WO2022239266A1 - 搬送装置及び膨張量算出方法 - Google Patents

搬送装置及び膨張量算出方法 Download PDF

Info

Publication number
WO2022239266A1
WO2022239266A1 PCT/JP2021/029661 JP2021029661W WO2022239266A1 WO 2022239266 A1 WO2022239266 A1 WO 2022239266A1 JP 2021029661 W JP2021029661 W JP 2021029661W WO 2022239266 A1 WO2022239266 A1 WO 2022239266A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
arms
joint
joints
expansion
Prior art date
Application number
PCT/JP2021/029661
Other languages
English (en)
French (fr)
Inventor
俊昭 兒玉
航 松本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020237041799A priority Critical patent/KR20240004944A/ko
Priority to JP2023520746A priority patent/JPWO2022239266A1/ja
Publication of WO2022239266A1 publication Critical patent/WO2022239266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure relates to a conveying device and an expansion amount calculation method.
  • Patent Document 1 discloses a technique for determining thermal expansion of an arm of a transport device when automatically centering a substrate.
  • the present disclosure provides a technique for determining the amount of expansion of each arm.
  • a transport device includes an articulated arm, a detector, and a calculator.
  • a multi-joint arm is configured such that a plurality of arms are connected by rotatable joints and can be expanded and contracted by rotating the joints.
  • the detection unit detects the rotation angles of the joints of the multi-joint arm in different postures equal to or more than the number of arms of the multi-joint arm.
  • the calculation unit calculates the expansion amount of each of the plurality of arms based on the rotation angle of the joint in each posture detected by the detection unit.
  • the expansion amount of each arm can be obtained.
  • FIG. 1 is a system configuration diagram showing an example of a processing system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a configuration of a robot arm according to the embodiment;
  • FIG. 3 is a diagram showing an example of cross sections of a load lock chamber and a vacuum transfer chamber according to the embodiment.
  • FIG. 4 is a diagram for explaining an example of a method for specifying the center position of the substrate according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of detecting a rotation angle of a joint with the arm of the robot arm according to the embodiment having different postures.
  • FIG. 1 is a system configuration diagram showing an example of a processing system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a configuration of a robot arm according to the embodiment;
  • FIG. 3 is a diagram showing an example of cross sections of a load lock chamber and a vacuum transfer chamber according to the embodiment.
  • FIG. 4 is a diagram for explaining an example of a method for specify
  • FIG. 6 is a diagram illustrating an example of rotation angles of joints of the robot arm according to the embodiment
  • 7A and 7B are diagrams for explaining a change in rotation angle due to arm expansion of the robot arm according to the embodiment.
  • FIG. FIG. 8 is a system configuration diagram showing another example of the processing system according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of the control flow of the expansion amount calculation method according to the embodiment.
  • FIG. 12 is a diagram showing another example of the shape of the fork according to the embodiment.
  • FIG. 13 is a diagram showing another example of the shape of the fork according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of an arm at the tip of the robot arm according to the embodiment;
  • FIG. 15 is a diagram illustrating another example of the processing system main body according to the embodiment;
  • a transfer device such as an articulated arm for transferring substrates such as semiconductor wafers (hereinafter referred to as "wafers") is known.
  • the articulated arm has a plurality of arms connected by rotatable joints, and the arms support and transport the substrate.
  • an error may occur in the transfer position of the articulated arm.
  • an articulated arm transports a substrate to a process chamber in which high-temperature substrate processing is performed
  • each arm thermally expands due to the influence of heat, and an error may occur in the transport position of the articulated arm.
  • Patent Document 1 determines the thermal expansion of the entire articulated arm, and does not obtain the amount of expansion of each arm.
  • FIG. 1 is a system configuration diagram showing an example of a processing system 1 according to an embodiment.
  • the processing system 1 performs substrate processing of substrates such as wafers.
  • the processing system 1 includes a processing system body 10 and a control device 100 that controls the processing system body 10 .
  • the processing system main body 10 includes, for example, a vacuum transfer chamber 11, a plurality of process chambers 13, a plurality of load lock chambers 14, and a loader module 15, as shown in FIG.
  • the processing system 1 is an example of the conveying device of the present disclosure.
  • a plurality of process chambers 13 and a plurality of load lock chambers 14 are connected to the vacuum transfer chamber 11 .
  • four process chambers 13 are connected to the vacuum transfer chamber 11 .
  • Two load lock chambers 14 are connected to the vacuum transfer chamber 11 .
  • Three or less process chambers 13 may be connected to the vacuum transfer chamber 11, or five or more process chambers 13 may be connected.
  • the vacuum transfer chamber 11 may be further connected with another vacuum transfer chamber 11 to which the plurality of process chambers 13 are connected.
  • One load lock chamber 14 may be connected to the vacuum transfer chamber 11, or three or more load lock chambers 14 may be connected.
  • the process chamber 13 performs processing such as etching and film formation on the substrate, for example, in a low-pressure environment.
  • the process chamber 13 and the vacuum transfer chamber 11 are partitioned by a gate valve 131 so as to be openable and closable.
  • Process chamber 13 is an example of a chamber of the present disclosure.
  • Each process chamber 13 may be a module that performs the same process in the manufacturing process, or a module that performs a different process.
  • Each load lock chamber 14 has a gate valve 140 and a gate valve 141 to switch the internal pressure from a predetermined degree of vacuum to atmospheric pressure, or from atmospheric pressure to a predetermined degree of vacuum.
  • the load lock chamber 14 and the vacuum transfer chamber 11 are partitioned by a gate valve 140 so as to be openable and closable.
  • the load lock chamber 14 and the loader module 15 are partitioned by a gate valve 141 so as to be openable and closable.
  • a plurality of sensors 20 are provided in the vacuum transfer chamber 11 .
  • a robot arm 12 is arranged in the vacuum transfer chamber 11 .
  • the robot arm 12 has three independently drivable joints.
  • the robot arm 12 may have four or more joints that can be driven independently.
  • the inside of the vacuum transfer chamber 11 is kept at a predetermined degree of vacuum.
  • the robot arm 12 takes out an unprocessed substrate from the load lock chamber 14 decompressed to a predetermined degree of vacuum, and transfers it to the mounting table 130 in one of the process chambers 13 .
  • the robot arm 12 also takes out the processed substrate from the process chamber 13 and transfers it into another process chamber 13 or the load lock chamber 14 .
  • Each sensor 20 is arranged near the connection between the vacuum transfer chamber 11 and the load lock chamber 14 .
  • two sensors 20 a and 20 b are arranged in each load lock chamber 14 at positions near the connecting portion between the vacuum transfer chamber 11 and the load lock chamber 14 , through which the substrates W pass. This allows the sensors 20a and 20b to quickly acquire sensing information about the substrate W when the substrate is taken out of the load lock chamber 14 by the robot arm 12 .
  • two sensors 20 are provided for one load lock chamber 14 .
  • Three or more sensors 20 may be provided for one load lock chamber 14 .
  • FIG. 2 is a diagram showing an example of the configuration of the robot arm 12 according to the embodiment.
  • the robot arm 12 is configured as a multi-joint arm in which a plurality of arms 30 are connected by rotatable joints 31 and can be expanded and contracted by rotating the joints 31 .
  • the robot arm 12 shown in FIG. 2 has arms 30a to 30c provided with joints 31a to 31c, the arms 30a and 30b are rotatably connected by a joint 31b, and the arms 30b and 30c are rotatably connected by a joint 31c.
  • Each joint 31 is provided with a drive mechanism for rotating the joint 31, and the drive mechanism rotates the arm 30 in the horizontal direction.
  • each joint 31 is provided with a servomotor, a speed reducer, or the like as a drive mechanism.
  • Each joint 31 rotates each arm 30 in the horizontal direction by being rotationally driven by transmission of the driving force of the servomotor via the speed reducer.
  • the robot arm 12 can detect the rotation angle of each joint 31 .
  • an encoder is provided on the rotary shaft of the servomotor of the joints 31a-31c, and the rotation angles of the joints 31a-31c can be detected based on feedback signals from the encoders of the joints 31a-31c.
  • the arm 30c at the tip is provided with a Y-shaped fork 32 that branches into two support portions 32a on the tip side.
  • the fork 32 is made of a material with low thermal expansion, such as ceramic.
  • the robot arm 12 can extend and contract in the horizontal direction by rotating the arm 30 at the joint 31 , and supports the substrate W with the fork 32 to transport the substrate W.
  • the robot arm 12 has a shape that allows the sensor 20 to detect the expanded and contracted position.
  • one supporting portion 32a of the fork 32 is provided with three rectangular protrusions 33 that protrude in the horizontal direction.
  • FIG. 3 is a diagram showing an example of cross sections of the load lock chamber 14 and the vacuum transfer chamber 11 according to the embodiment.
  • the sensor 20 has a light source 21a and a light receiving sensor 21b.
  • the light source 21a and the light receiving sensor 21b are provided outside the vacuum transfer chamber 11, above and below the vacuum transfer chamber 11, respectively.
  • the light source 21a is provided in the upper portion of the vacuum transfer chamber 11, and the light receiving sensor 21b is provided in the lower portion of the vacuum transfer chamber 11.
  • the light source 21a is provided in the lower portion of the vacuum transfer chamber 11,
  • the light-receiving sensor 21 b may be provided above the vacuum transfer chamber 11 .
  • the light source 21 a emits light into the vacuum transfer chamber 11 through a window 11 a provided in the upper wall of the vacuum transfer chamber 11 .
  • the light source 21a irradiates the interior of the vacuum transfer chamber 11 with, for example, a laser beam.
  • the light receiving sensor 21 b receives light emitted from the light source 21 a through a window 11 b provided in the lower wall of the vacuum transfer chamber 11 .
  • the windows 11a and 11b are made of a light-transmissive material such as quartz.
  • the light receiving sensor 21b outputs information indicating whether or not the light emitted from the light source 21a is blocked to the control device 100 as sensing information.
  • a region irradiated with light from the light source 21a is an example of a sensing region.
  • a loader module 15 is connected to the load lock chamber 14 .
  • a robot arm 150 is provided in the loader module 15 .
  • the loader module 15 is provided with a plurality of load ports 16 to which containers capable of accommodating a plurality of substrates W before or after processing (for example, FOUP: Front Opening Unified Pod) are connected.
  • the robot arm 150 takes out a substrate W before processing from a container connected to the load port 16 and transports it into the load lock chamber 14 . Further, the robot arm 150 takes out the processed substrate W from the load lock chamber 14 whose internal pressure has been returned to the atmospheric pressure, and transports it into a container connected to the load port 16 .
  • the loader module 15 may be provided with an alignment unit that adjusts the orientation of the substrate W taken out from the container connected to the load port 16 .
  • the operation of the processing system 1 configured as described above is centrally controlled by a control device 100 (control unit).
  • the control device 100 is, for example, a computer, and controls each section of the processing system 1 .
  • the operation of the processing system 1 is centrally controlled by the control device 100 .
  • the control device 100 has a controller 101 that controls each section of the processing system 1, a user interface 102, and a storage section 103.
  • the user interface 102 is composed of a keyboard for inputting commands for the process manager to manage the processing system 1, a display for visualizing and displaying the operating status of the processing system 1, and the like.
  • the storage unit 103 stores control programs (software) for realizing various processes executed by the processing system 1 under the control of the controller 101, and recipes in which processing condition data and the like are stored.
  • the storage unit 103 stores parameters and the like related to apparatuses and processes for substrate processing.
  • the control program, recipe, and parameters may be stored in a computer-readable computer recording medium (for example, a hard disk, an optical disk such as a DVD, a flexible disk, a semiconductor memory, etc.).
  • the control programs, recipes, and parameters may be stored in another device, and read and used online via, for example, a dedicated line.
  • the controller 101 has a CPU and an internal memory for storing programs and data, reads control programs stored in the storage unit 103, and executes processing of the read control programs.
  • the controller 101 functions as various processing units by executing control programs.
  • the controller 101 has functions of a detection unit 110 and a calculation unit 111, which will be described later.
  • the case where the controller 101 functions as various processing units will be described as an example, but the present invention is not limited to this.
  • the functions of the detection unit 110 and the calculation unit 111 may be distributed and realized by a plurality of controllers.
  • FIG. 4 is a diagram for explaining an example of a method for identifying the center position of the substrate W according to the embodiment.
  • the sensors 20 a and 20 b output sensing information to the control device 100 .
  • the line segment AB and the line segment CD on the substrate W are irradiated from the light source 21a as indicated by the solid lines in FIG. Light is blocked.
  • the control device 100 Based on the sensing information output from the sensors 20a and 20b and the position information of the fork 32, the control device 100 sets the center of a circle passing through at least three of the points A to D as the center position O of the substrate W. Identify.
  • the position information of the fork 32 is specified based on, for example, the length of each arm 30 of the robot arm 12, the angle of each joint 31, and the like.
  • the angle of each joint 31 is detected based on feedback signals from encoders of the joints 31a to 31c. In the example of FIG. 4, the center position O of the substrate W and the reference position O' of the fork 32 are displaced.
  • the notch N of the substrate W may pass through the sensing area or the light may be blocked by the fork 32 when the substrate W moves.
  • the position of the center of the circle passing through all of the points A to D may differ from the center position O of the substrate W, or the circle passing through all of the points A to D may not exist. Therefore, if the center positions of the circles calculated for two or more of the four sets of three-point combinations excluding points A to D one by one are less than a predetermined distance, the center positions of the circles are moved to the center of the substrate W. It is preferably identified as position O.
  • the notch N formed in the substrate W is an example of a marker indicating the reference direction of the substrate W. As shown in FIG.
  • the marker indicating the reference direction of the substrate W may be an orientation flat formed on the substrate W.
  • the processing system 1 detects the rotation angles of the joints 31 of the robot arm 12 in different postures equal to or greater than the number of arms of the robot arm 12 .
  • FIG. 5 is a diagram illustrating an example of detecting the rotation angle of the joint 31 with the arm 30 of the robot arm 12 according to the embodiment having different postures.
  • the control device 100 moves the robot arm 12 so that the projection 33 provided on the fork 32 passes the arrangement position of the sensor 20a.
  • the rotation angles of the joints 31 change so that the robot arm 12 extends as a whole, so the posture of each arm 30 changes.
  • the sensor 20 a outputs sensing information to the control device 100 .
  • the robot arm 12 outputs encoder feedback signals of the joints 31 to the control device 100 .
  • the light source 21a illuminates the line segment EF, the line segment GH, and the line segment IJ of each protrusion 33, as indicated by the solid lines in FIG. blocked light.
  • the detection unit 110 detects the rotation angle of each joint 31 based on the feedback signal from the encoder of each joint 31 of the robot arm 12 .
  • a feedback signal from the encoder of each joint 31 may be input to a control unit that controls the robot arm 12 , and the control unit may specify the angle of each joint 31 .
  • the detection unit 110 may detect the rotation angle of each joint 31 by acquiring the rotation angle of each joint 31 from the control unit of the robot arm 12 .
  • the detection unit 110 detects the rotation angles of the joints 31 of the robot arm 12 in different postures equal to or greater than the number of arms 30 of the robot arm 12 .
  • the detection unit 110 detects the rotation angles of the joints 31 in different postures based on the sensing information output from the sensor 20a and the information on the rotation angles of the joints of the robot arm 12. .
  • the detection unit 110 detects the rotation angles of the joints 31a to 31c at points E, G, and I at which the projections 33 block the light emitted from the light source 21a.
  • FIG. 6 is a diagram showing an example of rotation angles of the joints 31 of the robot arm 12 according to the embodiment.
  • the detection unit 110 determines an axis 60 passing through the reference point in a horizontal plane with the position where the robot arm 12 is fixed as a reference point, and detects the rotation angle of each joint 31 from the axis 60 .
  • the direction of the axis 60 may be determined in advance when the processing system 1 is designed.
  • the detection unit 110 corrects the rotation angle of each joint 31 based on the axis 60.
  • the rotation angle of the joint 31a is a rotation angle ⁇ 1 with respect to another axis 61
  • the rotation angle ⁇ 1 of the joint 31a is corrected as shown in the following formula (1).
  • ⁇ 1 ⁇ 1 + ⁇ (1)
  • ⁇ 1 is the rotation angle of the arm 30a with respect to the axis 60
  • ⁇ 1 is the rotation angle of the arm 30a with respect to the axis 61
  • is the angle difference between the axis 60 and the axis 61 with the axis 60 as a reference.
  • the rotation angle ⁇ 2 of the joint 31b is corrected as shown in Equation (2) below.
  • the rotation angle ⁇ 3 of the joint 31c is corrected as shown in the following formula (3).
  • the detection unit 110 detects the rotation angles ⁇ 1 to ⁇ 3 of the joints 31 for points E, G, and I at which the projections 33 block the light emitted from the light source 21a.
  • the control device 100 moves the robot arm 12 so that the protrusion 33 provided on the fork 32 passes through the arrangement position of the sensor 20a.
  • the rotation angles of the joints 31 change so that the robot arm 12 extends as a whole, so the posture of each arm 30 changes.
  • the sensor 20 a outputs sensing information to the control device 100 .
  • the robot arm 12 outputs encoder feedback signals of the joints 31 to the control device 100 .
  • the light source 21a illuminates the line segment EF, the line segment GH, and the line segment IJ of each protrusion 33, as indicated by the solid lines in FIG. blocked light.
  • FIG. 14 is a diagram showing an example of the configuration of the arm 30c at the tip of the robot arm 12 according to the embodiment.
  • FIG. 14 shows the arm 30c at the tip of the robot arm 12.
  • a fork 32 is provided on the distal end side of the distal arm 30c.
  • FIG. 14 shows the distance LFE from the connecting portion between the arm 30c and the fork 32 to the point E, the distance LFG from the connecting portion to the point G, and the distance LFI from the connecting portion to the point I.
  • the length L3 of the arm 30c is shown.
  • the fork 32 is made of a material with low thermal expansion. Therefore, in the arm 30c, even if the temperature changes, the distances LFE, LFG, and LFI of the fork 32 portion hardly change, and the length L3 of the arm 30c mainly changes.
  • FIG. 7 is a diagram for explaining changes in rotation angle due to expansion of the arm 30 of the robot arm 12 according to the embodiment.
  • FIG. 7 shows the change in the rotation angle at the point E where each protrusion 33 blocks the light emitted from the light source 21a, with the axis 60 as the X axis and the direction perpendicular to the axis 60 in the horizontal plane as the Y axis. ing.
  • the solid line schematically shows the robot arm 12 when the arm 30 is not inflated
  • the dashed line schematically shows the robot arm 12 when the arm 30 is inflated. showing.
  • the distance Y to the Y-axis direction of the robot arm 12 can be calculated from the length of each arm 30, the rotation angle of each joint 31, and the like.
  • the lengths of the arms 30a to 30c of the robot arm 12 when the arm 30 is not inflated are L1 to L3.
  • the rotation angles ⁇ 1E to ⁇ 3E of the joints 31 at the point E where the projections 33 block the light emitted from the light source 21a. do.
  • the distance YE of the point E with respect to the Y-axis direction can be expressed by the following equation (4).
  • YE L1 ⁇ sin ⁇ 1E+L2 ⁇ sin ⁇ 2E +(L3+LFE) ⁇ sin ⁇ 3E (4) here, YE is the distance of point E with respect to the Y-axis direction.
  • L1-L3 are the lengths of the arms 30a-30c in the uninflated state.
  • LFE is the distance from the connecting portion of the fork 32 to the arm 30c to the position of the point E.
  • ⁇ 1E to ⁇ 3E are the rotation angles of the joints 31a to 31c at the point E in the uninflated state.
  • the lengths L1 to L3 of the arms 30a to 30c of the robot arm 12 in the unexpanded state are, for example, the lengths of the arms 30a to 30c described in the specifications of the robot arm 12, or the lengths of the arms 30a to 30c at room temperature. use .
  • the amount of expansion in the length direction of each arm 30a to 30c of the robot arm 12 when the arm 30 is expanded is ⁇ L1 to ⁇ L3. 7
  • the distance YE of the point E with respect to the Y-axis direction can be expressed by the following equation (5).
  • the fork 32 is made of a material with little thermal expansion, and is assumed not to change in length due to thermal expansion.
  • the amount of expansion of the fork 32 may be included in the amount of expansion ⁇ L3 of the arm 30c in the longitudinal direction.
  • the distance LFE of the fork 32 portion may be omitted from the equations (4) and (5) assuming that it is included in the arm 30c.
  • ⁇ L1 to ⁇ L3 are expansion amounts of the lengths of the arms 30a to 30c.
  • ⁇ 1′E to ⁇ 3′E are the rotation angles of the joints 31a to 31c at the point E in the inflated state.
  • the distance YE of the point E with respect to the Y-axis direction, the lengths L1 to L3 of the arm 30 in the unexpanded state, and the distance LFE of the fork 32 portion are determined from the actual measurement of the processing system 1 and the design data of the processing system 1. Note that the distance YE may be obtained from the lengths L1 to L3 of the arm 30 in the unexpanded state and the rotation angles ⁇ 1 to ⁇ 3 of the joints 31 using the equation (4).
  • the detection unit 110 detects the rotation angles ⁇ 1 to ⁇ 3 of the joints 31 at points E, G, and I where the projections 33 block the light emitted from the light source 21a.
  • the rotation angles ⁇ 1 to ⁇ 3 detected by the detection unit 110 are the rotation angles ⁇ 1′ to ⁇ 3′.
  • the detection unit 110 detects rotation angles ⁇ 1′E to ⁇ 3′E.
  • the detection unit 110 detects rotation angles ⁇ 1G to ⁇ 3G.
  • the detection unit 110 detects rotation angles ⁇ 1′G to ⁇ 3′G.
  • the detection unit 110 detects rotation angles ⁇ 1′I to ⁇ 3′I.
  • Equation (5) the distance YE and the lengths L1 to L3 of the arm 30 are determined from actual measurements of the processing system 1 and design data of the processing system 1. Also, the rotation angles ⁇ 1′E to ⁇ 3′E are determined by detection by the detection unit 110. FIG. Therefore, in equation (5), the unknowns are the expansion amounts ⁇ L1 to ⁇ L3 of the arm 30 .
  • the distance YG of the point G with respect to the Y-axis direction can be obtained by replacing the distance LFE in the formula (5) with the distance LFG from the connection portion of the fork 32 with the arm 30c to the position of the point G, and the rotation angle ⁇ 1′E .about..theta.3'E are obtained by replacing the rotation angles .theta.1'G to .theta.3'G.
  • the distance YI of the point I with respect to the Y-axis direction is obtained by replacing the distance LFE in the formula (5) with the distance LFI from the connection portion of the fork 32 with the arm 30c to the position of the point I, and the rotation angle ⁇ 1′I .about..theta.3'I are obtained by replacing the rotation angles .theta.1'G to .theta.3'G.
  • Distances YG, YI, and distances LFG, LFI are determined from actual measurements of the processing system 1 and design data of the processing system 1 . Note that the distances LFE, LFG, and LFI may be omitted from the equation (5) assuming that they are included in the arm 30c.
  • the expansion amounts ⁇ L1 to ⁇ L3 can be calculated from the three expressions (5) by solving the equation with the expansion amounts ⁇ L1 to ⁇ L3 as unconstants. can be calculated.
  • the calculation unit 111 applies the distance Y by which the robot arm 12 expands and contracts and the rotation angles ⁇ 1′ to ⁇ 3′ of the joints 31 detected by the detection unit 110 for each posture to Equation (5). Then, the calculation unit 111 calculates the expansion amounts ⁇ L1 to ⁇ L3 by solving the expansion amounts ⁇ L1 to ⁇ L3 in Expression (5) for each posture as unconstants.
  • the expansion amounts ⁇ L1 to ⁇ L3 of each arm 30 can be obtained.
  • the controller 100 corrects the transport position of the robot arm 12 based on the amount of expansion of the arm 30 calculated by the calculator 111 .
  • the control device 100 corrects the rotation angles of the joints 31a to 31c assuming that the lengths of the arms 30a to 30c are increased by the expansion amounts ⁇ L1 to ⁇ L3. As a result, even if the arm 30 expands due to the influence of heat, errors in the transfer position of the robot arm 12 can be suppressed.
  • the calculation unit 111 may calculate the expansion amount of the arm 30 as follows.
  • three equations (5) for three postures can be converted into three equations with expansion amounts ⁇ L1 to ⁇ L3 as solutions.
  • the converted three equations are the distance Y (YE, YG, YI) that the robot arm 12 expands and contracts in each posture, the lengths L1 to L3 of each arm 30 in the unexpanded state, and the joints 31 in each posture.
  • Relational expressions for calculating the expansion amounts ⁇ L1 to ⁇ L3 of the arm 30 are preset in the calculator 111 .
  • the calculator 111 is programmed with a relational expression.
  • the calculation unit 111 applies the rotation angles ⁇ 1′ to ⁇ 3′ of the joints 31 in the respective postures detected by the detection unit 110 to the set relational expression, and calculates the expansion amounts ⁇ L1 to ⁇ L3 of the plurality of arms 30, respectively. calculate. Also in this case, the expansion amounts ⁇ L1 to ⁇ L3 of each arm 30 can be obtained.
  • the rotation angles ⁇ 1′ to ⁇ 3′ of the joint 31 may be detected in four or more postures.
  • four or more projections 33 are provided on one support portion 32a of the fork 32, and the rotation angles ⁇ 1′ ⁇ ⁇ 3′ may be detected.
  • the rotation angles ⁇ 1' of the joints 31 in four or more postures through which the protrusions 33 pass. ⁇ 3′ may be detected.
  • the calculation unit 111 calculates rotations of the joints 31 in the three postures for each combination of the three postures.
  • the amount of expansion of the arm 30 is calculated from the angles ⁇ 1′ to ⁇ 3′.
  • the calculation unit 111 calculates an average value obtained by averaging the expansion amounts of the arms 30 as the expansion amounts ⁇ L1 to ⁇ L3 of the arms 30 .
  • the case where one sensor 20 detects a plurality of postures of the robot arm 12 has been described as an example.
  • multiple postures of the robot arm 12 may be detected using multiple sensors 20 .
  • sensors 20 are arranged at different positions equal to or greater than the number of arms 30 of the robot arm 12, and the detection unit 110 detects the tip of one support portion 32a of the fork 32 with each sensor 20. Rotation of the joint 31 in each posture Angles ⁇ 1′ to ⁇ 3′ may be detected.
  • the arrangement position of the sensor 20 is not limited to the vicinity of the connecting portion between the vacuum transfer chamber 11 and the load lock chamber 14.
  • the sensor 20 may be located anywhere within the reach of the robot arm 12 as long as the change in the placement position due to the influence of heat or the like is small.
  • the sensor 20 may be arranged at any position within the vacuum transfer chamber 11 .
  • FIG. 8 is a system configuration diagram showing another example of the processing system according to the embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant explanations are omitted.
  • the processing system 1 shown in FIG. 8 is provided with a sensor 22 similar to the sensor 20 in the process chamber 13 .
  • the detection unit 110 detects the rotation angle of the joint 31 when the sensor 22 provided in the process chamber 13 detects the robot arm 12 . For example, when detecting the amount of expansion of the process chamber 13 , the control device 100 moves the robot arm 12 so that the projection 33 provided on the fork 32 passes through the sensor 22 provided in the process chamber 13 .
  • the detection unit 110 detects the rotation angle of the joint 31 when the protrusion 33 of the robot arm 12 is detected. For example, the detection unit 110 detects the rotation angles of the joints 31a to 31c when the first projection 33 (for example, point E) is detected.
  • FIG. 9 is a diagram showing an example of the rotation angle of the joint 31 of the robot arm 12 according to the embodiment.
  • FIG. 9 is a diagram showing the rotation angle of each joint 31 when the process chamber 13 is in an unexpanded state.
  • FIG. 9 schematically shows the robot arm 12 when the arm 30 is in the non-expanded state by solid lines, and schematically shows the robot arm 12 when the arm 30 is in the expanded state by broken lines.
  • the rotation angles of the joints 31 of the robot arm 12 when the arm 30 is not expanded are ⁇ 01 to ⁇ 03, and the lengths of the arms 30 when the arm 30 is not expanded are L1 to L3.
  • the amount of expansion in the length direction of each arm 30 of the robot arm 12 is ⁇ L1 to ⁇ L3, and the rotation angles of the joints 31 of the robot arm 12 are ⁇ 01′ to ⁇ 03′.
  • the distance P0 of the detection position of the sensor 22 with respect to the Y-axis direction can be expressed by the following equation (6).
  • FIG. 10 is a diagram showing an example of rotation angles of the joints 31 of the robot arm 12 according to the embodiment.
  • FIG. 10 is a diagram showing the rotation angle of each joint 31 when the process chamber 13 is expanded.
  • FIG. 10 schematically shows the robot arm 12 when the arm 30 is in the non-expanded state by solid lines, and schematically shows the robot arm 12 when the arm 30 is in the expanded state by broken lines.
  • ⁇ 11 to ⁇ 13 be the rotation angles of the joints 31 of the robot arm 12 when the arm 30 is not inflated.
  • the amount of expansion in the length direction of each arm 30 of the robot arm 12 is ⁇ L1 to ⁇ L3
  • the rotation angles of the joints 31 of the robot arm 12 are ⁇ 11′ to ⁇ 13′.
  • the distance P1 of the detection position of the sensor 22 with respect to the Y-axis direction can be expressed by the following equation (7).
  • the expansion amount (P1-P0) of the process chamber 13 can be expressed as the following formula (8) from formulas (6) and (7).
  • the distance P0 of the detection position of the sensor 22 with respect to the Y-axis direction is determined from the actual measurement of the processing system 1 and the design data of the processing system 1. Note that the distance P0 may be obtained from the lengths L1 to L3 of the arm 30 in the unexpanded state and the rotation angles ⁇ 01 to ⁇ 03 of the joints 31 using the equation (6).
  • the expansion amounts ⁇ L1 to ⁇ L3 of each arm 30 can be calculated.
  • the expansion amount (P1-P0) of the process chamber 13 can be calculated by obtaining the distance P1 of the detection position of the sensor 22 with respect to the Y-axis direction from the equation (7).
  • Calculation unit 111 calculates lengths L1 to L3 of each arm 30 in the unexpanded state, calculated expansion amounts ⁇ L1 to ⁇ L3 of each of the plurality of arms 30, and rotation angles ⁇ 11′ to ⁇ 11′ of joints 31 detected by detection unit 110.
  • the amount of expansion of the process chamber 13 is calculated based on ⁇ 13′.
  • the calculation unit 111 uses equation (7) to determine the lengths L1 to L3 of each arm 30 in the uninflated state, the calculated expansion amounts ⁇ L1 to ⁇ L3 of each of the plurality of arms 30, and the detection unit 110.
  • the distance P1 is calculated from the rotation angles ⁇ 11′ to ⁇ 13′ of the joint 31 thus obtained.
  • the calculation unit 111 subtracts the distance P1 from the distance P0.
  • the process chamber 13 calculates the amount of expansion (P1-P0).
  • the process chamber 13 can calculate the amount of expansion.
  • FIG. 11 is a diagram illustrating an example of the control flow of the expansion amount calculation method according to the embodiment.
  • the detection unit 110 detects the rotation angles of the joints 31 in different postures equal to or greater than the number of arms 30 of the robot arm 12 (S10). For example, the control device 100 moves the robot arm 12 so that the projection 33 provided on the fork 32 passes the arrangement position of the sensor 20a. The detection unit 110 detects the rotation angles of the joints 31 at points E, G, and I at which the protrusions 33 are detected by the sensor 20a.
  • the calculation unit 111 calculates the expansion amount of each arm 30 based on the rotation angle of the joint 31 in each detected posture (S11), and ends the process. For example, the calculation unit 111 applies the distance Y by which the robot arm 12 expands and contracts and the rotation angles ⁇ 1′ to ⁇ 3′ of the joints 31 detected by the detection unit 110 to Equation (5) for each posture. Then, the calculation unit 111 calculates the expansion amounts ⁇ L1 to ⁇ L3 by solving the expansion amounts ⁇ L1 to ⁇ L3 in Expression (5) for each posture as unconstants.
  • the processing system 1 has the robot arm 12 (multi-joint arm), the detection unit 110, and the calculation unit 111.
  • the robot arm 12 has a plurality of arms 30 connected by rotatable joints 31 and can be expanded and contracted by rotating the joints 31 .
  • the detection unit 110 detects the rotation angles of the joints 31 of the robot arm 12 in different postures equal to or greater than the number of arms 30 of the robot arm 12 .
  • the calculation unit 111 calculates the expansion amount of each of the arms 30 based on the rotation angle of the joint 31 in each posture detected by the detection unit 110 . Thereby, the processing system 1 according to the present embodiment can obtain the amount of expansion of each arm 30 .
  • the calculation unit 111 calculates the length (L1 to L3) of each arm 30 in the unexpanded state when the plurality of arms 30 is not inflated, and the distance Y by which the robot arm 12 expands and contracts in each posture in the unexpanded state.
  • the amount of expansion of each of the plurality of arms 30 is calculated from the rotation angles ( ⁇ 1′ to ⁇ 3′) of the joints 31 in each posture detected by the detection unit 110 .
  • the processing system 1 according to the present embodiment can calculate the expansion amount of each arm 30 .
  • the calculation unit 111 calculates the distance Y by which the robot arm 12 expands and contracts, the length (L1 to L3) of each arm 30 in the unexpanded state, the rotation angles ( ⁇ 1′ to ⁇ 3′) of the joints 31, and a plurality of
  • the relational expression (equation (5)) showing the relationship between the expansion amounts ( ⁇ L1 to ⁇ L3) of the arm 30 includes the extension/contraction distance of the robot arm 12 and the rotation of the joint 31 detected by the detection unit 110 for each posture.
  • the calculation unit 111 calculates the expansion amounts of the plurality of arms 30 from the distance that the robot arm 12 expands and contracts in each posture, the length of each arm 30 in an unexpanded state, and the rotation angle of the joints 31 in each posture.
  • the expansion amount of each of the plurality of arms 30 is calculated by applying the rotation angle of the joint 31 in each posture detected by the detection unit 110 to the relational expression to be calculated. Also in this case, the processing system 1 according to the present embodiment can calculate the expansion amount of each arm 30 .
  • different postures are postures in which the robot arm 12 is extended and retracted to different distances.
  • the rotation angle of the joint 31 changes for each posture, so the processing system 1 according to the present embodiment can accurately calculate the expansion amount of each arm 30 from the rotation angle of the joint 31 for each posture.
  • the sensor 20 and the sensor 22 have the light source 21a and the light receiving sensor 21b, and the arrival of the robot arm 12 is detected when light is blocked from the light source 21a. It is not limited to this. Any method may be used for the sensors 20 and 22 as long as the arrival of the robot arm 12 can be detected.
  • the support portion 32a on one side of the fork 32 is provided with three rectangular protrusions 33 that protrude in the horizontal direction so that the position can be detected by the sensor 20.
  • the fork 32 may have any shape as long as the sensor 20 can detect the extended and retracted position.
  • the fork 32 may be provided with protrusions 33 on each of the two support portions 32a.
  • the protrusions 33 may be provided symmetrically on the fork 32 .
  • FIG. 12 is a diagram showing another example of the shape of the fork 32 according to the embodiment.
  • the fork 32 is provided with two Y-shaped support portions 32a that are branched on the tip side.
  • the two support portions 32a of the fork 32 are provided with protrusions 33 projecting outward in the horizontal direction near the ends connected to the arms 30c.
  • the two protrusions 33 provided on the two support portions 32a have a partially symmetrical shape.
  • the two protrusions 33 provided on the two support portions 32a are formed in a symmetrical shape on the tip side of the fork 32. As shown in FIG.
  • the two protrusions 33 are formed so that the tip side of the fork 32 is perpendicular to the tip side of the fork 32 and the end side of the fork 32 is formed obliquely so that the width gradually narrows with respect to the end side. there is Moreover, the protrusion 33 on one side of the two protrusions 33 is formed to extend to the end side of the protrusion 33 on the other side.
  • the substrate W placed on the fork 32 is shown in dotted lines. Further, in FIG. 12, when the substrate W is taken out from the load lock chamber 14 by the robot arm 12, the positions where the sensing regions of the sensors 20a and 20b are passed are indicated by dotted lines.
  • the control device 100 identifies the center of a circle passing through at least three of the points A to D as the center position O of the substrate W.
  • FIG. Further, four points E to H of the fork 32 are detected by the sensors 20a and 20b when the protrusion 33 passes through the sensing area.
  • the calculation unit 111 calculates the expansion amount of each arm 30 based on the rotation angle of the joint 31 in each detected posture. For example, from the rotation angle of each joint 31 at the average distance Y when points E and F are detected, the distance Y when point G is detected, and the distance Y when point H is detected, each arm 30 is calculated.
  • the processing system 1 can obtain the amount of expansion of each arm 30 . Further, when the substrate W is taken out from the load lock chamber 14 by the robot arm 12, the center position O of the substrate W and the amount of expansion of each arm 30 can be calculated at the same time, and the transfer position to the mounting table can be corrected.
  • FIG. 13 is a diagram showing another example of the shape of the fork 32 according to the embodiment.
  • the fork 32 is provided on two Y-shaped support portions 32a that branch toward the tip side.
  • the two support portions 32a of the fork 32 are formed symmetrically.
  • the fork 32 has a symmetrical slit 34 near the branched portion where the two support portions 32a branch.
  • the fork 32 is provided with protrusions 33 that horizontally protrude toward the tip side at the tips of two support portions 32a.
  • the fork 32 is provided with projections 33 extending from the support portions 32a toward the end portions at the branch portions of the two support portions 32a.
  • the substrate W placed on the fork 32 is shown in dotted lines.
  • the fork 32 is formed larger than the substrate W, and the protrusions 33 on the tip side of the two support portions 32a pass through the substrate W on which it is placed and are exposed.
  • the sensors 20a and 20b are arranged at intervals corresponding to the intervals between the two support portions 32a. Further, sensors 23a and 23b having the same configuration as the sensors 20a and 20b are arranged outside the sensors 20a and 20b.
  • the substrate W placed on the fork 32 is shown in dotted lines. Also, in FIG. 13, when the substrate W is taken out from the load lock chamber 14 by the robot arm 12, the positions where the sensing regions of the sensors 20a, 20b, 23a, and 23b are passed are indicated by dotted lines.
  • the substrate W passes through the sensing areas of the sensors 23a, 23b.
  • the control device 100 identifies the center of a circle passing through at least three of the points A to D as the center position O of the substrate W.
  • FIG. The tip of the fork 32, the slit 34, and the end pass through the sensing regions of the sensors 20a and 20b.
  • Six points E to J are detected by the sensors 20a and 20b when the tip of the fork 32, the slit 34, and the end pass through the sensing area.
  • the calculation unit 111 calculates the expansion amount of each arm 30 based on the rotation angle of the joint 31 in each detected posture.
  • the processing system 1 can obtain the amount of expansion of each arm 30 .
  • the central position O of the substrate W and the amount of expansion of each arm 30 can be calculated at the same time, and the transfer position to the mounting table can be corrected.
  • the substrate W may be any substrate such as a glass substrate.
  • FIG. 15 is a diagram showing another example of the processing system body 10 according to the embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant explanations are omitted.
  • each protrusion 33 provided on the fork 32 passes through the arrangement positions of the sensors 24a and 24b.
  • the control device 100 detects the rotation angle of each joint of the robot arm 12 when each protrusion 33 provided on the fork 32 passes through the arrangement position of the sensor 20, and detects a plurality of rotation angles based on the detected rotation angle of each joint.
  • the expansion amount of each arm 30 may be calculated.
  • processing system 11 vacuum transfer chamber 12 robot arm 13 process chamber 14 load lock chamber 15 loader module 20 sensors 30, 30a to 30c arms 31, 31a to 31c joint 32 fork 32a support 33 projection 100 controller 101 process controller 102 user Interface 103 Storage unit 110 Detection unit 111 Calculation unit W Board

Abstract

多関節アームは、複数のアームが回転可能な関節により接続され、関節を回転させることで伸縮可能とされている。検出部は、多関節アームのアーム数以上の異なる姿勢で多関節アームの関節の回転角度を検出する。算出部は、検出部により検出された各姿勢での関節の回転角度に基づいて複数のアームそれぞれの膨張量を算出する。

Description

搬送装置及び膨張量算出方法
 本開示は、搬送装置及び膨張量算出方法に関するものである。
 特許文献1は、基板を自動でセンタリングするときに、搬送装置のアームの熱膨張を判定する技術を開示する。
特表2018-523307号公報
 本開示は、各アームの膨張量を求める技術を提供する。
 本開示の一態様による搬送装置は、多関節アームと、検出部と、算出部とを有する。多関節アームは、複数のアームが回転可能な関節により接続され、関節を回転させることで伸縮可能とされている。検出部は、多関節アームのアーム数以上の異なる姿勢で多関節アームの関節の回転角度を検出する。算出部は、検出部により検出された各姿勢での関節の回転角度に基づいて複数のアームそれぞれの膨張量を算出する。
 本開示によれば、各アームの膨張量を求めることができる。
図1は、実施形態に係る処理システムの一例を示すシステム構成図である。 図2は、実施形態に係るロボットアームの構成の一例を示す図である。 図3は、実施形態に係るロードロック室と真空搬送室の断面の一例を示す図である。 図4は、実施形態に係る基板の中心位置の特定方法の一例を説明するための図である。 図5は、実施形態に係るロボットアームのアームを異なる姿勢として関節の回転角度を検出する一例を説明する図である。 図6は、実施形態に係るロボットアームの関節の回転角度の一例を示す図である。 図7は、実施形態に係るロボットアームのアームの膨張による回転角度の変化を説明する図である。 図8は、実施形態に係る処理システムの他の一例を示すシステム構成図である。 図9は、実施形態に係るロボットアームの関節の回転角度の一例を示す図である。 図10は、実施形態に係るロボットアームの関節の回転角度の一例を示す図である。 図11は、実施形態に係る膨張量算出方法の制御の流れの一例を説明する図である。 図12は、実施形態に係るフォークの形状の他の一例を示す図である。 図13は、実施形態に係るフォークの形状の他の一例を示す図である。 図14は、実施形態に係るロボットアームの先端のアームの構成の一例を示す図である。 図15は、実施形態に係る処理システム本体の他の一例を示す図である。
 以下、図面を参照して本願の開示する搬送装置及び膨張量算出方法の実施形態について詳細に説明する。なお、本実施形態により、開示する搬送装置及び膨張量算出方法が限定されるものではない。
 半導体ウェハ(以下、「ウェハ」という。)等の基板を搬送する多関節アームなどの搬送装置が知られている。多関節アームは、複数のアームが回転可能な関節により接続され、アームで基板を支持して搬送する。
 ところで、熱の影響により、多関節アームの搬送位置に誤差が発生する場合がある。例えば、多関節アームが、高温の基板処理を実施するプロセスチャンバに基板を搬送する場合、熱の影響により各アームが熱膨張し、多関節アームの搬送位置に誤差が発生する場合がある。
 そこで、搬送位置の誤差を抑制するため、各アームの膨張量を求める技術が期待されている。なお、特許文献1は、多関節アーム全体として熱膨張を判定するもので、各アームの膨張量を求めるものではない。
(実施形態)
[処理システム1の構成]
 実施形態について説明する。以下では、本開示の搬送装置の機能を含んだ処理システム1について説明する。図1は、実施形態に係る処理システム1の一例を示すシステム構成図である。図1では、便宜的に内部の構成要素が透過するように図示されている。処理システム1は、ウェハ等の基板の基板処理を実施する。処理システム1は、処理システム本体10と、処理システム本体10を制御する制御装置100とを備える。処理システム本体10は、例えば図1に示されるように、真空搬送室11と、複数のプロセスチャンバ13と、複数のロードロック室14と、ローダモジュール15とを備える。処理システム1は、本開示の搬送装置の一例である。
 真空搬送室11には、複数のプロセスチャンバ13及び複数のロードロック室14が接続されている。本実施形態において、真空搬送室11には4個のプロセスチャンバ13が接続されている。また、真空搬送室11には2個のロードロック室14が接続されている。なお、真空搬送室11には3個以下のプロセスチャンバ13が接続されていてもよく、5個以上のプロセスチャンバ13が接続されていてもよい。また、真空搬送室11には、複数のプロセスチャンバ13の他に、複数のプロセスチャンバ13が接続された他の真空搬送室11がさらに接続されていてもよい。また、真空搬送室11には1個のロードロック室14が接続されていてもよく、3個以上のロードロック室14が接続されていてもよい。
 プロセスチャンバ13は、基板に対して、例えば低圧環境下でエッチングや成膜等の処理を施す。プロセスチャンバ13と真空搬送室11とはゲートバルブ131によって開閉可能に仕切られている。プロセスチャンバ13は、本開示のチャンバの一例である。それぞれのプロセスチャンバ13は、製造工程の中で同一の工程を実行するモジュールであってもよく、異なる工程を実行するモジュールであってもよい。
 それぞれのロードロック室14は、ゲートバルブ140及びゲートバルブ141を有し、内部の圧力を、所定の真空度の圧力から大気圧に、又は、大気圧から所定の真空度の圧力に切り替える。ロードロック室14と真空搬送室11とはゲートバルブ140によって開閉可能に仕切られている。また、ロードロック室14とローダモジュール15とはゲートバルブ141によって開閉可能に仕切られている。
 真空搬送室11には、複数のセンサ20が設けられている。また、真空搬送室11内には、ロボットアーム12が配置されている。本実施形態において、ロボットアーム12は、それぞれ独立に駆動可能な3個の関節を有する。なお、ロボットアーム12は、それぞれ独立に駆動可能な4個以上の関節を有していてもよい。
 真空搬送室11内は、所定の真空度に保たれている。ロボットアーム12は、所定の真空度に減圧されたロードロック室14内から処理前の基板を取り出して、いずれかのプロセスチャンバ13内の載置台130に搬送する。また、ロボットアーム12は、処理後の基板をプロセスチャンバ13から取り出して、他のプロセスチャンバ13又はロードロック室14内に搬送する。
 それぞれのセンサ20は、真空搬送室11とロードロック室14の接続部付近に配置されている。本実施形態では、ロードロック室14ごとに、真空搬送室11とロードロック室14の接続部付近の基板Wが通過する位置に、2個ずつセンサ20a、20bが配置されている。これにより、ロボットアーム12によって基板がロードロック室14から取り出される際に、センサ20a、20bは、基板Wに関するセンシング情報を迅速に取得することができる。本実施形態において、センサ20は、1つのロードロック室14に対して2個設けられている。なお、センサ20は、1つのロードロック室14に対して3個以上設けられていてもよい。
 図2は、実施形態に係るロボットアーム12の構成の一例を示す図である。ロボットアーム12は、複数のアーム30が回転可能な関節31により接続され、関節31を回転させることで伸縮可能とされた多関節アームとして構成されている。例えば、図2に示すロボットアーム12は、アーム30a~30cに関節31a~31cが設けられ、アーム30a、30bが関節31bにより回転可能に接続され、アーム30b、30cが関節31cにより回転可能に接続されている。各関節31には、関節31を回転駆動させる駆動機構が設けられ、駆動機構によりアーム30を水平方向に回転させる。例えば、各関節31には、駆動機構として、それぞれサーボモータや減速機等が設けられている。各関節31は、サーボモータの駆動力が減速機を介して伝達されて回転駆動することで各アーム30を水平方向に回転させる。ロボットアーム12は、各関節31の回転角度が検出可能とされている。例えば、関節31a~31cのサーボモータの回転軸にエンコーダが設けられ、関節31a~31cのエンコーダからフィードバック信号に基づいて関節31a~31cの回転角度が検出可能とされている。
 先端のアーム30cは、先端側が2つの支持部32aに分岐したY字形状のフォーク32が設けられている。フォーク32は、例えば、セラミック等の熱膨張が少ない材料で形成されている。ロボットアーム12は、関節31においてアーム30を回転させることで水平方向に伸縮可能とされ、フォーク32で基板Wを支持して基板Wを搬送する。ロボットアーム12は、センサ20により伸縮した位置を検出可能な形状とされている。例えば、図2に示すロボットアーム12は、フォーク32の一方の支持部32aに、水平方向に突出した矩形状の3つの突部33が設けられている。
 図3は、実施形態に係るロードロック室14と真空搬送室11の断面の一例を示す図である。センサ20は、光源21a及び受光センサ21bを有する。光源21a及び受光センサ21bは、真空搬送室11の外部であって、真空搬送室11の上部及び下部にそれぞれ設けられている。なお、本実施形態において、光源21aが真空搬送室11の上部に設けられ、受光センサ21bが真空搬送室11の下部に設けられているが、光源21aは真空搬送室11の下部に設けられ、受光センサ21bは真空搬送室11の上部に設けられていてもよい。
 光源21aは、真空搬送室11の上部の壁に設けられた窓11aを介して、真空搬送室11内に光を照射する。光源21aは、例えばレーザ光を真空搬送室11内に照射する。受光センサ21bは、真空搬送室11の下部の壁に設けられた窓11bを介して、光源21aから照射された光を受光する。窓11a及び窓11bは、例えば石英等の光を透過可能な材料により構成される。受光センサ21bは、光源21aから照射された光が遮られたか否かを示す情報を、センシング情報として制御装置100へ出力する。光源21aから光が照射される領域は、センシング領域の一例である。
 図1に戻る。ロードロック室14には、ローダモジュール15が接続されている。ローダモジュール15内には、ロボットアーム150が設けられている。ローダモジュール15には、処理前又は処理後の複数の基板Wを収容可能な容器(例えば、FOUP:Front Opening Unified Pod)が接続される複数のロードポート16が設けられている。ロボットアーム150は、ロードポート16に接続された容器から処理前の基板Wを取り出してロードロック室14内に搬送する。また、ロボットアーム150は、内部の圧力が大気圧に戻されたロードロック室14から処理後の基板Wを取り出してロードポート16に接続された容器内に搬送する。なお、ローダモジュール15には、ロードポート16に接続された容器から取り出された基板Wの向きを調整するアライメントユニットが設けられていてもよい。
 上記のように構成された処理システム1は、制御装置100(制御部)によって、動作が統括的に制御される。制御装置100は、例えば、コンピュータであり、処理システム1の各部を制御する。処理システム1は、制御装置100によって、動作が統括的に制御される。
 制御装置100は、処理システム1の各部を制御するコントローラ101と、ユーザインタフェース102と、記憶部103とを有する。
 ユーザインタフェース102は、工程管理者が処理システム1を管理するためにコマンドの入力操作を行うキーボードや、処理システム1の稼動状況を可視化して表示するディスプレイ等から構成されている。
 記憶部103には、処理システム1で実行される各種処理をコントローラ101の制御にて実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記憶されたレシピが格納されている。また、記憶部103には、基板処理を行う上での装置やプロセスに関するパラメータ等が格納されている。なお、制御プログラムやレシピ、パラメータは、コンピュータで読み取り可能なコンピュータ記録媒体(例えば、ハードディスク、DVDなどの光ディスク、フレキシブルディスク、半導体メモリ等)に記憶されていてもよい。また、制御プログラムやレシピ、パラメータは、他の装置に記憶され、例えば専用回線を介してオンラインで読み出して利用されてもよい。
 コントローラ101は、CPU、プログラムやデータを格納するための内部メモリを有し、記憶部103に記憶された制御プログラムを読み出し、読み出した制御プログラムの処理を実行する。コントローラ101は、制御プログラムが動作することにより各種の処理部として機能する。例えば、コントローラ101は、後述する検出部110及び算出部111の機能を有する。なお、本実施形態では、コントローラ101が、各種の処理部として機能する場合を例に説明するが、これに限定されるものではない。例えば、検出部110及び算出部111の機能を複数のコントローラで分散して実現してもよい。
[基板の中心位置の特定方法]
 次に、基板Wの中心位置の特定方法について説明する。図4は、実施形態に係る基板Wの中心位置の特定方法の一例を説明するための図である。ロボットアーム12によって基板Wがロードロック室14から取り出される際に、センサ20a、20bは、センシング情報を制御装置100へ出力する。ロボットアーム12の先端のフォーク32上の基板Wがセンシング領域を通過した場合、例えば図4の実線で示されるように、基板W上の線分AB及び線分CDにおいて、光源21aから照射された光が遮られる。制御装置100は、センサ20a、20bから出力されたセンシング情報と、フォーク32の位置情報とに基づいて、点A~Dの中の少なくとも3点を通る円の中心を基板Wの中心位置Oとして特定する。フォーク32の位置情報は、例えば、ロボットアーム12の各アーム30の長さや各関節31の角度等に基づいて特定される。各関節31の角度は、関節31a~31cのエンコーダからのフィードバック信号に基づいて検出する。図4の例では、基板Wの中心位置Oと、フォーク32の基準位置O’とはずれている。
 なお、フォーク32に対する基板Wの位置や向きによっては、基板Wが移動する際に基板WのノッチNがセンシング領域を通過したり、フォーク32によって光が遮られる場合がある。この場合、点A~Dの全てを通る円の中心の位置が基板Wの中心位置Oと異なる場合や、点A~Dの全てを通る円が存在しない場合がある。そのため、点A~Dをそれぞれ1つずつ除外した3点の組み合わせ4組のうち、2組以上において算出された円の中心位置同士が所定距離未満である場合、その中心位置を基板Wの中心位置Oとして特定することが好ましい。基板Wに形成されたノッチNは、基板Wの基準方向を示すマーカーの一例である。なお、基板Wの基準方向を示すマーカーは、基板Wに形成されたオリエンテーションフラットであってもよい。
[アームの膨張量の算出方法]
 次に、ロボットアーム12の各アーム30の膨張量の算出方法について説明する。処理システム1は、ロボットアーム12のアーム数以上の異なる姿勢でロボットアーム12の関節31の回転角度を検出する。
 図5は、実施形態に係るロボットアーム12のアーム30を異なる姿勢として関節31の回転角度を検出する一例を説明する図である。例えば、制御装置100は、センサ20aの配置位置をフォーク32に設けた突部33が通過するようにロボットアーム12を移動させる。センサ20aの配置位置を突部33が通過するようにロボットアーム12を移動させる場合、ロボットアーム12は、全体が伸びるように関節31の回転角度が変化するため、各アーム30の姿勢が変化する。センサ20aは、センシング情報を制御装置100へ出力する。ロボットアーム12は、各関節31のエンコーダのフィードバック信号を制御装置100へ出力する。フォーク32に設けた突部33がセンシング領域を通過した場合、例えば図5の実線で示されるように、それぞれの突部33の線分EF、線分GH及び線分IJにおいて、光源21aから照射された光が遮られる。
 検出部110は、ロボットアーム12の各関節31のエンコーダからのフィードバック信号に基づいて各関節31の回転角度を検出する。なお、各関節31のエンコーダのフィードバック信号は、ロボットアーム12を制御する制御部に入力し、当該制御部が各関節31の角度を特定してもよい。検出部110は、ロボットアーム12の制御部から各関節31の回転角度を取得することで、各関節31の回転角度を検出してもよい。
 検出部110は、ロボットアーム12のアーム30の数以上の異なる姿勢でロボットアーム12の関節31の回転角度を検出する。本実施形態では、検出部110は、センサ20aから出力されたセンシング情報と、ロボットアーム12の各関節の回転角度の情報に基づいて、異なる姿勢とした際の各関節31の回転角度を検出する。例えば、検出部110は、各突部33が光源21aから照射された光を遮った点E、点G及び点Iでの関節31a~31cの回転角度を検出する。
 図6は、実施形態に係るロボットアーム12の関節31の回転角度の一例を示す図である。検出部110は、ロボットアーム12が固定された位置を基準点とした水平面内で基準点を通過する軸60を定め、軸60からの各関節31の回転角度を検出する。軸60の方向は、処理システム1の設計時等に予め定めればよい。
 検出部110は、各関節31の回転角度が軸60を基準としていない場合、軸60を基準とした各関節31の回転角度に補正する。例えば、関節31aの回転角度が別の軸61を基準とした回転角度φ1である場合、関節31aの回転角度θ1は、以下の式(1)のように補正する。
 θ1 = φ1+α ・・・(1)
 ここで、
 θ1は、軸60を基準としたアーム30aの回転角度である。
 φ1は、軸61を基準としたアーム30aの回転角度である。
 αは、軸60を基準とした軸60と軸61の角度差である。
 また、例えば、関節31bの回転角度がアーム30aの方向を基準としたアーム30aに対する回転角度φ2である場合、関節31bの回転角度θ2は、以下の式(2)のように補正する。
 θ2 = φ2+θ1 = φ2+φ1+α ・・・(2)
 ここで、
 θ2は、軸60を基準としたアーム30bの回転角度である。
 φ2は、アーム30aの方向を基準としたアーム30bの回転角度である。
 また、例えば、関節31cの回転角度がアーム30bの方向を基準としたアーム30bに対する回転角度φ3である場合、関節31cの回転角度θ3は、以下の式(3)のように補正する。
 θ3 = φ3+θ2 = φ3+φ2+φ1+α ・・・(3)
 ここで、
 θ3は、軸60を基準としたアーム30cの回転角度である。
 φ3は、アーム30bの方向を基準としたアーム30cの回転角度である。
 検出部110は、各突部33が光源21aから照射された光を遮った点E、点G及び点Iについて、各関節31の回転角度θ1~θ3をそれぞれ検出する。
 ロボットアーム12の各アーム30が膨張した膨張状態の場合、回転角度θ1~θ3が変化する。制御装置100は、センサ20aの配置位置をフォーク32に設けた突部33が通過するようにロボットアーム12を移動させる。センサ20aの配置位置を突部33が通過するようにロボットアーム12を移動させる場合、ロボットアーム12は、全体が伸びるように関節31の回転角度が変化するため、各アーム30の姿勢が変化する。センサ20aは、センシング情報を制御装置100へ出力する。ロボットアーム12は、各関節31のエンコーダのフィードバック信号を制御装置100へ出力する。フォーク32に設けた突部33がセンシング領域を通過した場合、例えば図5の実線で示されるように、それぞれの突部33の線分EF、線分GH及び線分IJにおいて、光源21aから照射された光が遮られる。
 ここで、本実施形態に係るロボットアーム12は、熱膨張が少ない材料で形成されたフォーク32がアーム30cに設けられている。図14は、実施形態に係るロボットアーム12の先端のアーム30cの構成の一例を示す図である。図14には、ロボットアーム12の先端のアーム30cが示されている。先端のアーム30cには、先端側にフォーク32が設けられている。図14には、アーム30cとフォーク32との接続部分から点Eの位置までの距離LFEと、接続部分から点Gの位置までの距離LFGと、接続部分から点Iの位置までの距離LFIと、アーム30cの長さL3が示されている。フォーク32は、熱膨張が少ない材料で形成されている。このため、アーム30cでは、温度変化が発生しても、フォーク32部分の距離LFE、LFG、LFIがほとんど変化せず、アーム30cの長さL3が主に変化する。
 図7は、実施形態に係るロボットアーム12のアーム30の膨張による回転角度の変化を説明する図である。図7は、軸60をX軸とし、水平面内で軸60に垂直な方向をY軸として、各突部33が光源21aから照射された光を遮った点Eでの回転角度の変化を示している。図7には、アーム30が膨張していない未膨張状態の場合のロボットアーム12を実線で模式的に示しており、アーム30が膨張した膨張状態の場合のロボットアーム12を破線で模式的に示している。
 ロボットアーム12のY軸方向に対する距離Yは、各アーム30の長さや各関節31の回転角度などから算出できる。例えば、アーム30が未膨張状態のロボットアーム12のアーム30a~30cの長さをL1~L3とする。また、図7に実線で示したように、アーム30が未膨張状態の場合において各突部33が光源21aから照射された光を遮った点Eでの各関節31の回転角度θ1E~θ3Eとする。この場合、Y軸方向に対する点Eの距離YEは、以下の式(4)のように表せる。
 YE = L1・sinθ1E+L2・sinθ2E
        +(L3+LFE)・sinθ3E ・・・(4)
 ここで、
 YEは、Y軸方向に対する点Eの距離である。
 L1~L3は、未膨張状態のアーム30a~30cの長さである。
 LFEは、フォーク32のアーム30cとの接続部分から点Eの位置までの距離である。
 θ1E~θ3Eは、未膨張状態の場合の点Eでの関節31a~31cの回転角度である。
 未膨張状態のロボットアーム12のアーム30a~30cの長さL1~L3は、例えば、ロボットアーム12の仕様に記載されたアーム30a~30cの長さ、あるいは、常温時のアーム30a~30cの長さを用いる。
 一方、アーム30が膨張状態の場合のロボットアーム12の各アーム30a~30cの長さ方向の膨張量をΔL1~ΔL3とする。また、図7に破線で示したように、アーム30が膨張状態において各突部33が光源21aから照射された光を遮った点Eでの各関節31の回転角度θ1´E~θ3´Eとする。この場合、Y軸方向に対する点Eの距離YEは、以下の式(5)のように表せる。なお、フォーク32は、熱膨張が少ない材料で形成されており、熱膨張による長さの変化が無いものとしている。フォーク32の膨張量は、アーム30cの長さ方向の膨張量ΔL3に含まれるものとしてもよい。また、フォーク32部分の距離LFEは、アーム30cに含まれているものとして、式(4)、(5)から省略してもよい。
 YE = (L1+ΔL1)・sinθ1´E+(L2+ΔL2)・sinθ2´E
    +(L3+ΔL3+LFE)・sinθ3´E ・・・(5)
 ここで、
 ΔL1~ΔL3は、アーム30a~30cの長さの膨張量である。
 θ1´E~θ3´Eは、膨張状態の場合の点Eでの関節31a~31cの回転角度である。
 Y軸方向に対する点Eの距離YE、未膨張状態のアーム30の長さL1~L3、フォーク32部分の距離LFEは、処理システム1の実際の計測や、処理システム1の設計データから定まる。なお、距離YEは、未膨張状態のアーム30の長さL1~L3と関節31の回転角度θ1~θ3から式(4)により求めてもよい。
 検出部110は、各突部33が光源21aから照射された光を遮った点E、点G及び点Iにおいて、各関節31の回転角度θ1~θ3をそれぞれ検出する。ここで、ロボットアーム12の各アーム30が膨張した場合、検出部110により検出される回転角度θ1~θ3は、回転角度θ1´~θ3´となる。例えば、点Eでは、図7に示したように、ロボットアーム12のアーム30が未膨張状態の場合、検出部110により回転角度θ1E~θ3Eが検出される。一方、ロボットアーム12の各アーム30が膨張した場合、検出部110により回転角度θ1´E~θ3´Eが検出される。また、点Gでは、ロボットアーム12のアーム30が未膨張状態の場合、検出部110により回転角度θ1G~θ3Gが検出される。一方、ロボットアーム12の各アーム30が膨張した場合、検出部110により回転角度θ1´G~θ3´Gが検出される。また、点Iでは、ロボットアーム12のアーム30が未膨張状態の場合、検出部110により回転角度θ1I~θ3Iが検出される。一方、ロボットアーム12の各アーム30が膨張した場合、検出部110により回転角度θ1´I~θ3´Iが検出される。
 式(5)において、距離YE及びアーム30の長さL1~L3は、処理システム1の実際の計測や、処理システム1の設計データから定まる。また、回転角度θ1´E~θ3´Eは、検出部110による検出により定まる。よって、式(5)において、未知数は、アーム30の膨張量ΔL1~ΔL3となる。
 点E、点G及び点Iでの関節31の回転角度θ1´~θ3´からそれぞれ、Y軸方向に対する点Eの距離YE、Y軸方向に対する点Gの距離YG、及び、Y軸方向に対する点Iの距離YIについて3個の式(5)が得られる。例えば、Y軸方向に対する点Gの距離YGは、式(5)の距離LFEを、フォーク32のアーム30cとの接続部分から点Gの位置までの距離LFGに代え、また、回転角度θ1´E~θ3´Eを回転角度θ1´G~θ3´Gに代えることで得られる。また、Y軸方向に対する点Iの距離YIは、式(5)の距離LFEを、フォーク32のアーム30cとの接続部分から点Iの位置までの距離LFIに代え、また、回転角度θ1´I~θ3´Iを回転角度θ1´G~θ3´Gに代えることで得られる。距離YG、YI、距離LFG、LFIは、処理システム1の実際の計測や、処理システム1の設計データから定まる。なお、距離LFE、LFG、LFIは、アーム30cに含まれているものとして、式(5)から省略してもよい。式(5)の未知数は、膨張量ΔL1~ΔL3の3個であるため、3個の式(5)から、膨張量ΔL1~ΔL3を未定数として方程式を解くことで、膨張量ΔL1~ΔL3を算出できる。
 点Eでの関係を例に式(5)を説明したが、式(5)は、ロボットアーム12が伸縮した距離Y(YE)と、未膨張状態における各アーム30の長さL1~L3と、関節31の回転角度θ1´~θ3´(θ1´E~θ3´E)と、アーム30の長さの膨張量ΔL1~ΔL3との関係を示した関係式である。
 算出部111は、式(5)に、姿勢ごとに、ロボットアーム12が伸縮した距離Yと、検出部110により検出された関節31の回転角度θ1´~θ3´を適用する。そして、算出部111は、姿勢ごとの式(5)の膨張量ΔL1~ΔL3を未定数として解くことで、膨張量ΔL1~ΔL3を算出する。
 このように、本実施形態によれば、各アーム30の膨張量ΔL1~ΔL3を求めることができる。
 制御装置100は、ロボットアーム12により基板Wを搬送する場合、算出部111により算出したアーム30の膨張量に基づいてロボットアーム12の搬送位置を補正する。例えば、制御装置100は、アーム30a~30cの長さが膨張量ΔL1~ΔL3の分長くなったものとして、関節31a~31cの回転角度を補正する。これにより、アーム30が熱の影響により膨張した場合でも、ロボットアーム12の搬送位置の誤差を小さく抑制できる。
 なお、算出部111は、次のようにしてアーム30の膨張量を算出してもよい。例えば、3つの姿勢についての3個の式(5)は、式を変換することにより、膨張量ΔL1~ΔL3を解とし3個の式に変換できる。変換した3個の式は、各姿勢でのロボットアーム12が伸縮した距離Y(YE、YG、YI)と、未膨張状態における各アーム30の長さL1~L3と、各姿勢での関節31の回転角度θ1´~θ3´から、アーム30の膨張量ΔL1~ΔL3をそれぞれ算出する関係式となる。算出部111には、このようなアーム30の膨張量ΔL1~ΔL3をそれぞれ算出する関係式が予め設定される。例えば、算出部111には、関係式がプログラムされる。算出部111は、設定された関係式に、検出部110により検出された各姿勢での関節31の回転角度θ1´~θ3´を適用して、複数のアーム30それぞれの膨張量ΔL1~ΔL3を算出する。この場合も、各アーム30の膨張量ΔL1~ΔL3を求めることができる。
 また、上述した実施形態では、ロボットアーム12のアーム30と同じ3つの姿勢での関節31の回転角度θ1´~θ3´からアーム30の膨張量ΔL1~ΔL3を算出する場合を例に説明した。しかし、4つ以上の姿勢で関節31の回転角度θ1´~θ3´を検出してもよい。例えば、フォーク32の一方の支持部32aに、4つ以上の突部33を設け、センサ20aの配置位置を各突部33が通過する4つ以上の姿勢での関節31の回転角度θ1´~θ3´を検出してもよい。また、真空搬送室11とロードロック室14の接続部付近に配置された2つのセンサ20a、20bの位置において、各突部33が通過する4つ以上の姿勢での関節31の回転角度θ1´~θ3´を検出してもよい。
 算出部111は、4つ以上の姿勢で関節31の回転角度θ1´~θ3´を検出した場合、4つ以上の姿勢について、3つの姿勢の組み合わせごとに、3つの姿勢での関節31の回転角度θ1´~θ3´からアーム30の膨張量をそれぞれ算出する。そして、算出部111は、アーム30ごとに膨張量をそれぞれの平均した平均値をアーム30の膨張量ΔL1~ΔL3と算出する。このようにアーム30の膨張量を算出することで膨張量ΔL1~ΔL3の精度を高めることができる。
 また、上述した実施形態では、1つのセンサ20でロボットアーム12の複数の姿勢を検出する場合を例に説明した。しかし、複数のセンサ20を用いてロボットアーム12の複数の姿勢を検出してもよい。例えば、ロボットアーム12のアーム30の数以上の異なる位置にセンサ20を配置し、検出部110が各センサ20によりフォーク32の一方の支持部32aの先端を検出した各姿勢での関節31の回転角度θ1´~θ3´を検出してもよい。
 センサ20の配置位置は、真空搬送室11とロードロック室14の接続部付近に限定されるものではない。センサ20は、ロボットアーム12が届く範囲であり、熱などの影響による配置位置の変化が小さい位置であれば、何れの位置であってもよい。例えば、センサ20は、真空搬送室11内であれば何れの位置に配置してもよい。
 ところで、プロセスチャンバ13は、高温で基板処理を実施する場合、水平方向に熱膨張する場合がある。そこで、本開示の技術を用いて、プロセスチャンバ13の膨張量を検出してもよい。図8は、実施形態に係る処理システムの他の一例を示すシステム構成図である。図8は、図1と同一の部位には同一の符号を付し、重複する説明を省略する。図8に示す処理システム1は、プロセスチャンバ13に、センサ20と同様のセンサ22が設けられている。
 検出部110は、プロセスチャンバ13に設けたセンサ22でロボットアーム12を検出した際の関節31の回転角度を検出する。例えば、制御装置100は、プロセスチャンバ13の膨張量を検出する場合、プロセスチャンバ13に設けたセンサ22の配置位置をフォーク32に設けた突部33が通過するようにロボットアーム12を移動させる。検出部110は、ロボットアーム12の突部33を検出した際の関節31の回転角度を検出する。例えば、検出部110は、最初の突部33(例えば、点E)を検出した際の関節31a~31cの回転角度を検出する。
 図9は、実施形態に係るロボットアーム12の関節31の回転角度の一例を示す図である。図9は、プロセスチャンバ13が未膨張状態の場合の各関節31の回転角度を示す図である。図9には、アーム30が未膨張状態の場合のロボットアーム12を実線で模式的に示しており、アーム30が膨張状態の場合のロボットアーム12を破線で模式的に示している。アーム30が未膨張状態の場合のロボットアーム12の各関節31の回転角度をθ01~θ03とし、未膨張状態における各アーム30の長さをL1~L3とする。また、アーム30が膨張状態の場合のロボットアーム12の各アーム30の長さ方向の膨張量をΔL1~ΔL3とし、ロボットアーム12の各関節31の回転角度をθ01´~θ03´とする。この場合、Y軸方向に対するセンサ22の検出位置の距離P0は、以下の式(6)のように表せる。
P0 = L1・sinθ01+L2・sinθ02+(L3+LFE)・sinθ03
  = (L1+ΔL1)・sinθ01´+(L2+ΔL2)・sinθ02´
    +(L3+ΔL3+LFE)・sinθ03´ ・・・(6)
 図10は、実施形態に係るロボットアーム12の関節31の回転角度の一例を示す図である。図10は、プロセスチャンバ13が膨張状態の場合の各関節31の回転角度を示す図である。図10には、アーム30が未膨張状態の場合のロボットアーム12を実線で模式的に示しており、アーム30が膨張状態の場合のロボットアーム12を破線で模式的に示している。アーム30が未膨張状態の場合のロボットアーム12の各関節31の回転角度をθ11~θ13とする。また、アーム30が膨張状態の場合のロボットアーム12の各アーム30の長さ方向の膨張量をΔL1~ΔL3とし、ロボットアーム12の各関節31の回転角度をθ11´~θ13´とする。この場合、Y軸方向に対するセンサ22の検出位置の距離P1は、以下の式(7)のように表せる。
P1 = L1・sinθ11+L2・sinθ12+(L3+LFE)・sinθ13
  = (L1+ΔL1)・sinθ11´+(L2+ΔL2)・sinθ12´
    +(L3+ΔL3+LFE)・sinθ13´ ・・・(7)
 この場合、プロセスチャンバ13が膨張量(P1-P0)は、式(6)、式(7)から、以下の式(8)のように表せる。
P1-P0=L1・sinθ11+L2・sinθ12
    +(L3+LFE)・sinθ13-{L1・sinθ01
    +L2・sinθ02+(L3+LFE)・sinθ03}
  =(L1+ΔL1)・sinθ11´+(L2+ΔL2)・sinθ12´
     +(L3+ΔL3+LFE)・sinθ13´
   -{(L1+ΔL1)・sinθ01´+(L2+ΔL2)・sinθ02´
    +(L3+ΔL3+LFE)・sinθ03´} ・・・(8)
 Y軸方向に対するセンサ22の検出位置の距離P0は、処理システム1の実際の計測や、処理システム1の設計データから定まる。なお、距離P0は、未膨張状態のアーム30の長さL1~L3と関節31の回転角度θ01~θ03から式(6)により求めてもよい。
 本実施形態では、各アーム30の膨張量ΔL1~ΔL3を算出できる。距離P0が定まっている場合、式(7)により、Y軸方向に対するセンサ22の検出位置の距離P1を求めることで、プロセスチャンバ13の膨張量(P1-P0)を算出できる。
 算出部111は、未膨張状態における各アーム30の長さL1~L3と、算出した複数のアーム30それぞれの膨張量ΔL1~ΔL3と、検出部110により検出された関節31の回転角度θ11´~θ13´に基づいて、プロセスチャンバ13の膨張量を算出する。例えば、算出部111は、式(7)を用いて、未膨張状態における各アーム30の長さL1~L3と、算出した複数のアーム30それぞれの膨張量ΔL1~ΔL3と、検出部110により検出された関節31の回転角度θ11´~θ13´とから距離P1を算出する。そして、算出部111は、距離P0から距離P1を減算することで。プロセスチャンバ13が膨張量(P1-P0)を算出する。
 このように、本実施形態によれば、アーム30が膨張した場合でも、プロセスチャンバ13が膨張量を算出できる。
[膨張量算出方法]
 次に、処理システム1がロボットアーム12のアーム30の膨張量を算出する膨張量算出方法の制御の流れの一例について説明する。図11は、実施形態に係る膨張量算出方法の制御の流れの一例を説明する図である。
 検出部110は、ロボットアーム12のアーム30の数以上の異なる姿勢で関節31の回転角度を検出する(S10)。例えば、制御装置100は、センサ20aの配置位置をフォーク32に設けた突部33が通過するようにロボットアーム12を移動させる。検出部110は、各突部33をセンサ20aで検出した点E、点G及び点Iでの関節31の回転角度を検出する。
 算出部111は、検出された各姿勢での関節31の回転角度に基づいてアーム30それぞれの膨張量を算出し(S11)、処理を終了する。例えば、算出部111は、式(5)に、姿勢ごとに、ロボットアーム12が伸縮した距離Yと、検出部110により検出された関節31の回転角度θ1´~θ3´を適用する。そして、算出部111は、姿勢ごとの式(5)の膨張量ΔL1~ΔL3を未定数として解くことで、膨張量ΔL1~ΔL3を算出する。
 このように、本実施形態に係る処理システム1は、ロボットアーム12(多関節アーム)と、検出部110と、算出部111とを有する。ロボットアーム12は、複数のアーム30が回転可能な関節31により接続され、関節31を回転させることで伸縮可能とされている。検出部110は、ロボットアーム12のアーム30の数以上の異なる姿勢でロボットアーム12の関節31の回転角度を検出する。算出部111は、検出部110により検出された各姿勢での関節31の回転角度に基づいて複数のアーム30それぞれの膨張量を算出する。これにより、本実施形態に係る処理システム1は、各アーム30の膨張量を求めることができる。
 また、算出部111は、複数のアーム30が膨張していない未膨張状態における各アーム30の長さ(L1~L3)と、未膨張状態における各姿勢でのロボットアーム12が伸縮した距離Yと、検出部110により検出された各姿勢での関節31の回転角度(θ1´~θ3´)から、複数のアーム30それぞれの膨張量を算出する。これにより、本実施形態に係る処理システム1は、各アーム30の膨張量を算出できる。
 また、算出部111は、ロボットアーム12が伸縮した距離Yと、未膨張状態における各アーム30の長さ(L1~L3)と、関節31の回転角度(θ1´~θ3´)と、複数のアーム30の膨張量(ΔL1~ΔL3)との関係を示した関係式(式(5))に、姿勢ごとに、ロボットアーム12が伸縮した距離と、検出部110により検出された関節31の回転角度を適用し、姿勢ごとの関係式の複数のアーム30の膨張量を未定数として解くことで、複数のアーム30それぞれの膨張量を算出する。これにより、本実施形態に係る処理システム1は、各アーム30の膨張量を算出できる。
 また、算出部111は、各姿勢でのロボットアーム12が伸縮した距離と、未膨張状態における各アーム30の長さと、各姿勢での関節31の回転角度から、複数のアーム30の膨張量をそれぞれ算出する関係式に、検出部110により検出された各姿勢での関節31の回転角度を適用して、複数のアーム30それぞれの膨張量を算出する。この場合も、本実施形態に係る処理システム1は、各アーム30の膨張量を算出できる。
 また、異なる姿勢は、ロボットアーム12を異なる距離に伸縮する姿勢とする。これにより、各姿勢で関節31の回転角度が変わるため、本実施形態に係る処理システム1は、各姿勢で関節31の回転角度から各アーム30の膨張量を精度よく算出できる。
 以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記の実施形態では、センサ20及びセンサ22は光源21a及び受光センサ21bを有し、光源21aから光が遮られたことでロボットアーム12の到達を検出する場合を例に説明したが、これに限定されるものではない。センサ20及びセンサ22はロボットアーム12の到達を検出できれば何れの方式を用いてもよい。
 また、上記の実施形態では、図2に示すように、フォーク32の一方の支持部32aに、水平方向に突出した矩形状の3つの突部33を設けてセンサ20により位置を検出可能とした場合を例に説明したが、これに限定されるものではない。フォーク32は、伸縮した位置をセンサ20により検出可能であれば、形状は何れであってもよい。例えば、フォーク32は、2つの支持部32aにそれぞれ突部33を設けてもよい。また、突部33は、フォーク32に対称に設けてもよい。
 図12は、実施形態に係るフォーク32の形状の他の一例を示す図である。フォーク32は、先端側に分岐したY字形状の2つの支持部32aが設けられている。フォーク32の2つの支持部32aには、アーム30cとの接続される端部付近にそれぞれ外側に水平方向に突出した突部33がそれぞれ設けられている。2つの支持部32aに設けられた2つの突部33は、部分的に対称な形状となっている。例えば、2つの支持部32aに設けられた2つの突部33は、フォーク32の先端側が対称な形状に形成されている。2つの突部33は、フォーク32の先端側が、フォーク32の先端側に対して直角に形成され、フォーク32の端部側が端部側に対して徐々に幅が狭くなるよう斜めに形成されている。また、2つの突部33のうち、一方側の突部33は、他方側の突部33よりも端部側まで形成されている。図12には、フォーク32上に配置される基板Wが点線で示されている。また、図12には、ロボットアーム12によって基板Wをロードロック室14から取り出す際に、センサ20a、20bのセンシング領域を通過する位置が点線で示されている。基板Wは、センシング領域を通過する際に点A~Dの4点がセンサ20a、20bにより検出される。制御装置100は、点A~Dの中の少なくとも3点を通る円の中心を基板Wの中心位置Oとして特定する。また、フォーク32は、突部33がセンシング領域を通過する際に点E~Hの4点がセンサ20a、20bにより検出される。算出部111は、検出された各姿勢での関節31の回転角度に基づいてアーム30それぞれの膨張量を算出する。例えば、点Eと点Fを検出した際の平均の距離Yと、点Gを検出した際の距離Yと、点Hを検出した際の距離Yでの各関節31の回転角度から、各アーム30それぞれの膨張量を算出する。これにより、本実施形態に係る処理システム1は、各アーム30の膨張量を求めることができる。また、ロボットアーム12によって基板Wをロードロック室14から取り出す際に、基板Wの中心位置Oと、各アーム30の膨張量を同時に算出でき、載置台への搬送位置を補正することができる。
 図13は、実施形態に係るフォーク32の形状の他の一例を示す図である。フォーク32は、先端側に分岐したY字形状の2つの支持部32aに設けられている。フォーク32の2つの支持部32aは、対称に形成されている。フォーク32は、2つの支持部32aが分岐する分岐部付近に、対称にスリット34が形成されている。フォーク32は、2つの支持部32aの先端に、水平方向に先端側に突出した突部33がそれぞれ設けられている。また、フォーク32は、2つの支持部32aの分岐部に、それぞれ支持部32aから端部側に延びた突部33が設けられている。図13には、フォーク32上に配置される基板Wが点線で示されている。フォーク32は、基板Wよりも大きく形成されており、2つの支持部32aの先端側の突部33が、配置された基板Wを通過して露出する。センサ20a、20bは、2つの支持部32aの間隔に対応した間隔で配置される。また、センサ20a、20bの外側には、センサ20a、20bと同様の構成のセンサ23a、23bが配置される。図13には、フォーク32上に配置される基板Wが点線で示されている。また、図13には、ロボットアーム12によって基板Wをロードロック室14から取り出す際に、センサ20a、20b、23a、23bのセンシング領域を通過する位置が点線で示されている。センサ23a、23bのセンシング領域を基板Wが通過する。基板Wは、センシング領域を通過する際に点A~Dの4点がセンサ23a、23bにより検出される。制御装置100は、点A~Dの中の少なくとも3点を通る円の中心を基板Wの中心位置Oとして特定する。センサ20a、20bのセンシング領域をフォーク32の先端や、スリット34、端部が通過する。フォーク32の先端や、スリット34、端部がセンシング領域を通過する際に点E~Jの6点がセンサ20a、20bにより検出される。算出部111は、検出された各姿勢での関節31の回転角度に基づいてアーム30それぞれの膨張量を算出する。例えば、点Eと点Fを検出した際の平均の距離Yと、点Gと点Hを検出した際の平均の距離Yと、点Iと点Jを検出した際の平均の距離Yでの各関節31の回転角度から、各アーム30それぞれの膨張量を算出する。これにより、本実施形態に係る処理システム1は、各アーム30の膨張量を求めることができる。基板Wの中心位置Oと、各アーム30の膨張量を同時に算出でき、載置台への搬送位置を補正することができる。
 また、上記の実施形態では、半導体ウェハを基板Wとした場合を例に説明したが、これに限定されるものではない。基板Wは、ガラス基板など何れの基板でもよい。
 また、上記の実施形態では、真空搬送室11とロードロック室14の接続部付近にセンサ20(センサ20a、20b)を設け、フォーク32に設けた各突部33がセンサ20の配置位置を通過する際のロボットアーム12の各関節の回転角度を検出する場合を例に説明したが、これに限定されるものではない。図15は、実施形態に係る処理システム本体10の他の一例を示す図である。図15は、図1と同一の部位には同一の符号を付し、重複する説明を省略する。図15に示す処理システム本体10は、真空搬送室11と各プロセスチャンバ13の接続部付近に、それぞれセンサ20(センサ20a、20b)と同様のセンサ24(センサ24a、24b)が設けられている。ロボットアーム12が基板Wを各プロセスチャンバ13に搬入出する際に、フォーク32に設けた各突部33がセンサ24a、24bの配置位置を通過する。制御装置100は、フォーク32に設けた各突部33がセンサ20の配置位置を通過する際のロボットアーム12の各関節の回転角度を検出し、検出した各関節の回転角度に基づいて複数のアーム30それぞれの膨張量を算出してもよい。
1 処理システム
11 真空搬送室
12 ロボットアーム
13 プロセスチャンバ
14 ロードロック室
15 ローダモジュール
20 センサ
30、30a~30c アーム
31、31a~31c 関節
32 フォーク
32a 支持部
33 突部
100 制御装置
101 プロセスコントローラ
102 ユーザインタフェース
103 記憶部
110 検出部
111 算出部
W 基板

Claims (8)

  1.  複数のアームが回転可能な関節により接続され、前記関節を回転させることで伸縮可能とされた多関節アームと、
     前記多関節アームのアーム数以上の異なる姿勢で前記多関節アームの前記関節の回転角度を検出する検出部と、
     前記検出部により検出された各姿勢での前記関節の回転角度に基づいて前記複数のアームそれぞれの膨張量を算出する算出部と、
     を有する搬送装置。
  2.  前記算出部は、前記複数のアームが膨張していない未膨張状態における各アームの長さと、前記未膨張状態における前記各姿勢での前記多関節アームが伸縮した距離と、前記検出部により検出された前記各姿勢での前記関節の回転角度から、前記複数のアームそれぞれの膨張量を算出する
     請求項1に記載の搬送装置。
  3.  前記算出部は、前記多関節アームが伸縮した距離と、前記未膨張状態における各アームの長さと、前記関節の回転角度と、前記複数のアームの膨張量との関係を示した関係式に、姿勢ごとに、前記多関節アームが伸縮した距離と、前記検出部により検出された前記関節の回転角度を適用し、姿勢ごとの前記関係式の前記複数のアームの膨張量を未定数として解くことで、前記複数のアームそれぞれの膨張量を算出する
     請求項2に記載の搬送装置。
  4.  前記算出部は、前記各姿勢での前記多関節アームが伸縮した距離と、前記未膨張状態における各アームの長さと、前記各姿勢での前記関節の回転角度から、前記複数のアームの膨張量をそれぞれ算出する関係式に、前記検出部により検出された各姿勢での前記関節の回転角度を適用して、前記複数のアームそれぞれの膨張量を算出する
     請求項2に記載の搬送装置。
  5.  前記異なる姿勢は、前記多関節アームを異なる距離に伸縮する姿勢とした
     請求項1~4の何れか1つに記載の搬送装置。
  6.  前記検出部は、基板処理を実施するチャンバに設けたセンサで前記多関節アームを検出した際の前記関節の回転角度を検出し、
     前記算出部は、未膨張状態における各アームの長さと、算出した前記複数のアームそれぞれの膨張量と、前記検出部により検出された前記関節の回転角度に基づいて、前記チャンバの膨張量を算出する
     請求項1~5の何れか1つに記載の搬送装置。
  7.  前記算出部により算出したアームの膨張量に基づいて前記多関節アームの搬送位置を補正する搬送制御部をさらに有する
     請求項1~6の何れか1つに記載の搬送装置。
  8.  複数のアームが回転可能な関節により接続され、前記関節を回転させることで伸縮可能とされた多関節アームのアーム数以上の異なる姿勢で前記多関節アームの前記関節の回転角度を検出する工程と、
     検出された各姿勢での前記関節の回転角度に基づいて前記複数のアームそれぞれの膨張量を算出する工程と、
     を有する膨張量算出方法。
PCT/JP2021/029661 2021-05-14 2021-08-11 搬送装置及び膨張量算出方法 WO2022239266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237041799A KR20240004944A (ko) 2021-05-14 2021-08-11 반송 장치 및 팽창량 산출 방법
JP2023520746A JPWO2022239266A1 (ja) 2021-05-14 2021-08-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-082040 2021-05-14
JP2021082040 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239266A1 true WO2022239266A1 (ja) 2022-11-17

Family

ID=84028127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029661 WO2022239266A1 (ja) 2021-05-14 2021-08-11 搬送装置及び膨張量算出方法

Country Status (3)

Country Link
JP (1) JPWO2022239266A1 (ja)
KR (1) KR20240004944A (ja)
WO (1) WO2022239266A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264786A (ja) * 1988-04-11 1989-10-23 Toshiba Corp 産業用ロボット
JP2017183483A (ja) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 基板搬送方法及び基板処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102587203B1 (ko) 2015-07-13 2023-10-10 브룩스 오토메이션 인코퍼레이티드 온 더 플라이 자동 웨이퍼 센터링 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264786A (ja) * 1988-04-11 1989-10-23 Toshiba Corp 産業用ロボット
JP2017183483A (ja) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 基板搬送方法及び基板処理システム

Also Published As

Publication number Publication date
JPWO2022239266A1 (ja) 2022-11-17
KR20240004944A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
JP4961895B2 (ja) ウェハ搬送装置、ウェハ搬送方法及び記憶媒体
TWI397969B (zh) 具有迅速工件定中心功能的加工裝置
KR102157440B1 (ko) 기판 반송 방법 및 기판 반송 장치
US6522942B2 (en) Transfer apparatus for semiconductor process
US9541920B2 (en) Method for positioning a transfer unit, method for calculating positional deviation amount of an object to be processed, and method for correcting teaching data of the transfer unit
WO1999045579A1 (en) On the fly center-finding during substrate handling in a processing system
US6577923B1 (en) Apparatus and method for robotic alignment of substrates
US7353076B2 (en) Vacuum processing method and vacuum processing apparatus
JP2001210698A (ja) 最適化技術を使用して基板のオフセットを決定する方法および装置
JP2000127069A (ja) 搬送システムの搬送位置合わせ方法
JPWO2010013732A1 (ja) 搬送ロボットのティーチング方法
US7532940B2 (en) Transfer mechanism and semiconductor processing system
US7167805B2 (en) Device for correcting reference position for transfer mechanism, and correction method
JP2010284728A (ja) 搬送ロボット及び自動教示方法
US10319622B2 (en) Substrate conveying method and substrate processing system
JP5284486B2 (ja) 基板中心位置の特定方法
JP2002043394A (ja) 位置ずれ検出装置及び処理システム
CN113226664B (zh) 机器人的位置修正方法以及机器人
WO2019064891A1 (ja) 基板搬送装置及び基板搬送ロボットと基板載置部との位置関係を求める方法
TW201707900A (zh) 同步自動晶圓定心方法及設備
JP2017183483A (ja) 基板搬送方法及び基板処理システム
JP2005093807A (ja) 半導体製造装置
KR102127577B1 (ko) 기판 처리 장치 및 기판 처리 장치의 운전 방법
WO2022239266A1 (ja) 搬送装置及び膨張量算出方法
CN113226660B (zh) 机器人的位置修正方法以及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520746

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18289525

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237041799

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237041799

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE