続孔82の内面にバリアメタル層(図示せず)を介して銅シード層(図示せず)を形成した後、銅めっき法により上記配線溝81および接続孔82の内部を銅で埋め込む。その後、上記第2層間絶縁膜42−1上に形成された余剰な銅およびバリアメタル層を除去して、上記配線溝81の内部に銅配線71(71−1)を形成し、接続孔82の内部に上記ボンディングパッド51に接続する銅からなるプラグ63を形成する。ここでは、上記銅配線層71(銅配線71−1A)は上記プラグ61に接続されていて、上記銅配線層71(銅配線71−1B)は上記プラグ62に接続されている。なお、上記接続孔82を配線溝に形成して、上記ボンディングパッド51に銅配線層を接続させてもよい。
次に、図5(5)に示すように、上記第2層間絶縁膜42−1上に第2層間絶縁膜42(42−2)形成する。そして、上記同様に、通常のレジスト塗布、リソグラフィ技術によって、第2層間絶縁膜42−2上にレジストマスク(図示せず)を形成した後、このレジストマスクをエッチングマスクに用いたドライエッチングによって、配線溝83および接続孔84を形成する。
その後、上記レジストマスクを除去する。
次に、上記配線溝83および接続孔84の内面にバリアメタル層(図示せず)を介して銅シード層(図示せず)を形成した後、銅めっき法により上記配線溝83および接続孔84の内部を銅で埋め込む。その後、上記第2層間絶縁膜42−2上に形成された余剰な銅およびバリアメタル層を除去して、上記配線溝83の内部に銅配線層71(71−2)を形成し、接続孔84の内部にプラグ64を形成する。なお、銅配線層71−2には必ずしもプラグ64が接続されていなくてもよい。
上記工程では、上記ボンディングパッド51より上方(例えば、光入射方向とは反対方向)にある上記第2層間絶縁膜42−2中に上記銅配線層71−2の少なくとも一部を形成しておくことが好ましい。
上記銅配線層71−2とプラグ64の形成方法は一例であって、上記以外の形成方法であってもよい。例えば第2層間絶縁膜42−2の下層部分を形成し、その部分にプラグ64を形成した後、第2層間絶縁膜42−2の上層部分を形成し、その部分に銅配線層71(71−2)を形成してもよい。すなわち、銅配線層71−2とプラグ64の形成方法は如何なる方法であってもよい。
次に、図6(6)に示すように、上記第2層間絶縁膜42−2上に第2層間絶縁膜42(42−3)形成する。そして、上記同様に、通常のレジスト塗布、リソグラフィ技術によって、第2層間絶縁膜42−3上にレジストマスク(図示せず)を形成した後、このレジストマスクをエッチングマスクに用いたドライエッチングによって、配線溝85および接続孔86を形成する。
その後、上記レジストマスクを除去する。
次に、上記配線溝85および接続孔86の内面にバリアメタル層(図示せず)を介して銅シード層(図示せず)を形成した後、銅めっき法により上記配線溝85および接続孔86の内部を銅で埋め込む。その後、上記第2層間絶縁膜42−3上に形成された余剰な銅およびバリアメタル層を除去して、上記配線溝85の内部に銅配線層71(71−3)を形成し、接続孔86の内部にプラグ65を形成する。なお、銅配線層71−3には必ずしもプラグ65が接続されていなくてもよい。
この工程では、上記ボンディングパッド51より上方(例えば、光入射方向とは反対方向)にある上記第2層間絶縁膜42−3中に上記銅配線層71−3の少なくとも一部を形成しておくことが好ましい。
そして、第2層間絶縁膜42および銅配線層71を形成する工程を繰り返し行う。ここでは、第2層間絶縁膜42を3層に形成したが、4層以上に形成することも可能である。
さらに、上記第2層間絶縁膜42−3上に上記最上層の銅配線層71−3を被覆する第3層間絶縁膜43を形成する。
このようにして、第1層間絶縁膜41、銅配線層71を形成した第2層間絶縁膜42、第3層間絶縁膜43を積層した配線部40が形成される。
次に、図7(7)に示すように、上記第3層間絶縁膜43側に第2支持基板14を張り合わせた後に上記シリコン層13から上記第1支持基板11(前記図2(1)参照)を除去する。
上記第2支持基板14の張り合わせには、例えば樹脂接着剤を塗布して用いる。その樹脂接着剤の一例として、ベンゾシクロブテン(BCB)を用いることができる。
上記第1支持基板11の除去は、例えば、シリコン基板からなる第1支持基板11を途中まで研磨し、フッ硝酸で第1支持基板11を除去する。さらに、フッ酸で酸化シリコンからなる絶縁層12(前記図2(1)参照)を除去する。この時点で光電変換部21が形成されたシリコン層13が露出する。
次に、上記シリコン層13上に絶縁層44を形成する。この絶縁層44は、例えば酸化シリコンで形成される。この成膜方法には、例えば化学気相成長(CVD)法を用いることができる。
次いで、上記絶縁層44上に所望のカラーフィルター層91を形成する。さらにカラーフィルター層91上に入射光を光電変換部21に導くオンチップレンズ93を形成する。
次に、上記第1面S1側から上記シリコン層13および上記第1層間絶縁膜41を貫通して上記ボンディングパッド51に達する開口部52を形成する。
