JP2010278885A - 復調回路、復調方法、及び受信システム - Google Patents

復調回路、復調方法、及び受信システム Download PDF

Info

Publication number
JP2010278885A
JP2010278885A JP2009130807A JP2009130807A JP2010278885A JP 2010278885 A JP2010278885 A JP 2010278885A JP 2009130807 A JP2009130807 A JP 2009130807A JP 2009130807 A JP2009130807 A JP 2009130807A JP 2010278885 A JP2010278885 A JP 2010278885A
Authority
JP
Japan
Prior art keywords
signal
value
unit
output
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130807A
Other languages
English (en)
Other versions
JP5347720B2 (ja
Inventor
Naoto Adachi
直人 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2009130807A priority Critical patent/JP5347720B2/ja
Priority to US12/782,018 priority patent/US8300718B2/en
Publication of JP2010278885A publication Critical patent/JP2010278885A/ja
Application granted granted Critical
Publication of JP5347720B2 publication Critical patent/JP5347720B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

【課題】時間差の大きなマルチパスを含む環境において正しい遅延プロファイルを取得可能な復調回路を提供する。
【解決手段】復調回路は、受信信号にFFTを施し複数のキャリアの信号を出力するFFT部と、前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部を含む。
【選択図】図3

Description

本発明は、一般に復調回路に関し、詳しくはOFDM復調回路に関する。
デジタル信号を伝送する方式の1つである直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplexing)では、互いに直交する複数のキャリアにデータを割り当てて伝送する。送信側でIFFT(Inverse Fast Fourier Transform)によりデータを変調し、受信側でFFT(Fast Fourier Transform)によりデータを復調する。OFDM方式は周波数利用効率が高いことから、日本の地上波デジタル放送の規格ISDB−T(Integrated Services Digital Broadcasting-Terrestrial)に採用されている。
単一搬送波を用いたデジタル変調方式では、高速伝送になるほどシンボル期間が短くなる。従って、基地局から送信した電波が建物等により反射され、受信端末が複数の経路を経由した同一の電波を受信してしまうマルチパス環境では、シンボル同士が重なることにより信号の復調が困難になってしまう。それに対してOFDM方式は、複数の搬送波に情報を分割して送信するマルチキャリア伝送方式であるので、単一搬送波を用いたデジタル変調方式に比較して、一つのキャリアのシンボル長を長くすることができる。その結果、OFDM方式では、マルチパス環境でのシンボル同士の重なりが小さくなるので、単一搬送波を用いたデジタル変調方式に比較して復調性能の点において有利である。
しかしながら、OFDM方式においても、主波(基地局から受信端末に直接到来する受信波)が示す波形と遅延波(反射により遅延して到来する受信波)とが重畳する場合に、それに対して適切な対策をとることが好ましい。受信側でFFT処理によりデータを復調する際、主波のシンボル位置にFFT処理を適用する窓の位置が一致していても、マルチパスにより遅延波が混入すると、シンボル間干渉が生じて受信特性が劣化してしまう。即ち、主波については、FFT窓の位置と復調対象のシンボルの位置とが一致しているので、正確にシンボルを復調することができる。しかしながら、遅延波についてはFFT窓の位置と復調対象のシンボルの位置とが一致していないので、隣接するシンボルの情報が混入してしまい、正確にシンボルを復調できない。そこでOFDM方式では、各シンボルの終わりの部分の信号を当該シンボル前に付加することにより、マルチパスに対する耐性を強めている。この付加した信号はガードインターバルと呼ばれる。周知のようにFFTされる信号は、窓の前端と窓の後端とが繋がった周期信号として振る舞う。従って、各シンボルの終わりの部分の信号を当該シンボル前に付加しておけば、FFT窓がシンボルの位置から前方にずれても、位相が変化するのみであり、キャリア間干渉(各周波数成分間での信号の干渉)が発生しない。また同一シンボルについての処理となるので、シンボル間干渉も発生しない。従って、マルチパス環境において主波と遅延波との時間差がガードインターバルの長さ以下であれば、シンボル間干渉もキャリア間干渉もなく復調できる。
FFT窓の位置の制御には、同期検波に用いられる分散パイロット(SP:Scattered Pilot)信号を用いることができる。分散パイロット(SP:Scattered Pilot)信号は、BSPK(Binary Phase Shift Keying)で変調され、送信側で規則的にデータ信号に挿入されて送信される。なおデータ信号は、QPSK(Quaternary Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、又は64QAMで変調され送信される。それぞれの変調信号は、OFDM方式の複数のキャリアのうちのSPキャリア及びデータキャリアとして伝送される。
図1は、SPキャリアの配置の一例を示す図である。図1の横方向に並ぶ点は互いに直交する複数のキャリア周波数に対応し、縦方向に並ぶ点は異なる時間の異なるシンボルに対応する。なおOFDM方式では、IFFT及びFFTの窓の長さ(サンプル点の数)が1シンボルに対応し、図1の横一列に並ぶ複数の点が1つのシンボルに対応する。図1において、黒丸で示す点がSPキャリアの位置を示し、その他の白丸で示す点が例えばデータキャリアの位置となる。
SPキャリアは、複素平面上の(+1,0)又は(−1,0)の何れかの点にBSPK変調された既知の値であり、図1の白丸で示す位置にあるキャリア(データキャリア等)の等化処理に用いることができる。まず受信信号から図1の黒丸に示す位置にあるSP信号の値を検出し、受信SP信号値を本来のSP信号値(送信側で挿入した既知のSP信号値)で除算することにより、当該位置における伝送路特性値を算出する。こうして求めた黒丸に示す位置における伝送路特性値に基づいて、白丸に示す位置における伝送路特性値を補間により推定し、各位置における伝送路特性値の推定値を求める。この推定値によりデータ信号の値を除算することで、伝送路特性を等化することができる。例えば、SP信号値(複素数値)が本来(−1,0)であるべき黒丸位置において、受信SP信号の値を求めると(−a/√2,−a/√2)であったとする。この受信SP信号値を、本来のSP信号値(−1,0)で除算して求めた伝送路特性値は(+a/√2,+a/√2)となる。この場合、当該キャリアは、伝送路特性により位相が45度進み、振幅がa倍になっていることが分かる。ある白丸位置に対して補間により求めた伝送路特性値が同様に(+a/√2,+a/√2)であったとすると、この白丸位置のキャリアも、伝送路特性により位相が45度進み、振幅がa倍になっていることが分かる。この場合、当該キャリアの信号値を複素数(+a/√2,+a/√2)で除算することにより、振幅及び位相の補正を行なうことができる。なおSP信号は、BPSK変調により(+1,0)の点又は(−1,0)の点にマッピングされているので、正負の符号の違いさえ正規化すれば、受信したSP信号の値がそのまま伝送路特性値を表現していることになる。
図1に示す横一列の点に対応する1シンボル分の伝送路特性値をIFFTして周波数軸上の情報から時間軸情報に変換し、電力換算することにより、遅延プロファイルを取得できる。この遅延プロファイルには、主波(例えば基地局から受信端末に直接到来する受信波)に時間位置を示す波形と遅延波(例えば反射により遅延して到来する受信波)の時間位置を示す波形とが重畳して含まれる。遅延プロファイルは時間軸上の波形の情報であるので、主波のピーク値と遅延波のピーク値との時間差が、遅延波の時間遅れの大きさを示すことになる。この遅延プロファイルから主波のシンボル位置を検出し、主波のシンボル位置に一致するようにFFT窓の位置を制御する。
前述のように、各シンボルの終わりの部分の信号を当該シンボル前に付加することにより、ガードインターバルを設けているので、FFT窓の位置を合わせた主波に対して遅延波が混入した場合にはガードインターバルが有効に機能する。しかしながらFFT窓の位置を合わせた主波に対して時間的に先行する先行波が混入した場合、FFT窓内には、先行波の対応シンボルに後続するシンボルのガードインターバルが混入することになる。この場合、シンボル間干渉が起こり適切な変調処理を実行できない。従って、複数の受信波が重畳している際には、常に、先行する受信波のシンボル位置に一致するようにFFT窓の位置を制御する。
以上のようにFFT窓制御を行なうことにより、ガードインターバルの範囲内のマルチパスに関しては、正しくデータ復調可能となる。これにより、同一のプログラムを同一の周波数(チャネル)で中継伝送し、複数局から同時に放送する方式であるSFN(Single Frequency Network)放送にも対応可能となる。このSFNでは、受信端末は複数の局から同一の信号波形を異なるタイミングで受信することになり、マルチパスと同様の環境となる。従って、上記のようなFFT窓制御を行なうことにより、受信波の時間差がガードインターバルの範囲内であれば、適切にデータ変調することができる。
ガードインターバルの許容範囲を越えて受信波が重畳している場合には、シンボル間干渉及びキャリア間干渉が生じ、受信性能が劣化する。但しFFT窓の位置さえ正しければ、変調方式によっては、正しくデータ変調できる場合もある。従って、ガードインターバルを超えたマルチパスに対して、FFT窓位置を正しく合わせる技術が望まれる。
伝送路推定に使用するSPキャリアが図5の配置で挿入されている場合、横一列の点からなる同一時刻の同一シンボル上では、伝送路特性値が3キャリア毎にしか利用できない。何故なら、黒丸の位置に存在するSPキャリアの情報に基づいて時間軸方向に最初に補間して得られる伝送路特性値は、横一列の点からなる同一シンボル上で3キャリア毎に存在するからである。伝送路特性値の情報が3キャリア毎にしか存在しないので、基本周波数の周期が1/3シンボル長となり、伝送路特性値をIFFTした波形の時間軸上での周期が1/3シンボル長となる。即ち、1/3シンボル間隔で折り返し誤差が存在する。3キャリア毎の伝送路特性値の間を補間により内挿しても、新たな情報が得られるわけではないので、1/3シンボル間隔で折り返し誤差が存在する状況に変わりはない。
ISDB−Tにおいてモード3の場合の1シンボル間隔は1.008msであるので、1/3シンボル間隔は336μsとなる。但し主波を中心として遅延波と先行波とを両方考えると、±1/6シンボル間隔までしか遅延の広がりを検知することができないので、±168μsの時間差がマルチパス検出の限界となる。例えば200μs先行する先行波が存在する場合、±168μsが検出限界であるので、200μsの先行波は折り返し誤差により136μs(=168−(200−168))の遅延波として現れてしまう。従って、200μs先行する先行波にFFT窓の位置を合わせるべきであるにも関わらず、主波にFFT窓の位置を合わせるような制御が実行され、適切な復調処理ができなくなる。
ISDB−Tにおいて一般的なモード3でガード長が1/8の構成の場合、ガードインターバルが126μsとなる。従って、少なくともガードインターバルの範囲内に分布するマルチパス受信波に関しては、適切なFFT窓の制御を行うことが可能である。しかしながら、ガードインターバルの範囲を超え、広い時間範囲に分布するマルチパス受信波に対しても、適切なFFT窓制御を行えることが好ましい。
マルチパスによる妨害波がある状況下で、その妨害波が先行波であるか遅延波であるかを判別する方式がある(特許文献1)。この方式では、ピーク位置情報をもとにその妨害波が先行波であるか遅延波であるかをまず判別する。その判別結果をもとに、BER(Bit Error Rate)やMER(Modulation Error Rate)等の情報の良し悪しにより、上記ピーク位置情報をもとに算出した結果が正しいか否かを判断し、最終的にその妨害波が先行波であるか遅延波であるかを判別する。しかしながらこの方式でも、検知範囲には限界がある。またフェージング環境下ではデータの信頼性が損なわれ、誤った検出を行ってしまう問題がある。
またデータキャリアを補助的に用いて遅延情報を検出する方式がある(特許文献2)。この方式では、SPキャリアを用いた遅延情報とデータキャリアを用いた遅延情報とを両方抽出し、信頼度の高い方の遅延情報を選択して使用する。複数のキャリア周波数と複数のシンボルとからなる2次元配列上で、SPキャリアは例えば図1に示すように間隔をおいて設けられるが、データキャリアは略満遍なく敷き詰められている。従って、データキャリアに信頼性が有る場合には、マルチパス検出の検出範囲を広げることが可能である。但し、BPSKに変調されているSPキャリアと違い、QPSK、16QAM、又は64QAMで変調されているデータキャリアは、ガードインターバルの範囲を超えるマルチパス環境下においては、殆ど信頼性が無くなってしまう。その結果、この方式では、SPキャリアのみを用いた場合と同程度の検出限界しか得られないのが実情である。
特開2007−324905号公報 特開2008−42574号公報
以上を鑑みると、時間差の大きなマルチパスを含む環境において正しい遅延プロファイルを取得可能な復調回路が望まれる。
本発明の一観点によれば、受信信号にFFTを施し複数のキャリアの信号を出力するFFT部と、前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部を含む復調回路が提供される。
少なくとも1つの実施例によれば、一種類の信号に応じた伝送路特性値のみを用いて遅延プロファイルを求める場合よりも、遅延プロファイルを求めるために使用する情報量が多い、即ちIFFTの信号点のうちで有効信号値を有する信号点の数が多い。従って、一種類の信号に応じた伝送路特性値のみを用いて遅延プロファイルを求める場合よりも、より広い時間範囲にわたって正しい遅延プロファイルを求めることができる。
SPキャリアの配置の一例を示す図である。 OFDM復調回路の構成の一例を示す図である。 図2のFFT部、伝送路等化部、及び復調制御部の構成の一例を示す図である。 FFT出力選択部がデータ信号、SP信号、及びTMCC信号の3つの信号を出力する場合の構成を示す図である。 信号等化のための除算、硬判定処理、信頼度抽出処理、及び伝送路特性値算出のための除算を説明するための図である。 FFT出力選択部の構成の一例を示す図である。 DBPSK復調部の構成の一例を示す図である。 多数決判定部の構成の一例を示す図である。 PRBS処理部の構成の一例を示す図である。 PRBS生成回路の構成の一例を示す図である。 信頼度抽出部及びIFFT入力選択部の構成の一例を示す図である。 OFDM復調回路を用いた受信システムの構成の一例を示す図である。
以下に、本発明の実施例を添付の図面を用いて詳細に説明する。
図2はOFDM復調回路の構成の一例を示す図である。図2に示すOFDM復調回路10は、地上波デジタル放送を受信する構成を想定したものであるが、本願発明の適用はこれに限定されるものではない。
図2のOFDM復調回路は、チューナ10、A/D変換部11、直交復調部12、FFT部13、伝送路等化部14、復調制御部15、デインタリーブ部16、及び誤り訂正部17を含む。アンテナにより受信された信号がチューナ10に入力される。チューナ10は、指定された受信チャネルに対応する周波数帯域の信号を受信信号から抽出し、中間周波数(IF:Intermediate Frequency)に変換して出力する。A/D変換部11は、チューナ10の出力信号をアナログ信号からデジタル信号へと変換する。直交復調部12は、A/D変換部11の出力デジタル信号を複素ベースバンド信号へと変換する。FFT部13は、複素ベースバンド信号に対してFFTを(Fast Fourier Transform)実行し、時間領域信号から周波数領域の信号へと変換する。これにより、直交周波数分割多重された信号が復調されて、複数のキャリアについての各信号が得られる。FFT部13の出力は、データ信号及びSP信号の他に、付加情報伝送用の付加情報伝送キャリア(AC:Auxiliary Channel)及び伝送パラメータ情報等を伝送する制御情報伝送キャリア(TMCC:Transmission and Multiplexing Configuration Control)を含む。SP信号はBSPK変調されており、データ信号はQPSK、16QAM、及び64QAMの何れかで変調されている。またACキャリアのAC信号及びTMCCキャリアのTMCC信号は、双方ともにDBPSK(Differential BPSK)変調されている。
伝送路等化部14は、FFT部13から出力されるSP信号に基づいて、FFT部13から出力されるデータ信号に対して伝送路特性を等化する等化処理を実行する。等化処理後のデータ信号はデインタリーブ部16に供給される。デインタリーブ部16は、バーストエラーを拡散させてランダムエラーとすることでデータの修正が容易になるように、データの順序を入れ替えるデインタリーブ処理を実行する。デインタリーブ処理には、周波数領域でのデータ並べ替えを実行する周波数インタリーブ処理、及び時間領域でのデータ並べ替えを実行する時間インタリーブ処理がある。まず周波数デインタリーブ処理を実行し、その後デマッピングにより受信シンボルを軟判定し、軟判定後のビットデータに対して時間デインタリーブ処理を実行する。
誤り訂正部17は、軟判定されたデータをビタビ復号化処理により最尤判定して誤りを訂正する。誤り訂正後のデータは、トランスポートストリーム(TS)として出力される。OFDM復調回路の後段に設けられたMPEGデコーダ等では、トランスポートストリームを受け取りデコード処理を実行する。
図3は、図2のFFT部13、伝送路等化部14、及び復調制御部15の構成の一例を示す図である。図3に示す構成はOFDM復調を行なう回路部分に相当する。図3に示す復調回路部分は、図2に示すFFT部13に相当するFFT部13A及びFFT出力選択部13Bと、伝送路等化部14に相当する補間処理部14A及び除算処理部14Bとを含む。復調回路部分は更に、復調制御部15に相当する部分を含む。復調制御部15は、硬判定処理部20、信頼度抽出部21、DBPSK復調部22、多数決判定部23、PRBS処理部24、DBPSK復調部25、多数決判定部26、PRBS処理部27、セレクタ28及び29、除算処理部30、及びFFT窓制御部31を含む。FFT窓制御部31は、IFFT入力選択部32、IFFT部33、遅延プロファイル部34、及びFFT窓制御量算出部35を含む。
FFT部13Aは、直交復調部12からの信号にFFTを施し複数のキャリアの信号を出力する。FFT出力選択部13Bは、FFT部13Aが出力する複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択し、これらの信号を互いに分離して出力する。図3に示す例では4つの信号が分離して出力されており、この4つの信号は、データキャリアのデータ信号、SPキャリアのSP信号、ACキャリアのAC信号、及びTMCCキャリアのTMCC信号である。上記の第1の変調方式で変調された第1の信号は例えばSP信号である。また第2の変調方式で変調された第2の信号は、データ信号、AC信号、及びTMCC信号の何れかであってよい。
IFFT部33は、FFT出力選択部13Bが出力する第1の信号の信号値に応じて得られる第1の伝送路特性値とFFT出力選択部13Bが出力する第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTする。この際、例えば第2の信号がデータ信号であれば、第1の信号であるSP信号に応じた伝送路特性値と第2の信号であるデータ信号に応じた伝送路特性値とを並べた信号値列に対して、IFFTを実行する。また例えば第2の信号がAC信号であれば、第1の信号であるSP信号に応じた伝送路特性値と第2の信号であるAC信号に応じた伝送路特性値とを並べた信号値列に対して、IFFTを実行する。IFFT部33によるIFFT処理の信号点数は、FFT部13Aの出力する複数のキャリアの数に等しくてよい。IFFT時に信号値が存在しない信号点については、隣接する点の値をそのまま利用してもよいし、線形補間等により適宜補間してもよい。
遅延プロファイル部34は、IFFT部33の出力の複素数値の実数部の自乗と虚数部の自乗の和を計算して電力を求めることにより、時間軸上での受信波のタイミングを示す遅延プロファイルを取得する。この遅延プロファイルには、マルチパスの複数の受信波のそれぞれの時間位置を示す複数の波形が重畳して含まれる。FFT窓制御量算出部35は、遅延プロファイルからFFT窓の位置を合わせるべき受信波の位置を決定し、その決定位置に合わせるために必要な現在のFFT窓の位置からのずれ量を算出する。FFT部13Aは、伝送路特性をIFFTして得られた信号に応じてFFTの窓の位置を制御する。即ち、FFT部13Aは。FFT窓制御量算出部35の算出したずれ量だけFFT窓をずらすことにより、FFT窓を受信信号中の適切な位置に合わせる。
またFFT出力選択部13Bが出力する前記少なくとも2つの信号は第3の変調方式で変調された第3の信号を含んでよい。この際、IFFT部33がIFFTする伝送路特性値は、前記第1及び第2の伝送路特性値に加え更に第3の信号の信号値に応じて得られる第3の伝送路特性値を含んでよい。例えば、第1乃至第3の信号は、SP信号、データ信号、及びAC信号であってよい。また例えば、第1乃至第3の信号は、SP信号、データ信号、及びTMCC信号であってよい。また例えば、第1乃至第3の信号は、AC信号、データ信号、及びTMCC信号であってよい。また例えば、第1乃至第3の信号は、SP信号、AC信号、及びTMCC信号であってよい。
また更に、FFT出力選択部13Bが出力する前記少なくとも2つの信号は、図3に示す例のように、データ信号、SP信号、AC信号、及びTMCC信号の4つの信号であってよい。この場合、IFFT部33がIFFTする伝送路特性値は、データ信号に応じた伝送路特性値、SP信号に応じた伝送路特性値、AC信号に応じた伝送路特性値、及びTMCC信号に応じた伝送路特性値の全てを含む。
上記何れの信号の組み合わせの場合であっても、SP信号に応じた伝送路特性値のみを用いて遅延プロファイルを求める場合よりも、遅延プロファイルを求めるために使用する情報量が多い、即ちIFFTの信号点のうちで有効信号値を有する信号点の数が多い。従って、SP信号に応じた伝送路特性値のみを用いて遅延プロファイルを求める場合よりも、より広い時間範囲にわたって正しい遅延プロファイルを求めることができる。
このように、データ信号、SP信号、AC信号、及びTMCC信号のうちで上記説明した2つの信号の組み合わせ、3つの信号の組み合わせ、或いは全ての4つの信号の組み合わせを用いることにより、適切な遅延プロファイルを取得できる。この遅延プロファイルを用いて、適切なFFT窓の位置の制御を行なうことができる。図4は、一例として、FFT出力選択部13Bがデータ信号、SP信号、及びTMCC信号の3つの信号を出力する場合の構成を示す。この構成では、図3に示す構成から、AC信号に対するDBPSK復調部22、多数決判定部23、及びPRBS処理部24が削除されている。同様にして、データ信号、SP信号、AC信号、及びTMCC信号のうちで上記説明した2つの信号の組み合わせ又は3つの信号の組み合わせの任意のものについて、復調回路を構成することができる。
前述のように、図1の黒丸に示す位置(SPキャリアの位置)にあるSP信号の値に基づいて、当該位置における伝送路特性値が求まる。補間処理部14Aは、SPキャリアの位置における伝送路特性値に基づいて、データキャリアの位置における伝送路特性値を補間により推定し、各位置における伝送路特性値の推定値を求める。除算処理部14Bは、補間処理部14Aが求めた推定値により、FFT部13から出力されるデータ信号の値を除算することで、伝送路特性を等化する。
硬判定処理部20は、除算処理部14Bが出力する等化処理後のデータ信号を変調方式に応じた信号点に割り当てることにより、硬判定処理を実行する。例えば、QPSK方式であれば、複素平面上の4つの信号点の何れかに受信データ信号を割り当てることになる。この際、TMCC信号をデコードすることにより変調方式を示す情報を得ている。硬判定処理の結果である信号点を示す値は、信頼度抽出部21に供給されるとともに、セレクタ28を介して除算処理部30に供給される。
信頼度抽出部21は、データ信号に応じた伝送路特性値の信頼度を示す信頼度値を出力する。具体的には、除算処理部14Bが出力する硬判定前の信号値と硬判定処理部20が出力する硬判定後の信号値との距離を求め、求めた距離に応じて信頼度を算出する。この信頼度は、硬判定前の信号値と硬判定後の信号値との違いの大きさに応じた値であればよく、信号値間の距離でなく例えば信号値の電力値間の差の絶対値等であってもよい。詳細については、後程説明する。
除算処理部30は、セレクタ28を介して硬判定結果の信号値が供給される場合には、FFT出力選択部13Bからセレクタ29を介して供給されるデータキャリアのデータ信号の値を硬判定結果の信号値で除算する。即ち、受信信号値を送信信号値で除算する。これにより、伝送路特性値を求めることができる。なお、セレクタ28及び29が例えばキャリア番号の若い方から順番にキャリアを選択していきながら、除算処理部30でシリアルに各キャリアに対する除算処理を実行する構成でよい。
図5は、信号等化のための除算、硬判定処理、信頼度抽出処理、及び伝送路特性値算出のための除算を説明するための図である。図5は横軸が実数軸(I軸)及び縦軸が虚数軸(Q軸)の複素平面を示す。BPSK変調された値(+1,0)であるSP信号値41が伝送路の影響でSP信号値42として受信されたとする。受信データのデータ信号値43に対する伝送路の影響がSP信号値41に対する影響と同一であると仮定した場合、データ信号値43を信号値42の複素数で除算することにより、伝送路特性について等化処理を行なった等化後のデータ信号点44が得られる。この除算処理を図3の除算処理部14Bにより行なっている。
更に等化後のデータ信号点44を、QPSKの4つの信号点のうちのデータ信号点44に最も距離が近い信号点45(複素数値=(1/√2,1/√2))に割り当てることにより、硬判定処理を行なう。硬判定処理の結果である信号値は、信号点45の値である。この硬判定処理を図3の硬判定処理部20により行なっている。この硬判定処理の結果である信号値45と硬判定前の硬判定前の信号値44との差が、矢印46で示されている。この矢印の大きさ、即ち信号値45と信号値44との間の距離が、硬判定処理の信頼度を示す指標となる。即ち、距離が大きいほど硬判定処理の結果の信頼度は低く、距離が小さいほど硬判定処理の結果の信頼度は高い。この硬判定処理の結果の信頼度は、硬判定処理の結果を用いて求める伝送路特性値の信頼度に反映する。従って、信号値45と信号値44との間の距離に応じた値を、伝送路特性値の信頼度として用いることができる。この信頼度を示す信頼度値を求める処理を図3の信頼度抽出部21により行なっている。
更に硬判定処理の結果である信号点45により、受信データのデータ信号値43を除算することにより、信号伝搬による信号値のずれが矢印47として模式的に示されるような伝送路特性が得られる。なお除算処理により伝送路特性値を求めているので、実際の伝送路特性値は、図5の複素平面で信号点45を(+1,0)の点に回転移動するような右回りの回転操作をデータ信号値43に施した結果の値となる。
図3を再び参照し、IFFT入力選択部32は、信頼度抽出部21から供給される信頼度値に応じて、除算処理部30がデータ信号から求めた伝送路特性値を取捨選択する。具体的には、信頼度が低い伝送路特性値を捨て、信頼度が高い伝送路特性値のみを選択してIFFTの対象とする。IFFT入力選択部32の動作の詳細については後述する。
DBPSK復調部22は、ACキャリアが示す復調前のAC信号値を復調して、復調後のAC信号値を求める。具体的には、あるシンボルでの所定のACキャリアのAC信号値と次のシンボルでの上記所定のACキャリアのAC信号値との差分を求め、その差分をデマッピングして信号点に割り当てることにより、復調後のAC信号値を求める。多数決判定部23は、送信側で同一値が挿入されている筈の複数のAC信号値のうちで頻度が最も高い信号値を抽出し、多数決原理により最適値を抽出する。AC信号は、セグメント単位で同一の情報が挿入されている。例えばISDB−Tにおいて、モード3のワンセグ帯域内には、キャリア番号7番、89番、206番、209番、226番、244番、377番、407番の8個のキャリアの各々にAC信号が挿入されている。この8個のAC信号値に基づいて多数決原理を用いた信号値決定を行ない、復調結果が0であるか1であるかを判定する。代替的に、AC信号値を復調してから多数決判定する代りに、ACキャリアの信号値の位相差を積算してから、DBPSK復調してもよい。
PRBS処理部24は、PRBS(Pseudo Random Bit Sequence)生成回路により生成した疑似ランダムビットシーケンスの値に基づいて、復調されたAC信号値からDBPSK変調したAC信号値を求める。ここで疑似ランダムビットシーケンスの値は、ISDB−Tに設けられている0番から203番までのシンボルのうち、送信側で0番目のシンボルに挿入するDBPSK変調後のAC信号値を生成するために用いられる。受信側でも同一の疑似ランダムビットシーケンスの値を用いることにより、復調されたAC信号値からDBPSK変調したAC信号値を求めることができる。上記のAC信号値の処理の詳細については後述する。
除算処理部30は、セレクタ28を介して復調AC信号値を変調して求めた変調AC信号値が供給される場合には、FFT出力選択部13Bからセレクタ29を介して供給されるACキャリアの受信AC信号の値を変調AC信号値で除算する。即ち、受信信号値を送信信号値で除算する。これにより、伝送路特性値を求めることができる。
DBPSK復調部25は、TMCCキャリアが示す復調前のTMCC信号値を復調して、復調後のTMCC信号値を求める。具体的には、あるシンボルでの所定のTMCCキャリアのTMCC信号値と次のシンボルでの上記所定のTMCCキャリアのTMCC信号値との差分を求め、その差分をデマッピングして信号点に割り当てることにより、復調後のTMCC信号値を求める。PRBS処理部24は、送信側で同一値が挿入されている筈の複数のTMCC信号値のうちで頻度が最も高い信号値を抽出し、多数決原理により最適値を抽出する。TMCC信号は、シンボル単位で同一の情報が挿入されている。例えばISDB−Tにおいて、モード3のワンセグ帯域内にはキャリア番号101番、131番、286番、349番の4個のキャリアの各々にTMCC信号が挿入されている。ワンセグ受信機の場合には、これら4個のTMCC信号値に基づいて多数決原理を用いた信号値決定を行えばよい。また13セグ受信機であれば、13個のセグメントの各々に含まれる上記4個のACキャリアが13個のセグメント全てについて同一値であるので、4の13倍の52個のAC信号値に基づいて多数決原理を用いた信号値決定を行えばよい。代替的に、AC信号値を復調してから多数決判定する代りに、TMCCキャリアの信号値の位相差を積算してから、DBPSK復調してもよい。PRBS処理部27の動作は、前述のPRBS処理部24の動作と同様である。
除算処理部30は、セレクタ28を介して復調TMCC信号値を変調して求めた変調TMCC信号値が供給される場合には、FFT出力選択部13Bからセレクタ29を介して供給されるTMCCキャリアの受信TMCC信号の値を変調TMCC信号値で除算する。即ち、受信信号値を送信信号値で除算する。これにより、伝送路特性値を求めることができる。
図6は、FFT出力選択部13Bの構成の一例を示す図である。図6に示すFFT出力選択部13Bは、AC/TMCC配列テーブル51、選択ユニット52、シンボル同期部53、及び選択ユニット54を含む。AC/TMCC配列テーブル51は、ACキャリアのキャリア番号とTMCCキャリアのキャリア番号とを配列データとして保持するメモリである。AC/TMCC配列テーブル51から供給されるACキャリアのキャリア番号とTMCCキャリアのキャリア番号とに基づいて、選択ユニット52が、ACキャリアとTMCCキャリアとを選択分離して出力する。その他の残りのキャリアは、データキャリア又はSPキャリアの何れかであるキャリアとして、選択ユニット52から纏めて出力される。シンボル同期部53は、TMCCキャリアのシンボル番号1〜16に挿入されている固定の情報に基づいてシンボル番号を認識して、シンボル同期を確立する。選択ユニット54は、シンボル同期部53が認識したシンボル番号に基づいて、各シンボルにおけるデータキャリアとSPキャリアとを選択する。図1に示されるようにデータキャリア(白丸)の位置とSPキャリア(黒丸)の位置とは、シンボル番号によって異なるので、選択ユニット54においては、シンボル番号に基づいたキャリア識別を行なう。このようなキャリア識別に基づいて、選択ユニット54は、データキャリアとSPキャリアとを選択分離して出力する。
図7は、DBPSK復調部22の構成の一例を示す図である。DBPSK復調部25も同一の構成であってよい。図7のDBPSK復調部22は、位相算出ユニット61、1シンボル遅延ユニット62、減算ユニット63、及びDBPSKデマップユニット64を含む。位相算出ユニット61は、ACキャリアの信号値(DBPSK変調後のAC信号値)の位相値を算出する。1シンボル遅延ユニット62は、算出した位相値を1シンボル遅延させる。減算ユニット63は、現在のDBPSK変調AC信号値の位相値から1シンボル前のDBPSK変調AC信号値の位相値を引くことで、差分の位相値を算出する。DBPSKデマップユニット64は、減算ユニット63が算出した差分位相値に基づいて、DBPSK変調前のAC信号値を復調する。例えば差分位相値が0に近い値であれば、復調AC信号値は0である。差分位相値が±πに近い値であれば、復調AC信号値は1である。
図8は、多数決判定部23の構成の一例を示す図である。多数決判定部26も同一の構成であってよい。図8の多数決判定部23は、1キャリア遅延ユニット71、加算ユニット72、及び閾値処理ユニット73を含む。加算ユニット72は、1キャリア遅延ユニット71から供給される積算信号値と、DBPSK復調部22から供給される着目ACキャリアの復調AC信号値を加算することで、新たな積算信号値を求める。1キャリア遅延ユニット71は、積算信号値をACキャリア1つ分遅延させて、加算ユニット72に供給する。以上の1キャリア遅延ユニット71及び加算ユニット72の動作により、各ACキャリアについて復調AC信号値を積算した合計値が求められる。閾値処理ユニット73は、積算したAC信号値が所定の閾値よりも大きければ1を出力し、積算したAC信号値が所定の閾値以下であれば1を出力する。以上の処理により、複数の復調AC信号値に対する多数決原理に基づいた信号値決定を行なうことができる。
図9は、PRBS処理部24の構成の一例を示す図である。PRBS処理部27も同一の構成であってよい。図9のPRBS処理部27は、加算ユニット81、PRBS生成回路82、及び加算ユニット83を含む。ISDB−Tにおける差動変調の定義は以下の式で与えられる。
Figure 2010278885
ここでBはACデータそのものを表し、B'は差動変調後のAC送信信号を表す。Wは差動変調信号の基準となる初期値であり、図10に示すPRBS生成回路82により生成される。図10に示すPRBS生成回路82は、生成多項式g(x)=X11+X+1に基づいて疑似ランダムビットシーケンスを生成する回路である。
上記の式に示すように、シンボル番号0のシンボルについては、差動変調後のAC送信信号値はWである。その後のシンボル番号1〜203のシンボルについては、差動変調後のAC送信信号値は、1つ前のシンボルのAC送信信号値と送信したいACデータとの排他的論理和をとった値となる。
図9に戻り、加算ユニット81は、多数決判定部23から供給される着目シンボルの復調AC信号値0又は1を1シンボル前の加算ユニット81の出力と加算して、加算結果の最下位ビットを出力する。即ち、排他的論理和を求める。更に、加算ユニット83が、加算ユニット81の出力とPRBS生成回路82が生成するビット値Wとを加算し、加算結果の最下位ビットを出力する。即ち、排他的論理和を求める。以上の処理により、前記のISDB−Tの差動変調の演算を実行することにより、受信信号から復調したBから差動変調後のAC送信信号であるB'を求めることができる。
以上のようにして、各シンボルでのAC信号の送信点を表す差動変調信号を得ることができる。同様にして、各シンボルでのTMCC信号の送信点を表す差動変調信号を得ることができる。こうして求めた送信点の複素数値を、除算処理部30により復調前の受信点の複素数値で除算することで、ACキャリア及びTMCCキャリアそれぞれについて伝送路推定値を求めることができる。
図11は、信頼度抽出部21及びIFFT入力選択部32の構成の一例を示す図である。図11に示す信頼度抽出部21は、電力計算ユニット91、電力計算ユニット92、差分計算ユニット93、絶対値計算ユニット94、閾値ユニット95、及び閾値供給部96を含む。またIFFT入力選択部32は、キャリア選択ユニット101、選択ユニット102、ディレイユニット103、及び選択ユニット104を含む。
電力計算ユニット91は、図3の硬判定処理部20から供給される硬判定結果の信号値を受け取り、その実数部Iの自乗と奇数部Qの自乗との和(信号電力値)を求める。また電力計算ユニット92は、除算処理部14Bから出力される等化後のデータ信号値を受け取り、その実数部Iの自乗と奇数部Qの自乗との和(信号電力値)を求める。差分計算ユニット93は、電力計算ユニット91が求めた信号電力値と電力計算ユニット92が求めた信号電力値との差分値を計算する。絶対値計算ユニット94は、差分計算ユニット93が求めた差分値の絶対値をとる。この絶対値は、硬判定結果の信頼度を示す指標となっている。なお電力計算ユニット91及び92で求めたそれぞれの電力の平方根を求めてから、差分計算ユニット93により差分を求めてもよい。この場合の差分値の絶対値は、硬判定前後の2つの信号値の距離となる。
閾値ユニット95は、閾値供給部96から供給される変調方式に応じた閾値と絶対値計算ユニット94の出力する絶対値とを比較する。閾値ユニット95は、絶対値が閾値より大きければ0を出力し、絶対値が閾値以下であれば1を出力する。閾値ユニット95の出力値は、当該データキャリアに対して求めた伝送路測定値の信頼度を示す指標として機能する。なお変調方式は、TMCC信号をデコードすることにより特定することができる。変調方式に応じた閾値は、変調後の送信信号点の間隔が小さいほど小さく、変調後の送信信号点の間隔が大きいほど大きく設定されてよい。
IFFT入力選択部32において、キャリア選択ユニット101が、例えばキャリア番号の若い方から順番に各キャリアを特定する。選択ユニット102は、キャリア選択ユニット101が特定したキャリアの信号を選択して、選択ユニット104に供給する。ここで選択ユニット102が供給する信号値は、SPキャリアについては受信したキャリアの信号値であり、データキャリア、ACキャリア、及びTMCCキャリアについては除算処理部30による除算演算後の信号値である。即ち、選択ユニット102が供給する信号値は、各キャリアの伝送路特性値である。
選択ユニット104は、信頼度抽出部21からの信頼度値に応じて、選択ユニット102から供給される着目キャリアの伝送路特性値又はディレイユニット103から供給される1つ前のキャリアに対して選択した伝送路特性値の何れか一方を選択して出力する。ここで着目キャリアの伝送路特性値とは、キャリア選択ユニット101が現在選択しているキャリアの伝送路特性値である。また1つ前のキャリアに対して選択した伝送路特性値とは、キャリア選択ユニット101が現在選択しているキャリアの1つ前のキャリアに対して選択ユニット104が選択して出力した伝送路特性値である。具体的には信頼度値が1であれは、着目キャリアの伝送路特性値が信用できるので、選択ユニット102から供給される着目キャリアの伝送路特性値を選択する。信頼度値が0であれは、着目キャリアの伝送路特性値が信用できないので、ディレイユニット103から供給される以前の伝送路特性値を選択する。なお信頼度抽出部21から供給される信頼度値は、キャリア選択ユニット101が現在選択しているキャリアがデータキャリアでない場合には、値が1となるようにすればよい。
送信値が分かっているSPキャリアについては、正しい信号値に基づいて適切な伝送路特性値を得ることができる。しかしながらその他のキャリアについては、復調した結果が誤っている場合には、求めた伝送路特性値も誤った値となってしまう。ACキャリア及びTMCCキャリアに関しては、DBPSK変調でノイズに強く且つ複数のキャリアに渡り同一の情報が多数挿入されているので、信頼性の高い伝送路特性値を得ることができる。但しデータキャリアに関しては、変調方式がQPSK、16QAM、又は64QAMであり且つキャリア毎に完全に未知の値が送られてくるので、求めた伝送路特性値の信頼性が高くない可能性がある。以上を考慮して、IFFT入力選択部32では、信頼度抽出部21により求めた信頼度値に応じてデータ信号値の取捨選択をすることにより、信頼性の低いデータキャリアは捨て、信頼性の高いデータキャリアのみを出力する。これによりIFFT入力選択部32の次段に設けたIFFT部33においては、SP信号値、AC信号値、TMCC信号値、及び信頼性の高いデータ信号値を含む信号値列に対してIFFT処理を行う。IFFT処理の対象となる信号値はキャリア番号順に並んでおり、信頼性の低いキャリアの位置においては以前選択した信号値を使用することで、信頼性の低い情報だけをIFFT処理から排除している。即ち、信頼性の高い信号値は全て用いてIFFTを行なうので、マルチパスの検出範囲を可能な限り広くして、精度のよい遅延情報を得ることができる。
図12は、OFDM復調回路を用いた受信システムの構成の一例を示す図である。図12に示す受信システムは、チューナ111、OFDM復調回路112、デコーダ113、CPU114、ディスプレイ115、及びスピーカ116を含む。チューナ111は、アンテナで受信した受信信号を受け取りIF信号を出力する。OFDM復調回路112は、チューナ111からのIF信号を受け取り、OFDM復調後のデジタル信号をトランスポートストリームTSとして出力する。チューナ111及びOFDM復調回路112が、図2に示す復調回路に相当する。デコーダ113は、OFDM復調回路112からのトランスポートストリームTSを受け取り、デコード処理を実行することにより映像信号及び音声信号を含む出力信号を生成する。CPU114は、OFDM復調回路112とデコーダ113との動作を制御する。ディスプレイ115は映像信号に基づいて映像を出力する。スピーカ116は、音声信号に基づいて音声を出力する。
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。例えば上記の実施例の構成については、日本の地上波デジタル放送のISDB−T規格に基づいた説明をしたが、これに限定されるものではない。マルチパス環境或いはマルチパスと類似の環境において、OFDMを用いて変復調するシステムであれば、上記説明した技術を使用することができる。上記説明した技術を用いることにより、FFT窓の位置を適切に制御して、適切な復調処理を実現することができる。
なお本願発明は以下の内容を含むものである。
(付記1)
受信信号にFFTを施し複数のキャリアの信号を出力するFFT部と、
前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、
前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、
前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部
を含むことを特徴とする復調回路。
(付記2)
前記出力選択部が出力する前記少なくとも2つの信号は第3の変調方式で変調された第3の信号を含み、前記IFFT部がIFFTする前記伝送路特性値は前記第3の信号の信号値に応じて得られる第3の伝送路特性値を含むことを特徴とする付記1記載の復調回路。
(付記3)
前記第1の変調方式はBPSK変調であり、前記第2の変調方式の複素平面上での変調後の信号点数は前記第1の変調方式の信号点数よりも多いことを特徴とする付記1又は2記載の復調回路。
(付記4)
前記第3の変調方式はDBPSK変調であり、前記第3の伝送路特性値は、前記第3の信号の信号値と、前記第3の信号をDBPSK復調した値と、疑似ランダムビット列とに基づいて求められることを特徴とする付記2又は3記載の復調回路。
(付記5)
前記第2の伝送路特性値の信頼度を示す信頼度値を出力する信頼度抽出部と、
前記信頼度値に応じて前記第2の伝送路特性値を取捨選択する入力選択部と
を更に含み、前記IFFT部がIFFTする前記伝送路特性値に含まれる前記第2の伝送路特性値は前記入力選択部により選択された前記第2の伝送路特性値であることを特徴とする付記1乃至4の何れか一項記載の復調回路。
(付記6)
前記信頼度抽出部は、前記第2の信号値から求めた硬判定後の信号値と硬判定前の信号値との違いの大きさに応じて前記信頼度値を算出することを特徴とする付記5記載の復調回路。
(付記7)
前記第1の信号は復調の基準とされるパイロット信号であり、前記第2の信号はデータ信号であることを特徴とする付記1乃至6の何れか一項記載の復調回路。
(付記8)
受信信号にFFTを施し複数のキャリアの信号を出力し、
前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを抽出し、
前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTし、
前記伝送路特性値を前記IFFTして得られた信号に応じて前記FFTの窓の位置を制御する
各段階を含むことを特徴とする復調方法。
(付記9)
前記複数のキャリアの信号から第3の変調方式で変調された第3の信号を選択し、
前記IFFTする前記伝送路特性値は前記第3の信号の信号値に応じて得られる第3の伝送路特性値を含むことを特徴とする付記8記載の復調方法。
(付記10)
前記第2の伝送路特性値の信頼度を示す信頼度値を算出し、
前記信頼度値に応じて前記第2の伝送路特性値を取捨選択する
各段階を更に含み、前記IFFTする前記伝送路特性値に含まれる前記第2の伝送路特性値は前記取捨選択により選択された前記第2の伝送路特性値であることを特徴とする付記8又は9記載の復調方法。
(付記11)
前記信頼度値を算出する段階は、前記第2の信号値から求めた硬判定後の信号値と硬判定前の信号値との違いの大きさに応じて前記信頼度値を算出することを特徴とする付記10記載の復調方法。
(付記12)
受信信号を受け取りIF信号を出力するチューナと、
前記IF信号を受け取りデジタル信号を出力する復調回路と、
前記デジタル信号を受け取り出力信号を生成するデコーダと、
前記復調回路と前記デコーダとを制御する制御回路と、
前記出力信号を映像及び音声の少なくとも一方として出力する出力装置と
を含み、前記復調回路は、
前記IF信号にFFTを施し複数のキャリアの信号を出力するFFT部と、
前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、
前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、
前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部
を含むことを特徴とする受信システム。
(付記13)
前記出力選択部が出力する前記少なくとも2つの信号は第3の変調方式で変調された第3の信号を含み、前記IFFT部がIFFTする前記伝送路特性値は前記第3の信号の信号値に応じて得られる第3の伝送路特性値を含むことを特徴とする付記12記載の受信システム。
(付記14)
前記第1の変調方式はBPSK変調であり、前記第2の変調方式の複素平面上での変調後の信号点数は前記第1の変調方式の信号点数よりも多いことを特徴とする付記12又は13記載の受信システム。
(付記15)
前記第3の変調方式はDBPSK変調であり、前記第3の伝送路特性値は、前記第3の信号の信号値と、前記第3の信号をDBPSK復調した値と、疑似ランダムビット列とに基づいて求められることを特徴とする付記13又は14記載の受信システム。
(付記16)
前記第2の伝送路特性値の信頼度を示す信頼度値を出力する信頼度抽出部と、
前記信頼度値に応じて前記第2の伝送路特性値を取捨選択する入力選択部と
を更に含み、前記IFFT部がIFFTする前記伝送路特性値に含まれる前記第2の伝送路特性値は前記入力選択部により選択された前記第2の伝送路特性値であることを特徴とする付記12乃至15の何れか一項記載の受信システム。
(付記17)
前記信頼度抽出部は、前記第2の信号値から求めた硬判定後の信号値と硬判定前の信号値との違いの大きさに応じて前記信頼度値を算出することを特徴とする付記16記載の受信システム。
(付記18)
前記第1の信号は復調の基準とされるパイロット信号であり、前記第2の信号はデータ信号であることを特徴とする付記12乃至17の何れか一項記載の受信システム。
10 チューナ
11 A/D変換部
12 直交復調部
13 FFT部
14 伝送路等化部
15 復調制御部
16 デインタリーブ部
17 誤り訂正部

Claims (10)

  1. 受信信号にFFTを施し複数のキャリアの信号を出力するFFT部と、
    前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、
    前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、
    前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部
    を含むことを特徴とする復調回路。
  2. 前記出力選択部が出力する前記少なくとも2つの信号は第3の変調方式で変調された第3の信号を含み、前記IFFT部がIFFTする前記伝送路特性値は前記第3の信号の信号値に応じて得られる第3の伝送路特性値を含むことを特徴とする請求項1記載の復調回路。
  3. 前記第1の変調方式はBPSK変調であり、前記第2の変調方式の複素平面上での変調後の信号点数は前記第1の変調方式の信号点数よりも多いことを特徴とする請求項1又は2記載の復調回路。
  4. 前記第3の変調方式はDBPSK変調であり、前記第3の伝送路特性値は、前記第3の信号の信号値と、前記第3の信号をDBPSK復調した値と、疑似ランダムビット列とに基づいて求められることを特徴とする請求項2又は3記載の復調回路。
  5. 前記第2の伝送路特性値の信頼度を示す信頼度値を出力する信頼度抽出部と、
    前記信頼度値に応じて前記第2の伝送路特性値を取捨選択する入力選択部と
    を更に含み、前記IFFT部がIFFTする前記伝送路特性値に含まれる前記第2の伝送路特性値は前記入力選択部により選択された前記第2の伝送路特性値であることを特徴とする請求項1乃至4の何れか一項記載の復調回路。
  6. 前記信頼度抽出部は、前記第2の信号値から求めた硬判定後の信号値と硬判定前の信号値との違いの大きさに応じて前記信頼度値を算出することを特徴とする請求項5記載の復調回路。
  7. 前記第1の信号は復調の基準とされるパイロット信号であり、前記第2の信号はデータ信号であることを特徴とする請求項1乃至6の何れか一項記載の復調回路。
  8. 受信信号にFFTを施し複数のキャリアの信号を出力し、
    前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを抽出し、
    前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTし、
    前記伝送路特性値を前記IFFTして得られた信号に応じて前記FFTの窓の位置を制御する
    各段階を含むことを特徴とする復調方法。
  9. 前記複数のキャリアの信号から第3の変調方式で変調された第3の信号を選択し、
    前記IFFTする前記伝送路特性値は前記第3の信号の信号値に応じて得られる第3の伝送路特性値を含むことを特徴とする請求項8記載の復調方法。
  10. 受信信号を受け取りIF信号を出力するチューナと、
    前記IF信号を受け取りデジタル信号を出力する復調回路と、
    前記デジタル信号を受け取り出力信号を生成するデコーダと、
    前記復調回路と前記デコーダとを制御する制御回路と、
    前記出力信号を映像及び音声の少なくとも一方として出力する出力装置と
    を含み、前記復調回路は、
    前記IF信号にFFTを施し複数のキャリアの信号を出力するFFT部と、
    前記FFT部が出力する前記複数のキャリアの信号から第1の変調方式で変調された第1の信号と第2の変調方式で変調された第2の信号とを含む少なくとも2つの信号を選択して出力する出力選択部と、
    前記出力選択部が出力する前記第1の信号の信号値に応じて得られる第1の伝送路特性値と前記出力選択部が出力する前記第2の信号の信号値に応じて得られる第2の伝送路特性値とを含む伝送路特性値をIFFTするIFFT部と、
    前記伝送路特性をIFFTして得られた信号に応じて前記FFTの窓の位置を制御するFFT窓制御部
    を含むことを特徴とする受信システム。
JP2009130807A 2009-05-29 2009-05-29 復調回路、復調方法、及び受信システム Expired - Fee Related JP5347720B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009130807A JP5347720B2 (ja) 2009-05-29 2009-05-29 復調回路、復調方法、及び受信システム
US12/782,018 US8300718B2 (en) 2009-05-29 2010-05-18 Demodulating circuit, demodulating method, and receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130807A JP5347720B2 (ja) 2009-05-29 2009-05-29 復調回路、復調方法、及び受信システム

Publications (2)

Publication Number Publication Date
JP2010278885A true JP2010278885A (ja) 2010-12-09
JP5347720B2 JP5347720B2 (ja) 2013-11-20

Family

ID=43220198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130807A Expired - Fee Related JP5347720B2 (ja) 2009-05-29 2009-05-29 復調回路、復調方法、及び受信システム

Country Status (2)

Country Link
US (1) US8300718B2 (ja)
JP (1) JP5347720B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184833A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 受信装置及び受信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411782B2 (en) * 2016-03-31 2019-09-10 Qualcomm Incorporated Channel estimation for per-tone continuous precoding in downlink MIMO transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134176A (ja) * 1998-10-23 2000-05-12 Jisedai Digital Television Hoso System Kenkyusho:Kk 遅延プロファイル解析装置及びシンボル同期方法
JP2003143099A (ja) * 2001-10-30 2003-05-16 Nippon Hoso Kyokai <Nhk> 周波数特性算出回路およびそれを用いたキャンセラならびに装置
JP2008042574A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 受信装置および遅延プロファイル検出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1639775B1 (en) * 2003-06-30 2007-10-10 Nokia Corporation Faster fine timing operation in multi-carrier system
JP4626428B2 (ja) * 2005-07-19 2011-02-09 ソニー株式会社 Ofdm復調装置及び方法
JP4904929B2 (ja) 2006-05-31 2012-03-28 富士通セミコンダクター株式会社 Ofdm受信機、妨害波判別方法、窓制御装置、及び窓制御方法
JP4961918B2 (ja) * 2006-09-12 2012-06-27 ソニー株式会社 Ofdm受信装置及びofdm受信方法
KR100987266B1 (ko) * 2007-02-14 2010-10-12 삼성전자주식회사 단일 반송파 주파수 분할 다중접속 시스템에서 제어정보 송수신 방법 및 장치
KR101541026B1 (ko) * 2008-04-30 2015-07-31 삼성전자주식회사 Ofdm 수신기
JP2009278448A (ja) * 2008-05-15 2009-11-26 Fujitsu Microelectronics Ltd Ofdm受信機およびofdm受信方法
JP5083026B2 (ja) * 2008-05-15 2012-11-28 富士通セミコンダクター株式会社 デジタル放送受信機、およびデジタル放送受信方法
JP2011223546A (ja) * 2010-03-26 2011-11-04 Fujitsu Ltd 受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134176A (ja) * 1998-10-23 2000-05-12 Jisedai Digital Television Hoso System Kenkyusho:Kk 遅延プロファイル解析装置及びシンボル同期方法
JP2003143099A (ja) * 2001-10-30 2003-05-16 Nippon Hoso Kyokai <Nhk> 周波数特性算出回路およびそれを用いたキャンセラならびに装置
JP2008042574A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 受信装置および遅延プロファイル検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184833A (ja) * 2015-03-26 2016-10-20 三菱電機株式会社 受信装置及び受信方法

Also Published As

Publication number Publication date
US8300718B2 (en) 2012-10-30
US20100303163A1 (en) 2010-12-02
JP5347720B2 (ja) 2013-11-20

Similar Documents

Publication Publication Date Title
JP4982186B2 (ja) Ofdm受信装置
US9948436B2 (en) Receiver and method of receiving
JP5544222B2 (ja) データ処理装置及びデータ処理方法
JP5222843B2 (ja) Ofdm受信装置、ofdm受信方法、ofdm受信回路、集積回路、及びプログラム
JP2003319005A (ja) シンボルタイミング補正回路、受信機、シンボルタイミング補正方法、及び復調処理方法
US9942076B2 (en) Device and method for detecting and recovering payload data from a signal
KR20070068821A (ko) 직교주파수 분할 다중화 수신기에서 초기 반송파 주파수오프셋의 추정 장치 및 방법
JP2007267198A (ja) Ofdm受信装置、ofdm受信方法及び地上波デジタル受信装置
CN102263725B (zh) 移动ofdm接收机
JP2008227622A (ja) 受信装置及び通信方法
JP4916846B2 (ja) Ofdm復調装置及びofdm復調方法
JP5347720B2 (ja) 復調回路、復調方法、及び受信システム
KR20110108364A (ko) Ofdm 송신 시스템에서 위상 잡음을 추정하기 위한 방법 및 장치
JP4567088B2 (ja) Ofdm信号受信装置および受信方法
JP5055239B2 (ja) Ofdm復調装置
JP2004072469A (ja) 伝搬路推定を行うofdm受信装置
JP2005286362A (ja) デジタル受信機
US8284869B2 (en) QAM demodulation
JP4362955B2 (ja) 復調装置及び復調方法
JP2002344414A (ja) Ofdm復調装置及び方法
JP5275304B2 (ja) Ofdm受信装置
JP4725356B2 (ja) Ofdm通信装置
JP5072680B2 (ja) 受信方法および装置
JP2009284436A (ja) Ofdm受信装置
JP2008092227A (ja) 無線通信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees