JP2010272660A - 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法 - Google Patents

曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法 Download PDF

Info

Publication number
JP2010272660A
JP2010272660A JP2009122721A JP2009122721A JP2010272660A JP 2010272660 A JP2010272660 A JP 2010272660A JP 2009122721 A JP2009122721 A JP 2009122721A JP 2009122721 A JP2009122721 A JP 2009122721A JP 2010272660 A JP2010272660 A JP 2010272660A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
meth
acrylate
light
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122721A
Other languages
English (en)
Other versions
JP5431787B2 (ja
Inventor
Takaei Matsumura
高鋭 松村
Yoshiya Kimura
善哉 木村
Akio Okubo
昭郎 大久保
Kishin Ozawa
帰心 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, MGC Filsheet Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009122721A priority Critical patent/JP5431787B2/ja
Publication of JP2010272660A publication Critical patent/JP2010272660A/ja
Application granted granted Critical
Publication of JP5431787B2 publication Critical patent/JP5431787B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】高温の曲げ加工条件においても、接着層の揺らぎと残留歪みを最小限に抑え、変形及び反りや剥離を生じない曲げ加工性に優れた光透過型電磁波シールド積層体の提供。
【解決手段】
電磁波シールド層の片側又は両側にポリカーボネート基材を積層してなる厚さ0.1mm〜30mmの積層体を遠赤外線ヒーター加熱装置により上下両側から放射加熱して曲げ加工する方法において、上段ヒーターは全面加熱し、下段ヒーターは曲げ加工部の加熱幅を(1)式に示す範囲で選択加熱し、表面温度差を20℃以内に制御して140℃〜185℃に加熱したシールド積層体を曲率半径10mm以上の曲面に曲げ加工することにより、接着層の揺らぎと残留歪みを最小限に抑え、変形及び反りや剥離を生じない曲げ加工性に優れた光透過型電磁波シールド積層体を得ることが出来る。
加熱幅=2πR×(180°−X°)/360°×Y (1)
ここで、πは円周率、Rは曲率半径、Xは曲げ加工角度(内角)、Yは係数(1.35≦Y≦4.15)を示す。
【選択図】なし

