JP2010271187A - 形状計測用カンチレバーおよびその製造方法 - Google Patents

形状計測用カンチレバーおよびその製造方法 Download PDF

Info

Publication number
JP2010271187A
JP2010271187A JP2009123343A JP2009123343A JP2010271187A JP 2010271187 A JP2010271187 A JP 2010271187A JP 2009123343 A JP2009123343 A JP 2009123343A JP 2009123343 A JP2009123343 A JP 2009123343A JP 2010271187 A JP2010271187 A JP 2010271187A
Authority
JP
Japan
Prior art keywords
lever
stylus
chip
cantilever
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123343A
Other languages
English (en)
Inventor
Hideaki Hara
秀章 原
Yoshikazu Nakae
吉一 中江
Shinji Miura
信二 三浦
Takashi Matsui
孝史 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009123343A priority Critical patent/JP2010271187A/ja
Publication of JP2010271187A publication Critical patent/JP2010271187A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

【課題】ピエゾ抵抗素子が形成されているSiチップ部と触針を設けたSiレバー部を別々に製作する、形状計測用カンチレバーおよびその製造方法を提供する。
【解決手段】(1)レバー3の製造工程、(2)Siチップ2の製造工程、(3)Siチップ2とレバー3の接合工程とからなる。
(1)レバー3の製造工程において、レバー3は、シリコン基板10より、測定箇所に応じた形状に形成し、レバー3先端の触針9も一体的に形成する。
(2)Siチップ2の製造工程では、シリコンウェーハに、前工程により、エッチング、酸化、拡散、CVD、イオン注入、等の工程を経て形成する。
(3)Siチップ2とレバー3の接合工程では、Siチップ2とレバー3との当接面外周に、CVDガス雰囲気中でFIBを照射することによって、タングステン膜を成長、堆積(デポジション)して、Siチップ2とレバー3とを一体的に接合する。
【選択図】図1

Description

本発明は、微細箇所の形状を測定するためのピエゾ抵抗素子付カンチレバーに関し、特には、ピエゾ抵抗素子が形成されているSiチップ部と触針を設けたSiレバー部とを別々に製作し、後工程で接合した構造とする、形状計測用カンチレバーおよびその製造方法に関するものである。
従来、一般的な形状計測用カンチレバーとしては、特許文献1に開示されるように、半導体プロセスでレバー部を製造するようにしている。
すなわち、特許文献1では、半導体基板にエッチング処理により、探針部用のレプリカ穴を形成する工程と、レプリカ穴を含む基板上の領域に、レバー部および探針部の母材料を堆積させる工程と、母材料を所定の形状にパターニングする工程と、基板を除去する工程とからなる製造工程により製造するようにしている。
一方、触針を長くする方法としては、特許文献2で見られるように、シリコン基板の積層方向に直交する方向に触針を設けたプローブも開示されている。
さらに、深溝や段差、凹凸形状に対応したカンチレバーとしては、特許文献3で見られるように、測定面に対しカンチレバー全体を垂直に配置する方法も開示されている。
特開平4−231811号公報 特開2007−120966号公報 特開2000−266659号公報
しかしながら、上述の特許文献1では、半導体プロセスでレバー部を製造するため、触針長さは、ベースとなるシリコン基板の厚さ以上にはできない。また、長い触針を半導体プロセスだけで加工しようとすると、時間がかかり、コスト高となる。
一方、特許文献2では、触針部の加工は容易に、短時間で加工することができるが、触針部とピエゾ抵抗素子を同一基板上で形成するため、任意の触針形状のプローブが必要な場合には、ピエゾ抵抗素子も製作する必要があり、トータル加工時間がかかり、コスト高となる。また積層方向に、すなわち基板表面から突出するように触針を設けたい場合には、上記加工法では不可能である。
さらに、特許文献3の場合には、インジェクタ墳孔などの微細孔形状を測定する場合、Siチップ部本体が邪魔になり、測定することができない。
本発明は、以上のような課題を克服するために提案されたものであって、ピエゾ抵抗素子が形成されているSiチップ部と触針(スタイラス)を設けたSiレバー部を別々に製作し、後工程で接合した構造とすることで、シリコン基板厚以上の長い触針を持つプローブを製作することができ、これまで不可能とされてきた、例えば微細孔の奥アール形状のものを計測することができるようにした、形状計測用カンチレバーおよびその製造方法を提供することを目的とする。
上記課題を解決するために、請求項1に記載の発明では、応力検出部(8)を備えたレバー基部(2)と、レバー基部(2)と別体であり、接合材(4)によりレバー基部(2)と一体化接合したレバー(3)と、レバー(3)に設け、測定対象物に接触させてレバー(3)に生ずる応力を、レバー基部(2)の応力検出部(8)に伝達するための触針(9)とを具備し、触針(9)は、レバー基部(2)における応力検出部(8)の形成面に対し、起立していることを特徴とする。
これにより、応力検出部(8)を備えたレバー基部(2)と、レバー基部(2)と別体で構成することから、レバー(3)を自由な形状、大きさ、長さとすることができ、レバー基部(2)先端の触針(9)を、レバー基部(2)の応力検出部(8)形成面に対し起立していることから、測定対象物の形状に合わせることができ、測定可能範囲が広がる。
請求項2に記載の発明では、応力検出部(8)は、レバー基部(2)に形成し、触針(9)による、レバー(3)に生ずる応力を伝達するようにしたピエゾ抵抗素子(5)を具備することを特徴とする。
これにより、測定箇所に触針(9)が触れ、レバー(3)が追従して変位することでレバー(3)に生ずる応力がピエゾ抵抗素子(5)に伝達され、測定箇所の凹凸を把握することができる。
請求項3に記載の発明では、レバー基部(2)に応力検出部(8)を形成する工程と、シリコン基板(10)より切り出して、所望の形状、大きさ、長さにて、レバー(3)を形成する工程と、レバー(3)先端に触針(9)を形成する工程と、レバー基部(2)に、レバー(3)を接合材(4)により接合する工程とを具備することを特徴とする。
これにより、レバー(3)を、レバー基部(2)とは別体で形成することにより、自由な形状、大きさ、長さに製作することができる。また、レバー(3)先端の触針(9)の向きを自在に設定することができるので、これまで、計測が困難であった箇所も測定が可能となる。
請求項4に記載の発明では、レバー(3)の先端に触針(9)を形成する工程は、予め先端側に向かって、先細形状に加工する第1の加工工程と、第1加工工程にて加工された先細形状の触針(9)を、先端針状に加工する第2の加工工程とを具備することを特徴とする。
これにより、触針(9)を、第1加工工程で、先細形状に形成したものを、第2加工工程で、先鋭な形状の針先に加工するため、加工時間を短縮化することができる。
請求項5に記載の発明では、レバー基部(2)にレバー(3)を接合する工程は、タングステン膜を接合材(4)として用いたことを特徴とする。
これにより、所定の加工装置により、レバー基部(2)とレバー(3)との当接面外周に、タングステン膜を成長、堆積して、レバー基部(2)とレバー(3)とを一体的に接合することができる。
さらに請求項6に記載の発明では、レバー基部(2)にレバー(3)を接合する工程において、レバー基部(2)とレバー(3)との当接面の面積を拡大して、接合材(4)を用いて接合することを特徴とする。
これにより、レバー基部(2)とレバー(3)とを、より強度を確保可能に、一体的に接続することができる。
なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
本発明によれば、レバー基部とレバーとを、個別に製作するため、これまでのような、半導体プロセスによる、半導体素子の積層方向に触針を突出形成することができない等の制約はなく、シリコン基板上に自由な形状、大きさ、長さのレバー、触針を製作することができる。例えば触針の長いレバーを製作し、接合したカンチレバーを提供することで、深溝や段差、凹凸形状など、これまで測定できなかった形状測定が可能になる。
本発明にかかる形状計測用カンチレバーの一例を模式的に示す、断面的説明図である。 図1に示す形状計測用カンチレバーの製造工程のうち、レバーの製造工程として、ウェーハ基板から各種形状のレバーを切り出すことを示した、模式的な説明図である。 図2に示すウェーハ基板から切り出したレバーにおける先端の触針を加工する際の模式的な説明図である。 図2に示すウェーハ基板から切り出したレバーにおける先端の、加工する前の触針を示す、模式的な拡大斜視図である。 第1加工工程を施した際の触針を示す、模式的な拡大斜視図である。 第2加工工程を施した際の触針を示す、模式的な拡大斜視図である。 形状計測用カンチレバーの製造工程のうち、Siチップにレバーを接合する工程を説明する際の模式図である。 形状計測用カンチレバーの製造工程のうち、Siチップにレバーを接合する工程を説明する際の模式図である。 図6に示す、Siチップにレバーを接合する工程において、接合箇所の一例を示す、模式的な断面説明図である。 Siチップにレバーを接合する工程において、接合箇所の別例を示す、模式的な断面説明図である。 Siチップにレバーを接合する工程において、接合箇所の別例を示す、模式的な断面説明図である。 Siチップにレバーを接合する工程において、接合箇所の別例を示す、模式的な断面説明図である。 本発明にかかる形状計測用カンチレバーを用いて、微細孔の内部形状を測定した一事例を示す、模式的な測定説明図である。 本発明にかかる形状計測用カンチレバーを用いて、逆テーパ孔の内部形状を測定した別の事例を示す、模式的な測定説明図である。
以下、本発明にかかる形状計測用カンチレバーおよびその製造方法において、一実施形態を挙げ、図面に基づいて説明する。
図1に本実施形態にかかる形状計測用カンチレバー1(プローブ)の一例を示す。
このカンチレバー1は、レバー基部2(以下、Siチップ2)と、Siチップ2と別体のレバー3とを、接合材4で一体化接合した構成としている。
Siチップ2は、シリコン基板より半導体プロセスで製作したもので、表層には、応力検出部8としてピエゾ抵抗素子5と、配線6と、コンタクト部7とが形成されている。
レバー3は、後述するが、シリコン基板から任意の形状に切り出される。
この場合、レバー3の先端には、触針9が形成されており、Siチップ2と接合した際、Siチップ2のピエゾ抵抗素子5の形成面に対し起立するように、すなわち上向きに触針9の針先を向けるようにしている。レバー3の根元(触針9とは反対側の端部)は、Siチップ2と接合材4を介し接合されている。
以上のようなカンチレバー1においては、測定対象物に触針9が接触し、レバー3が撓むことで、測定対象物の測定面に沿って触針9を追従させることができる。レバー3が撓むことでレバー3に応力が生じ、この応力によりピエゾ抵抗素子5が歪んで抵抗値が変化する。ピエゾ抵抗素子5は配線6によりコンタクト部7と結線されており、コンタクト部7から外部に信号(抵抗変化量)を取出す構成になっている。
なお、ピエゾ抵抗素子5の抵抗変化量は微弱であるため、検出回路として一般にブリッジ回路等によって検出することができる。
次に、本発明の特徴である形状計測用カンチレバー1の製造工程について説明する。
ここでの製造工程は、主に、(1)レバー3の製造工程、(2)Siチップ2の製造工程、(3)Siチップ2とレバー3の接合工程とから成り立っている。
先ず、(1)レバー3の製造工程において、レバー3は、図2に示すように、シリコン基板10より詳細な説明は省略するがエッチングにより形成する。この場合、レバー3は、測定箇所に応じた形状に形成することができる。その際、レバー3先端の触針9も一体的に形成することができる。
このように、レバー3はシリコンによって、一体的に形成することができるので、所望の形状、大きさ、長さのレバー3を製作することができる。
そして、レバー3先端の触針9の先端は、微細な形状を測定するために尖らせる必要がある。この点、触針9は、シリコンで作られていることから、半導体プロセスにより任意の形状に加工することができる(図3参照)。なお、図3においては、レバー3の基部側には、シリコン基板10より取出された際に、レバー3をハンドリングするためのハンドリング部3bを設けている。かかるハンドリング部3bは、後述する(3)Siチップ2とレバー3の接合工程において、切除される。
シリコン基板10より形成されたレバー3先端に触針9を形成する工程は、予め先端側に向かって、ブロック形状の状態から(図4a参照)、針形状に近付ける先細形状に加工する第1の加工工程(図4b参照)と、第1加工工程にて加工された先細形状の触針9を、先端針状に仕上げ加工する第2の加工工程(図4c参照)とからなる。
かかる加工工程では、例えば既存のFIB装置が用いられ(図示省略)、FIB(Focused Ion Beam)加工、すなわち集束イオンビーム加工を実行することができる。
FIB装置(例えば、特開2004−95339号公報)は、微細加工用として、ガリウムGaイオンビームが用いられている。集束イオンビームを当てて被加工物表面の原子をはじきとばす(スパッタリング)ことによって被加工物を削ることができる。集束イオンビームは数100nmから数nmまで絞ることができるので、ナノ領域での加工が可能である。はじき飛ばされた原子は、周辺に再堆積(リデポジション)する。
高速に加速・集束したイオンビーム(FIB)を被加工物表面に照射すると、イオンと被加工物原子間の衝突・散乱現象により、被加工物表面の照射領域が削られる(ミリング)。また、被加工物面上のFIB照射エリアに反応性のガスを吹き付けることにより、金属質の膜付け機能(gas assisted deposition)、あるいはミリングの増速効果(gas assisted etching)が得られる。
すなわちFIB装置は、微小領域(数μm〜数10μm)のエッチングによる任意形状の加工、微細パターン(数μm〜数10μm)の金属被膜形成(例えばC、W、Pt成膜)を行うことができる。
以上のようなFIB装置を用いることで、図4bに示すように、シリコン基板10より形成されたレバー3先端に触針9に対し、第1加工工程にて、外形が先細形状の触針9を形成して、これにより、第2加工工程で、FIB装置を用いて触針9を先端先鋭化加工する際の加工量を減らし、加工を容易にしている(図4c参照)。勿論、触針9の最終形状に応じて、前加工としての第1加工工程で先細形状の他、第2加工工程での加工量を減らすための中間形状であるウエッジ状に加工したものが考えられる。
次に(2)Siチップ2の製造工程について説明する。
この工程では、上述のレバー3の加工工程とは別に、図示は省略するが、シリコンウェーハに、従前のよく知られた手順でピエゾ抵抗素子5と、配線6と、コンタクト部7がそれぞれ形成される。
この場合、前工程により、研磨されたウェーハに、フォトリソグラフィ工程により、ウェーハ表面にパターンを形成し、エッチング、酸化、拡散、CVD、イオン注入、等の工程を経て形成し、所望の形状に切り出して、Siチップ2を得ることができる。
(3)Siチップ2とレバー3の接合工程では、例えばFIB−CVD法(集束イオンビーム化学気相成長法)によりタングステンWの膜(以下、タングステン膜W)を接合材として接合させる方法がある。ここでは、先ず、レバー3基部側のハンドリング部3bを、ガリウムGaイオンビームを、集束イオンビームとして当てることで、切断することができる(図5参照)。
次いで、Siチップ2とレバー3との当接面外周に、CVDガス雰囲気中でFIBを照射することによって、タングステン膜Wを成長、堆積(デポジション)して、Siチップ2とレバー3とを一体的に接合することができる(図6参照)。
なお、ここでは、タングステン膜Wは、Siチップ2とレバー3との当接面外周の、好ましくは三方に形成され(図7参照)、Siチップ2とレバー3とが一体化して、レバー3が変位することによるSiチップ2への応力伝達は、確実に達成される。
ところで、上述の接合工程では、Siチップ2とレバー3との接合箇所、すなわち、当接面は、断面矩形状で、断面積が等しいものを示しているが、接合箇所は、何もこの形状に限られない。すなわち、接合箇所には、撓み力がかかり、強度を確保するために、当接断面積を拡大化した接合構造が望ましい。
例えば、図8に示すように、Siチップ2とレバー3との端面同士を当接させるのではなく、Siチップ2とレバー3とを段違いに重ね合わせ、上述のFIB−CVD法により、重ね合わせ箇所周囲に、タングステンW膜を成長、堆積(デポジション)して、Siチップ2とレバー3とを一体的に接合することが考えられる。
また、図9に示すように、Siチップ2とレバー3との端面に、FIB加工法により、予め互いに嵌合可能な溝加工しておき、上述のFIB−CVD法により、嵌合箇所周囲に、タングステンW膜を成長、堆積(デポジション)して、Siチップ2とレバー3とを一体的に接合することが考えられる。FIB加工法を用いれば、接合箇所に高精度な所望の溝加工を施すことができる。勿論、互いに嵌合可能な構造であればいかなる継ぎ手形状でもよい。
さらに、接合箇所の強度を高めるために当接断面積を拡大化するという観点から、図10に示すように、互いの突合せ端面を傾斜させて、楔状に加工し、これら楔状加工端面を互いに当接させて、FIB−CVD法により、重ね合わせ箇所周囲に、タングステンW膜を成長、堆積(デポジション)して、Siチップ2とレバー3とを一体的に接合することも可能である。
以上のようにして、(1)レバー3の製造工程、(2)Siチップ2の製造工程、(3)Siチップ2とレバー3の接合工程を経て、カンチレバー1を、測定箇所に応じた形状に形成することができる。
そこで、以上のカンチレバー1を用いて、種々の測定箇所において測定する事例を挙げ、説明する。
例えば図11では、カンチレバー1(プローブ)を用いて、インジェクタ噴孔20などの微細孔の内部形状を測定しているところを示している。ここでのカンチレバー1は、ピエゾ抵抗素子5、配線6およびコンタクト部7が形成されたSiチップ2に対し、直線状のレバー3を接合したものである。この場合、レバー3のピエゾ抵抗素子5、配線6およびコンタクト部7の形成面に対し、直交方向に突出するレバー3先端の触針9は、30〜40μの寸法としている。なお、計測されるインジェクタ噴孔20は、内径が例えば100μとしている。かかるインジェクタ噴孔20において、孔奥が図11に示すように、内径が急激に拡開する、断面がR形状の箇所があるとしても、応力検出部8である、ピエゾ抵抗素子5が応力を検出して、レバー3先端の触針9を孔内壁に沿って追従接触させることができ、インジェクタ噴孔20の測定が可能であることがわかる。
一方、図12では、逆テーパ孔30の内部形状を測定する事例を示している。
この逆テーパ孔30の測定に用いられるカンチレバー1は、途中で孔径が一定の割合で、拡開する逆テーパ孔30のテーパ角度に合わせて、屈曲させたレバー3を用いている。
これにより、レバー3先端の触針9は、孔径が一定の割合で拡開するテーパ面に垂直に当てることができ、接触時の滑りをなくした測定が可能となる。
以上、例示した実例はあくまで一例に過ぎず、その他様々な形状の測定箇所が測定対象となり得る。すなわち、測定箇所に合わせた形状のレバー3を予め選定して、Siチップ2に、上述した製造工程で、レバー3を接合し、測定することができる。
ところで、レバー3先端の触針9を測定面に当接させ、測定する際、レバー3が応力によって変形し、Siチップ2における応力検出部8のピエゾ抵抗素子5が応力を検出するわけであるが、かかる応力が限界を超えたり、その他何らかの理由で、レバー3を折損することがある。
このような場合、折損箇所は、Siチップ2とレバー3との接合箇所以外の箇所となる場合がある。
そこで、上述した製造工程のうち、(3)Siチップ2とレバー3の接合工程において、用いられたFIB加工を、折損箇所に施して、Siチップ2とレバー3とに、互いに密接可能な接合端面を形成すればよい。
このようにすることで、例えレバー3が計測の際、折れるようなことがあっても、製造に多くの工程を要し、高価なピエゾ抵抗素子5、配線6およびコンタクト部7が形成されたSiチップ2を再度、活用することができ、測定に要する備品コストを抑制することができる。
以上、形状計測用カンチレバーおよびその製造方法において、一実施形態を挙げ、説明したが、製造工程において用いられたFIB加工、FIB−CVD法は一例であり、かかる加工法に限られない。
また、接合材4としてタングステンWを成膜する旨、記載したが、この他、例えばC、あるいはPtを成膜することも考えられる。
さらに、レバー3先端の触針9をレバー3における、ピエゾ抵抗素子5、配線6およびコンタクト部7の形成面に対し、鉛直方向に突出させる向きとしているが、先行技術文献のように、レバー3における、ピエゾ抵抗素子5、配線6およびコンタクト部7の形成面に面一に形成することも可能である。
1 カンチレバー
2 Siチップ
3 レバー
4 接合材
5 ピエゾ抵抗素子
6 配線
7 コンタクト部
8 応力検出部
9 触針
10 シリコン基板
20 インジェクタ噴孔
30 逆テーパ孔
W タングステン

Claims (6)

  1. 応力検出部(8)を備えたレバー基部(2)と、
    前記レバー基部(2)と別体であり、接合材(4)により前記レバー基部(2)と一体化接合したレバー(3)と、
    前記レバー(3)に設け、測定対象物に接触させて前記レバー(3)に生ずる応力を、前記レバー基部(2)の応力検出部(8)に伝達するための触針(9)と、
    を具備し、
    前記触針(9)は、前記レバー基部(2)における前記応力検出部(8)の形成面に対し、起立していることを特徴とする形状計測用カンチレバー。
  2. 前記応力検出部(8)は、前記レバー基部(2)に形成し、前記触針(9)による、前記レバー(3)に生ずる応力を伝達するようにしたピエゾ抵抗素子(5)を具備することを特徴とする請求項1に記載の形状計測用カンチレバー。
  3. レバー基部(2)に応力検出部(8)を形成する工程と、
    シリコン基板(10)より切り出して、所望の形状、大きさ、長さにて、レバー(3)を形成する工程と、
    前記レバー(3)の先端に触針(9)を形成する工程と、
    前記レバー基部(2)に、前記レバー(3)を接合材(4)により接合する工程と、
    を具備することを特徴とする形状計測用カンチレバーの製造方法。
  4. 前記レバー(3)の先端に触針(9)を形成する工程は、予め先端側に向かって、先細形状に加工する第1の加工工程と、
    前記第1加工工程にて加工された先細形状の触針(9)を、先端針状に加工する第2の加工工程と、
    を具備することを特徴とする請求項3に記載の形状計測用カンチレバーの製造方法。
  5. 前記レバー基部(2)に前記レバー(3)を接合する工程は、接合箇所に金属被膜を成膜して接合材(4)として用いたことを特徴とする請求項3に記載の形状計測用カンチレバーの製造方法。
  6. 前記レバー基部(2)に前記レバー(3)を接合する工程において、前記レバー基部(2)と前記レバー(3)との当接面の面積を拡大して、前記接合材(4)を用いて接合することを特徴とする請求項5に記載の形状計測用カンチレバーの製造方法。
JP2009123343A 2009-05-21 2009-05-21 形状計測用カンチレバーおよびその製造方法 Pending JP2010271187A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123343A JP2010271187A (ja) 2009-05-21 2009-05-21 形状計測用カンチレバーおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123343A JP2010271187A (ja) 2009-05-21 2009-05-21 形状計測用カンチレバーおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2010271187A true JP2010271187A (ja) 2010-12-02

Family

ID=43419328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123343A Pending JP2010271187A (ja) 2009-05-21 2009-05-21 形状計測用カンチレバーおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2010271187A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019864A (ja) * 2011-07-14 2013-01-31 Mitsutoyo Corp 接触式プローブおよびその製造方法
JP2013019865A (ja) * 2011-07-14 2013-01-31 Mitsutoyo Corp 接触式プローブおよびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231811A (ja) * 1990-08-31 1992-08-20 Olympus Optical Co Ltd 走査型プローブ顕微鏡用カンチレバー及びその作製方法
JPH07113634A (ja) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd 走査型探針顕微鏡用探針、その製造方法、当該探針を用いた記録再生装置及び微細加工装置
JPH08146015A (ja) * 1994-11-28 1996-06-07 Olympus Optical Co Ltd 走査型プローブ顕微鏡のカンチレバー
JPH1038916A (ja) * 1996-07-23 1998-02-13 Nikon Corp プローブ装置及び微小領域に対する電気的接続方法
JP2000266659A (ja) * 1999-03-16 2000-09-29 Seiko Instruments Inc 走査型プローブ顕微鏡用カンチレバー
JP2007120966A (ja) * 2005-10-25 2007-05-17 Seiko Instruments Inc 計測プローブ及び計測プローブの製造方法
JP2008292375A (ja) * 2007-05-25 2008-12-04 Namiki Precision Jewel Co Ltd 走査プローブ顕微鏡に用いる探針及びカンチレバー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231811A (ja) * 1990-08-31 1992-08-20 Olympus Optical Co Ltd 走査型プローブ顕微鏡用カンチレバー及びその作製方法
JPH07113634A (ja) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd 走査型探針顕微鏡用探針、その製造方法、当該探針を用いた記録再生装置及び微細加工装置
JPH08146015A (ja) * 1994-11-28 1996-06-07 Olympus Optical Co Ltd 走査型プローブ顕微鏡のカンチレバー
JPH1038916A (ja) * 1996-07-23 1998-02-13 Nikon Corp プローブ装置及び微小領域に対する電気的接続方法
JP2000266659A (ja) * 1999-03-16 2000-09-29 Seiko Instruments Inc 走査型プローブ顕微鏡用カンチレバー
JP2007120966A (ja) * 2005-10-25 2007-05-17 Seiko Instruments Inc 計測プローブ及び計測プローブの製造方法
JP2008292375A (ja) * 2007-05-25 2008-12-04 Namiki Precision Jewel Co Ltd 走査プローブ顕微鏡に用いる探針及びカンチレバー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019864A (ja) * 2011-07-14 2013-01-31 Mitsutoyo Corp 接触式プローブおよびその製造方法
JP2013019865A (ja) * 2011-07-14 2013-01-31 Mitsutoyo Corp 接触式プローブおよびその製造方法

Similar Documents

Publication Publication Date Title
Berdova et al. Mechanical assessment of suspended ALD thin films by bulge and shaft-loading techniques
WO2007070004A3 (en) Methods for making micro needles and applications thereof
JP5353101B2 (ja) 微細構造体形成方法
US8695111B2 (en) Video rate-enabling probes for atomic force microscopy
CN103439248A (zh) 测量tsv铜柱中残余应力的方法
KR100367535B1 (ko) 집적회로제조방법
JP2010271187A (ja) 形状計測用カンチレバーおよびその製造方法
CN101578231B (zh) 表面粗糙化方法
EP2535725A1 (en) A probe for scanning probe microscopy
EP3646117B1 (en) Method, atomic force microscopy system and computer program product.
CN106653578A (zh) 一种晶圆的加工方法
WO2010139034A2 (en) Method of fabricating mems devices with electrical components in their sidewalls
KR100477365B1 (ko) 원자힘 현미경의 팁 보호막 형성 방법
JP2000266659A (ja) 走査型プローブ顕微鏡用カンチレバー
JP2010145124A (ja) カンチレバー
JP4865686B2 (ja) 加速度センサの製造方法および加速度センサ
JP2008275440A (ja) 走査型プローブ顕微鏡用カーボンナノチューブカンチレバーとその製造方法および走査型プローブ顕微鏡
Li et al. Focused ion beam (FIB) nano-machining and FIB Moire technique for strain analysis in MEMS/NEMS structures and devices
JPH05119059A (ja) 半導体加速度センサの製造方法
TWI421500B (zh) A method of making microprobe components and microprobes using a three-dimensional silicon perforation technique (TSV)
JP2015522811A (ja) 深くエッチングされた多点プローブ
JP2001230232A (ja) 半導体基板のエッチング終了点検出方法
Mehdizadeh et al. Integrated MEMS actuators for sub-Micron patterning on thin polymer films
JPH04247636A (ja) 断面研磨観察箇所の検出方法
Choi et al. Fabrication of Buried Nanochannels by Transferring Metal Nanowire Patterns

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110627

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120712

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204