次に、図示はしていないが、ウエハーをタイシングしてチップ形成し、そのチップにダイボンディングを行う。その後、図8(8)に示すように、上記ボンディングパッド51にワイヤボンディングでボンディングワイヤ55を圧着する。このボンディングワイヤ55には、例えば金線を用いる。ボンディングは150度で、接着部に圧力と超音波をかけることで、ボンディングパッド51とボンディングワイヤ55を熱圧着する。
上記説明では、ボンディングパッド51を被覆する第2層間絶縁膜42−1に銅配線層71を形成したが、この第2層間絶縁膜42−1には銅配線層71を形成せず、第2層間絶縁膜42−2から銅配線層71を形成してもよい。すなわち、第2層間絶縁膜42−1はボンディングパッド51を被覆するのみとしてもよい。なお、この場合、必要に応じて、第2層間絶縁膜42−1には、上層の銅配線層71と下層のゲート電極25、拡散層(図示せず)等を接続するプラグが形成されてもよい。
なお、上記固体撮像装置の製造方法では、第2層間絶縁膜42―1に銅配線層71−1を形成しないで、第2層間絶縁膜42−2から銅配線層71を形成する構成としてもよい。この場合、後に説明するが、ボンディングパッド51が形成されていない領域に、ボンディングパッド51が形成されている領域とほぼ同等なパターン密度となるようにダミーパターン(図示せず)を形成しておいてもよい。またそのダミーパターンの一部は、上層と下層との間を電気的に接続する接続電極とすることもできる。
上記固体撮像装置の製造方法では、シリコン層13に最も近い銅配線層71−1と同一層の位置の第2層間絶縁膜42−1中にボンディングパッド51が形成されることから、ボンディングパッド51上の開口部52の深さが浅くなる。よって、プロービング針を確実にボンディングパッド51に接触させることができるようになる。またボンディングワイヤ(図示せず)を開口部52の側部に邪魔されることなく確実にボンディングパッド51に接続させることができるようになる。
また、銅配線層71とは異なるアルミニウムもしくはアルミニウム合金でボンディングパッド51を形成するので、例えば、金線で形成されているボンディングワイヤ(図示せず)の接続が容易になる。
さらに、配線部0の配線を銅配線層71で形成することから、アルミニウム配線よりもマイグレーション耐性が高くなる。このように、上記固体撮像装置1では、ボンディングパッド51に対するボンディングワイヤの接続が容易になること、配線部40の銅配線層71のマイグレーション耐性が高くなること等により、配線信頼性を高めることができる。
また、従来の固体撮像装置では、銅配線層71の形成領域とボンディングパッド51の形成領域が分けて形成されていたためにチップ面積が大きくなる問題点があった。一方、上記固体撮像装置1の製造方法では、ボンディングパッド51の下部方向(光入射方向とは反対方向)に銅配線層71の一部が形成されることから、ボンディングパッド51と銅配線層71が重なり合う分だけチップサイズを小さくできるという利点がある。
また、配線部40を形成する工程中にボンディングパッド51が形成されることから、例えば、開口部52を形成した後にボンディングパッド51を形成するような製造方法より、製造工程が簡略化できる。また、カラーフィルター層91やオンチップレンズ93を形成する前に、ボンディングパッド51を含む配線部40が形成されることから、配線部40の形成工程でのエッチングダメージがカラーフィルター層91やオンチップレンズ93にかからない。よって、カラーフィルター層91やオンチップレンズ93をエッチング工程から保護する必要もない。
上記製造方法では、図9(1)に示すように、第1層間絶縁膜41上にボンディングパッド51を形成する。
その後、図9(2)に示すように、ボンディングパッド51を被覆する第2層間絶縁膜42−1を、例えば化学気相成長法によって、酸化シリコンを堆積して形成する。するとボンディングパッド51が形成されている部分上の第2層間絶縁膜42−1は盛り上がった状態に形成される。この状態で化学的機械研磨によって、上記第2層間絶縁膜42−1を研磨する。
すると図9(3)に示すように、ボンディングパッド51上の第2層間絶縁膜42−1には凸状の残りが発生し、ボンディングパッド51が形成されていない平坦な領域では過剰に研磨される領域、すなわちディッシングが発生する。このディッシングは、グローバルに見た場合、ボンディングパッド51が形成されている領域のパターン密度が、ボンディングパッド51が形成されていない領域のパターン密度と比較して大きいことが原因となっている。このパターン密度差が大きいほど、ディッシングは顕著に現れる。すなわち、パターン密度が低い領域にディッシング(過剰な凹み)が生じやすい。この結果、第2層間絶縁膜42−1の平坦化が十分に行えなくなり、その後の配線形成工程で、露光のDOFマージンが低下し、パターン解像ができなくなる等の問題を発生するおそれがある。
そこで、このディッシングを回避する方法を、以下に説明する。
[固体撮像装置の製造方法の第1変形例]
固体撮像装置の製造方法の第1変形例を、図10〜図11の製造工程断面図によって説明する。
図10(1)に示すように、第1層間絶縁膜41上にボンディングパッド51を形成する。続いて、ボンディングパッド51を被覆する第2層間絶縁膜42−1を、例えば化学気相成長法によって、酸化シリコンを堆積して形成する。するとボンディングパッド51が形成されている部分上の第2層間絶縁膜42−1は盛り上がった状態に形成される。
次に、図10(2)に示すように、上記第2層間絶縁膜42−1上にレジスト膜111を形成し、リソグラフィ技術によって、ボンディングパッド51上に開口部112を形成する。
次に、図10(3)に示すように、上記レジスト膜111をエッチングマスクに用いて、ドライエッチングによって、ボンディングパッド51上部の第2層間絶縁膜42−1に凹部42Tを形成する。このとき、凹部42Tの底面の高さは第2層間絶縁膜42−1の平坦な領域の表面の高さとほぼ同一にすることが好ましい。
次に、上記レジスト膜111を除去して、図11(4)に示すように、第2層間絶縁膜42−1表面を露出させる。
次に、図11(5)に示すように、上記第2層間絶縁膜42−1表面に化学的機械研磨を施すことによって、第2層間絶縁膜42−1表面を平坦化する。このとき、化学的機械研磨では、小さい凸領域ほど研磨速度が速いため、ボンディングパッド51の周辺領域のみに残った第2層間絶縁膜42−1の凸状部の研磨が完了するまでに他の部分の研磨はほとんど進行しない。このため良好な平坦化が行える。
[固体撮像装置の製造方法の第2変形例]
次に、固体撮像装置の製造方法の第2変形例を、図12の製造工程断面図によって説明する。
図12(1)に示すように、第1層間絶縁膜41上にボンディングパッド51を形成するときに、ボンディングパッド51が形成されない第2層間絶縁膜41上の領域にダミーパターン53を形成しておく。このとき、ボンディングパッド51周辺のパターン密度とダミーパターン53を形成した領域のパターン密度が同等になるように、ダミーパターン53を配置することが好ましい。
次に、図12(2)に示すように、ボンディングパッド51およびダミーパターン53被覆する第2層間絶縁膜42−1を、例えば化学気相成長法によって、酸化シリコンを堆積して形成する。するとボンディングパッド51およびダミーパターン53が形成されている部分上の第2層間絶縁膜42−1は盛り上がった状態に形成される。したがって、第2層間絶縁膜42−1表面の凸部が分布する密度は、ボンディングパッド51上とダミーパターン53上とでほぼ差がない状態になる。このような状態で、第2層間絶縁膜42−1表面を化学的機械研磨する。このとき、ボンディングパッド51上の第2層間絶縁膜42−1の研磨速度とダミーパターン53上の第2層間絶縁膜42−1の研磨速度がほぼ同等になる。よって、第2層間絶縁膜42−1表面を平坦に研磨することができる。
その結果、図12(3)に示すように、第2層間絶縁膜42−1表面は平坦化される。
上記のような第1変形例、第2変形例のような方法をとることで、第2層間絶縁膜42−1表面を平坦化でき、これによって、その後の配線工程での露光のDOFマージンが確保されるので、良好なパターン解像が確実にできるようになる。
<3.第3の実施の形態>
[撮像装置の製造方法の一例]
本発明の第3実施の形態に係る撮像装置の製造方法の一例を、図13のブロック図によって説明する。
図13に示すように、撮像装置200は、撮像部201に固体撮像装置210を備えている。この撮像部201の集光側には像を結像させる集光光学系202が備えられ、また、撮像部201には、それを駆動する駆動回路、固体撮像装置で光電変換された信号を画像に処理する信号処理回路等を有する信号処理部203が接続されている。また上記信号処理部203によって処理された画像信号は画像記憶部(図示せず)によって記憶させることができる。このような撮像装置200において、上記固体撮像装置210には、前記実施の形態で説明した固体撮像装置1を用いることができる。
本発明の撮像装置200では、本願発明の配線信頼性の高い固体撮像装置1が搭載されることから、撮像装置200の信頼性が向上されるという利点がある。
なお、本発明の撮像装置200は、上記構成に限定されることはなく、固体撮像装置を用いる撮像装置であれば如何なる構成のものにも適用することができる。
例えば、上記撮像装置200は、ワンチップとして形成された形態であってもよいし、撮像部と、信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
ここでいう撮像装置は、例えば、カメラや撮像機能を有する携帯機器のことをいう。また「撮像」は、通常のカメラ撮影時における像の撮りこみだけではなく、広義の意味として、指紋検出なども含むものである。
1…固体撮像装置、10…基板、11…第1支持基板、13…シリコン層、20…画素部、41…第1層間絶縁膜、42…第2層間絶縁膜、43…第3層間絶縁膜、51…ボンディングパッド、52…開口部、71…銅配線層、S1…第1面、S2…第2面、200…撮像装置、201…撮像部、202…集光光学部、203…信号処理部、210…固体撮像装置

Claims (8)

  1. 第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層と、
    前記シリコン層の前記第1面とは反対の第2面側に形成されていて層間絶縁膜中に形成された複数の銅配線層と、
    前記第2面に最も近い前記銅配線層と同一層もしくはその銅配線層よりも前記第2面側の位置の前記層間絶縁膜中に形成されたアルミニウムもしくはアルミニウム合金からなるボンディングパッドと、
    前記第1面側に前記ボンディングパッドに達する開口部を有する
    固体撮像装置。
  2. 前記ボンディングパッドに対して光入射方向とは反対方向にある前記層間絶縁膜中に前記銅配線層の一部が形成されている
    請求項1記載の固体撮像装置。
  3. 平面レイアウト上、前記画素部および前記画素部の周辺に形成された周辺回路部の一部に前記ボンディングパッドが重なるように配置されている
    請求項1記載の固体撮像装置。
  4. 前記ボンディングパッドと同一層にダミーパターンが配置され、
    前記ダミーパターンを配置した領域のパターン密度は前記ボンディングパッドの周辺のパターン密度と同等である
    請求項1記載の固体撮像装置。
  5. 前記ダミーパターンの一部は、前記ダミーパターンの上層と下層との間を電気的に接続する接続電極である
    請求項4記載の固体撮像装置。
  6. 第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層を前記第1面側で支持する第1支持基板を有する基板を用意し、
    前記シリコン層の前記第1面とは反対の第2面に第1層間絶縁膜を形成する工程と、
    前記第1層間絶縁膜上にアルミニウムもしくはアルミニウム合金からなるボンディングパッドを形成する工程と、
    前記第1層間絶縁膜上に前記ボンディングパッドを被覆する第2層間絶縁膜を形成する工程と、
    前記第2層間絶縁膜中に銅配線層を形成する工程を有し、
    前記第2層間絶縁膜を形成する工程と前記銅配線層を形成する工程を複数回繰り返し行った後、前記複数層に形成された第2層間絶縁膜の最上層の銅配線層を被覆する第3層間絶縁膜を形成する工程と、
    前記第3層間絶縁膜側に第2支持基板を形成した後に前記シリコン層から前記第1支持基板を除去する工程と、
    前記第1面側から前記ボンディングパッドに達する開口部を形成する工程を有する
    固体撮像装置の製造方法。
  7. 前記ボンディングパッドに対して光入射方向とは反対方向にある前記第2層間絶縁膜中に前記銅配線層の一部を形成する
    請求項6記載の固体撮像装置の製造方法。
  8. 入射光を集光する集光光学部と、
    前記集光光学部で集光した光を受光して光電変換する固体撮像装置を有する撮像部と、
    前記撮像部の信号を処理する信号処理部を有し、
    前記固体撮像装置は、
    第1面側から入射された光を光電変換して信号電荷を得る画素部を備えたシリコン層と、
    前記シリコン層の前記第1面とは反対の第2面側に形成されていて層間絶縁膜中に形成された銅配線層と、
    前記第2面に最も近い前記銅配線層と同一層の位置もしくはその銅配線層よりも前記第2面側の位置の前記層間絶縁膜中に形成されたアルミニウムもしくはアルミニウム合金からなるボンディングパッドと、
    前記第1面側に前記ボンディングパッドに達する開口部を有する
    撮像装置。
JP2009138746A 2009-06-10 2009-06-10 固体撮像装置とその製造方法および撮像装置 Pending JP2010287638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138746A JP2010287638A (ja) 2009-06-10 2009-06-10 固体撮像装置とその製造方法および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138746A JP2010287638A (ja) 2009-06-10 2009-06-10 固体撮像装置とその製造方法および撮像装置

Publications (1)

Publication Number Publication Date
JP2010287638A true JP2010287638A (ja) 2010-12-24

Family

ID=43543147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138746A Pending JP2010287638A (ja) 2009-06-10 2009-06-10 固体撮像装置とその製造方法および撮像装置

Country Status (1)

Country Link
JP (1) JP2010287638A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061092A (ja) * 2009-09-11 2011-03-24 Toshiba Corp 固体撮像装置及びその製造方法
US9171974B2 (en) 2012-07-03 2015-10-27 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR20190052648A (ko) * 2017-11-08 2019-05-16 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Cmos 센서 및 그 형성 방법
US11342293B2 (en) 2019-10-08 2022-05-24 Canon Kabushiki Kaisha Semiconductor apparatus and equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061092A (ja) * 2009-09-11 2011-03-24 Toshiba Corp 固体撮像装置及びその製造方法
US8519499B2 (en) 2009-09-11 2013-08-27 Kabushiki Kaisha Toshiba Solid-state image sensor and method of manufacturing the same
USRE46123E1 (en) 2009-09-11 2016-08-23 Kabushiki Kaisha Toshiba Solid-state image sensor and method of manufacturing the same
US9171974B2 (en) 2012-07-03 2015-10-27 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR20190052648A (ko) * 2017-11-08 2019-05-16 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Cmos 센서 및 그 형성 방법
KR102308481B1 (ko) * 2017-11-08 2021-10-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Cmos 센서 및 그 형성 방법
US11177308B2 (en) 2017-11-08 2021-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS sensors and methods of forming the same
US11342293B2 (en) 2019-10-08 2022-05-24 Canon Kabushiki Kaisha Semiconductor apparatus and equipment

Similar Documents

Publication Publication Date Title
US20220345653A1 (en) Solid-state imaging apparatus, manufacturing method of the same, and electronic device
JP5568969B2 (ja) 固体撮像装置とその製造方法、及び電子機器
TWI401793B (zh) Semiconductor device
US10312281B2 (en) Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
US20230068256A1 (en) Image pickup device and electronic apparatus
WO2013137049A1 (ja) 半導体装置、半導体装置の製造方法、半導体ウエハ、及び、電子機器
TWI595638B (zh) 半導體裝置,固態成像裝置及電子設備
JP5446484B2 (ja) 固体撮像装置とその製造方法および撮像装置
JP4935838B2 (ja) 固体撮像素子及びその製造方法、電子機器
JP2006128392A (ja) 固体撮像素子とその製造方法、並びに半導体装置とその製造方法
JP2012084609A (ja) 固体撮像装置とその製造方法、及び電子機器
JP2013080838A (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP2005209677A (ja) 半導体装置
JP2010186870A (ja) 半導体装置
JP5489528B2 (ja) 光電変換装置の製造方法
JP5948783B2 (ja) 固体撮像装置、および電子機器
JP2010287638A (ja) 固体撮像装置とその製造方法および撮像装置
JP2020047937A (ja) 半導体装置、半導体装置の製造方法、及び電子機器
JP2013026565A (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
US20230139201A1 (en) Imaging element and method for manufacturing imaging element
JP2011014674A (ja) 固体撮像装置の製造方法
JP2013089871A (ja) 固体撮像素子ウエハ、固体撮像素子の製造方法、および固体撮像素子
TWI338364B (en) Image sensor chip package structure and method thereof
JP2011018710A (ja) 固体撮像装置およびその製造方法
KR20100078275A (ko) 이미지 센서 및 그 제조 방법