Description

本発明は、産業装置、機械および電子機器などのカバーや筐体、自動車、車両、船舶、航空機、住宅、病院およびオフィスなどの窓材やカバーとして有用な曲げ加工性および耐衝撃性に優れた光透過型電磁波シールド積層体に関する。
近年、パソコンや携帯電話、液晶やプラズマに代表されるフラットパネルディスプレイ、タッチパネル、カーナビゲーション、携帯情報端末などの電子機器や産業機械のモーターなどから発生する電磁波により、産業機械や電子機器の誤動作や通信障害を引き起こし大きな問題となっている。さらに、電磁波は人体に対しても悪影響を及ぼす可能性が指摘されており、いわゆる電磁波障害(以下、EMIという)を防止するため、各種電磁波シールド材による対策を講じている。
電磁波シールド材単体では十分な強度が得られないため、電磁波シールド材料を各種光透過型樹脂基材やガラス基材などで積層する方法が用いられる。安全性の観点から耐衝撃性や耐熱性に優れるポリカーボネート樹脂を基材とした光透過型電磁波シールド積層体が好ましいが、半導体製造装置などの産業装置、産業機械および各種電子機器などのカバーや筐体、自動車、車両、船舶、航空機、住宅、病院およびオフィスなどの窓材やカバーとして使用する場合、意匠性や安全性の観点から曲げ加工性が求められるケースが多い。しかしながら、ポリカーボネート樹脂は耐熱性が高いがゆえに、高温での曲げ加工条件を強いられるため、ニクロム線やハロゲンランプなどを熱源に用いた電気炉、ロットヒーターおよびセラミックヒーターなどの一般的な加熱方法では表裏面や面内温度分布により光透過型電磁波シールド積層体に反り、気泡、白化、剥離を生じるなどの問題を抱えている。さらにこれらの加熱方法を用いて光透過型電磁波シールド積層体を上下全面加熱した場合には、タワミや変形を生じるだけでなく、接着層に揺らぎが生じるため外観および視認性が著しく低下する問題を抱えている。また光透過型電磁波シールド積層体の曲げ加工技術は未だ開示されていない。
遠赤外線を加熱源とした熱可塑性樹脂シートの熱成形方法として特許文献1では、真空成形および圧空成形による熱成形方法が記載されているが、光透過型電磁波シールド積層体の曲げ加工に適用した場合、該積層体の片面からの遠赤外線ヒーターによる加熱のため、該積層体の上下の温度差により製品に反りを生じたり、残留ひずみにより積層体が剥離するなどの問題点がある。
合成樹脂積層板の曲げ加工方法として特許文献2では、ポリカーボネート樹脂基板とアクリル系樹脂板よりなる合成樹脂積層板の曲げ加工方法が記載されているが、ポリカーボネート樹脂板(150〜180℃)とアクリル系樹脂板(100〜130℃)の加熱温度が異なるため、該積層体の上下の温度差や材料の収縮率の違いにより製品に反りを生じたり、残留ひずみにより積層体が剥離するなどの問題点がある。
合成樹脂積層板の曲げ加工方法として特許文献3では、メタクリル樹脂積層体の加熱方法として、ニクロム線ヒーター、赤外線ヒーター、遠赤外線ヒーターなどのヒーターをメタクリル樹脂積層体の両面に配置する加熱方法が記載されているが、単純に全面加熱した場合には、タワミや変形を生じるだけでなく、接着層に揺らぎが生じるため外観および視認性が著しく低下するなどの問題点がある。
ポリカーボネート積層体の曲げ加工方法として特許文献4では、湿気硬化型ホットメルト接着剤、熱可塑性ポリエステル樹脂接着剤または熱可塑性シラン変性樹脂接着剤を用いてポリカーボネート積層体を作製し、熱圧締して曲げ加工方法が記載されているが、これらの接着剤はポリカーボネート樹脂積層体の最適曲げ加工温度範囲140〜180℃において、接着層の劣化または分解による気泡、白化、剥離を生じるなどの問題点がある。
特開平11−188787号公報 特開平9−239936号公報 特開平6−312482号公報 特許第3994404号公報
本発明は、かかる従来技術の問題点を鑑み、接着層の揺らぎと残留歪みを最小限に抑え、変形および反りや剥離を生じない曲げ加工性に優れた光透過型電磁波シールド積層体を提供することを目的とする。
本発明者らは上記課題を解決すべく鋭意検討の結果、電磁波シールド層の片側または両側にポリカーボネート基材を積層してなる厚さ0.1mm〜30mmの積層体を遠赤外線ヒーター加熱装置により上下両側から放射加熱して曲げ加工する方法において、上段ヒーターは全面加熱し、下段ヒーターは曲げ加工部の加熱幅を(1)式に示す範囲で選択加熱し、表面温度差を20℃以内に制御して140℃〜185℃に加熱したシールド積層体を曲率半径10mm以上の曲面に曲げ加工することにより、接着層の揺らぎと残留歪みを最小限に抑え、変形および反りや剥離を生じない曲げ加工性に優れた光透過型電磁波シールド積層体を得られることを見出し、本発明を完成するに至った。
加熱幅=2πR×(180°−X°)/360°×Y (1)
ここで、πは円周率、Rは曲率半径、Xは曲げ加工角度(内角)、Yは係数(1.35≦Y≦4.15)を示す。
本発明の光透過型電磁波シールド積層体は、高温の曲げ加工条件においても、接着層の揺らぎと残留歪みを最小限に抑え、変形および反りや剥離を生じないため、良好な透明性または視界性と曲げ加工性を有する産業装置、機械および電子機器などのカバーや筐体、自動車、車両、船舶、航空機、住宅、病院およびオフィスの窓材やカバーなど優れた電磁波シールド性能、透明性または視界性、長期耐久性および曲げ加工性を同時に必要とする広範囲の電磁波シールド分野に使用される。
電磁波シールド層の片側または両側にポリカーボネート基材を積層してなる2層以上の積層体を遠赤外線ヒーター加熱装置により上下両側から放射加熱して曲げ加工する方法において、上段ヒーターは全面加熱し、下段ヒーターは曲げ加工部の加熱幅を(1)式に示す範囲で選択加熱し、表面温度差を20℃以内に制御して140℃〜185℃に加熱したシールド積層体を曲率半径10mm以上の曲面に曲げ加工することを特徴とする厚さ0.1mm〜30mmの光透過型電磁波シールド積層体およびその製造方法に関する。
本発明に記載の光透過型電磁波シールド積層体は、各種電子機器や機械、モーターなどから発生する電磁波の流入を防止する電磁波シールド層とポリカーボネート基材を含む2層以上の積層体から構成されており、場合によっては、耐衝撃性、耐擦傷性、耐侯性、耐水性、帯電防止性、防湿性、防曇性、反射防止性、防汚染性などの観点から電磁波シールド層の片面または両面に保護層を配置しても構わない。更に詳しくは、導電性化合物を用いた金属薄膜メッシュ、金属織物メッシュ、導電性繊維メッシュ、導電性印刷メッシュを電磁波シールド層とするすべての積層タイプの光透過型電磁波シールド積層体を示す。
電磁波シールド層の電磁波シールド性能は30デシベル以上の性能を有するものが好ましい。シールド性能が30デシベル以下では、電子機器から発生する電磁波の流出を完全に防ぐことが出来ず、他の機械や電子機器の誤動作や通信障害を生じる可能性があるばかりでなく、電子機器の外部から侵入する電磁波を防ぐことが出来ず、電子機器にダメージを与える可能性がある。
前記の電磁波シールド性能を達成するためには、電磁波シールド層の表面抵抗率(シート抵抗値)は10[Ω/□]以下であることが好ましい。より好ましくは1[Ω/□]以下であり、更に好ましくは0.1[Ω/□]以下であることが好ましい。
電磁波シールド層を構成する導電性化合物は、導電性があれば特に制限は無いが、鉄、金、銀、銅、アルミ、ニッケル、カーボン、ITO(酸化インジウム/酸化錫)、ZnO(酸化亜鉛)、錫、亜鉛、チタン、タングステン、ステンレスから選ばれた少なくとも1つ以上の金属成分を含有する金属化合物を用いることが出来る。経済的な観点から、銀、銅、アルミ、ニッケル、カーボン、ZnO(酸化亜鉛)、錫またはステンレスから選ばれた少なくとも1つ以上の金属成分を含有する導電性化合物を用いることが好ましい。
電磁波シールド層は、導電性化合物を用いた金属薄膜メッシュまたは導電性印刷メッシュである。金属薄膜メッシュの製法は特に制限はないが、例えば、光透過型有機高分子材料のフィルムまたはシート表面に銅、銀、アルミ、ITO(酸化インジウム/酸化錫) 、ZnO(酸化亜鉛)などの金属薄膜を蒸着やスパッタリングにより形成したもの、あるいはこれらの金属箔を接着剤により貼り合せた後、エッチングなどの手段でメッシュを形成する方法、メッキ触媒含有インキやペーストをグラビア印刷、インクジェット印刷、スクリーン印刷などにより塗布後、無電解メッキや電気メッキを施してメッシュを形成する方法、銅、銀、アルミなどの金属板を圧延加工して所定の厚さにした金属箔をパンチング加工してメッシュを形成する方法などが挙げられる。これらの金属薄膜メッシュは、耐水性、耐湿性、耐腐食性、防錆性、反射防止性の観点から、片面または両面に黒化処理を施しておくことが好ましい。金属薄膜メッシュは電磁波シールド性能および透明性の観点から、ライン幅5〜200μm、厚さ0.01〜100μm、ピッチ100〜1000μmの範囲が好ましい。
金属薄膜メッシュを形成する金属箔用接着剤としては、特に制限は無く、透明性、耐水性、耐湿性、接着力の良好な公知の接着剤や粘着剤を使用することが出来る。
接着剤としては、公知の光硬化型接着剤、熱硬化型接着剤、ホットメルト型接着剤などが挙げられる。
粘着剤としては、例えば、公知のアクリル系樹脂組成物、ポリウレタン系樹脂組成物、ポリエステル系樹脂組成物、エポキシ系樹脂組成物、シリコーン系樹脂組成物、ゴム系樹脂組成物などの粘着剤を用いることが出来る。これらの中で、透明性、耐水性、耐湿性および接着力の良好なアクリル系樹脂組成物の粘着剤が最も好ましい。
ホットメルト型接着剤としては、例えば、エチレン−(メタ)アクリル酸共重合体樹脂組成物、エチレン−(メタ)アクリル酸エステル共重合体樹脂組成物などのポリオレフィン系樹脂組成物、ポリスチレン系樹脂組成物、エチレン酢酸ビニル系樹脂組成物、酢酸ビニル系樹脂組成物、アクリル系樹脂組成物、ポリウレタン系樹脂組成物、ポリエステル系樹脂組成物、エポキシ系樹脂組成物、ポリエステル系樹脂組成物、ポリアミド系樹脂組成物、ポリビニールエーテル系樹脂組成物、シリコーン系樹脂組成物、ゴム系樹脂組成物などが挙げられる。これらの中で、透明性、耐水性、耐湿性および接着力の良好なアクリル系樹脂組成物のホットメルト型接着剤が最も好ましい。
熱硬化型接着剤としては、熱により重合するものであれば特に制限は無く、例えば、グリシジル基、アクリロイル基、メタクリロイル基、水酸基、カルボキシル基、イソシアヌレート基、アミノ基、アミド基等の官能基を持つ化合物が挙げられ、これらは、単独で又は2種類以上を組み合わせても、使用することができる。例えば、エポキシ系樹脂組成物、アクリル系樹脂組成物、シリコーン系樹脂組成物、フェノール系樹脂組成物、熱硬化型ポリイミド系樹脂組成物、ポリウレタン系樹脂組成物、ポリエステル系樹脂組成物、メラミン系樹脂組成物、ユリア系樹脂組成物などが挙げられる。接着力および透明性の観点からエポキシアクリレート系樹脂組成物、ウレタンアクリレート系樹脂組成物、ポリエーテルアクリレート系樹脂組成物、ポリエステルアクリレート系樹脂組成物などのアクリル系樹脂組成物が好ましい。これらの熱硬化型接着剤は必要に応じて、2種以上併用することができる。また熱硬化型接着剤組成物には硬化剤を併用することが好ましい。硬化剤としては公知の硬化剤を使用することができ、イソシアネート系硬化剤、トリエチレンテトラミン、キシレンジアミン、N − アミノテトラミン、ジアミノジフェニルメタンなどのアミン類、無水フタル酸、無水マレイン酸、無水ドデシルコハク酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸などの酸無水物、ジアミノジフェニルスルホン、トリス( ジメチルアミノメチル) フェノール、ポリアミド樹脂、ジシアンジアミド、エチルメチルイミダゾールなどを使用することができる。これらの硬化剤は単独で用いても良いし、2種以上混合して用いても良い。
光硬化型接着剤としては、例えば、ウレタン(メタ)アクリレート系接着剤組成物、ポリエステル(メタ)アクリレート系接着剤組成物、エポキシ(メタ)アクリレート系接着剤組成物およびポリオール(メタ)アクリレート系接着剤組成物から選ばれた少なくともいずれか1種類以上の(メタ)アクリレート系接着剤組成であることが好ましく、この中でも耐水性、耐湿性、耐侯性、透明性および接着力の観点からウレタン(メタ)アクリレート系接着剤組成物が特に好ましい。
活性エネルギー線の照射による硬化性を有する光硬化型(メタ)アクリレート系接着剤組成物は、硬化時間、安全性の面から特に好ましく、活性エネルギー線としては可視光線または紫外線が好ましい。
導電性印刷メッシュはいかなる製法で得られた導電性印刷メッシュでも使用することが出来、特に制限は無いが、例えば、銅、銀、アルミ、ニッケルなどの金属粒子化合物やカーボンなどをエポキシ系、ウレタン系、アクリル系、EVA系などの樹脂バインダーに混合したインキまたはペーストを用いて、スクリーン印刷、グラビア印刷、オフセット印刷などの方法により光透過型有機高分子材料のフィルムまたはシート表面にメッシュを形成する方法が挙げられる。導電性印刷メッシュは電磁波シールド性能および透明性の観点から、ライン幅10〜200μm、厚さ1〜100μm、ピッチ100〜1000μmの範囲が好ましい。
金属薄膜メッシュおよび導電性印刷メッシュのフィルムまたはシート基材として用いる光透過型有機高分子材料としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエステル樹脂、ポリエーテルサルホン樹脂、ポリエチレンナフタレート樹脂、ポリスチレン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、ポリメチルメタクリレート樹脂、脂環式ポリオレフィン樹脂、光透過型ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、ポリアクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂などが挙げられる。
これらの光透過型有機高分子材料の中で、透明性や耐衝撃性および汎用性の観点から、特にポリカーボネート樹脂、ポリエステル樹脂およびポリエチレンテレフタレート樹脂が好ましい。
金属織物メッシュはいかなる製法で得られた金属織物メッシュでも使用することが出来、特に制限は無いが、例えば、ステンレス、銅、銀、金、鉄などの金属線を編み込むことによりメッシュを形成する方法が挙げられる。メッシュサイズが小さく、金属線径が太い方が電磁波シールド性能は高くなるが、一方で視認性が低下するため、メッシュサイズは50〜300メッシュ、金属線径は10〜200μmの範囲が好ましい。尚、メッシュサイズとはテイラー標準ふるいで規定されているメッシュサイズを示す。
導電性繊維メッシュはいかなる製法で得られた導電性繊維メッシュでも使用することが出来、特に制限は無いが、例えば、表面処理をしたポリエステルなどの合成繊維にニッケルや銅などの導電性金属化合物を無電解メッキし、更に黒化処理した導電性繊維メッシュなどが挙げられる。メッシュサイズは50〜300メッシュ、繊維径は10〜100μmの範囲が好ましい。
本発明の光透過型電磁波シールド積層体は、耐衝撃性、耐擦傷性、耐侯性、耐水性、帯電防止性、防湿性、防曇性、反射防止性、防汚染性などの観点から、電磁波シールド層の片側または両側に保護層を配置することが好ましい。保護層は視認可能で光を通す材料であれば、光透過型有機高分子材料からなるフィルムやシート材料でも構わないし、各種機能性を有する被膜でも構わない。
前記の光透過型有機高分子材料としては、特に限定は無く、視認可能で光を通す有機高分子材料であれば構わない。光透過型有機高分子材料には各種金属化合物、導電性化合物、有機性化合物、無機性化合物など接着、蒸着、塗布、印刷、加工した材料を包含する。光透過型有機高分子材料としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエステル樹脂、ポリエーテルサルホン樹脂、ポリエチレンナフタレート樹脂、ポリスチレン樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂、ポリメチルメタクリレート樹脂、脂環式ポリオレフィン樹脂、光透過型ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、ポリアクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂などが挙げられる。
これらの光透過型有機高分子材料の中で、透明性や耐衝撃性および汎用性の観点から、特にポリカーボネート樹脂またはポリエチレンテレフタレート樹脂が好ましい。
前記の被膜としては、特に制限は無いが、長期間の耐久性に優れ、かつ表面硬度が比較的高いシリコーン樹脂系化合物、または処理が比較的簡便でかつ良好な被膜が形成されるアクリル樹脂または多官能アクリル樹脂が好ましい。これら被膜の硬化方法は使用する樹脂化合物の性質によるが、生産性や簡便性を考慮した場合、熱硬化型または光硬化型樹脂を選択することが好ましい。光硬化型樹脂の一例としては、1官能あるいは多官能のアクリレートモノマーあるいはオリゴマーなどの単独あるいは複数からなる樹脂組成物に硬化触媒として光重合開始剤が加えられた樹脂組成物が挙げられる。熱硬化型樹脂としてはポリオルガノシロキサン系、架橋型アクリル系などのものが挙げられる。この様な樹脂組成物は、ハードコート剤として市販されており、被膜ラインとの適正を加味し、適宜選択すれば良い。
これらの被膜には紫外線吸収剤、光安定剤、酸化防止剤のほか、必要に応じて、有機溶剤、着色防止剤などの各種安定剤やレベリング剤、消泡剤、増粘剤、帯電防止剤、防曇剤などの界面活性剤等を適宜添加してもよい。
本発明の光透過型電磁波シールド積層体は、そのシールド性能を十分に発揮させる目的や電磁波の漏洩を防止するために、適宜アースを設置することが好ましい。アースの設置方法としては、特に制限は無いが、例えば、銅、銀、アルミ、ニッケルなどの金属粒子化合物やカーボンなどをエポキシ系、ウレタン系、アクリル系、EVA系などの樹脂バインダーに混合した導電性ペーストを光透過型電磁波シールド積層体の端面外周に塗布する方法や光透過型電磁波シールド積層体の端面外周を導電性テープで被覆する方法、これらを併用する方法などが挙げられる。端面外周の70%以上に導電性ペーストまたはテープで被覆することが好ましい。
本発明で使用される(メタ)アクリレート系接着剤組成物は、ウレタン(メタ)アクリレート系接着剤組成物、ポリエステル(メタ)アクリレート系接着剤組成物、エポキシ(メタ)アクリレート系接着剤組成物およびポリオール(メタ)アクリレート系接着剤組成物から選ばれた少なくともいずれか1種類以上の(メタ)アクリレート系接着剤組成であることが好ましく、ウレタン(メタ)アクリレート系接着剤組成物あることがさらに好ましい。
本発明で使用される(メタ)アクリレート系接着剤組成物は、環境性やハンドリング性を考慮した場合、無溶剤型(メタ)アクリレート系接着剤組成物が好ましく、例えば光硬化型(メタ)アクリレート系接着剤組成物、熱硬化型(メタ)アクリレート系接着剤組成物、ホットメルト型(メタ)アクリレート系接着剤組成物などが挙げられる。この中でも活性エネルギー線の照射による硬化性を有する光硬化型(メタ)アクリレート系接着剤組成物は、硬化時間、安全性の面から特に好ましく、活性エネルギー線としては可視光線または紫外線が好ましい。
本発明で使用される前記(A)(メタ)アクリレート系重合性モノマーとしては、特に限定はなく様々な(メタ)アクリレート系重合性モノマーを用いることができる。このような(メタ)アクリレート系重合性モノマーとしては、炭素数2から20の脂肪族アルコール、ジオールおよび多価アルコールのモノ、ジおよびポリ(メタ)アクリレート化合物や、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールで分岐された脂肪族エーテル結合、エステル結合、カーボネート結合を含む炭素数30以下である末端ヒドロキシ化合物のポリ(メタ)アクリレート体や、それらの骨格中に脂環式化合物や芳香族化合物を有する化合物等が挙げることができる。具体的には、分子中に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート系重合性モノマー〔以下、単官能(メタ)アクリレートモノマーという。〕、分子中に2個の(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート系重合性モノマー〔以下、2官能(メタ)アクリレートモノマーという。〕および分子中に少なくとも3個の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート系重合性モノマー〔以下、多官能(メタ)アクリレートモノマーという。〕が挙げられる。(メタ)アクリレートモノマーは1種または2種以上使用できる。
単官能(メタ)アクリレートモノマーの具体例としては、テトラヒドロフルフリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートのほか、カルボキシル基含有の(メタ)アクリレートモノマーとして、2−(メタ)アクリロイルオキシエチルフタル酸、2−(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、カルボキシエチル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチルコハク酸、N−(メタ)アクリロイルオキシ−N’,N’−ジカルボキシ−p−フェニレンジアミン、4−(メタ)アクリロイルオキシエチルトリメリット酸などが挙げられる。また、単官能(メタ)アクリレートモノマーには、N−ビニルピロリドンのようなビニル基含有モノマーおよび4−(メタ)アクリロイルアミノ−1−カルボキシメチルピペリジンのような(メタ)アクリロイルアミノ基含有モノマーが包含される。
2官能(メタ)アクリレートモノマーとしては、アルキレングリコールジ(メタ)アクリレート類、ポリオキシアルキレングリコールジ(メタ)アクリレート類、ハロゲン置換アルキレングリコールジ(メタ)アクリレート類、脂肪酸ポリオールのジ(メタ)アクリレート、ビスフェノールAまたはビスフェノールFのアルキレンオキシド付加物のジ(メタ)アクリレート類、ビスフェノールAまたはビスフェノールFのエポキシジ(メタ)アクリレート類等が代表的なものであるが、これらに限定されるものではなく種々のものが使用できる。2官能(メタ)アクリレートモノマーの具体例としては、エチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレートのほか、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、2,2−ビス[4−(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン、2,2−ビス[4−(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン、2,2−ビス[4−(メタ)アクリロイルオキシエトキシエトキシフェニル]メタン、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート類が挙げられる。
多官能(メタ)アクリレートモノマーとしては、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3価以上の脂肪族ポリオールのポリ(メタ)アクリレートが代表的なものであり、そのほかに、3価以上のハロゲン置換ポリオールのポリ(メタ)アクリレート、グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキシド付加物のトリ(メタ)アクリレート、1,1,1−トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート類が挙げられる。
本発明で使用される(B)(メタ)アクリレートオリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー〔以下、多官能ウレタン(メタ)アクリレートオリゴマーという。〕、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー〔以下、多官能ポリエステル(メタ)アクリレートオリゴマーという。〕、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー〔以下、多官能エポキシ(メタ)アクリレートオリゴマーという。〕、2官能以上の多官能ポリオール(メタ)アクリレートオリゴマー〔以下、多官能ポリオール(メタ)アクリレートオリゴマーという。〕などが挙げられる。(メタ)アクリレートオリゴマーは1種または2種以上使用できる。
多官能ウレタン(メタ)アクリレートオリゴマーとしては、ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物が挙げられる。ウレタン(メタ)アクリレート系オリゴマーの中でも、耐水性、耐湿性、耐侯性および接着力に優れた脂環式炭化水素化合物を含有してなるウレタン(メタ)アクリレート系オリゴマーが好ましく。これらの中でもイソホロンジイソシアネートまたはジシクロヘキシルメタンジイソシアネートを原料として用いたウレタン(メタ)アクリレート系オリゴマーが好ましく、ジシクロヘキシルメタンジイソシアネートを原料として用いたウレタン(メタ)アクリレート系オリゴマーが特に好ましい。
ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。これらの中でも耐水性、耐湿性、耐侯性に優れたイソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネートが好ましく、ジシクロヘキシルメタンジイソシアネートが特に好ましい。
ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。通常、脂肪族および脂環式のポリオールとしては、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。
ポリエステルポリオールとしては、前記のポリオール類と多塩基性カルボン酸(無水物)との脱水縮合反応により得られるものである。多塩基性カルボン酸の具体的な化合物としては(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)トリメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などが挙げられる。また、ポリエーテルポリオールとしてはポリアルキレングリコールのほか、前記ポリオールまたはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。
ウレタン(メタ)アクリレート系のオリゴマーとしては、多くのものが市販され、容易に入手することができる。これらのウレタン(メタ)アクリレート系のオリゴマーとしては、例えば、ビームセット575、ビームセット551B、ビームセット550B、ビームセット505A−6、ビームセット504H、ビームセット510、ビームセット502H、ビームセット575CB、ビームセット102(以上、荒川化学工業株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、フォトマー6008、フォトマー6210(以上、サンノプコ株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、NKオリゴU−4HA、NKオリゴU−108A、NKオリゴU−1084A、NKオリゴU−200AX、NKオリゴU−122A、NKオリゴU−340A、NKオリゴU―324A、NKオリゴUA−100、NKオリゴMA−6(以上、新中村化学工業株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、アロニックスM−1100、アロニックスM−1200、アロニックスM−1210、アロニックスM−1310、アロニックスM−1600、アロニックスM−1960(以上、東亞合成株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、AH−600、AT−606、UA−306H(以上、共栄社化学株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、カヤラッドUX−2201、カヤラッドUX−2301、カヤラッドUX−3204、カヤラッドUX−3301、カヤラッドUX−4101、カヤラッドUX−6101、カヤラッドUX−7101(以上、日本化薬株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、紫光UV−1700B、紫光UV−3000B、紫光UV−3300B、紫光UV−3520TL、紫光UV−3510TL紫光UV−6100B、紫光UV−6300B、紫光UV−7000B、紫光UV−7210B、紫光UV−7550B、紫光UV−2000B、紫光UV−2250TL、紫光UV−2010B、紫光UV−2580B、紫光UV−2700B(以上、日本合成化学工業株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、アートレジンUN−9000PEP、アートレジンUN−9200A、アートレジンUN−9000H、アートレジンUN−1255、アートレジンUN−5200、アートレジンUN−2111A、アートレジンUN−330、アートレジンUN−3320HA、アートレジンUN−3320HB、アートレジンUN−3320HC、アートレジンUN−3320HSアートレジンUN−6060P(以上、根上工業株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、Laromer UA19T、Laromer LR8949、LaromerLR8987、LaromerLR8983(以上、BASF社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、ダイヤビーム UK6053、ダイヤビーム UK6055、ダイヤビーム UK6039、ダイヤビーム UK6038、ダイヤビーム UK6501、ダイヤビームUK6074、ダイヤビーム UK6097(以上、三菱レイヨン株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)、Ebecryl254、Ebecryl264、Ebecryl265、Ebecryl1259、Ebecryl4866、Ebecryl1290K、Ebecryl5129、Ebecryl4833、Ebecryl2220(以上、ダイセル・ユー・シー・ビー株式会社製ウレタン(メタ)アクリレート系のオリゴマーの商品名)などをあげることができる。
また、多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、多塩基性カルボン酸(無水物)およびポリオールの脱水縮合反応により得られる。脱水縮合反応に用いられる多塩基性カルボン酸(無水物)としては(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などが挙げられる。また、脱水縮合反応に用いられるポリオールとしては1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。
具体的には、アロニックスM−6100、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、アロニックスM−8530、アロニックスM−8050(以上、東亞合成株式会社製ポリエステル(メタ)アクリレート系のオリゴマーの商品名)、Laromer PE44F、Laromer LR8907、Laromer PE55F、LaromerPE46T、Laromer LR8800(以上、BASF社製ポリエステル(メタ)アクリレート系のオリゴマーの商品名)、Ebecryl80、Ebecryl 657、Ebecryl 800、Ebecryl 450、Ebecryl 1830、Ebecryl 584(以上、ダイセル・ユー・シー・ビー株式会社製ポリエステル(メタ)アクリレート系のオリゴマーの商品名)、フォトマーRCC13−429、フォトマー 5018(以上、サンノプコ株式会社製ポリエステル(メタ)アクリレート系のオリゴマーの商品名)等があげられる。
多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。多官能エポキシ(メタ) アクリレート系オリゴマーとしては、特に限定はなく様々なエポキシ(メタ)アクリレート系オリゴマーを用いることができる。このようなエポキシ(メタ) アクリレート系オリゴマーは、エポキシ系オリゴマーに(メタ)アクリル酸を付加させた構造のもので、ビスフェノールA−エピクロルヒドリン型、変性ビスフェノールA型、アミン変性型、フェノールノボラック−エピクロルヒドリン型、脂肪族型、脂環型等がある。例えば、ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。
具体的には、Laromer LR8986、Laromer LR8713、Laromer EA81(以上、BASF社製エポキシ(メタ)アクリレート系のオリゴマーの商品名)、NKオリゴEA−6310、NKオリゴEA−1020、NKオリゴEMA−1020、NKオリゴEA−6320、NKオリゴEA−7440、NKオリゴEA−6340(以上、新中村化学工業株式会社製エポキシ(メタ)アクリレート系のオリゴマーの商品名)、Ebecryl3700、Ebecryl3200、Ebecryl600(以上、ダイセル・ユー・シー・ビー株式会社製エポキシ(メタ)アクリレート系のオリゴマーの商品名)等があげられる。
本発明において使用される(メタ)アクリレート系接着剤組成物は、(C)アクリルアミド誘導体を含有することを特徴とする。前記(C)アクリルアミド誘導体を反応性モノマーとして(メタ)アクリレート系接着剤組成物に含有させることにより、耐湿性、耐水性、接着力、加工性および透明性が向上する。(C)アクリルアミド誘導体は、特に限定はなく様々なアクリルアミド誘導体を用いることができる。例えば、アルキルアクリルアミドおよび/またはアルキルメタアクリルアミドを挙げることが出来る。具体的にはアクリルアミド、メタクリルアミド、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、アルキレンビスアクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、イソプロピルアクリルアミド、4−アクリロモルホリンを挙げることが出来る。更に好ましくはジメチルアクリルアミド、イソプロピルアクリルアミド、ジエチルアクリルアミド、4−アクリロモルホリンが挙げられる。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。その含有量は通常1〜50重量%、好ましくは5〜30重量%である。
本発明において使用される(メタ)アクリレート系接着剤組成物は、(D)シラン化合物を含有することを特徴とする。前記(D)シラン化合物は(メタ)アクリレート系接着剤組成物の接着促進剤として使用され、接着力の向上のみならず、耐湿性、耐水性、耐侯性および透明性を向上させる効果を有する。本発明で使用される(D)シラン化合物は特に限定はなく様々なシラン化合物を用いることができる。例えばアミノ官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、メルカプト官能性シラン、メタクリレート官能性シラン、アクリルアミド官能性シラン、アクリレート官能性シランが挙げられ、これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらのシラン化合物の中でアミノ官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、メルカプト官能性シランが特に好ましく、例えば、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、(3−(2,3−エポキシプロポキシ)プロピル)トリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等のビニルシラン、ヘキサメチルジシラザン、γ−メルカプトプロピルトリメトキシシラン等を挙げることができる。これらの中で(3−(2,3−エポキシプロポキシ)プロピル)トリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシランが好ましく、(3−(2,3−エポキシプロポキシ)プロピル)トリメトキシシランが特に好ましい。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。その含有量は通常0.1〜20重量%、好ましくは1〜10重量%である。
本発明において使用される(メタ)アクリレート系接着剤組成物は、(E)有機リン化合物を含有することを特徴とする。前記(E)有機リン化合物は(メタ)アクリレート系接着剤組成物の金属化合物への接着促進剤として使用され、金属化合物への接着力の向上のみならず、耐湿性、耐水性を向上させる効果を有する。本発明で使用される(E)有機リン化合物は特に限定はないが、リン酸(メタ)アクリレートが特に好ましい。リン酸(メタ)アクリレートとしては、リン酸エステル骨格を有する(メタ)アクリレートであれば、モノエステル、ジエステルあるいはトリエステル等特に限定されず、例えば、エチレンオキシド変性フェノキシ化リン酸(メタ)アクリレート、エチレンオキシド変性ブトキシ化リン酸(メタ)アクリレート、エチレンオキシド変性オクチルオキシ化リン酸(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、エチレンオキシド変性リン酸トリ(メタ)アクリレート等が挙げられる。更に詳しくは、モノ〔2−(メタ)アクリロイルオキシエチル〕ホスフェート、モノ〔2−(メタ)アクリロイルオキシエチル〕ジフェニルホスフェート、モノ〔2−(メタ)アクリロイルオキシプロピル〕ホスフェート、ビス〔2−(メタ)アクリロイルオキシエチル〕ホスフェート、ビス〔2−(メタ)アクリロイルオキシプロピル〕ホスフェート、トリス〔2−(メタ)アクリロイルオキシエチル〕ホスフェートなどが挙げられる。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。その含有量は通常0.1〜20重量%、好ましくは1〜10重量%である。
本発明で使用される光重合開始剤は、(メタ)アクリレート系接着剤組成物を重合硬化させ、その硬化速度を高める目的で使用される。本発明に使用されている光重合開始剤としては、一般に知られているものを使用することが出来る。例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−ヒドロキシ−シクロヘキシルフェニルケトン、オリゴ[ 2−ヒドロキシ−2−メチル−1−[4−(1−メチルビニル)フェニル]プロパノン] 、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド3−メチルアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3−メチルアセトフェノン、ベンゾフェノン、4−クロロベンゾフェノン、4,4′−ジメトキシベンゾフェノン、4,4′−ジアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ミヒラーズケトン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノ−プロパン−1−オン、2,4,6−トリメチルベンゾイルフェニルフォスフィネート、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド、メチルベンゾイルホルメート、チオキサントン、ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントンなどが挙げられる。これらの中でより好ましくは、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−ヒドロキシ−シクロヘキシルフェニルケトン、オリゴ[ 2−ヒドロキシ−2−メチル−1−[4−(1−メチルビニル)フェニル]プロパノン] 、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイドが挙げられる。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。その含有量は通常0.5〜20重量%、好ましくは1〜10重量%である。
光重合開始剤は、多くのものが市販され、容易に入手することができる。具体的には、イルガキュア184、イルガキュア261、イルガキュア369、イルガキュア379、イルガキュア500、イルガキュア651、イルガキュア819、イルガキュア907、イルガキュア1700、イルガキュア1800、イルガキュア1850、イルガキュア2959、イルガキュアCGI−403、ダロキュア953、ダロキュア1116、ダロキュア1173、ダロキュア1664、ダロキュア、2273ダロキュア4265(以上、チバ・スペシャルティ・ケミカルズ社製)などが挙げられる。
本発明に使用される(メタ)アクリレート系接着剤組成物の重合開始剤には、熱重合開始剤を用いることも出来る。例えば、2,2‘−アゾビス(イソブチロニトリル)などのアゾ化合物、t−ブチルヒドロペルオキシドなどのヒドロペルオキシドおよび過酸化ベンゾイルおよび過酸化シクロヘキサノンなどの過酸化物から選択された開始剤が挙げられるが、熱重合開始剤であればこれらに限定されるものではない。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。
光重合開始剤に加えて、必要に応じて少なくとも1種類以上の光増感剤を(メタ)アクリレート系接着剤組成物に添加し、硬化時間や硬化状態を制御することが出来る。光増感剤はアミン化合物、尿素化合物、リン化合物、二トリル化合物、ベンゾイン化合物、カルボニル化合物、イオウ化合物、ナフタレン系化合物、縮合芳香族炭化水素およびそれらの混合物から選択することが出来る。具体例としては、トリエチルアミン、ジエチルアミノエチルメタクリレート、N−メチルジエタノールアミン等のアミン化合物、4−ジメチルアミノエチルベンゾエート、4−ジメチルアミノイソアミルベンゾエート、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインオクチルエーテル等のベンゾイン化合物、ベンジル、ジアセチル、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、4′−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、メチルアントラキノン、アセトフェノン、ベンゾフェノン、ベンゾイルギ酸メチル、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノ)−プロペン−1、2,2 −ジメトキシ−2−フェニルアセトフェノン等のカルボニル化合物、ジフェニルジスルフィド、ジチオカルバメート等のイオウ化合物、α−クロルメチルナフタレン等のナフタレン系化合物、アントラセン等の縮合芳香族炭化水素、塩化鉄等の金属塩を挙げることが出来る。これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。その含有量は通常0.1〜5重量%、好ましくは0.5〜3重量%である。上記の増感剤は(メタ)アクリレート系接着剤組成物への溶解性に優れ、紫外線透過性を阻害しないものが好ましい。
本発明に使用される(メタ)アクリレート系接着剤組成物は接着剤組成物自体の加水分解や酸化による老化防止、太陽光や風雨に曝される厳しい条件下での耐熱性、耐侯性などを向上する目的で、光安定剤や酸化防止剤を添加することが出来る。
ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、1−メチル−8−(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2、6,6−テトラメチルピペリジン、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタン−テトラカルボキシレート、トリエチレンジアミン、8−アセチル−3−ドデシル−7,7,9,9−テトラメチル−1,3,8−トリアザスピロ[4,5]デカン−2,4−ジオン等が挙げられる。
その他ニッケル系紫外線安定剤として、〔2,2’−チオビス(4−t−オクチルフェノレート)〕−2−エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス−3,5−ジ−t−ブチル−4−ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル−ジチオカーバメート等も使用することが可能である。特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、または1,2,2,6,6−ペンタメチル−4−ピペリジノール/トリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸との縮合物が好ましい。
また、酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤を使用することが好ましい。フェノール系酸化防止剤としては、例えば、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、テトラキス−〔メチレン−3−(3’、5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、2,6−ジ−t−ブチル−p−クレゾール、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、1,3,5−トリス(3’、5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネー〕、3,9−ビス[1,1−ジ−メチル−2−〔β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕エチル]−2,4,8,10−テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。
チオール系酸化防止剤としては、例えば、ジステアリル−3,3’−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)等を挙げられる。ホスファイト系酸化防止剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス−(2,6−ジ−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレン−ジホスホナイト、2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト等が挙げられる。
これらの光安定剤や酸化防止剤は単独で用いても良いし、2種類以上を組み合わせて用いても良い。特にヒンダードアミン系光安定剤とヒンダードフェノール系酸化防止剤の組み合わせが良く、その含有量は通常0.1〜10重量%、好ましくは0.5〜3重量%である。上記の光安定剤および酸化防止剤は(メタ)アクリレート系接着剤組成物への溶解性に優れ、紫外線透過性を阻害しないものが好ましい。
本発明に使用される(メタ)アクリレート系接着剤組成物は太陽光や紫外線による劣化防止の目的で、紫外線吸収剤を添加することが出来る。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられる。
ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシ−ベンゾフェノン、2−ヒドロキシ−4−メトキシ−ベンゾフェノン、2−ヒドロキシ−4−n−オクトキシ−ベンゾフェノン、2−ヒドロキシ−4−ドデシロキシ−ベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシ−ベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシ−ベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−ベンゾフェノン、2,2’,4,4’−テトラヒドロキシ−ベンゾフェノン等が挙げられる。
ベンゾトリアゾール系紫外線吸収剤としては、2ー(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2ー(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2ー(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)ベンゾトリアゾール等が挙げられる。
サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2−4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6−テトラメチルピペリジン−4−イル)セバケート等が挙げられる。
トリアジン系紫外線吸収剤としては、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン等が挙げられる。
紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。さらに、酸化防止剤あるいは着色剤等との併用で効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線防止剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。
紫外線吸収剤の使用量は、0.1〜20重量%、好ましくは1〜15重量%、さらに好ましくは3〜10重量%である。20重量%よりも多いと密着性が悪くなり、0.1重量%より少ないと耐候性改良効果が小さい。
本発明の(メタ)アクリレート系接着剤組成物には、さらに上記以外の各種添加剤を配合することが出来る。例えば、消泡剤、レベリング剤、帯電防止剤、界面活性剤、保存安定剤、熱重合禁止剤、可塑剤、濡れ性改良剤、密着性付与剤、粘着付与剤などを必要に応じて配合することが出来る。
本発明の(メタ)アクリレート系接着剤組成物を調製する方法としては、例えば(メタ)アクリレート系重合性オリゴマー、(メタ)アクリレート系重合性モノマー、(A)(メタ)アクリレートモノマー、(B)(メタ)アクリレートオリゴマー、(C)アクリルアミド誘導体、(D)シラン化合物、(E)有機リン化合物、開始剤、増感剤およびその他の添加剤などの各成分を仕込み、常温〜80℃で混合溶解して、必要に応じてフィルターなどでろ過を行い、所望の接着剤組成物を得る方法が挙げられる。ただし、接着剤組成物の調整方法は公知の方法を用いることが出来、上記方法に限定されるものではない。本発明の接着剤組成物は塗布性を考慮すると、25℃における粘度が1〜5000mPaとなるように、成分の配合比を適宜調整することが好ましい。
本発明の(メタ)アクリレート系接着剤組成物を塗布するには、アプリケータによる塗布、ロールナイフコート法、ダイコーター法、ロールコート法、バーコート法、グラビアロールコート法、リバースロールコート法、ディッピング法、スプレー法、カーテンフロー法、スクリーンコート法等公知の方法を用いて塗布することが出来る。接着剤の膜厚は、2μm以上200μm以下であることが好ましい。
本発明における(メタ)アクリレート系接着剤組成物の硬化に際しては、可視光線、紫外線(UV)および電子線(EB)を用いることが出来る。可視光線または紫外線が用いられるときは、光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン水銀灯、キセノンランプ、ガリウムランプ、メタルハライドランプ、石英ハロゲンランプ、タングステンランプ、紫外線蛍光灯、炭素アーク灯、無電極マイクロウエーブ方式紫外線ランプ等が好ましく用いられる。
本発明における光透過型電磁波シールド積層体を製造する具体的な方法としては、例えばポリカーボネート樹脂シートにフローコーターで所定の光硬化型接着剤を塗布し、ポリカーボネート樹脂フィルムを基材とする電磁波シールド層をラミネーターで気泡を含まないように積層した後、高圧水銀ランプを照射して接着剤を硬化させ積層体を製造する。3枚以上の積層を行う場合は、1層毎に接着剤を塗布して光を照射して複数層を積層しても構わないし、複数層の層間に接着層を設けた後に、一括して光を照射して接着剤層を硬化させて積層体を製造しても構わない。積層体の厚みは0.1〜30mmの範囲が好ましく、より好ましくは0.1〜20mmの範囲である。
本発明における光透過型電磁波シールド積層体の加熱源としては、放射波長が1μm以上の遠赤外線を用いたセラミックヒーター、ロッドヒーター、シースヒーターなど上下段に装備した遠赤外線ヒーター加熱装置を使用する。遠赤外線ヒーターは材料の分子振動を利用して加熱するため、従来技術のニクロム線やハロゲンランプなどを熱源に用いた電気炉、ロットヒーターおよびセラミックヒーターなどの一般的な加熱方法に比べて、表裏面や面内温度分布が著しく小さく、加熱ムラなく均一に加熱することが可能である。
本発明で使用する遠赤外線ヒーター加熱装置は、上段遠赤外線ヒーターは全面加熱を行い、下段遠赤外線ヒーターを開口部のある金属板で囲い、金属板の開口幅を調整することにより光透過型電磁波シールド積層体の曲げ加工部分を選択加熱することが出来る。遠赤外線ヒーターを囲う金属板の材質はアルミニウム、鉄、銅、ステンレスまたは鋳物が好適である。
本発明における光透過型電磁波シールド積層体の曲げ加工条件としては、遠赤外線ヒーター加熱装置により上段ヒーターは全面加熱し、下段ヒーターは該積層体の曲げ加工部分を選択加熱し、上下表面温度差を20℃以内に制御して140℃〜185℃に加熱したシールド積層体を曲率半径10mm以上の曲面に曲げ加工することにより、接着層の揺らぎと残留歪みを最小限に抑え、変形および反りや剥離を生じない曲げ加工性に優れた光透過型電磁波シールド積層体を得ることが出来る。下段ヒーターの曲げ加工部の加熱幅は(1)式により定義され、係数Yが1.35よりも小さいと加熱幅が不十分となるため、層剥離やスプリングバックが発生して所望の曲率半径を得られず、係数Yが4.15よりも大きいと加熱幅が広過ぎるため接着層に揺らぎを生じて外観および視認性が低下する。
加熱幅=2πR×(180°−X°)/360°×Y (1)
ここで、πは円周率、Rは曲率半径、Xは曲げ加工角度(内角)、Yは係数(1.35≦Y≦4.15)を示す。
上段ヒーターで該積層体を全面加熱することにより、下段ヒーターの選択加熱により生じる残留ひずみが緩和され、長期耐久性が向上して剥離現象が生じ難くなる。
積層体の上下表面温度差は20℃を超えると、熱膨張の差により反りが発生するため、剥離や接着層の揺らぎが発生して不良品となる。また応力ひずみが残留するため、長期使用時に剥離やひび割れなどの不具合を生じる。加熱温度は130℃より低いとポリカーボネート樹脂基材が十分に軟化しないため、スプリングバックが発生して所望の曲率半径を得られない。一方で加熱温度が190℃を超えると電磁波シールド層とポリカーボネート樹脂基材間の接着力が低下するため剥離が発生して不良品となる。さらに曲率半径が10mm未満になると湾曲がきつ過ぎるため、剥離が発生し易くなり不良品が発生する。
本発明における光透過型電磁波シールド積層体の曲げ加工方法としては、遠赤外線ヒーター加熱装置で該積層体を上段ヒーターは全面加熱し、下段ヒーターは曲げ加工部分を選択加熱により所定の温度に加熱後、所定の曲率半径を得ることの出来る木型、金型などを用いて曲げ加工する方法や真空成形、プレス成形などが適用される。ただし、曲げ加工方法は前記記載の方法になんら限定されるものではない。
本発明における光透過型電磁波シールド積層体は積層する光透過型有機高分子材料自体の加水分解や酸化による老化防止、紫外線による劣化防止、太陽光や風雨に曝される厳しい条件下での耐熱性、耐侯性などを向上する目的で、光透過型電磁波シールド積層体を構成する電磁波シールド層、保護層および接着剤層より選ばれた1つ以上の層に紫外線吸収剤、光安定剤および酸化防止剤の内、少なくとも1種類以上を含有させることが好ましい。光透過型電磁波シールド積層体を構成するすべての層に紫外線吸収剤、光安定剤および酸化防止剤の内、少なくとも1種類以上を含有することが好ましいが、紫外線吸収剤、光安定剤および酸化防止剤は高価なため、コストが高くなり、経済性に乏しい。費用対効果を考えた場合、光透過型電磁波シールド積層体の片面または両面に紫外線吸収剤、光安定剤および酸化防止剤の内、少なくとも1種類以上を含有してなる皮膜を形成することが好ましい。
前記紫外線吸収剤、光安定剤および酸化防止剤の内、少なくとも1種類以上を含有してなる被膜としては、長期間の耐久性に優れ、かつ表面硬度が比較的高いシリコーン樹脂系化合物、または処理が比較的簡便でかつ良好な被膜が形成されるアクリル樹脂または多官能アクリル樹脂が好ましい。これら被膜の硬化方法は使用する樹脂化合物の性質によるが、生産性や簡便性を考慮した場合、熱硬化型または光硬化型樹脂を選択することが好ましい。光硬化型樹脂の一例としては、1官能あるいは多官能のアクリレートモノマーあるいはオリゴマーなどの単独あるいは複数からなる樹脂組成物に硬化触媒として光重合開始剤が加えられた樹脂組成物が挙げられる。熱硬化型樹脂としてはポリオルガノシロキサン系、架橋型アクリル系などのものが挙げられる。この様な樹脂組成物は、ハードコート剤として市販されており、被膜ラインとの適正を加味し、適宜選択すれば良い。
これらの被膜には前述した紫外線吸収剤、光安定剤、酸化防止剤のほか、必要に応じて、有機溶剤、着色防止剤などの各種安定剤やレベリング剤、消泡剤、増粘剤、帯電防止剤、防曇剤などの界面活性剤等を適宜添加してもよい。
また前記紫外線吸収剤、光安定剤および酸化防止剤の内、少なくとも1種類以上を含有してなる被膜は光透過型電磁波シールド積層体の基材との密着性を向上させるために、基材とアクリル樹脂を共押出しにより積層したアクリル樹脂層上に被膜を形成することもできる。
光硬化型アクリル系樹脂化合物からなる被膜の一例としては、1,9−ノナンジオールジアクリレートまたはトリス(アクロキシエチル)イソシアヌレート20〜80重量%と共重合可能な他の化合物20〜80重量%とからなる光重合性化合物に対し、光重合開始剤を1〜10重量%を添加することを特徴とする紫外線硬化型樹脂被膜用組成物が挙げられる。
本発明において、光透過型電磁波シールド積層体に被膜を塗布する方法は、刷毛、ロール、ディッピング、流し塗り、スプレー、ロールコーター、フローコーターなどが適用できる。熱硬化あるいは光硬化によって硬化した被膜層の厚さは1〜20μm、好ましくは2〜15μm、さらに好ましくは3〜12μmである。被膜層の厚さが1μm未満であると耐候性や表面硬度の改良効果が不十分になりやすく、逆に20μmを超えてもコスト的に不利で、耐衝撃性の低下を招くこともある。
以下、本発明について実施例、比較例によりその実施形態と効果について具体的に説明するが、本発明はこれらの例により何ら限定されるものではない。実施例および比較例中に記載の評価結果は下記の試験方法にて測定した。
(電磁波シールド性能試験)
電磁波シールド性能測定装置(アドバンテスト社製)を用いて100MHz〜1GHzの周波数範囲の電磁波シールド性能を測定した。
[電磁波シールド性能評価]
周波数100MHzと1GHzの電磁波シールド性能が30dB以上を示すものを合格(○)とし、30dB未満のものを不合格(×)とした。
(曲げ加工性試験)
電磁波シールド層(PCフィルム、PETフィルム)と保護層(PCシートまたはフィルム)を各種接着剤組成物で接着して、幅500mm、長さ500mmの試験片を作製した。各種ヒーター(遠赤外線ヒーター、電気炉加熱、ニクロム線棒ヒーター)を用いて試験片を上段ヒーターは全面加熱し、下段ヒーターは所望の加熱幅に選択加熱して、試験片の表面温度が所定温度に達した後、所定の曲率半径の木型を用いて曲げ加工した。試験片の曲率半径と加工状況を目視にて評価した。
[外観評価]
○:外観異常なし
×:剥離、発泡、白化、反り、揺らぎのいずれかが発生
[試験片曲率半径評価]
○:金型の曲率半径に対して誤差10%以内
△:金型の曲率半径に対して誤差20%以内
×:金型の曲率半径に対して誤差20%以上または測定不可
(接着剤調製方法)
(A)ウレタン(メタ)アクリレート系重合性オリゴマー30.0重量%、(B)(メタ)アクリレート系重合性モノマー40.0重量%、(C)アクリルアミド誘導体20.0重量%、(D)シラン化合物5.0重量%、(E)有機リン化合物1.0重量%、光重合開始剤4.0重量%を仕込み、60℃で1時間混合加熱して、所望の接着剤組成物を得た。
[接着剤組成物の各成分]
・ウレタン(メタ)アクリレート系重合性オリゴマー
ジシクロヘキシルメタンジイソシアネート由来の脂環式炭化水素化合物含有ウレタン(メタ)アクリレート系オリゴマー
・(メタ)アクリレート系重合性モノマー
イソボニルアクリレート
・アクリルアミド誘導体
ジメチルアクリルアミド
・シラン化合物
(3−(2,3−エポキシプロポキシ)プロピル)トリメトキシシラン
・有機リン化合物
リン酸アクリレート
・光重合開始剤
Irgacure651
(光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法)
バーコーターで各種接着剤組成物を保護層(PCシートまたはフィルム)に塗布し、ラミネーターで電磁波シールド層(PCフィルム、PETフィルム)を脱泡しながら重ね合わせた。前記サンプルに高圧水銀ランプ(500W)を用いて90秒間照射し、照射量1J/cmで十分に硬化させた。また電磁波シールド層の両面に保護層を積層する場合も同様の方法で積層した。
各種評価用サンプルは恒温恒湿室(23℃、50%RH)で24時間静置後、幅500mm、長さ500mmにカットしたものをサンプルとして用いた。
[材料]
(電磁波シールド層)
各種導電性化合物を用いてメッシュ形成した表面抵抗値1[Ω/□]以下のPCフィルムまたはPETフィルム。
(導電性化合物メッシュ)
・AgC導電性印刷メッシュ
ライン100μm、ピッチ500μm、表面抵抗0.5Ω/□
・ 銅化合物薄膜メッシュ
ライン10μm、ピッチ300μm、表面抵抗0.1Ω/□
・ 銀化合物薄膜メッシュ
ライン10μm、ピッチ180μm、表面抵抗0.1Ω/□
(ベース基材)
・PCフィルム
MGCフィルシート社製ポリカーボネートフィルム(100〜200μm厚)
・PETフィルム
東洋紡社製易接着ポリエチレンテレフタレート(200μm厚)
(保護層)
・PCシート
MGCフィルシート社製ポリカーボネートシート(1.5mm〜20.0mm厚)
・PCフィルム
MGCフィルシート社製ポリカーボネートフィルム(100μm厚)
実施例1
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例2
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅32mm(係数Y=1.35)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例3
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅50mm(係数Y=2.10)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例4
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅100mm(係数Y=4.15)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例5
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度130℃(上部)、130℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は29mmであった。
実施例6
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度150℃(上部)、150℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は26mmであった。
実施例7
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度180℃(上部)、180℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例8
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度170℃(上部)、150℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は26mmであった。
実施例9
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度170℃(上部)、160℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例10
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅16mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は11mmであった。
実施例11
銅化合物薄膜メッシュ(PCフィルム100μm厚)の電磁波シールド層と保護層(PCフィルム100μm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例12
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート10.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅80mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径50mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は52mmであった。
実施例13
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート20.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅160mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径100mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は102mmであった。
実施例14
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と上下保護層(PCシート1.5mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は26mmであった。
実施例15
銅化合物薄膜メッシュ(PETフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は26mmであった。
実施例16
銀化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
実施例17
AgC導電性印刷メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は良好であり、試験片の曲率半径は25mmであった。
比較例1
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。電気炉を用いて該積層体を上下両側から全面加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は全体的に波打ち変形し、接着層に大きな揺らぎを生じた。
比較例2
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。ニクロム線棒ヒーターを用いて該積層体を上下両側から全面加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は全体的に波打ち変形し、接着層に大きな揺らぎと一部が白化した。
比較例3
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上下両側から全面加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観に若干のタワミ変形が生じ、接着層に多少の揺らぎが生じた。
比較例4
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅30mm(係数Y=1.25)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、曲げ部分の一部が剥離した。
比較例5
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅144mm(係数Y=6.00)で選択加熱して、表面温度165℃(上部)、165℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、接着層に大きな揺らぎが発生し、視認性が低下した。
比較例6
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を片側上部から加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、150℃(下部)、表面温度差10℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観に反りが生じた。
比較例7
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を片側下部から加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度148℃(上部)、165℃(下部)、表面温度差12℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観に反りが生じた。
比較例8
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度190℃(上部)、190℃(下部)、表面温度差0℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観は変形し、接着層に大きな揺らぎを生じた。
比較例9
銅化合物薄膜メッシュ(PCフィルム200μm厚)の電磁波シールド層と保護層(PCシート3.0mm厚)を得られた接着剤組成物を用いて前記「光透過型接着剤を用いた光透過型電磁波シールド積層体作製方法」に従いサンプルを作製した。
各種評価を行った結果、前記「電磁波シールド性能試験」によるサンプルの電磁波シールド性能は良好であった。遠赤外線ヒーターを用いて該積層体を上段ヒーターは全面加熱し、下段ヒーターは加熱幅40mm(係数Y=1.67)で選択加熱して、表面温度165℃(上部)、140℃(下部)、表面温度差25℃、木型曲率半径25mm、木型曲げ加工角度125°として前記「曲げ加工性試験」に従い評価した結果、外観に反りを生じた。
Figure 2010272660
Figure 2010272660

Claims (17)

  1. 電磁波シールド層の片側または両側にポリカーボネート基材を積層してなる厚さ0.1mm〜30mmの積層体を遠赤外線ヒーター加熱装置により上下両側から放射加熱して曲げ加工する方法において、上段ヒーターは全面加熱し、下段ヒーターは曲げ加工部の加熱幅を(1)式に示す範囲で選択加熱することにより曲げ加工することを特徴とする光透過型電磁波シールド積層体の製造方法。
    加熱幅=2πR×(180°−X°)/360°×Y (1)
    ここで、πは円周率、Rは曲率半径、Xは曲げ加工角度(内角)、Yは係数(1.35≦Y≦4.15)を示す。
  2. 下段遠赤外線ヒーターを開口部のある金属板で囲い、金属板の開口幅を調整することにより、光透過型電磁波シールド積層体の曲げ加工部を選択的に放射加熱することを特徴とする請求項1記載の光透過型電磁波シールド積層体の製造方法。
  3. 下段遠赤外線ヒーターを囲う金属板の材質が、アルミニウム、鉄、銅、ステンレスまたは鋳物である請求項2〜3記載の光透過型電磁波シールド積層体の製造方法。
  4. 該積層体の表面温度差を20℃以内に制御して140℃〜185℃に加熱したシールド積層体を曲率半径10mm以上の曲面に曲げ加工することを特徴とする請求項1〜3記載の光透過型電磁波シールド積層体の製造方法。
  5. 放射波長が1μm以上の遠赤外線ヒーターを用いて加熱することを特徴とする請求項1〜4記載の光透過型電磁波シールド積層体の製造方法。
  6. 電磁波シールド層の導電性化合物が銀、銅、アルミ、ニッケル、カーボン、ITO(酸化インジウム/酸化錫)、ZnO、錫、亜鉛、チタン、タングステンおよびステンレスから選ばれた1つ以上の金属成分を含有する金属化合物を用いる請求項1〜5記載の光透過型電磁波シールド積層体の製造方法。
  7. 電磁波シールド層の電磁波シールド性能が30デシベル以上である請求項1〜6記載の光透過型電磁波シールド積層体の製造方法。
  8. 電磁波シールド層が金属薄膜メッシュ、金属織物メッシュ、導電性繊維メッシュおよび導電性印刷メッシュから選ばれる1種である請求項1〜7記載の光透過型電磁波シールド積層体の製造方法。
  9. 金属薄膜メッシュおよび導電性印刷メッシュのベース基材がポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、またはポリエステル樹脂である請求項8記載の光透過型電磁波シールド積層体の製造方法。
  10. (A)(メタ)アクリレートモノマー、(B)(メタ)アクリレートオリゴマーおよび(C)アクリルアミド誘導体と、(D)シラン化合物および/または(E)有機リン化合物を含有する曲げ加工性に優れた(メタ)アクリレート系接着剤組成物を用いて積層してなる請求項1〜9記載の光透過型電磁波シールド積層体の製造方法。
  11. (B)(メタ)アクリレートオリゴマーが、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマーおよびポリオール(メタ)アクリレートオリゴマーから選ばれた少なくとも1種類以上の(メタ)アクリレートオリゴマーである請求項10記載の光透過型電磁波シールド積層体の製造方法。
  12. (C)アクリルアミド誘導体が、アルキルアクリルアミドおよび/またはアルキルメタアクリルアミドである請求項10〜11記載の光透過型電磁波シールド積層体の製造方法。
  13. (D)シラン化合物が、アミノ官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、メルカプト官能性シラン、メタクリレート官能性シラン、アクリルアミド官能性シラン、アクリレート官能性シランより選ばれた1種類以上である請求項10〜12記載の光透過型電磁波シールド積層体の製造方法。
  14. (E)有機リン化合物が、リン酸アクリレート化合物である請求項10〜13記載の光透過型電磁波シールド積層体の製造方法。
  15. 電磁波シールド層の片側または両側に被膜を配置してなる請求項1〜14記載の光透過型電磁波シールド積層体の製造方法。
  16. 請求項1〜15いずれかに記載の方法で製造された光透過型電磁波シールド積層体。
  17. 電子機器カバー、筐体用シールド材料、車両用カバー、半導体製造装置カバー、または窓材用シールド材料に用いられる請求項16記載の光透過型電磁波シールド積層体。
JP2009122721A 2009-05-21 2009-05-21 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法 Expired - Fee Related JP5431787B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122721A JP5431787B2 (ja) 2009-05-21 2009-05-21 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122721A JP5431787B2 (ja) 2009-05-21 2009-05-21 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法

Publications (2)

Publication Number Publication Date
JP2010272660A true JP2010272660A (ja) 2010-12-02
JP5431787B2 JP5431787B2 (ja) 2014-03-05

Family

ID=43420462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122721A Expired - Fee Related JP5431787B2 (ja) 2009-05-21 2009-05-21 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法

Country Status (1)

Country Link
JP (1) JP5431787B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075988A1 (ja) * 2014-11-13 2016-05-19 富士フイルム株式会社 導電体の成形方法および導電体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075988A1 (ja) * 2014-11-13 2016-05-19 富士フイルム株式会社 導電体の成形方法および導電体
JPWO2016075988A1 (ja) * 2014-11-13 2017-08-03 富士フイルム株式会社 導電体の成形方法および導電体

Also Published As

Publication number Publication date
JP5431787B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
TWI454509B (zh) 可彎曲加工之聚碳酸酯樹脂積層體及透光型電磁波屏蔽積層體及該等積層體之製造方法
JP5312839B2 (ja) 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法
JP2009274256A (ja) 曲げ加工可能な高耐久性ポリカーボネート樹脂積層体の製造方法
JP5644104B2 (ja) 光透過型電磁波シールド積層体およびその製造方法、光透過型電波吸収体並びに接着剤組成物
JP5551854B2 (ja) 曲げ加工可能な高耐久性ポリカーボネート樹脂積層体の製造方法
WO2012133234A1 (ja) 三次元成形用加飾シート及びその製造方法、並びに該加飾シートを用いた加飾成形品及びその製造方法
US20160046052A1 (en) Transfer film for in-mold molding, method for producing in-mold molded body, and molded body
JP5673281B2 (ja) 三次元成形用加飾シート及びその製造方法、並びに該加飾シートを用いた加飾樹脂成形品及びその製造方法
KR20100023894A (ko) 금속박막용 도료조성물 및 이것에 의하여 형성된 광휘성 복합도막
US7510769B2 (en) Laminate film
JP2008037101A (ja) フィルム積層体及びその製造方法
KR20090130080A (ko) 인서트 성형용 필름 및 그를 사용한 수지 성형품
JP2009277762A (ja) 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法
KR101858328B1 (ko) 수지 적층체 및 그의 제조 방법, 및 디스플레이 전면판
JP5431788B2 (ja) 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法
KR20130140725A (ko) 활성 에너지선 경화성 수지 조성물 및 코팅제
KR20220103113A (ko) 점착 시트, 적층 시트, 플렉시블 화상 표시 장치 부재 및 플렉시블 화상 표시 장치
JP2013218261A (ja) 熱線制御フィルム
JP5431787B2 (ja) 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法
JP2010272662A (ja) 曲げ加工可能な光透過型電磁波シールド積層体およびその製造方法
CN113583283A (zh) 一种高硬度硬涂膜及其制备方法
JP6058371B2 (ja) ディスプレイ用プラスチックシートの製造方法
JP2018159014A (ja) 粘着フィルムおよびその製造方法
WO2007043570A1 (ja) フィルム保護層用活性エネルギー線硬化型樹脂組成物、それを用いたフィルム及び光学シート
JP2006196737A (ja) 光透過性電磁波シールドシート

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R151 Written notification of patent or utility model registration

Ref document number: 5431787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees