JP2010276600A - 分光測色装置、およびそれを用いた画像形成装置 - Google Patents

分光測色装置、およびそれを用いた画像形成装置 Download PDF

Info

Publication number
JP2010276600A
JP2010276600A JP2010081566A JP2010081566A JP2010276600A JP 2010276600 A JP2010276600 A JP 2010276600A JP 2010081566 A JP2010081566 A JP 2010081566A JP 2010081566 A JP2010081566 A JP 2010081566A JP 2010276600 A JP2010276600 A JP 2010276600A
Authority
JP
Japan
Prior art keywords
light
optical system
section
light guide
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081566A
Other languages
English (en)
Other versions
JP5411778B2 (ja
JP2010276600A5 (ja
Inventor
Kazumi Kimura
一己 木村
Tokuji Takizawa
徳司 瀧澤
Masayasu Teramura
昌泰 寺村
Nobuyuki Tochigi
伸之 栃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010081566A priority Critical patent/JP5411778B2/ja
Priority to US12/769,282 priority patent/US8184289B2/en
Priority to EP10161413.9A priority patent/EP2246676A3/en
Publication of JP2010276600A publication Critical patent/JP2010276600A/ja
Publication of JP2010276600A5 publication Critical patent/JP2010276600A5/ja
Application granted granted Critical
Publication of JP5411778B2 publication Critical patent/JP5411778B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/024Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for illuminating a slit efficiently (e.g. entrance slit of a spectrometer or entrance face of fiber)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】ローランド型などの回折型の分光測色器では、絞り位置精度や被検知面となる印字画像が上下移動により、絞りを通過する光束が増減することを低減し、分光測色器の検知精度を向上させる。
【解決手段】照明された被検体の画像の色を検出する分光測色装置は、絞りと、前記被検体で拡散され前記絞りを通過した光束を分光して検知する分光検知光学系と、前記絞りに前記被検体で拡散された光束を導く導光光学系とを有し、前記導光光学系の光軸と平行な断面である第1断面において、前記導光光学系で集光された光束の前記光軸の方向における集光位置は、前記第1断面に直交する方向の位置によって異なり、前記導光光学系の光軸方向において、前記導光光学系で集光された光束の前記第1断面内の集光位置のうち前記導光光学系に最も近い集光位置と最も遠い集光位置の間に前記絞りが配置されていることを特徴とする。
【選択図】図2

Description

本発明は被写体の色の識別や測色のために使用される回折格子を用いた分光測色装置に関するものであり、特に画像形成装置等におけるトナーや印字媒体の測色に好適な分光測色装置に関する。
また、画像形成装置に限らず、分光測色装置として例えば、デジタルカメラ等のホワイトバランス用センサ、その他の測色装置などとしても使用することができる。
カラー画像を電子写真方式で形成する画像形成装置において、トナーの混色等によって色調にずれが生じることがある。これは電子写真方式に限らずインクジェット方式等カラー画像を形成する画像形成装置全般において同様の問題を有する。このような問題を解決するために例えば、特許文献1では、トナー像の分光反射光量を異なる二つの分光フィルタを用いて測定し、その結果を用いて画像信号を補正する方法が提案されている。同様にカラー画像の色味補正を行う画像形成装置の提案として特許文献2がある。特許文献2では電子写真方式の画像形成装置では定着搬送路の定着器の下流に色味検知用のセンサを設けている。そして搬送路を移動する転写材上(印字画像)に形成された混色パッチ画像の色のRGB出力値を検知している。
色調をより高精度で判定するためには、分光する波長帯の数を少なくとも原色数である3以上に増やす必要があり、さらに波長帯の数を増やすことができればより良い精度で判定できる。
そのための手段として、回折現象を用いて分光する回折型の分光測色器が多数提案されており、例えば特許文献3,4,5、6などがある。
特開平09−160343号公報 特開2004−126278号公報 特開2000−298066号公報 特開平6−58812号公報 特開2002−206967号公報 特開平6−94528号公報
回折型の分光測色器を用いた場合には従来から解決しなければならない問題があった。
従来の回折型の分光測色器として、一般的に用いられているローランド型の回折型の分光測色器を図12に示す。
不図示の照明光学系により照明された被写体からの散乱光である検知光束が入射窓208から検知光学装置内に入射する。反射型の凹面回折素子204により分光され、一次元アレイ型検出器(一次元アレイ型受光素子)203により分光強度分布として取得される。このような構成の場合、検知光束の入射窓208のサイズを十分に小さくしないと、一次元アレイ型検出器203上での分光解像度が十分に得られないという問題がある。この問題の解決事例として特許文献4や特許文献5のように入射窓として絞りを配置した事例がある。ローランド型の場合、絞りとアレイ状検出器との回折格子による結像倍率は等倍となるので、絞りの幅はアレイ状検出器上に配列した各受光素子の配列方向の幅と同程度の幅である絞りを用意することが望ましい。特許文献4では、被検体からの被検知光束を、ミラーと結像レンズを介して絞りに結像するように、被検体と絞りを共役に構成している。このように結像することで光の利用効率が向上する。特許文献5では光ファイバーから出射した被検知光束を、結像レンズを用いて絞りに結像している。
ローランド型の回折型の分光測色器では、絞りと回折格子とアレイ状検出器の相対的な位置関係は高精度で位置合わせをしないと絞りの像がアレイ状検出器上でぼけた状態となり十分な分光性能を得ることができない。そこで例えば特許文献6には、回折素子とアレイ状検出器の間に設けたミラーを移動させピント調整する事例が示されている。しかし、回折素子とアレイ状検出器の間にミラーを設ける場合は部品点数が増加するという問題が生じる。
そこで絞りを前後に微調整してピント調整を行えばよい。ところが特許文献4や5のように絞りに検知光束を集光させている回折型分光器では、絞りが光軸方向に前後へ移動すると、絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動するという新たな課題が生じる。ピント調整時に受光光量が変動すると厳密な調整が難しくなる。
また、ピント調整を特許文献6の方式で行ったとしても、絞りの設置精度や導光素子の部品精度・設置精度がバラついた時にも、絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動するという新たな課題が生じる。
特許文献2のカラー画像を電子写真方式で形成する画像形成装置においては、搬送路を移動する転写材上(印字画像)の混色パッチ画像を読み取る必要がある。搬送路を移動する転写材上(印字画像)は搬送方向に垂直な方向(上下方法)に振動しながら移動することが知られている。特に移動速度が速い(印字速度が速い)場合にこの振動は顕著となる。特許文献4のように被検知面と絞りを共役にした光学系では、被検知面となる印字画像が上下(光軸方向)に振動すると共役関係が変化し、絞り上のピントが変位する。すなわち絞り上での検知光束の集光がピントずれを生じ、絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動し検知精度が低下するという新たな課題が生じる。
本発明の第1の目的は、絞りの位置精度などに起因する絞りを通過する光束の増減を軽減し、分光測色器の検知精度を向上させることである。また、本件の第2の目的は、被検知面となる印字画像が上下に移動した際の絞りを通過する光束の増減を軽減し、分光測色器の検知精度を向上させることである。
本発明に係る、照明された被検体の画像の色を検出する分光測色装置は、絞りと、前記被検体で拡散され前記絞りを通過した光束を分光して検知する分光検知光学系と、前記絞りに前記被検体で拡散された光束を導く導光光学系を有し、前記導光光学系の光軸と平行な断面である第1断面において、前記導光光学系で集光された光束の前記光軸の方向における集光位置は前記第1断面に直交する方向の位置によって異なり、前記導光光学系の前記光軸方向において、前記導光光学系で集光された光束の前記第1断面内の集光位置のうち前記導光光学系に最も近い集光位置と最も遠い集光位置の間に前記絞りが配置されていることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記第1断面と直交し前記光軸に平行な断面を第2断面と定義した時、前記導光光学系は、前記第2断面内のパワーより前記第1断面内のパワーの方が大きいアナモフィックな光学面を有する、ことを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記導光光学系のアナモフィックな光学面は、前記第1断面内での曲率が前記絞りの長手方向において異なる円錐面であることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記導光光学系のアナモフィックな光学面は、前記第1断面内の曲率が一定のシリンダ面であり、前記アナモフィックな光学面は前記第2断面内で該アナモフィックな光学面に入射する光線に対して傾斜して配置されることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記導光光学系の前記光軸方向において、前記導光光学系で集光された光束の第1断面内の集光位置のうち、前記導光光学系に最も近い集光位置と最も遠い集光位置の間の光軸方向の距離L(mm)は、前記絞りの長手方向の長さをLS(mm)としたとき、0.58<L/LS<1.73、を見たすことを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記導光光学系は、前記被検体側から順に、入射屈折面、全反射面、出射屈折面が配置された一体化された導光素子であることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記全反射面は、前記第1断面内のパワーが前記第2断面内のパワーより大きい、アナモフィックな反射面であることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記入射屈折面のパワーが前記出射屈折面のパワーより大きいことを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記入射屈折面の前側焦点位置に前記被検体が配置されていることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記導光光学系は、前記絞りの長手方向と前記導光光学系の光軸に平行な第2断面内のパワーが前記絞りの長手方向に直交する第1断面内のパワーより小さく、前記導光光学系で集光された光束の第1断面内の集光位置は、前記絞りの長手方向の位置によって異なり、前記導光光学系の光軸方向において、前記導光光学系で集光された光束の第1断面内の集光位置のうち前記導光光学系に最も近い集光位置と最も遠い集光位置の間に前記絞りが配置されていることを特徴とする。
本発明に係る分光測色装置のさらなる実施形態においては、前記被検体を照明する照明光学系と解析部とをさらに有し、前記分光検知光学系は、前記絞りを通過した光束を分光する分光光学素子と、前記分光光学素子にて分光された前記光束を受光する一次元アレイ型受光素子を有し、前記一次元アレイ型受光素子は、分光された光束の所定の波長範囲での分光強度を検出して電気信号に変換し、前記解析部は検出された前記分光強度に基づき前記被検体の色度を算出することを特徴とする。
本発明に係るカラー画像形成装置は、前記分光測色装置を有し、前記分光測色装置の検出結果に基づき画像信号を補正する制御手段を備える。
本発明によれば、被検体から反射された検知光束を絞り上に効率よく集光すると共に、絞りの配置が光軸方向に変位しても絞りを通過する検知光束の光量の変動を低減することができ、安定した検知精度の確保が可能となる。
本発明の実施形1の分光測色装置の斜視図である。 本発明の実施形1の導光素子の説明図である。 本発明の実施形1の要部斜視図である。 (a)は本発明の実施形1の光量変化を説明する図であり、(b)は本発明の実施形1の光量変化を説明する図である。 (a)は本発明の実施形1の光量変化を説明する図であり、(b)は本発明の実施形1の光量変化を説明する図である。 (a)は本発明の実施形1の分光光学系の要部断面図であり、(b)は本発明の実施形1の凹面反射型回折素子の要部断面図である。 本発明の実施形2の導光光学系の説明図である。 本発明の実施形2の導光光学系の変形例の説明図である。 本発明の実施形3の導光光学系の説明図である。 本発明の実施形3の導光光学系の変形例の説明図である。 本発明の分光測色装置を用いた画像形成装置の構成例を示す要部断面図である。 従来の分光測色器である。 導光素子の比較例の説明図である。
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
(導光素子を使用した分光測色装置)
本実施例では本発明の分光用反射型回折素子を用いた分光測色装置の実施例を説明する。
図1は、本発明の実施形態にかかわる導光光学系として、入射屈折面、全反射面、出射屈折面が配置された一体化された導光素子を用いた分光型測色装置の斜視図である。図2は要部断面図、図3は要部斜視図である。図4及び図5は発明の効果を説明する図である。図6はローランド型の分光器を説明する図である。
本実施例における分光測色装置は、分光検出光学系と、被検体からの光束を前記分光検出光学系へ導く導光光学系からなる。図6(a)のような簡易な構成で小型化に有効なローランド型の分光器構成を有する。ローランド円60上に入射絞り5と凹面反射型回折素子6を配置すると、同じローランド円上に回折光が集まり波長により決定する場所に結像する。その位置に一次元アレイ型検出器(一次元アレイ型受光素子)7を配置することで同時に分光強度分布を検出することができる。
図6(b)に示すように凹面反射型回折素子6は曲面のベース面61上に微細なブレーズ格子62を無数に構成している。
図1で、光源1と集光素子2からなる照明装置からの光束81により照明された被検体3の反射光82は、導光素子4を介して入射絞り5に導かれる。入射絞り5を通過した光は、分光光学素子である凹面反射型回折素子6によって、分光及び集光され、所定の波長範囲内において波長ごとに一次元アレイ型検出器7上に絞り像として結像する。
一次元アレイ型検出器7では波長ごとの光量を電気信号に変換し、不図示の解析部である解析装置に送信する。解析装置は入力された分光強度情報を元に内部テーブルから被検体の色度を算出する。
色味を判定したい被検体3上には、所望のカラーパッチ(色度検出用パッチ)31、32、33が印刷されている。カラーパッチを照明する照明装置は光源1と集光素子2からなる。カラーパッチ31,32,33を含む被検体は不図示の画像搬送装置により、矢印A方向に順次移動され、被照明領域34に到達し、照明される。
本実施例においては光源1として白色発光ダイオード(白色LED)を用いている。LEDは一般にその素子構成により所定の配向特性を有している。そのため、集光素子2を用いることにより照明効率を上げ、被検体上を均一に照明し、かつ被検体3の浮きによる光量変動の低減を図っている。
集光レンズ2はプラスチックレンズであり、射出成形により製作される。集光レンズ2によって照明光束は被照明領域34を照明する。
導光素子4は被照明領域34に達した被検体3からの反射光を絞り5に導光する。
被照明領域34内の読み取り域35は、被検体3の移動方向(矢印A)に対して垂直な方向に細長い領域である。
導光素子4の詳細な形状を図2に示す。導光素子4は凸面の球面形状を有する入射面(入射屈折面)41と、凹面状のシリンダ全反射面42、平面状の出射面(出射屈折面)43を有する。光路は、紙面と平行な断面(以後、第2断面と記す)内において全反射面42により折り曲げられる。全反射面42は紙面と平行な第2断面内ではパワーを持たず、紙面と直交し光軸に平行な断面(以後、第1断面と記す)内でパワーを有するシリンダ形状を有する。
導光素子4は分光方向と平行な方向に集光作用を有したアナモフィックなパワーを持つ集光素子である。導光素子4の機能は読み取り域35で拡散された光束を絞り5上に集光し、ほぼ線像に結像する事である。導光素子4も集光素子2と同様にプラスチック製である。プラスチックの材料としてはアクリルやポリカーボネイト、ポレオレフィン系樹脂など既存の光学樹脂材料を用いればよい。防塵性を高める目的で、カバーガラス(図1には不図示)を集光素子2と被検体3の間や、被検体3と導光素子4の間に設けてもよい。その際、波長が380nm以上の可視光域では90%を超える透過率を有していれば、波長が380nm以下の紫外線域では透過率が下がるものであってもよい。なお透過率は読み取りたい波長域を考慮して決定することが肝要である。
絞り5を通過した光は、凹面反射型回折素子6によって、分光と集光が行われ、一次元アレイ型検出器7に波長ごとに絞り像として結像する。なお図1には、分光された1次回折光として代表的な3色の光束84B、84G、84Rを示しているが、実際には代表的な3色の光束以外の光束も一次元アレイ型検出器7に到達している
一般に、一次元アレイ型検出器7としてはSiフォトダイオードアレイが用いられる。
一次元アレイ型検出器7には複数の受光画素71が水平方向に並べられている。受光画素71は波長ごとに集光された絞り像の強度を検出信号として出力する。検出信号は不図示の信号処理回路により波長に対応する信号として検知される。またSiフォトダイオードアレイはその構成上、近赤外近傍の分光感度が高く、短波長になるにしたがって分光感度が低い特性を有する。信号処理回路はこのような分光感度も勘案して処理信号を発生可能な構成となっている。
一次元アレイ型検出器7に結像される像の形状を決めるのが絞り5の機能である。一次元アレイ型検出器7の受光画素71上には、各色ごとに絞り5の像が結像される。
したがって、一次元アレイ型検出器7の受光画素71と絞り5の形状は、相似形とする事が望ましい。実施例1の絞り5は第1の方向に長い矩形形状の絞りとしている。
矩形形状の絞り5の幅(短い方向の絞りの長さ)が大きすぎると検出精度が低下する(以後、絞りの幅の方向を短手方向と記す)。つまり、一次元アレイ型検出器7の受光画素71上に結像された絞り5の像の幅が太くなり、同一波長の光の回折光が複数の受光画素71にまたがって受光される為、検出精度が低下するのである。
波長分解能は、一次元アレイ型検出器7の受光画素71の分光方向(=配列している方向)の長さ(幅)によって決まる。したがって、幅を狭くするほど、波長分解能を向上させることができる。
図1において、受光画素71の配列している方向と直交する方向の長さ(高さ)は受光画素71の幅より大きくする事ができる。受光画素71の高さ方向には分光しないため、検知精度や波長分解能には寄与しないからである。
受光画素71の高さ方向を大きく取り、また絞り5の高さ(幅方向(短手方向)と直交する方向:以後、長手方向と記す)を大きく取れば、受光画素71で受光する光量を増やす事ができる。これにより微量な光束も検知できる高感度な分光器にする事ができる。高感度な分光器にできればカラーパッチを照明する光源1の光量を減らし、電力を低減することも可能になる。
図6(b)に示すように、凹面反射型回折素子6はY方向とZ方向に異なる曲率を有するアナモフィックな光学面61上にブレーズ回折格子62を構成している。
入射絞り5と、凹面反射型回折素子6と、一次元アレイ型検出器7は分光検知光学系を構成する。一般にローランド型の分光器構成においては、凹面反射型回折素子は球面をベースとする面として構成されている。そのため、分光方向とそれに直行する方向での結像状態が大きく異なり、大きな非点収差が発生し結像性能が低下するので、分光器としての分解能が低下する問題があった。本問題は原理的に発生するものであるので、完全に除去することはできない。しかしながら、分光する方向とそれに直交する方向とで異なる曲率(すなわちアナモフィック面)にすることで分光方向に直交する方向の像面傾きを短波長と長波長で異なるようにすることができる。これにより、必要十分な結像性能を得ることが可能となる。そのため、凹面反射型回折素子のベースとなる面をアナモフィック面としている。
なお、凹面反射型回折素子6は金型を使用した射出成形により作成したプラスチック光学素子にAlなどの反射膜とSiO2などの増反射膜を蒸着することで作成される。また、凹面反射型回折素子は石英基板などの光学基板上にイオンビームによる直接加工や、既存のリソグラフィー加工などにより構成しても良い。
ここで凹面反射型回折素子6について詳細に説明する。
図6(b)は凹面反射型回折素子6の分光方向の断面図である。ベース面であるアナモフィックな光学面61上に微細なブレーズ格子62が多数構成されている。(なおブレーズ格子62は誇張して記載している)
本実施例の分光器の諸仕様および凹面反射型回折素子6の形状を表1および表2に示す。
Figure 2010276600
Figure 2010276600
ローランドタイプの分光器であるが故、ローランド円の半径8.75mmに対し、ローランド円を含む面内の回折格子のアナモフィックなベース面の母線の曲率半径は17.5mmである。また母線と直交する子線の曲率半径は15.45mmである。また有効径7mmであり、NAは0.4である。
一般に回折素子のブレーズ格子は単層の回折格子からなる。そのため、回折効率は、ブレーズ波長で最大となり、ブレーズ波長から短波長側、長波長側に向かって緩やかに低下する。したがって、分光器の検出波長帯域内の最短波長近傍がブレーズ波長となるように回折格子形状を設定することで、これらの問題を解決することが可能である。
また、これは言いかえれば回折格子の格子高さhに置き換えても同義である。
凹面反射型回折格子6は、切削により作成した金型に樹脂を射出して成形する。もしくは母材を直接切削して製作してもよい。もしくは切削により作成した金型に溶融ガラスを押し付けて転写して製作してもよい。さらに反射効率を高めるために格子面にAlをベースとする多層膜を付与してもよい。
図6(a)で絞り5や凹面反射型回折素子6や一次元アレイ型検出器7の配置精度や、回折格子6の曲率半径の精度により絞り5の絞り像が一次元アレイ型検出器7上でぼけてしまうことがある。そこで絞り5を光軸方向にシフトさせてピント調整を行う必要がある。絞り5は保持部(不図示)によって保持され、光軸方向にシフト可能な構成となっている。
次に導光光学系としての導光素子4の構成と作用について図2乃至5を用いて説明する。
図2のように、読み取り領域35断面と光軸との交点を原点とし、光軸に沿った方向であって、シリンダ全反射面42から読み取り領域35側へ向かう方向をY軸方向と定義する。また、読み取り領域35断面内における被検体3の移動方向(図1における矢印Aの方向)に対して垂直な方向であって出射面43側の方向をX軸方向と定義する。このようにXY座標系を定義したときの入射面41、シリンダ全反射面42、出射面43、絞り5の面位置座標と曲率などの諸元を表3に示す。
Figure 2010276600
ただし、単位はmmであり、読み取り域35と入射面41の間には厚さ0.7mmのカバーガラス(不図示)があり、絞りの開口の幅(短手方向)60μm、開口の長さ(長手方向)2mmとする。また原点(0,0)は図2に示すようにX軸とY軸の交点である。
第1断面内において、導光素子4の出射光束のNAと分光検知光学系の入射光束のNAをほぼ等しくなるように各光学素子の光学有効域を設定し、光束エネルギーのロスを最小限にした適切な素子の大きさを決める事が望ましい。
本実施例では、分光検知光学系の第1断面内の入射側NAは0.4であるため、導光素子の入射側NAが0.4となるように、入射面41と全反射シリンダ面42と出射面43の光学有効域を設定している。
導光素子4は、凸球面状の入射面41により、読み取り域35からの反射光束を略平行とするような集光作用を有する。すなわち、入射面41の前側焦点位置と読み取り域35はほぼ一致するように配置されている。ここで、ほぼ一致するように配置されるとは、読み取り域35が入射面41の前側焦点距離の±20%以内の位置に配置されていることを示す。
図2に示すように、被検体3からの反射光束のうち、紙面内にある主光線を85b、マージナル光線を85aと85cとする。光束85a,85b,85cは、これらの光束に対して45°で配置された全反射面42で全反射する。
全反射面42は紙面と直交し光軸に平行な面内でのみ曲率をもつアナモフィックな凹面状のシリンダ面である。全反射シリンダ面42は紙面と平行な第2断面内ではパワーを持たず、紙面と直交し光軸に平行な第1断面内でパワーを有する。すなわち、全反射面な42は、第2断面内のパワーより、第1断面内のパワーの方が大きいアナモフィックな光学面である。また、紙面と平行な第2断面内で全反射シリンダ面42により光路を90度折り曲げている。この結果、アナモフィック面より被検体側に配置された入射面41で略平行光となった入射光束を紙面と直交し光軸と平行な第1断面内でのみ集光し、紙面と平行な第2断面内では集光作用をあたえずに、第2断面内で光束を折り曲げている。
出射面43は平面であり(出射面43は入射面41よりもパワーが小さい)、全反射シリンダ面42で反射された光束85a,85b,85cを絞り5に向けて射出している。
以上のように導光素子は入射面41で略平行光とした光束を、紙面と平行な第2断面内では集光させること無く平行光のまま絞り5に向けて射出している。また、紙面と直交し光軸に平行な第1断面内では全反射シリンダ面42で集光作用を与えて絞り5近傍に集光するパワー配置となっている。
また、全反射シリンダ面42で反射された光束85a,85b,85cは、凹面状のシリンダ面42で、それぞれ同じ集光作用を受ける。しかし、全反射面42上の各光線の反射点と、絞り5までの距離がそれぞれ異なるため、光束85a,85b,85cの集光位置86a,86b,86cは図3に示すように集光位置が光軸方向において異なる。
図3に示すように、マージナル光線85aの集光位置86aは導光素子4に一番近く、マージナル光線85cの集光位置86cは導光素子4から一番遠い。絞り5は一番近い集光位置86aと一番遠い集光位置86cの間に設けられている。
第2断面内では集光させること無く平行光のまま絞り5に向けて射出しているので、絞り5の開口の長手方向の長さLS(=2.0mm)とマージナル光線85aと85cの間隔は一致する。集光位置86a、86b、86cを結ぶラインと反射光束85a,85b,85cの傾斜角度θは、図2からわかるように全反射シリンダ面42への入射角度、もしくは反射角度と一致する。
従って、絞り5の開口の長手方向の長さLSと傾斜角度θを用いて、導光素子4に一番近い集光位置86aと一番遠い集光位置86cの光軸方向における距離Lは、L=LS×tanθ、と表せる。図2においては、θ=45°なのでL=LSとなっている。
傾斜角度θを小さくしすぎると、絞り5が光軸方向に微少量変位しただけで絞り5を抜ける光束の変動が大きくなってしまう。また傾斜角度θを大きくしすぎると絞り5でケラれる光束が増えてしまい、全系の光学効率が低下してしまう。
また、図1からわかるように、傾斜角度θを大きくするために全反射面42への入射角度を大きくし過ぎると、一次元アレイ型検出器7と被検体3が干渉するようになる。逆に傾斜角度θを小さくするために全反射面42への入射角度を小さくし過ぎるとすると、回折素子6と被検体3が干渉するようになる。
以上の光学効率と配置を考慮し、傾斜角度θは30°乃至60°の範囲に収めることが望ましい。その際、距離Lは、0.58×LS乃至1.73×LSの範囲の値となる。従って、0.58<L/LS<1.73となる。
さらにより理想的には、傾斜角度θは35°乃至55°の範囲に収めることが望ましい。
その際、距離Lは、0.70×LS乃至1.43×LSの範囲の値となる。従って、0.70<L/LS<1.43となる。
絞り5は導光素子4に一番近い集光位置86aと一番遠い集光位置86cの間に設けられているため、集光位置86aと集光位置86cの範囲で絞り5の位置が光軸方向に前後に移動しても、絞り5のいずれかの場所に集光位置が存在する。つまり、一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するため、絞りの光軸方向の位置に拠らず、検知する光束の一部が必ず絞り上に集光する。
このため、ピントずれによる光量変動が生じない。
また、被検体3(読み取り領域35)の位置が光軸方向(上下方向)に変位した際には導光光学素子による絞り5近傍の集光位置も光軸方向に変位するが、導光素子4に一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するために検知する光束の一部が必ず絞り上に集光する。このため、ピントずれによる光量変動が生じにくい。
図4に本実施例の効果を示す。図4(a)は表3に示された本件の実施例構成に対し絞り5の位置を光軸方向に変動させた量(dX)を横軸に、絞り5を抜けて回折素子6に達する光量を縦軸に示している。ただしdX=0の光量を100%として規格化した。
また本実施例の比較例として図13と表4に示す導光素子を想定した。すなわち、全反射面42は平面であり、第1断面内および第2断面内において読み取り域35を絞り5に集光するよう入射面41のパワーを大きく構成した導光素子を想定した。
Figure 2010276600
原点(0,0)は図13に示すようにX軸とY軸の交点である。表4の導光素子を用いた際の光量変動を図4(b)に示す。図4(b)では絞り5の位置を光軸方向に変動させた量を横軸(dX)に、絞り5を抜けて回折素子6に達する光量を縦軸に示している。ただしdX=0の光量を100%として規格化している。
図4(b)の比較例では絞りの変位±1mmに対し、光量が約11.4%変動する。一方、図4(a)の本件実施例では、絞りの変位±1mmに対し、光量の変動は約4.6%である。図4(a)と図4(b)を比較すれば明らかなように、本件の構成により光量変動は約4割に低減できる。
次に、図5に本実施例の別の効果を示す。図5(a)は表3に示された本件の実施例構成に対し被検体3(読み取り領域35)の位置を光軸方向(上下方向)に変動させた量を横軸(dX)に、絞り5を抜けて回折素子6に達する光量を縦軸に示している。ただしdX=0の光量を100%として規格化している。
また本実施例の比較例として表4の導光素子を想定した。表4の導光素子を用いた際の光量変動を図5(b)に示す。図5(b)では被検体3(読み取り領域35)の位置を光軸方向(上下方向)に変動させた量を横軸(dX)に、絞り5を抜けて回折素子6に達する光量を縦軸に示している。ただしdX=0の光量を100%として規格化している。
図5(b)の比較例では被検体3の変位±1mmに対し、光量は約14.9%変動する。一方、図5(a)の本件実施例では、被検体3の変位±1mmに対し、光量の変動は約5.2%である。図5(a)と図5(b)を比較すれば明らかなように、本件の構成により光量変動は4割弱に低減できる。
本実施例において、検知光学系としてローランド型の分光器を用いたがこれに限られること無く、例えばツェルニータナー型やリトロー型など入射部に絞りをもつ分光器であれば適用可能である。また照明光学系には紫外LED励起タイプの白色LEDを用いたがこれに限られるものではなく、例えばハロゲンランプのような既存の光源や、RGB3色の光源を合成したもの、などを用いてもよい。
以上のように本実施例の構成をとることで、絞りを前後に調整してピント調整を行っても、絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動することを低減することができる。また、絞りの設置精度や導光素子の部品精度・設置精度がバラついたときも絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動することも低減できる。さらに、被検体3が搬送されるときに上下方向に変位しても絞りを通過する光束が増減してアレイ状検出器に到達する受光光量が変動することも低減できる。
よって、本件の導光光学系を採用し、検知光学系のアレイ状検出器に到達する受光光量の変動の低減を可能としたことで、分光測色器の検知精度を向上させることができる。
図7に他の導光光学系の実施例を示す。本実施例の導光光学系は、球面レンズ44、反射ミラー45、シリンダレンズ46、絞り5により構成される。絞り5以降の検知光学系は実施例1と同様である。
図7のように図2での定義と同様なXY座標系を定義したとき、球面レンズ44、反射ミラー45、シリンダレンズ46、絞り5の各素子の面位置座標と曲率などの諸元を表5に示す。
Figure 2010276600
ただし、単位はmmであり、読み取り域35と入射面44aの間には厚さ0.7mmのカバーガラス(不図示)がある。絞りの開口の幅は60μm、開口の長さは2mmとする。また原点(0,0)は図7に示すようにX軸とY軸の交点である。
第1断面内において、導光素子4の出射光束のNAと分光検知光学系の入射光束のNAをほぼ等しくなるように各光学素子の光学有効域を設定し、光束エネルギーのロスを最小限にした適切な素子の大きさを決める事が望ましい。
本実施例では、分光検知光学系の第1断面内の入射側NA=0.4であるため、導光素子の入射側NA=0.4となるように球面レンズ44と反射ミラー45とシリンダレンズ46の光学有効域を設定している。
球面レンズ44は凸球面状の入射面44aにより読み取り域35からの反射光束を略平行となるような集光作用を有する。すなわち、入射面44aの前側焦点面位置と読み取り域35は、ほぼ一致して配置されている。ここで、ほぼ一致して配置されるとは前側焦点距離の±20%以内の位置の差を示す。
図7に示すように、被検体3からの反射光束のうち、紙面内にある主光線を85b、マージナル光線を85aと85cとする。光束85a、85b、85cは、これらの光束に対して45°で配置された反射ミラー45で紙面と平行な方向である第2断面内で反射する。
また、シリンダレンズ46への入射角度は36°である。
シリンダレンズ入射面46aは紙面と直交する面内で一定の曲率を有する凸面状のシリンダ面である。この結果、シリンダレンズ入射面46aは、球面レンズ44で略平行光となった入射光束を紙面と直交し光軸と平行な第1断面内でのみ集光し、紙面と平行な第2断面内では集光作用を与えずに、第2断面内で光束を折り曲げている。
以上のように球面レンズ44と反射ミラー45とシリンダレンズ46からなる導光光学系は、球面レンズ44で略平行光とした光束を、紙面と平行な第2断面内では集光させること無く平行光のまま絞り5に向けて射出している。また、紙面と直交し光軸と平行な第1断面内ではシリンダレンズ46で集光作用を与えて絞り5近傍に集光するパワー配置となっている。
また、反射ミラー45で反射された光束85a,85b、85cは、凸面状のシリンダ面であるシリンダレンズ入射面46aで同じ集光作用を受ける。しかしシリンダレンズ入射面46a上の各光線の入射点と、絞り5までの距離がそれぞれ異なるため、光束85a,85b、85cの集光位置86a,86b、86cは図7に示すように光軸方向において集光位置が異なる。
図7に示すように、マージナル光線85aの集光位置86aはシリンダレンズ46に一番近く、マージナル光線85cの集光位置86cはシリンダレンズ46から一番遠い。絞り5は一番近い集光位置86aと一番遠い集光位置86cの間に設けられている。
第2断面内では集光させること無く平行光のまま絞り5に向けて射出しているので、絞り5の長手方向の長さLS(=2.0mm)とマージナル光線85aと85cの間隔は一致する。集光位置86aと86bと86cを結ぶラインと光束85a、85b、85cの傾斜角度θは、図7からわかるようにシリンダレンズ46への入射角度36°と一致する。従って、絞り5の開口の長手方向の長さLSと傾斜角度θを用いて、シリンダレンズ46に一番近い集光位置86aと一番遠い集光位置86cの光軸方向における距離Lは、L=LS×tanθ、と表せる。図7においてθ=36°である。
傾斜角度θを小さくしすぎると、絞り5が光軸方向に微少量変位しただけで絞り5を抜ける光束の変動が大きくなってしまう。また傾斜角度θを大きくしすぎると絞り5でケラれる光束が増えてしまい、全系の光学効率が低下してしまう。従って傾斜角度θは30°乃至60°の範囲に収めることが望ましい、その際、距離Lは、0.58×LS乃至1.73×LSの範囲内の値となる。従って、0.58<L/LS<1.73となる。さらにより理想的には傾斜角度θは35°乃至55°の範囲に収めることが望ましい。その際、距離Lは、0.70×LS乃至1.43×LSの範囲内の値となる。従って、0.70<L/LS<1.43となる。
絞り5はシリンダレンズ46に一番近い集光位置86aと一番遠い集光位置86cの間に設けられているため、集光位置86aと集光位置86cの範囲で絞り5の位置が光軸方向に移動しても、絞り5のいずれかの場所に集光位置が存在する。つまり、一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するため、絞りの光軸方向の位置に拠らず、検知する光束の一部が必ず絞り上に集光する。このため、ピントずれによる光量変動が生じない。
また、被検体3の位置が光軸方向(上下方向)に変位した際には導光光学素子による絞り5近傍の集光位置も光軸に変位するが、一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するために検知する光束の一部が必ず絞り上に集光するようになる。このため、ピントずれによる光量変動が生じない。
図8には、図7の導光光学系の変形例を示す。図8では図7の反射ミラー45を無くし、光路を折り曲げることなく読み取り領域35からの反射光束を絞り5へ導いている。球面レンズ44とシリンダレンズ46の作用は図7の構成と同じであり、部品点数を削減し低コストな導光光学系を実現している。
以上のように本実施例の構成をとることで、絞りを前後に移動してピント調整を行っても、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動を低減することができる。
また、絞りの設置精度や導光素子の部品精度・設置精度がバラついたときも、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動も低減できる。さらに、被検体3が搬送されるときに上下方向に変位しても、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動も低減できる。
よって、本件の導光光学系を採用し、検知光学系のアレイ状検出器に到達する受光光量の変動の低減を可能としたことで、分光測色器の検知精度を向上させることができる。
図9に導光光学系の他の実施系を示す。本実施例の導光光学系は、球面レンズ44、反射ミラー45、特殊シリンダレンズ47、絞り5により構成される。絞り5以降の検知光学系は実施例1と同様である。
図9のようにXY座標系を定義したとき、球面レンズ44、反射ミラー45、特殊シリンダレンズ47、絞り5の各素子の面位置座標と曲率などの諸元を表6に示す。
Figure 2010276600
ただし、単位はmmであり、読み取り領域35と入射面41の間には厚さ0.7mmのカバーガラス(不図示)がある。絞り幅の60μm、長さ2mmとする。また原点(0,0)は図9に示すようにX軸とY軸の交点である。
絞り5の開口は、長方形であり、短手方向の長さは60μm、長手方向の長さは2mmである。
なお、球面レンズ44と反射ミラー45とシリンダレンズ47の光学有効域は、シリンダレンズ47の出射面47bから出射される光束の第1断面内の出射側NAが検知光学系のNA=0.4とほぼ同じになるように設定されている。なお、ほぼ同じとは±20%であることを示す。
球面レンズ44は凸球面状の入射面44aにより読み取り域35からの反射光束を略平行となるような集光作用を有する。すなわち、入射面44aの前側焦点面位置と読み取り域35ほぼ一致して配置されている。ここで、ほぼ一致するとは前側焦点距離の±20%以内の位置の差を示す。
図9に示すように、被検体3からの反射光束のうち、紙面内にある主光線を85b、マージナル光線を85aと85cとする。光束85a、85b、85cは、これらの光束に対して45°で配置された反射ミラー45で紙面と平行な第2断面内で反射する。
また、シリンダレンズ47は入射光束に対し正対して配置される(図7のようにチルトさせない)。
シリンダレンズ入射面47aは紙面と直交し光軸と平行な面内で曲率を有する凸面状の特殊シリンダ面(アナモフィックな光学面)である。特殊シリンダ面とはシリンダ面の母線方向によって曲率が異なる面、いわゆる、円錐面である。具体的に主光線85b付近の曲率は3.5mm、マージナル光線85a付近の曲率は3.0mm、マージナル光線85c付近の曲率は4.0mmに設定されている。
この結果、球面レンズ44で略平行光となった入射光束を紙面と直交し光軸と平行な第1断面内で集光し、紙面と平行な方向な第2断面内では集光作用を与えずに、第2断面内で光束を折り曲げている。
以上のように、球面レンズ44と反射ミラー45とシリンダレンズ47からなる導光光学系は、球面レンズ44で略平行光とした光束を、紙面と平行な第2断面内では集光させること無く平行光のまま絞り5に向けて射出している。また、紙面と直交し光軸に平行な第1断面内ではシリンダレンズ47で集光作用を与えて絞り5近傍に集光するパワー配置となっている。
また、反射ミラー45で反射された光束85a,85b,85cは、凸面状のシリンダ面であるシリンダレンズ入射面の特殊シリンドリカル面47aでそれぞれ異なる集光作用を受けるため、光束85a,85b,85cの集光位置86a,86b,86cは図9に示すように集光位置が異なる。
図9に示すように、マージナル光線85aの集光位置86aはシリンダレンズ47に一番近く、マージナル光線85cの集光位置86cはシリンダレンズ47から一番遠い。絞り5は一番近い手前側の集光位置86aと一番遠い集光位置86cの間に設けられている。
上記の特殊シリンドリカル面47aの曲率により、集光位置86bに対して集光位置86a、86cは±1.0mmの位置に集光する。つまり集光位置86aと86cは光軸方向に距離L=2mm離れている。
第2断面内では集光させること無く平行光のまま絞り5に向けて射出しているので、絞り5の長さLS(=2.0mm)とマージナル光線85a,85cの光軸方向における間隔は一致し、2.0mmである。よって集光位置86a,86b,86cを結ぶラインと光束85a,85b,85cの傾斜角度θは、絞り5の長手方向の長さLS、傾斜角度θ、一番手前側の集光位置86aと一番後側の集光位置86cの光軸方向における距離L=2.0mm、との関係 L=LS×TAN θ、から、θ=45°と求められる。
傾斜角度θを小さくしすぎると、絞り5が光軸方向に微少量変位しただけで絞り5を抜ける光束の変動が大きくなってしまう。また傾斜角度θを大きくしすぎると絞り5でケラれる光束が増えてしまい、全系の光学効率が低下してしまう。
従って傾斜角度θは30°乃至60°の範囲に収める事が望ましい、その際、距離Lは、0.58×LS乃至1.73×LSの範囲内の値となる。従って、0.58<L/LS<1.73となるように特殊シリンドリカル面47aの曲率を定めれば良い。
さらにより理想的には傾斜角度θは35°乃至55°の範囲に収める事が望ましい。その際、距離Lは、0.70×LS乃至1.43×LSとなる。従って、0.70<L/LS<1.43となるように特殊シリンドリカル面47aの曲率を定めれば良い。
絞り5は、シリンダレンズ47に一番近い集光位置86aと一番遠い集光位置86cの間に設けられているため、集光位置86aと集光位置86cの範囲で絞り5の位置が光軸方向に前後に移動しても、絞り5のいずれかの場所に集光位置が存在する。
つまり、一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するため、絞りの光軸方向の位置に拠らず、検知光束の一部が必ず絞り上に集光する。このため、ピントずれによる光量変動が生じない。
また、被検体3の位置が光軸方向(上下方向)に変位した際には導光光学素子による絞り5近傍の集光位置も光軸方向に変位する。しかし、一番近い集光位置86aと一番遠い集光位置86cの間に無数の集光位置が存在するため、検知光束の一部が必ず絞り上に集光する。このため、ピントずれによる光量変動が生じない。
図10には、図9の導光光学系の変形例を示す。図10に示す変形例においては、図9の実施例に対して反射ミラー45を有さず、光路を折り曲げることなく検知領域35からの反射光束を絞り5へ導いている。球面レンズ44とシリンダレンズ47の作用は図9の構成と同じであり、部品点数を削減し低コストな導光光学系を実現している。
以上のように本実施例の構成をとることで、絞りを前後に移動してピント調整を行っても、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動を低減することができる。また、絞りの設置精度や導光素子の部品精度・設置精度がバラついたときも、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動も低減できる。さらに、被検体3が搬送されるときに上下方向に変位しても、絞りを通過する光束の増減に起因するアレイ状検出器に到達する受光光量の変動も低減できる。
よって、本件の導光光学系を採用し、検知光学系のアレイ状検出器に到達する受光光量の変動の低減を可能としたことで、分光測色器の検知精度を向上させることができる。
図11は本発明の実施態様のカラー画像形成装置の要部概略図である。本実施例は、像担持体である感光ドラムを4個並べ、各感光ドラムに4組のレーザー光束で画像情報を書き込む光走査装置161を配置したタンデムタイプのカラー画像形成装置である。カラー画像形成装置は、カラー画像形成装置160、光走査装置161、各々像担持体としての感光ドラム121、122、123、124、現像器131、132、133、134、中間転写ベルト151、定着器(不図示)を有する。
図11において、カラー画像形成装置160には、パーソナルコンピュータ等の外部機器152からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力する。これらの色信号は、装置内のプリンタコントローラ153によって、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の各画像データ(ドットデータ)に変換される。これらの画像データは、光走査装置161に入力される。そして、複数の被走査面(感光ドラム)を走査する光走査装置161は既知の装置、例えば1つの偏向器を中心に左右に対向して配置された走査光学系で構成される光走査装置を用いればよい。もしくは光走査装置161は個別の光走査装置を4個並べ、各々がC(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の各色に対応し、各々平行して感光ドラムを記録し、カラー画像を高速に印字してもよい。
光走査装置161からは、各画像データに応じて変調された光ビーム141、142、143、144が出射され、これらの光ビームによって感光ドラム121、122、123、124の感光面が主走査方向に走査される。
本実施態様におけるカラー画像形成装置は上述の如く4つの光走査装置161により各々の画像データに基づいた光ビームを用いて各色の潜像を各々対応する感光ドラム121、122、123、124面上に形成している。その後、各現像器により潜像を現像すると伴に中間転写ベルト上で各色を多重転写し、その後、記録材に転写し定着器により記録材上に画像が形成される。
本画像形成装置においては、色度検出用の分光測色装置100が記録材の搬送路の定着器の直後に、記録材の画像形成面に向けて配置されている。分光測色装置100は実施例で説明した構成のものを用いている。分光測色装置は画像形成装置により記録材上に形成定着された後のカラーパッチの色度を検知する。ここで記録材上に定着後のカラーパッチを測色しているのは定着等による色度変化を考慮した上でカラーマッチングを行うためである。検出結果をプリンタコントローラに転送し、制御手段であるプリンタコントローラは、出力された単色パッチの色再現が適切になされているかを判断する。出力された単色パッチの色度とプリントコントローラが指示した色度との色差が所定範囲内の場合には、カラーキャリブレーションを終了する。色差が所定範囲外の場合には色差情報をもとにプリンタコントローラは所定の色差以内となるまで画像信号を補正するカラーキャリブレーションを実施する。
このように画像形成装置に本発明の分光測色装置を導入することにより、より高度なカラーキャリブレーションが可能となる。
1:光源(紫外励起タイプの白色LED)
2:集光素子
3:被検体(基準カラーパッチ)
4:導光素子
41:球面入射面
42:シリンダ凹面全反射面
43:平面出射面
5:絞り
6:凹面回折素子
7:一次元アレイ型検出器(Siフォトダイオードアレイ)
85:検知光束
86:検知光束の集光位置

Claims (12)

  1. 照明された被検体の画像の色を検出する分光測色装置は、
    絞りと、
    前記被検体で拡散され前記絞りを通過した光束を分光して検知する分光検知光学系と、前記絞りに前記被検体で拡散された光束を導く導光光学系と、
    を有し、
    前記導光光学系の光軸と平行な断面である第1断面において、前記導光光学系で集光された光束の前記光軸の方向における集光位置は、前記第1断面に直交する方向の位置によって異なり、
    前記導光光学系の前記光軸方向において、前記導光光学系で集光された光束の前記第1断面内の集光位置のうち前記導光光学系に最も近い集光位置と最も遠い集光位置の間に前記絞りが配置されている
    ことを特徴とする分光測色装置。
  2. 前記第1断面と直交し前記光軸に平行な断面を第2断面と定義した時、前記導光光学系は、前記第2断面内のパワーより前記第1断面内のパワーの方が大きいアナモフィックな光学面を有する、請求項1に記載の分光測色装置。
  3. 前記導光光学系のアナモフィックな光学面は、前記第1断面内での曲率が前記絞りの長手方向において異なる円錐面である、請求項2に記載の分光測色装置。
  4. 前記導光光学系のアナモフィックな光学面は、前記第1断面内の曲率が一定のシリンダ面であり、前記アナモフィックな光学面は、前記第2断面内で該アナモフィックな光学面に入射する光線に対して傾斜して配置される、請求項2に記載の分光測色装置。
  5. 前記導光光学系の前記光軸方向において、前記導光光学系で集光された光束の第1断面内の集光位置のうち、前記導光光学系に最も近い集光位置と最も遠い集光位置の間の光軸方向の距離L(mm)は、前記絞りの長手方向の長さをLS(mm)としたとき
    0.58<L/LS<1.73
    を満たす請求項1乃至4のいずれか1項に記載の分光測色装置。
  6. 前記導光光学系は、前記被検体側から順に、入射屈折面、全反射面、出射屈折面が配置された一体化された導光素子である、請求項1乃至5のいずれか1項に記載の分光測色装置。
  7. 前記全反射面は、前記第1断面内のパワーが前記第2断面内のパワーより大きい、アナモフィックな反射面である、請求項6に記載の分光測色装置。
  8. 前記入射屈折面のパワーが前記出射屈折面のパワーより大きい、請求項6または7に記載の分光測色装置。
  9. 前記入射屈折面の前側焦点位置に前記被検体が配置されている、請求項6乃至8のいずれか1項に記載の分光測色装置。
  10. 前記導光光学系は、前記絞りの長手方向と前記導光光学系の光軸に平行な第2断面内のパワーが前記絞りの長手方向に直交する第1断面内のパワーより小さく、
    前記導光光学系で集光された光束の第1断面内の集光位置は、前記絞りの長手方向の位置によって異なり、
    前記導光光学系の光軸方向において、前記導光光学系で集光された光束の第1断面内の集光位置のうち前記導光光学系に最も近い集光位置と最も遠い集光位置の間に前記絞りが配置されている請求項1に記載の分光測色装置。
  11. 前記分光測色装置は、前記被検体を照明する照明光学系と解析部とをさらに有し、
    前記分光検知光学系は、前記絞りを通過した光束を分光する分光光学素子と、前記分光光学素子にて分光された前記光束を受光する一次元アレイ型受光素子を有し、
    前記一次元アレイ型受光素子は、分光された光束の所定の波長範囲での分光強度を検出して電気信号に変換し、
    前記解析部は検出された前記分光強度に基づき前記被検体の色度を算出する、
    請求項1乃至10のいずれか1項に記載の分光測色装置。
  12. 請求項10又は11に記載の分光測色装置を有し、前記分光測色装置の検出結果に基づき画像信号を補正する制御手段を備えたカラー画像形成装置。
JP2010081566A 2009-04-30 2010-03-31 分光測色装置、およびそれを用いた画像形成装置 Expired - Fee Related JP5411778B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010081566A JP5411778B2 (ja) 2009-04-30 2010-03-31 分光測色装置、およびそれを用いた画像形成装置
US12/769,282 US8184289B2 (en) 2009-04-30 2010-04-28 Spectral colorimetric apparatus and color image forming apparatus using the same
EP10161413.9A EP2246676A3 (en) 2009-04-30 2010-04-29 Spectral colorimetric apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009110878 2009-04-30
JP2009110878 2009-04-30
JP2010081566A JP5411778B2 (ja) 2009-04-30 2010-03-31 分光測色装置、およびそれを用いた画像形成装置

Publications (3)

Publication Number Publication Date
JP2010276600A true JP2010276600A (ja) 2010-12-09
JP2010276600A5 JP2010276600A5 (ja) 2013-08-08
JP5411778B2 JP5411778B2 (ja) 2014-02-12

Family

ID=42331539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081566A Expired - Fee Related JP5411778B2 (ja) 2009-04-30 2010-03-31 分光測色装置、およびそれを用いた画像形成装置

Country Status (3)

Country Link
US (1) US8184289B2 (ja)
EP (1) EP2246676A3 (ja)
JP (1) JP5411778B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462342B2 (en) 2010-10-28 2013-06-11 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same
JP2017091838A (ja) * 2015-11-11 2017-05-25 キヤノン株式会社 照明光学系、それを備える分光測色装置及び画像形成装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205239B2 (ja) * 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光器
JP2009300417A (ja) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk 分光モジュールの製造方法及び分光モジュール
JP5207938B2 (ja) * 2008-05-15 2013-06-12 浜松ホトニクス株式会社 分光モジュール及び分光モジュールの製造方法
JP5205242B2 (ja) * 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光器の製造方法
JP5415060B2 (ja) 2008-05-15 2014-02-12 浜松ホトニクス株式会社 分光モジュール
JP2009300422A (ja) * 2008-05-15 2009-12-24 Hamamatsu Photonics Kk 分光モジュール
JP5205241B2 (ja) * 2008-05-15 2013-06-05 浜松ホトニクス株式会社 分光モジュール
JP5424957B2 (ja) * 2009-04-30 2014-02-26 キヤノン株式会社 分光測色装置およびそれを用いた画像形成装置
JP5421684B2 (ja) * 2009-07-29 2014-02-19 キヤノン株式会社 回折光学素子、それを用いた分光測色装置および画像形成装置
JP6234667B2 (ja) * 2012-08-06 2017-11-22 浜松ホトニクス株式会社 光学素子及びその製造方法
WO2018110266A1 (ja) * 2016-12-12 2018-06-21 コニカミノルタ株式会社 制御装置および色測定システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629436U (ja) * 1979-08-10 1981-03-20
JP2001264173A (ja) * 2000-03-14 2001-09-26 Minolta Co Ltd 反射特性測定装置
JP2007003415A (ja) * 2005-06-24 2007-01-11 Konica Minolta Sensing Inc ゴニオ測色計及びゴニオ反射特性測定装置
JP2009008471A (ja) * 2007-06-27 2009-01-15 Canon Inc 分光測定装置及びそれを用いた光学装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540282A (en) * 1983-03-21 1985-09-10 Isaac Landa Apparatus for optically analyzing a sample
CA2035224A1 (en) 1990-01-30 1991-07-31 Thornton Stearns Multispectral reflectometer
JPH0658812A (ja) 1992-08-07 1994-03-04 Juki Corp 分光光学装置
JPH0694528A (ja) 1992-09-09 1994-04-05 Shimadzu Corp 分光分析装置
JPH09160343A (ja) 1995-12-12 1997-06-20 Canon Inc 画像形成装置およびその方法
DE59913150D1 (de) 1999-04-01 2006-04-27 Gretag Macbeth Ag Regensdorf Spektrometer
JP2002206967A (ja) 2001-01-11 2002-07-26 Minolta Co Ltd 測光装置および測色装置
JP2004126278A (ja) 2002-10-03 2004-04-22 Canon Inc カラー画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629436U (ja) * 1979-08-10 1981-03-20
JP2001264173A (ja) * 2000-03-14 2001-09-26 Minolta Co Ltd 反射特性測定装置
JP2007003415A (ja) * 2005-06-24 2007-01-11 Konica Minolta Sensing Inc ゴニオ測色計及びゴニオ反射特性測定装置
JP2009008471A (ja) * 2007-06-27 2009-01-15 Canon Inc 分光測定装置及びそれを用いた光学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462342B2 (en) 2010-10-28 2013-06-11 Canon Kabushiki Kaisha Spectral colorimetric apparatus and image forming apparatus including the same
JP2017091838A (ja) * 2015-11-11 2017-05-25 キヤノン株式会社 照明光学系、それを備える分光測色装置及び画像形成装置

Also Published As

Publication number Publication date
JP5411778B2 (ja) 2014-02-12
US8184289B2 (en) 2012-05-22
EP2246676A3 (en) 2017-12-20
EP2246676A2 (en) 2010-11-03
US20100277730A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5411778B2 (ja) 分光測色装置、およびそれを用いた画像形成装置
US8705154B2 (en) Spectral colorimetric apparatus and image forming apparatus using the same
JP5655437B2 (ja) 分光特性取得装置
US9222833B2 (en) Spectral characteristic obtaining apparatus, image evaluation apparatus and image forming apparatus
US8472019B2 (en) Spectroscopic characteristics acquisition unit, image evaluation unit, and image forming apparatus
US8451443B2 (en) Diffraction optical element, spectral colorimetric apparatus, and image forming apparatus
JP6311267B2 (ja) 分光特性取得装置、画像評価装置、画像形成装置
JP5880053B2 (ja) 分光特性取得装置及び画像形成装置
US8964176B2 (en) Spectrometer, and image evaluating unit and image forming device incorporating the same
US9197761B2 (en) Spectral characteristic acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP6643050B2 (ja) 照明装置、それを備える分光測色装置及び画像形成装置
JP2009008471A (ja) 分光測定装置及びそれを用いた光学装置
JP2019095400A (ja) 導光体、検出器、分光測色装置及び画像形成装置
JP6107187B2 (ja) 分光特性取得装置、画像評価装置、及び画像形成装置
JP5705294B2 (ja) 分光測色装置およびそれを用いた画像形成装置
JP2024009508A (ja) 画像読取装置及び画像読取装置の調整方法
JP2020008292A (ja) 分光装置、評価装置及び印刷装置
JPH03179868A (ja) カラー画像読取装置
JP2013142595A (ja) 分光特性取得装置、画像評価装置及び画像形成装置
JP2015036659A (ja) 分光特性取得装置、画像評価装置及び画像形成装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120727

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120731

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130626

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R151 Written notification of patent or utility model registration

Ref document number: 5411778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees