JP2010284728A - 搬送ロボット及び自動教示方法 - Google Patents

搬送ロボット及び自動教示方法 Download PDF

Info

Publication number
JP2010284728A
JP2010284728A JP2009138036A JP2009138036A JP2010284728A JP 2010284728 A JP2010284728 A JP 2010284728A JP 2009138036 A JP2009138036 A JP 2009138036A JP 2009138036 A JP2009138036 A JP 2009138036A JP 2010284728 A JP2010284728 A JP 2010284728A
Authority
JP
Japan
Prior art keywords
teaching
end effector
radial direction
teaching position
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138036A
Other languages
English (en)
Inventor
Satoshi Hattori
智 服部
Hirohiko Goto
博彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2009138036A priority Critical patent/JP2010284728A/ja
Publication of JP2010284728A publication Critical patent/JP2010284728A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

【課題】 予め定められた一方向にエンドエフェクタを移動させることで教示位置を教示可能な自動教示装置を提供する。
【解決手段】 半導体搬送ロボット1は、ハンド2と、第1及び第2光電センサ14,15と、制御部28とを有する。第1及び第2光電センサ14,15は、ハンド2に設けられ、互いに異なる方向に延びる光軸L4,L5を有する。制御部28は、予め定められた仮教示位置pに向かってハンド2を移動させて第1及び第2光電センサ14,15により正教示位置pに配置される冶具31に立設されるピン32を夫々検出させ、検出したときのハンド2の位置である第1及び第2検出位置p,pに基づいて正教示位置pと仮教示位置pとのズレ量Δr、Δθを演算して正教示位置pを求める。制御部28は、ピン32を検出させる際、光軸L4.L5が延びる方向と異なる方向にハンド2を移動させる。
【選択図】 図1

Description

本発明は、対象物の位置を自動で教示する搬送ロボット、及び自動教示方法に関する。
特許文献1に記載されるような、半導体ウェハの位置を自動的に教示する半導体搬送ロボットが実用に供されている。半導体搬送ロボットは、アームの先端部にエンドエフェクタであるハンドが設けられ、このハンドに2つの光電センサが設けられている。光軸センサは、透過型のレーザセンサであり、教示すべき位置(以下、単に「教示位置」ともいう)に設けられた冶具により前記光電センサの光が遮られることで、冶具を検出するようになっている。2つの光電センサは、各々の光軸が互いに直交するように配置されており、例えばXY座標系において、2つの光軸がX方向及びY方向に延びている。
このように構成される半導体搬送ロボットは、半導体ウェハの位置を教示する際、まず、ハンドを一方の光電センサの光軸に沿うよう、即ちX方向にハンドを動かして、他方の光電センサの光が冶具で遮られる位置を検索し、遮られた位置を半導体ウェハの位置のX座標とする。次に、他方の光電センサの光軸に沿うように、即ちY方向にハンドを動かして、一方の光電センサの光が冶具で遮られる位置を検索し、遮られた位置を半導体ウェハの位置のY座標とする。
特開2005−11966号公報
前述のような半導体搬送ロボットでは、半導体ウェハの位置を教示する際、X方向及びY方向にハンドを動かす必要があるため可動範囲が広く、教示するために広い空間が必要となる。しかしながら、半導体搬送ロボットが設けられる半導体処理設備では、異なる半導体処理を行なうべく種々の半導体処理装置が設けられており、その設備内の空間は非常に狭くなっている。特に、半導体処理装置及びその近傍では、ハンドの幅方向において非常に狭くなっている。
半導体ウェハの教示位置は、半導体処理装置内にあり、非常に狭い空間において教示位置の自動教示を行なう必要がある。それ故、前述のようなX方向及びY方向にハンドを動かす必要がある方法では、ハンドが半導体処理装置及びその周辺の構成に当たるおそれがあり、また教示位置を検出できない場合がある。更に、前述の方法では、X方向への移動及びY方向への移動の2つの動作を実行する必要があるため、自動教示のプログラムが複雑になり、自動教示に多くの時間を要する。
そこで本発明は、エンドエフェクタであるハンドを予め定められた一方向に移動させることで教示位置を検出可能な自動教示装置及び自動教示方法を提供することを目的としている。
本発明は、エンドエフェクタに設けられ、異なる方向に光軸が延びる第1及び第2光電センサと、予め定められた仮位置に向かって前記エンドエフェクタを移動させて前記第1及び第2光電センサにより教示位置に配置される対象物を夫々検出させ、夫々検出したときの前記エンドエフェクタの位置である第1及び第2検出位置に基づいて前記教示位置と前記仮位置とのズレ量を演算して前記教示位置を取得する制御部を備え、前記制御部は、前記対象物を検出させる際、前記2つ光軸が延びる方向と異なる方向にエンドエフェクタを移動させるものである。
本発明に従えば、2つの光電センサの光軸が延びる方向と異なる方向の一方向にエンドエフェクタを移動させることにより、第1及び第2検出位置を検出することができ、教示位置と仮位置とのズレ量を演算して教示位置を求めることができる。即ち、一方向にエンドエフェクタを動かすことで、自動で教示位置を教示することができる。これにより、対象物が幅の狭い空間に配置されていてもその位置を教示することができる。また、エンドエフェクタを一方向に動かすことで教示位置が求まるので、エンドエフェクタの動きが単純であり、自動教示のプログラムを単純化することができ、自動教示にかかる時間を短くすることができる。
上記発明において、前記制御部は、円筒座標系の座標に基づいて前記エンドエフェクタを移動させ、
前記第1光電センサは、その光軸が動径方向に直交する方向に延びるように配置され、前記制御部は、前記仮位置が前記第2光電センサの光軸上にあるとして、
Δr=a−b (1)
Δθ=Δrtanα/(r−Δr) (2)
a :前記第1光電センサの光軸と前記仮位置との前記動径方向の距離
b :前記第1及び第2検出位置の前記動径方向の距離
α :前記第2光電センサの光軸と前記動径方向に延びる線分との成す角
r :円筒座標系の原点から前記仮位置までの前記動径方向の距離
Δr:前記教示位置と前記仮位置との前記動径方向のズレ量
Δθ:前記教示位置と前記仮位置との方位角方向のズレ量
式(1)及び(2)で演算されるズレ量Δr及びΔθに基づいて前記教示位置を取得することが好ましい。
上記構成に従えば、第1光電センサの光軸が動径方向に直交するようにエンドエフェクタを移動させ、その姿勢のまま動径方向にエンドエフェクタを直進させて第1及び第2光電センサに第1及び第2検出位置を検出させる。そして、検出された第1及び第2検出位置と式(1)及び(2)を用いることで、ズレ量Δr及びΔθを簡単に演算し、教示位置を求めることができる。このように演算が簡単であるので、演算プログラムが簡単であり、教示位置を求めるための時間が短くなる。また、制御部の演算の負担を小さくすることができる。
上記発明において、前記制御部は、円筒座標系の座標に基づいて前記エンドエフェクタを移動させ、対象物を検出する際、動径方向にエンドエフェクタを移動させ、前記第1及び第2光電センサは、それらの光軸が交差するように配置され、前記制御部は、第1及び第2光電センサの光軸が交差する点に前記仮位置があるとして、
Δr=(r−r)tanβ/(tanβ+tanγ) (3)
Δθ=(r−r)tanβ・tanγ
/(rtanγ+rtanβ) (4)
r1:前記第1検出位置の前記動径方向の座標
r2:前記第2検出位置の前記動径方向の座標
β :前記第1光電センサの光軸と前記動径方向に延びる線分との成す角
γ :前記第2光電センサの光軸と前記動径方向に延びる線分との成す角
Δr:前記教示位置と前記仮位置との前記動径方向のズレ量
Δθ:前記教示位置と前記仮位置との方位角方向のズレ量
式(3)で演算されるズレ量Δr及びΔθに基づいて前記教示位置を取得することが好ましい。
上記構成に従えば、第1及び第2光電センサの光軸と動径方向とのなす角が角度β及びγに夫々なるようにエンドエフェクタを移動させ、その姿勢のまま動径方向にエンドエフェクタを直進させて第1及び第2光電センサに第1及び第2検出位置を検出させる。そして、検出された第1及び第2検出位置と式(3)及び(4)を用いることで、ズレ量Δr及びΔθを簡単に演算し、教示位置を求めることができる。このように演算が簡単であるので、演算プログラムが簡単であり、教示位置を求めるための時間が短くなる。また、制御部の演算の負担を小さくすることができる。
上記発明において、前記第1及び第2光電センサは、それらの光軸が前記動径方向に延びる線分との成す角β,γが45度になるように配置されていることが好ましい。
上記構成に従えば、式(3)及び式(4)が
Δr=(r−r)/2 (5)
Δθ=(r−r)/(r+r) (6)
となり、ズレ量Δr及びΔθの演算式がより容易になる。それ故、演算プログラムがより簡単になり、教示位置を求めるための時間がより短くなる。また、制御部の演算の負担もより小さくすることができる。
上記発明において、前記制御部は、エンドエフェクタを移動させて第1及び第2光電センサにより対象物を検出した後、移動してきた方向と異なる方向にエンドエフェクタを移動させて第1及び第2光電センサにより対象物を夫々検出し、夫々検出したときのエンドエフェクタの位置である第3及び第4検出位置に基づいて予め定められた対象物の仮位置とのズレ量を演算し、該ズレ量と第1及び第2検出位置に基づくズレ量とに基づいて前記教示位置を取得することが好ましい。
上記構成に従えば、対象物の形状などに起因する教示位置の誤差等を平均化することができ、より誤差の少ない状態で教示位置を検出することが可能となる。
本発明の自動教示方法において、異なる方向に光軸が延びる第1及び第2光電センサを備えるエンドエフェクタを予め定められた仮位置に向かって移動させて前記第1及び第2光電センサにより教示位置に配置された対象物を夫々検出させ、夫々検出したときのエンドエフェクタの位置である第1及び第2検出位置に基づいて前記仮位置と前記教示位置とのズレ量を演算し、該ズレ量に基づいて前記教示位置を取得する方法であって、前記対象物を検出させる際、前記2つの光軸が延びる方向と異なる方向にエンドエフェクタを移動させる方法である。
上記構成に従えば、2つの光電センサの光軸と異なる方向の一方向にエンドエフェクタを移動させることにより、第1及び第2検出位置を検出することができ、教示位置と仮位置とのズレ量を演算して教示位置を求めることができる。これにより、対象物が幅の狭い空間に配置されていてもその位置を教示することができる。また、エンドエフェクタを一方向に動かすことで教示位置が求まるので、エンドエフェクタの動きが単純であり、自動教示のプログラムを単純化することができ、自動教示にかかる時間を短くすることができる。
本発明によれば、予め定められた一方向にエンドエフェクタを移動させることで教示位置を検出できる。
第1の本実施形態の半導体搬送ロボットを示す斜視図である。 半導体搬送ロボットを示す平面図である。 半導体搬送ロボットに備わるハンドを拡大して示す拡大平面図である。 半導体搬送ロボットの電気的な構成を示すブロック図である。 自動教示処理の手順を示すフローチャートである。 他の自動教示方法で教示位置を教示した際に、ハンドに対するピンの動きを示す平面図であり、(a)は、ハンドを拡大して示す拡大平面図であり、(b)は、ハンドの動きを示す図である。 更に異なる自動教示方法で教示位置を教示した際に、ハンドに対するピンの動きを示す平面図であり、(a)は、ハンドを拡大して示す拡大平面図であり、(b)は、ハンドの動きを示す図である。 第2実施形態の半導体搬送ロボットに備わるハンドを拡大して示す拡大平面図である。
図1は、第1の本実施形態の半導体搬送ロボット1を示す斜視図である。図2は、半導体搬送ロボット1を示す平面図である。図3は、半導体搬送ロボット1に備わるハンド2を拡大して示す拡大平面図である。図4は、半導体搬送ロボット1の電気的な構成を示すブロック図である。半導体搬送ロボット1は、半導体ウェハに熱処理、不純物導入処理、薄膜形成処理、リソグラフィー処理、洗浄処理及び平坦化処理等のプロセス処理を施すための半導体処理装置を備える半導体処理設備に備わっている。半導体搬送ロボット1は、図示しないフープに収容される半導体ウェハを取って各半導体処理装置内の予め定められた収容位置に搬送し、また各半導体処理装置内に予め定められた収容位置に置かれた半導体ウェハを取って、他の半導体処理装置内に搬送するようになっている。
半導体搬送ロボット1は、所謂、水平多関節型の3軸ロボットであり、半導体処理設備のケーシングに固定される基台4を有する。基台4には、上下方向に伸縮する昇降軸5が設けられている。昇降軸5の上端部には、第1アーム6が設けられている。第1アーム6は、水平方向に延びる長尺の部材である。第1アーム6は、その長手方向一端部が昇降軸5に設けられており、昇降軸5の軸線である第1軸線L1回りに回動できるようになっている。第1アーム6の長手方向他端部には、第2アーム7が設けられている。
第2アーム7もまた、水平方向に延びる長尺状の部材である。第2アーム7は、その長手方向一端部が第1アーム6に設けられており、第2軸線L2回りに回動できるようになっている。第2アーム7の長手方向他端部には、第3アーム8が設けられている。第3アーム8は、その基端部が第2アーム7に設けられており、第3軸線L3回りに回動できるようになっている。また第3アーム8の先端部には、ハンド2が設けられている。
エンドエフェクタであるハンド2は、板状の部材であり、図3に示すように二股状に分かれて左右一対の支持片11,12を有しており、この一対の支持片11,12に半導体ウェハを載置し搬送するようになっている。一対の支持片11,12は、第3軸線L3に直交する方向(以下、単に「延在方向」ともいう)に互いに平行に延びており、一対の支持片11,12の間の領域13に後述する冶具31のピン32が入るようになっている。また、ハンド2には、2つの光電センサ14,15が設けられており、これら2つの光電センサ14,15により前記ピン32の位置を検出できるようになっている。
第1及び第2光電センサ14,15は、所謂光ファイバーセンサであり、発光素子14a,15aと受光素子14b,15bとを備えている。第1光電センサ14の発光素子14aは、第1の支持片11の先端側に設けられており、発光素子14aの光軸L4が延在方向と直交するように配置されている。第1光電センサ14の受光素子14bは、第2の支持片12の先端側に前記発光素子14aに対向するように設けられており、前記発光素子14aからの光を受光するようになっている。
また、第2光電センサ15の発光素子15aは、第1の支持片11の基端側に設けられており、発光素子15aの光軸L5と延在方向に延びる線分L6とのなす角が角度α(0°<α<90°であり、本実施形態では、α=45°)となるように配置されている。即ち、発光素子15aの光軸L5は、第1光電センサ14の発光素子15aの光軸L4と異なる方向に延びている。第2光電センサ15の受光素子15bは、第2の支持片12の先端側に前記発光素子15aに対向するように設けられており、前記発光素子15aからの光を受光するようになっている。
このように構成される半導体搬送ロボット1は、昇降機構21を備えており、昇降機構21により昇降軸5を上下方向に伸縮させて、第1乃至第3アーム6〜8を昇降できるようになっている(図1の2点鎖線参照)。また、半導体搬送ロボット1は、第1乃至第3モータ22〜24を備えている。第1乃至第3モータ22〜24は、図示しない減速機を介して第1乃至第3アーム6〜8を夫々回動するようになっている。第1乃至第3モータ22〜24には、各々の出力軸の角変位量を検出すべくエンコーダ25〜27が設けられている
半導体搬送ロボット1は、更に制御部28を備えており、制御部28には、昇降機構21が接続されている。制御部28は、昇降機構21の駆動を制御するようになっている。また、制御部28には、第1乃至第3モータ22〜24及びエンコーダ25〜27が電気的に接続されており、制御部28は、第1乃至第3モータ22〜24の駆動をエンコーダ25〜27のエンコーダ値に基づいて制御するようになっている。制御部28は、第1乃至第3モータ22〜24の駆動を制御する際、昇降軸5の軸線L1を原点とする円筒座標系に基づいてハンド2の位置を制御するようになっている。
また、制御部28には、前述した第1及び第2光電センサ14,15が電気的に接続されている。第1及び第2光電センサ14,15は、発光素子14a,15aからの光を受光素子14b,14bが受光すると、受光した旨を示す受光信号を制御部28に伝送するようになっている。制御部28は、この受光信号に基づいて第1及び第2光電センサ14,15が対象物であるピン32を検出したか否かを判断するようになっている。
更に、制御部28には、記憶部29及び入力手段30が電気的に接続されている。記憶部29は、所謂、RAM、ROM及びHDD等の記憶媒体であり、種々のプログラム、測定結果及び演算結果等のデータを記憶するものである。制御部28は、記憶部29に記憶されるデータに基づいて各制御を実行するようになっている。入力手段30は、例えばキーボードであり、制御部28に指令を与えることができるようになっている。
このように構成される半導体搬送ロボット1は、記憶部29に記憶された自動教示方法のプログラムに基づいて、フープ及び半導体処理装置毎に決められた半導体ウェハの収容位置である教示位置を自身に自動で教示する自動教示処理を実行するようになっている。以下では、自動教示処理について説明する。
図5は、自動教示処理の手順を示すフローチャートである。以下では、図1乃至4も参照しつつ説明する。自動教示処理は、ピン32が立設された冶具31を自動教示したい教示位置に置き、使用者が入力手段30によって制御部28に自動教示処理開始の指令を入力することによって開始され、ステップs1に移行する。ステップs1では、制御部28が第1乃至第3アーム6〜8を駆動し、教示位置の近傍の教示開始位置(図2参照)までハンド2を移動させる。記憶部29には、教示位置の座標を仮教示位置pの座標(r,θ)とその近傍の教示開始位置pの座標とが記憶されており、制御部28は、記憶部29に記憶される教示開始位置pの座標に基づいてハンド2を教示開始位置pに移動させるようになっている。なお、仮位置である仮教示位置pの座標(r,θ)は、使用者等により予め記憶部29に入力される教示位置の理想の座標であり、実際にピン32が配置される教示位置である正教示位置意pの座標(r、θ)とズレを生じている場合がある。ハンド2を教示開始位置pまで移動させると、ステップs2に移行する。
ステップs2では、制御部28が仮教示位置pの座標(r,θ)に向かってハンド2を進める。本実施形態では、ステップs2において、ハンド2が円筒座標系の動径方向、即ちr方向に進行するようになっている。そのため、ステップs1では、制御部28が第1乃至第3アーム6〜8の駆動を制御して、ハンド2の姿勢を前記延在方向が前記r方向と一致するような姿勢にしている。こうすることで、制御部28は、2つの光軸L4,L5が延びる方向と異なる方向にハンド2を移動させている。
ハンド2を進めていくと、やがて冶具31のピン32が領域13内に入り、第1光電センサ14の発光素子14aからの光が遮られる。これにより、受光素子14bから制御部28への受光信号が途絶える。制御部28は、受光素子14bからの受光信号が途絶えたことで、ピン32が光軸L4を通過したと判断し、その時のハンド2の位置である第1検出位置pの座標(r,θ)を取得する。
その後も、ハンド2をr方向に進行させていくと、やがて、第2光電センサ15の発光素子15aからの光が遮られ、受光素子15bから制御部28への受光信号が途絶える。これにより、制御部28は、ピン32が光軸L5を通過したと判断し、その時のハンド2の第2検出位置pの座標(r,θ)を取得する。このように第1及び第2の検出位置p,pの座標を取得すると、ステップs3に移行する。
ステップs3では、これら検出された第1検出位置p及び第2検出位置pの座標に基づいて、制御部28が仮教示位置pと正教示位置pとのr方向及びθ方向ズレ量Δr,Δθを演算する。以下では、ズレ量Δr及びΔθの具体的な演算方法について説明する。
ズレ量Δrは、
Δr=a−b (1)
式(1)で演算することができる。距離aは、仮教示位置pが第2光電センサ15の光軸L5上にあるときの仮教示位置pと第1光電センサ14の光軸L4との間のr方向の距離である。更に詳細に説明すると、仮教示位置pに向かってハンド2を移動させたときに、前記仮教示位置pが光軸L4,L5を横切る点のr方向の距離である。距離aは、予め設定されて記憶部29に記憶されている。また、距離bは、第1検出位置p及び第2検出位置pのr方向の距離であり、検出された第1検出位置p及び第2検出位置pから演算される。なお、r方向のズレ量Δrは、原点から離れる方向が正の方向となる。
r方向のズレ量Δθは、
Δθ=Δrtanα/(r−Δr) (2)
の式(2)で演算される。ここで、角度αは、前述の通り発光素子15aの光軸L5と延在方向に延びる線分L6とのなす角であり、距離rは、原点から仮教示位置pまでの距離である。本実施形態では、α=45°であるので、r方向のズレ量Δrは、
Δθ=Δr/(r−Δr) (7)
式(7)で演算することができる。なお、ズレ量Δθは、時計回りの方向が正方向となる。これらの演算式を用いてr方向のズレ量Δrとθ方向のズレ量Δθを演算すると、ステップs4へと移行する。
ステップs4では、ステップs4で求められたズレ量Δr及びθ方向のズレ量Δθと、仮教示位置pの座標(r,θ)とに基づいて、正教示位置の座標(r,θ)を制御部28が求める。制御部28は、正教示位置の座標を求めると、この正教示位置の座標を記憶部29に記憶する。このように正教示位置の座標を記憶部29に記憶することにより、教示位置の自動教示が終了し、自動教示処理が終了する。
このようにハンド2をr方向に動かすだけで第1及び第2検出位置p,pの座標が検出することができ、これらの座標と式(1)及び(2)(本実施形態では、式(1)及び(7))を用いることで仮教示位置pと正教示位置とのズレ量を演算して正教示位置を求めることができる。これにより、冶具31が幅の狭い空間に配置されていてもr方向に進行可能であれば、正教示位置を自身に自動教示することができる。また、ハンド2をr方向に動かすだけで正教示位置が求まるので、ハンド2の動きが単純であり、自動教示方法のプログラムを単純化することができ、自動教示にかかる時間を短くすることができる。
図6は、他の自動教示方法で教示位置を教示した際に、ハンド2に対するピン32の動きを示す平面図である。図6(a)は、ハンド2を拡大して示す拡大平面図であり、図6(b)は、ハンド2の動きを示す図である。上述の自動教示方法のプログラムでは、ハンド2をr方向一方だけに進行させて正教示位置pを自動教示させていたが、図6に示すように、ハンド2をr方向一方に動かした後、r方向他方に戻すように動かして、第3及び第4検出位置p,pを検出し、第3及び第4検出位置p,pに基づいて正教示位置pを求めてもよい。
この場合、ハンド2をr方向他方に戻す際、ピン32がr方向一方に動かしたときと異なる経路を通るように、ハンド2をr方向一方に動かした後にθ方向に動かすことが好ましい。第1及び第2検出位置p,pに基づいて求めた正教示位置と第3及び第4検出位置p,pに基づいて正教示位置pとの平均化した位置を正教示位置pとすることで、ピン32の形状などに起因する正教示位置の誤差等を平均化することができ、より誤差の少ない状態の正教示位置pを検出することができる。
図7は、更に異なる自動教示方法で教示位置を教示した際に、ハンド2に対するピン32の動きを示す平面図である。図7(a)は、ハンド2を拡大して示す拡大平面図であり、図7(b)は、ハンド2の動きを示す図である。上述の自動教示方法のプログラムでは、ハンド2をr方向一方及び他方に移動させて教示位置を自動教示させていたが、図7に示すように、教示開始位置pからハンド2をr方向に対して斜めに動かした後、θ方向に動かし、そして教示開始位置pに戻すように動かしてもよい。このようにハンド2を動かしても、検出した第1及び第2検出位置p,p(又は、検出した第3及び第4検出位置p,p)と式(1)及び(2)(本実施形態では、式(1)及び(7))によりr方向のズレ量Δr及びθ方向のズレ量Δθを求めることができる。このように、ハンド2をr方向に対して斜行する方向に移動させなくとも、r方向のズレ量Δr及びθ方向のズレ量Δθを求めることができるので、汎用性が高い。
また、ハンド2をr方向に対して斜めに動かす際、上述のように教示開始位置pから移動を開始し元の教示開始位置pまで戻さなくてもよい。例えば、教示開始位置pからハンド2をr方向に対して斜めに動かした後、教示開始位置pからθ方向に離れた位置へと戻すようにしてもよい。
図8は、第2実施形態の半導体搬送ロボット1Aに備わるハンド2を拡大して示す拡大平面図である。第2実施形態の半導体搬送ロボット1Aは、第1実施形態の半導体搬送ロボット1と構成が類似している。以下では、半導体搬送ロボット1Aに関して、第1実施形態の半導体搬送ロボット1と異なる構成についてだけ説明し、同一の構成については、同一の符号を付してその説明を省略する。
半導体搬送ロボット1Aでは、第1及び第2光電センサ14,15の発光素子14a,15aの光軸L4,L5が交差するように一対の支持片11,12の基端側に夫々設けられている。発光素子14a,15aは、それらの光軸L4,L5が延在方向に延びる線分L6に対して角度β(0°<β<90°)及び角度γ(0°<γ<90°)だけ夫々傾くように配置されている。本実施形態では、β=γ=45°となっている。
第1及び第2光電センサ14,15の受光素子14b,15bは、前記発光素子14a,15aに対向するように設けられており、第1光電センサ14,15の受光素子14bが第2の支持片12の先端側に設けられ、第2光電センサ14,15の受光素子15bが第1の支持片11の先端側に設けられている。
このように第1及び第2光電センサ14,15が配置される半導体搬送ロボット1Aもまた、記憶部29に記憶された自動教示方法のプログラムに基づいて、フープ及び半導体処理装置毎に決められた半導体ウェハの収容位置である教示位置を自身に自動で教示する自動教示処理を実行するようになっている。自動教示処理は、第1実施形態の半導体搬送ロボット1が実行する自動教示処理と類似しており、r方向及びθ方向のズレ量Δr及びΔθの演算方法だけが異なる。以下では、半導体搬送ロボット1Aにおいて採用される演算方法について説明する。
制御部28は、検出された第1検出位置p及び第2検出位置pの座標に基づいて、制御部28が仮教示位置pと正教示位置とのr方向及びθ方向ズレ量Δr,Δθを演算する。
r方向のズレ量Δrは、
Δr=(r−r)tanβ/(tanβ+tanγ) (3)
式(3)で演算される。ここで、角度β及び角度γは、前述した発光素子14a,15aの光軸L4,L5と延在方向に延びる線分L6との成す角である。本実施形態では、β=γ=45°であるので、r方向のズレ量Δrは、
Δr=(r−r)/2 (5)
式(5)で演算することができる。なお、r方向のズレ量Δrは、原点から離れる方向が正の方向となる。
また、θ方向のズレ量は、
Δθ=(r−r)tanβ・tanγ
/(rtanβ+rtanγ) (4)
式(4)で演算される。本実施形態では、β=γ=45°であるので、θ方向のズレ量は、
Δθ=(r−r)/(r+r) (6)
式(6)で演算することができる。なお、θ方向のズレ量は、時計回りの方向が正方向となる。
このように、半導体搬送ロボット1Aのように、第1及び第2光電センサ14,15の光軸L4,L5の何れもr方向に直交するように配置しなくとも、式(3)及び式(4)(本実施形態では、式(5)及び(6))を用いることで仮教示位置と正教示位置とのr方向のズレ量Δr及びθ方向のズレ量Δθを演算し、正教示位置を自身に自動で教示することができる。即ち、r方向に移動させるだけで正教示位置を自身に自動で教示することができる。従って、冶具31が幅の狭い空間に配置されていても、教示位置を教示することができる。また、ハンド2を一方向に動かすことで正教示位置が求まるので、ハンド2の動きが単純であり、自動教示のプログラムを単純化することができ、自動教示にかかる時間を短くすることができる。
本実施形態では、特に、角度β及び角度γが45°であるので、r方向のズレ量Δr及びθ方向のズレ量Δθを求めるための演算式が容易である。それ故、演算プログラムがより簡単になり、正教示位置pを求めるための時間がより短くなる。また、制御部28の演算の負担もより小さくすることができる。
第2実施形態では、延在方向とr方向とが一致するようにハンド2の姿勢を変更してからハンド2をr方向に直進させて第1及び第2検出位置p,pを検出しているけれども、r方向に直進させずとも第1及び第2検出位置p,pを検出することができればよい。この場合、検出された第1及び第2検出位置p,pに基づいて、r方向のズレ量Δr及びθ方向のズレ量Δθを演算すればよい。
また、半導体搬送ロボット1Aにおいて、上述の自動教示方法のプログラムでは、ハンド2をr方向一方だけに進行させて正教示位置pを自動教示させていたが、図6及び図7のように、ハンド2をr方向一方に動かした後、r方向他方に戻すように動かしてもよい。この場合、図6のように、ハンド2をr方向他方に戻す際、ピン32がr方向一方に動かしたときと異なる経路を通るように、ハンド2をr方向一方に動かした後にθ方向に動かしてもよい。
また、図7に示すように教示開始位置pからハンド2をr方向に対して斜めに動かし後にθ方向に動かして、更に教示開始位置pに戻すようにしてもよい。このようにハンド2を往復させる自動教示方法で正教示位置pを自動教示することで、ピン32の形状などに起因する正教示位置pの誤差等を平均化することができ、より誤差の少ない状態で正教示位置pを検出することができる。
また、第1及び第2実施形態では、半導体搬送ロボット1,1Aが水平多関節型の3軸ロボットである場合について説明したが、2軸以下又は4軸以上のロボットであってもよく、また垂直多関節型のロボットであってもよい。また、実施形態では、円筒座標系でハンド2の位置を制御する制御部28について説明したが、極座標系及びXY座標系でハンド2の位置を制御する制御部28であってもよい。
また、第1及び第2実施形態では、第1及び第2光電センサ14,15において、透過型の光電センサを用いているけれども、反射型の光電センサであってもよい。反射型の光電センサとしては、発光素子14a,15aと受光素子14b,15bとが一体化された光電素子を採用、ピン32に同軸回帰型の反射板を設けたものがある。この場合、受光素子14b,15bからの受光信号を受けることでピン32が通過したと判断する。また、別の反射型の光電センサとしては、前記光電素子を発光素子14a,15aが設けられていた位置に配置し、同軸回帰型の反射板を受光素子14b,15bが設けられた位置に設けたものもある。この場合、受光素子14b,15bからの受光信号が途絶えることでピン32が通過したと判断する。
また、第1及び第2光電センサ14,15は、光ファイバーセンサでなく、レーザセンサであってもよい。また、第1及び第2光電センサ14,15を設けるエンドエフェクタは、ピン32に同軸回帰型の反射板を設けた場合、ハンド2のような二股状のものに限られず、直線状のものであってもよく、第1及び第2光電センサ14,15を前述のように配置可能であって、移動可能なものであればよい。
なお、本発明は、実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
以上のように、本発明は、教示位置などの位置を自動教示することができる自動教示装置及び自動教示方法に用いるのに適している。
1,1A 搬送ロボット
2 ハンド
14 第1光電センサ
15 第2光電センサ
28 制御部
31 冶具
32 ピン

Claims (6)

  1. エンドエフェクタを備える搬送ロボットであって、
    エンドエフェクタに設けられ、異なる方向に光軸が延びる第1及び第2光電センサと、
    予め定められた仮位置に向かって前記エンドエフェクタを移動させて前記第1及び第2光電センサにより教示位置に配置される対象物を夫々検出させ、夫々検出したときの前記エンドエフェクタの位置である第1及び第2検出位置に基づいて前記教示位置と前記仮位置とのズレ量を演算して前記教示位置を取得する制御部を備え、
    前記制御部は、前記対象物を検出させる際、前記2つ光軸が延びる方向と異なる方向にエンドエフェクタを移動させる、
    ことを特徴とする搬送ロボット。
  2. 前記制御部は、円筒座標系の座標に基づいて前記エンドエフェクタを移動させ、
    前記第1光電センサは、その光軸が動径方向に直交する方向に延びるように配置され、
    前記制御部は、前記仮位置が前記第2光電センサの光軸上にあるとして、
    Δr=a−b (1)
    Δθ=Δrtanα/(r−Δr) (2)
    a :前記第1光電センサの光軸と前記仮位置との前記動径方向の距離
    b :前記第1及び第2検出位置の前記動径方向の距離
    α :前記第2光電センサの光軸と前記動径方向に延びる線分との成す角
    r :円筒座標系の原点から前記仮位置までの前記動径方向の距離
    Δr:前記教示位置と前記仮位置との前記動径方向のズレ量
    Δθ:前記教示位置と前記仮位置との方位角方向のズレ量
    式(1)及び(2)で演算されるズレ量Δr及びΔθに基づいて前記教示位置を取得する
    ことを特徴とする請求項1に記載の搬送ロボット。
  3. 前記制御部は、円筒座標系の座標に基づいて前記エンドエフェクタを移動させ、対象物を検出する際、動径方向にエンドエフェクタを移動させ、
    前記第1及び第2光電センサは、それらの光軸が交差するように配置され、
    前記制御部は、第1及び第2光電センサの光軸が交差する点に前記仮位置があるとして、
    Δr=(r−r)tanβ/(tanβ+tanγ) (3)
    Δθ=(r−r)tanβ・tanγ
    /(rtanγ+rtanβ) (4)
    r1:前記第1検出位置の前記動径方向の座標
    r2:前記第2検出位置の前記動径方向の座標
    β :前記第1光電センサの光軸と前記動径方向に延びる線分との成す角
    γ :前記第2光電センサの光軸と前記動径方向に延びる線分との成す角
    Δr:前記教示位置と前記仮位置との前記動径方向のズレ量
    Δθ:前記教示位置と前記仮位置との方位角方向のズレ量
    式(3)で演算されるズレ量Δr及びΔθに基づいて前記教示位置を取得する
    ことを特徴とする請求項1に記載の搬送ロボット。
  4. 前記第1及び第2光電センサは、それらの光軸が前記動径方向に延びる線分との成す角β,γが45度になるように配置されている
    ことを特徴とする請求項3に記載の搬送ロボット。
  5. 前記制御部は、エンドエフェクタを移動させて第1及び第2光電センサにより対象物を検出した後、移動してきた方向と異なる方向にエンドエフェクタを移動させて第1及び第2光電センサにより対象物を夫々検出し、夫々検出したときのエンドエフェクタの位置である第3及び第4検出位置に基づいて予め定められた対象物の仮位置とのズレ量を演算し、該ズレ量と第1及び第2検出位置に基づくズレ量とに基づいて前記教示位置を取得する
    ことを特徴とする請求項1乃至4の何れか1つに記載の搬送ロボット。
  6. 異なる方向に光軸が延びる第1及び第2光電センサを備えるエンドエフェクタを予め定められた仮位置に向かわせるべく前記2つの光軸が延びる方向と異なる方向に移動させて前記第1及び第2光電センサにより教示位置に配置された対象物を夫々検出させ、夫々検出したときのエンドエフェクタの位置である第1及び第2検出位置に基づいて前記仮位置と前記教示位置とのズレ量を演算し、該ズレ量に基づいて前記教示位置を取得する、
    ことを特徴とする自動教示方法。
JP2009138036A 2009-06-09 2009-06-09 搬送ロボット及び自動教示方法 Pending JP2010284728A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138036A JP2010284728A (ja) 2009-06-09 2009-06-09 搬送ロボット及び自動教示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138036A JP2010284728A (ja) 2009-06-09 2009-06-09 搬送ロボット及び自動教示方法

Publications (1)

Publication Number Publication Date
JP2010284728A true JP2010284728A (ja) 2010-12-24

Family

ID=43540841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138036A Pending JP2010284728A (ja) 2009-06-09 2009-06-09 搬送ロボット及び自動教示方法

Country Status (1)

Country Link
JP (1) JP2010284728A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127290A (ko) 2012-08-09 2014-11-03 니혼 덴산 산쿄 가부시키가이샤 산업용 로봇
JP2015153809A (ja) * 2014-02-12 2015-08-24 株式会社ダイヘン 搬送ロボット、ティーチングシステム、および、治具
JP2016107378A (ja) * 2014-12-08 2016-06-20 日本電産サンキョー株式会社 産業用ロボットおよび産業用ロボットの教示方法
WO2017150551A1 (ja) * 2016-03-04 2017-09-08 川崎重工業株式会社 基板搬送装置及び基板搬送ロボットの教示方法
WO2018233859A1 (en) * 2017-06-19 2018-12-27 Zhongrui Funing Robotics (Shenyang) Co. Ltd PREVENTION SYSTEM FOR ROBOT
CN109366468A (zh) * 2018-12-14 2019-02-22 杭州崧智智能科技有限公司 一种机器人自动示教方法和自动示教系统
CN110303505A (zh) * 2018-03-20 2019-10-08 日本电产三协株式会社 机器人的位置信息恢复方法
WO2020137799A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 ロボットの位置補正方法およびロボット
WO2020137800A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 ロボットの位置補正方法およびロボット
WO2020137991A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 基板搬送ロボット及び自動教示方法
EP3921123A4 (en) * 2019-02-08 2022-10-26 Yaskawa America, Inc. THROUGH-BEAM MACHINE LEARNING

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140127290A (ko) 2012-08-09 2014-11-03 니혼 덴산 산쿄 가부시키가이샤 산업용 로봇
KR20160040311A (ko) 2012-08-09 2016-04-12 니혼 덴산 산쿄 가부시키가이샤 산업용 로봇
KR20160040312A (ko) 2012-08-09 2016-04-12 니혼 덴산 산쿄 가부시키가이샤 산업용 로봇
KR20160040310A (ko) 2012-08-09 2016-04-12 니혼 덴산 산쿄 가부시키가이샤 산업용 로봇
US10350750B2 (en) 2012-08-09 2019-07-16 Nidec Sankyo Corporation Industrial robot
US9764461B2 (en) 2012-08-09 2017-09-19 Nidec Sankyo Corporation Industrial robot
CN105127984B (zh) * 2012-08-09 2018-11-09 日本电产三协株式会社 工业用机器人及其控制方法
US10265845B2 (en) 2012-08-09 2019-04-23 Nidec Sankyo Corporation Industrial robot
US10226863B2 (en) 2012-08-09 2019-03-12 Nidec Sankyo Corporation Industrial robot
JP2015153809A (ja) * 2014-02-12 2015-08-24 株式会社ダイヘン 搬送ロボット、ティーチングシステム、および、治具
JP2016107378A (ja) * 2014-12-08 2016-06-20 日本電産サンキョー株式会社 産業用ロボットおよび産業用ロボットの教示方法
WO2017150551A1 (ja) * 2016-03-04 2017-09-08 川崎重工業株式会社 基板搬送装置及び基板搬送ロボットの教示方法
JPWO2017150551A1 (ja) * 2016-03-04 2018-12-27 川崎重工業株式会社 基板搬送装置及び基板搬送ロボットの教示方法
US10395956B2 (en) 2016-03-04 2019-08-27 Kawasaski Jukogyo Kabushiki Kaisha Substrate transfer apparatus and method of teaching substrate transfer robot
WO2018233859A1 (en) * 2017-06-19 2018-12-27 Zhongrui Funing Robotics (Shenyang) Co. Ltd PREVENTION SYSTEM FOR ROBOT
CN110303505A (zh) * 2018-03-20 2019-10-08 日本电产三协株式会社 机器人的位置信息恢复方法
CN110303505B (zh) * 2018-03-20 2022-07-01 日本电产三协株式会社 机器人的位置信息恢复方法
CN109366468A (zh) * 2018-12-14 2019-02-22 杭州崧智智能科技有限公司 一种机器人自动示教方法和自动示教系统
CN109366468B (zh) * 2018-12-14 2023-10-31 崧智智能科技(苏州)有限公司 一种机器人自动示教方法和自动示教系统
JPWO2020137800A1 (ja) * 2018-12-27 2021-10-07 川崎重工業株式会社 ロボットの位置補正方法およびロボット
JP7045484B2 (ja) 2018-12-27 2022-03-31 川崎重工業株式会社 基板搬送ロボット及び自動教示方法
CN113228246A (zh) * 2018-12-27 2021-08-06 川崎重工业株式会社 基板搬运机器人和自动示教方法
KR20210100684A (ko) * 2018-12-27 2021-08-17 카와사키 주코교 카부시키 카이샤 기판 반송 로봇 및 자동 교시 방법
JPWO2020137991A1 (ja) * 2018-12-27 2021-09-27 川崎重工業株式会社 基板搬送ロボット及び自動教示方法
WO2020137991A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 基板搬送ロボット及び自動教示方法
JPWO2020137799A1 (ja) * 2018-12-27 2021-10-07 川崎重工業株式会社 ロボットの位置補正方法およびロボット
US10953539B2 (en) 2018-12-27 2021-03-23 Kawasaki Jukogyo Kabushiki Kaisha Substrate transfer robot and automatic teaching method
JP7064624B2 (ja) 2018-12-27 2022-05-10 川崎重工業株式会社 ロボットの位置補正方法およびロボット
JP7064623B2 (ja) 2018-12-27 2022-05-10 川崎重工業株式会社 ロボットの位置補正方法およびロボット
WO2020137800A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 ロボットの位置補正方法およびロボット
CN113228246B (zh) * 2018-12-27 2023-12-29 川崎重工业株式会社 基板搬运机器人和自动示教方法
WO2020137799A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 ロボットの位置補正方法およびロボット
KR102560895B1 (ko) 2018-12-27 2023-07-28 카와사키 주코교 카부시키 카이샤 기판 반송 로봇 및 자동 교시 방법
US11673275B2 (en) 2019-02-08 2023-06-13 Yaskawa America, Inc. Through-beam auto teaching
EP3921123A4 (en) * 2019-02-08 2022-10-26 Yaskawa America, Inc. THROUGH-BEAM MACHINE LEARNING

Similar Documents

Publication Publication Date Title
JP2010284728A (ja) 搬送ロボット及び自動教示方法
TWI593526B (zh) Robot teaching methods and robots
US9517560B2 (en) Robot system and calibration method of the robot system
JP5632036B2 (ja) Cnc工作機械の誤差を補正する装置
KR102105580B1 (ko) 기판 반송 장치 및 기판 반송 로봇의 교시 방법
JP2005118980A (ja) ロボットの運動学的キャリブレーション装置及びその方法
JPWO2010013732A1 (ja) 搬送ロボットのティーチング方法
JP2004195621A (ja) 3次元計測装置
JPWO2018092243A1 (ja) 作業位置補正方法および作業ロボット
JP2010162611A (ja) 相対ティーチング方法
CN113226664B (zh) 机器人的位置修正方法以及机器人
KR102308091B1 (ko) 기판 반송 장치 및 기판 반송 로봇과 기판 재치부의 위치 관계를 구하는 방법
JP5446887B2 (ja) 制御装置、ロボット、ロボットシステム及びロボットの追従方法
KR102243694B1 (ko) 로봇의 위치 정보 복원 방법
JP2007059640A (ja) 外観検査装置
US20210213614A1 (en) Substrate transfer robot and method of detecting optical-axis deviation of substrate hold hand
JP2010152618A (ja) ロボット、及びロボットの教示位置の直進開始位置の較正方法
JP6228905B2 (ja) 作業ロボットの設置状態検出方法
JP5390753B2 (ja) 基板搬送方法、及び基板搬送装置
JP2015074039A (ja) 搬送装置
TWI716715B (zh) 基板搬送裝置及基板載置部之旋轉軸之探索方法
JP5353718B2 (ja) 制御装置、ロボット、ロボットシステム及びロボットの追従制御方法
JP6127776B2 (ja) ワークの組立装置及びワークの組立方法
WO2022137917A1 (ja) 基板搬送ロボットの制御装置及び関節モータの制御方法
WO2022239266A1 (ja) 搬送装置及び膨張量算出方法