JP2010265803A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2010265803A
JP2010265803A JP2009117369A JP2009117369A JP2010265803A JP 2010265803 A JP2010265803 A JP 2010265803A JP 2009117369 A JP2009117369 A JP 2009117369A JP 2009117369 A JP2009117369 A JP 2009117369A JP 2010265803 A JP2010265803 A JP 2010265803A
Authority
JP
Japan
Prior art keywords
amount
internal combustion
combustion engine
control
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009117369A
Other languages
English (en)
Inventor
Hiroto Takeuchi
裕人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009117369A priority Critical patent/JP2010265803A/ja
Publication of JP2010265803A publication Critical patent/JP2010265803A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

【課題】暖機制御中における粒子状物質の排出量を適切に算出することができるとともに、この粒子状物質の排出量に応じて、内燃機関を適切に制御することができる内燃機関の制御装置を提供する。
【解決手段】制御装置1は、検出された内燃機関3の運転状態NE、QINJ、TW、TAに応じて、粒子状物質の排出量を推定し(ステップ43)、内燃機関3が始動後の暖機制御中であるか否かを判定する(ステップ44)とともに、暖機制御中であると判定されているときに、推定された粒子状物質の排出量QPMを増大側に補正する(ステップ49)。
【選択図】図7

Description

本発明は、内燃機関から排気通路に排ガスに含まれて排出された粒子状物質の排出量に応じて内燃機関の動作を制御するための内燃機関の制御装置に関する。
従来、この種の内燃機関の制御装置として、例えば特許文献1に開示されたものが知られている。この内燃機関はディーゼルエンジンであり、内燃機関の排気管には、上流側から順に、燃料添加弁と、排ガス中の粒子状物質(以下「PM」という)を捕集するためのフィルタが設けられている。また、この従来の制御装置では、上記の燃料添加弁により排ガス中に燃料を添加する再生制御が行われる。これにより、添加された燃料が排気管のフィルタよりも上流側で燃焼することによって、排ガスが昇温される結果、フィルタに堆積したPMが燃焼し、フィルタが再生される。また、この再生制御は、フィルタに堆積したPMの堆積量が所定値以上になったときに行われ、このPMの堆積量は次のように算出される。
すなわち、内燃機関の回転数および燃料噴射量に応じて、PMの排出量(以下、「PM排出量」という)の基準値を算出する。次いで、内燃機関の定常運転中に得られる吸入空気量を基準吸気量として算出するとともに、センサで検出された吸入空気量と、算出された基準吸気量との比を、吸気量偏差率として算出する。次に、算出されたPM排出量の基準値を吸気量偏差率で補正することによって、最終的なPM排出量が算出される。そして、算出された最終的なPM排出量に基づいて、PMの堆積量が算出される。
特開2005−256725号公報
一般に、内燃機関の始動直後には、内燃機関および排ガス浄化用の触媒に本来の性能を発揮させるために、これらを暖機する暖機制御が実行される。この暖機制御中には、内燃機関の吸入空気量や、燃料噴射時期、燃料を複数回に分けて噴射する多段噴射の各噴射量、燃料の噴射圧力、スワールの強さを制御するためのスワール制御弁の開度などが制御され、内燃機関に供給される混合気の空燃比が、リッチ側に制御される。また、暖機制御中には、内燃機関の本体の温度がまだ低い状態にあるとともに、空燃比が上記のようにリッチ側に制御されるため、良好な燃焼状態が得られず、その結果、PM排出量は、暖機制御中以外のときよりも多くなる傾向にある。これに対して、上述した従来の制御装置では、エンジン回転数および燃料噴射量に応じて算出した基準値を、吸入空気量に基づく吸気量偏差率で補正するにすぎないので、上述したような暖機制御中、PM排出量を適切に算出することができず、ひいては、前述した再生制御を適切なタイミングで行うことができない。
また、従来、内燃機関の燃料噴射量および吸入空気量に応じて、混合気の当量比を算出するとともに、算出された当量比で表される混合気のリーン・リッチ度合に応じてPM排出量を算出することも、知られている。この場合、暖機制御に用いられる上述したような燃料噴射時期、多段噴射の各噴射量、燃料の噴射圧力およびスワール制御弁の開度は、当量比とは無関係で、当量比に直接的には反映されないので、PM排出量は、それが最大になる場合を想定して、安全側に算出される。このため、このような算出手法によるPM排出量に基づくPMの堆積量に応じて、前述した再生制御の実行の可否を判定した場合には、再生制御の実行頻度が高くなり、ひいては、排ガスの頻繁な昇温によるフィルタや排ガス浄化用の触媒の熱劣化、および燃費の悪化などを招いてしまう。
本発明は、以上のような課題を解決するためになされたものであり、暖機制御中における粒子状物質の排出量を適切に算出することができるとともに、この粒子状物質の排出量に応じて、内燃機関を適切に制御することができる内燃機関の制御装置を提供することを目的とする。
上記の目的を達成するために、請求項1に係る発明は、内燃機関3から排気通路(実施形態における(以下、本項において同じ)排気管5)に排ガスに含まれて排出された粒子状物質の排出量に応じて内燃機関3を制御するための内燃機関3の制御装置1であって、内燃機関3の運転状態を検出する運転状態検出手段(クランク角センサ32、水温センサ33、吸気温センサ36、ECU2、ステップ31)と、検出された内燃機関3の運転状態(エンジン回転数NE、燃料噴射量QINJ、エンジン水温TW、吸気温TA)に応じて、粒子状物質の排出量を推定する排出量推定手段(ECU2、ステップ43)と、内燃機関3が始動後の暖機制御中であるか否かを判定する暖機制御判定手段(ECU2、ステップ44)と、暖機制御判定手段により暖機制御中であると判定されているときに、推定された粒子状物質の排出量(PM排出量QPM)を増大側に補正する排出量補正手段(ECU2、ステップ49)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、検出された内燃機関の運転状態に応じ、排出量推定手段によって、粒子状物質の排出量(以下「PM排出量」という)が推定されるとともに、暖機制御判定手段によって、内燃機関が始動後の暖機制御中であるか否かが判定される。また、暖機制御中であると判定されているときに、推定されたPM排出量が、排出量補正手段によって増大側に補正される。前述したように、暖機制御中には、それ以外の場合と比較して、実際のPM排出量が多くなる傾向にある。上述した構成によれば、そのような暖機制御中において、推定されたPM排出量を増大側に補正するので、PM排出量を適切に算出することができるとともに、このPM排出量に応じて、内燃機関を適切に制御することができる。
請求項2に係る発明は、請求項1に記載の内燃機関3の制御装置1において、排気通路には、排ガス中の粒子状物質を捕集する排ガス浄化フィルタ17が設けられており、暖機制御中であると判定されているときに、補正された粒子状物質の排出量(PM排出量QPM)に基づいて、排ガス浄化フィルタ17に堆積した粒子状物質の堆積量(PM堆積量SQPMDPF)を算出する堆積量算出手段(ECU2、ステップ13〜15)をさらに備えることを特徴とする。
この構成によれば、暖機制御中であると判定されているときに、補正されたPM排出量に基づいて、排ガス浄化フィルタに堆積した粒子状物質の堆積量を算出するので、この堆積量を適切に算出することができる。また、例えば、適切に算出された粒子状物質の堆積量に基づき、排ガス浄化フィルタを昇温により再生するための再生制御の実行の可否を判定することによって、この再生制御を適切なタイミングで実行することができ、それにより、排ガス浄化フィルタの熱劣化を抑制することができる。同じ理由により、再生制御を、内燃機関の膨張行程や排気行程での気筒内への燃料噴射によって行う場合には、この燃料噴射によるオイルダイリューションを抑制できるとともに、燃費を向上させることができる。
請求項3に係る発明は、請求項1または2に記載の内燃機関3の制御装置1において、内燃機関3の始動時からの燃料噴射量QINJに応じて、燃料の燃焼により内燃機関3の始動時から発生した熱量の総量を総発生熱量SCALとして算出する総発生熱量算出手段(ECU2、ステップ23)をさらに備え、排出量補正手段は、粒子状物質の排出量の補正を、算出された総発生熱量SCALに応じて行う(ステップ46〜49)ことを特徴とする。
この構成によれば、内燃機関の始動時からの燃料噴射量に応じ、総発生熱量算出手段によって、燃料の燃焼により内燃機関の始動時から発生した熱量の総量が、総発生熱量として算出されるとともに、算出された総発生熱量に応じて、前述した暖機制御中におけるPM排出量の補正が行われる。
暖機制御中、PM排出量が増大するのは、前述したように内燃機関の本体の温度が低いことによって、着火遅れが大きくなり、最適な着火時期が得られないことで、良好な燃焼状態が得られないことによるため、内燃機関の暖機が進むほど、着火遅れが小さくなり、着火時期が最適な着火時期に近づくことによって、PM排出量は減少する傾向にある。また、上記の総発生熱量は、内燃機関の始動時から発生した熱量の総量であるので、内燃機関の暖機状態を良好に表す。さらに、燃料噴射量は、総発生熱量と密接な相関関係にあるので、この燃料噴射量に応じて、総発生熱量を適切に算出することができる。以上から、上述したように、暖機制御中において、PM排出量の補正を、そのような内燃機関の暖機状態を良好に表す総発生熱量に応じて行うことにより、PM排出量をより適切に算出することができる。
本実施形態による制御装置を適用した内燃機関を概略的に示す図である。 本実施形態による制御装置を示すブロック図である。 再生制御処理のメインフローを示すフローチャートである。 PM堆積量の算出サブルーチンを示すフローチャートである。 総発生熱量を算出する処理を示すフローチャートである。 燃料噴射量を算出する処理を示すフローチャートである。 PM排出量の算出サブルーチンを示すフローチャートである。 補正量の基本値を算出するためのマップの一例である。 第1補正係数を算出するためのマップの一例である。 第2補正係数を算出するためのマップの一例である。
以下、図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。図2は、本実施形態による制御装置1を、図1は、この制御装置1を適用した内燃機関3を、それぞれ示している。この内燃機関(以下「エンジン」という)3は、車両(図示せず)に搭載された4気筒のディーゼルエンジンである。
エンジン3のピストン3aとシリンダヘッド3bの間には、燃焼室3cが気筒ごとに形成されている。また、シリンダヘッド3bには、気筒ごとに、吸気管4および排気管5がそれぞれ接続されるとともに、燃料噴射弁(以下「インジェクタ」という)6が、燃焼室3cに臨むように取り付けられている。
インジェクタ6は、燃焼室3cの天壁中央部に配置されており、コモンレール(図示せず)を介して、高圧ポンプ6aおよび燃料タンク(図示せず)に順に接続されている。高圧ポンプ6aは、燃料タンクの燃料を、高圧に昇圧した後、コモンレールを介してインジェクタ6に送り、インジェクタ6はこの燃料を燃焼室3cに噴射する。燃料の噴射圧力PRAILは、制御装置1の後述するECU2で高圧ポンプ6aを制御することによって制御される(図2参照)とともに、コモンレールに設けられた燃料圧センサ31によって検出され、その検出信号はECU2に出力される。また、インジェクタ6の開弁時間および開閉弁タイミングは、ECU2からの制御信号によって制御され、それにより、燃料噴射量および燃料噴射タイミングがそれぞれ制御される。
エンジン3のクランクシャフト3dには、マグネットロータ32aが取り付けられており、マグネットロータ32aとMREピックアップ32bによって、クランク角センサ32が構成されている。クランク角センサ32は、クランクシャフト3dの回転に伴い、パルス信号であるCRK信号およびTDC信号をECU2に出力する。
CRK信号は、所定のクランク角(例えば30゜)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。TDC信号は、各気筒のピストン3aが吸気行程開始時のTDC(上死点)付近の所定クランク角度位置にあることを表す信号であり、本実施形態のようにエンジン3が4気筒の場合には、クランク角180゜ごとに出力される。
また、エンジン3の本体には、水温センサ33が設けられている。水温センサ33は、エンジン3を冷却するための冷却水の温度(以下「エンジン水温」という)TWを検出するとともに、その検出信号をECU2に出力する。
また、吸気管4には、過給装置7が設けられており、過給装置7は、ターボチャージャで構成された過給機8と、これに連結されたアクチュエータ9と、ベーン開度制御弁10を備えている。
過給機8は、吸気管4に設けられた回転自在のコンプレッサブレード8aと、排気管5に設けられた回転自在のタービンブレード8bおよび複数の回動自在の可変ベーン8c(2つのみ図示)と、これらのブレード8a,8bを一体に連結するシャフト8dとを有している。過給機8は、排気管5内の排ガスによりタービンブレード8bが回転駆動されるのに伴い、これと一体のコンプレッサブレード8aが回転駆動されることによって、吸気管4内の吸入空気を加圧する過給動作を行う。
アクチュエータ9は、負圧によって作動するダイアフラム式のものであり、各可変ベーン8cに機械的に連結されている。アクチュエータ9には、負圧ポンプから負圧供給通路(いずれも図示せず)を介して負圧が供給され、この負圧供給通路の途中にベーン開度制御弁10が設けられている。ベーン開度制御弁10は、電磁弁で構成されており、その開度がECU2に制御されることにより、アクチュエータ9への供給負圧が変化し、それに伴い、可変ベーン8cの開度が変化することにより、過給圧が制御される。
吸気管4の過給機8よりも下流側には、上流側から順に、水冷式のインタークーラ11およびインテークシャッタ12が設けられている。インタークーラ11は、過給装置7の過給動作により吸入空気の温度が上昇したときなどに、吸入空気を冷却するものである。インテークシャッタ12には、例えば直流モータで構成されたアクチュエータ12aが接続されている。インテークシャッタ12の開度は、アクチュエータ12aに供給される電流のデューティ比をECU2で制御することによって、変更され、それにより、吸入空気量が制御される。
また、吸気管4には、過給機8よりも上流側にエアフローセンサ34が、インタークーラ11とインテークシャッタ12の間に過給圧センサ35および吸気温センサ36が、それぞれ設けられている。エアフローセンサ34は吸入空気量QAを、過給圧センサ35は吸気管4内の過給圧PACTを、吸気温センサ36はエンジン3の吸入空気の温度(以下「吸気温」という)TAを、それぞれ検出し、それらの検出信号はECU2に出力される。
さらに、吸気管4の吸気マニホールド4aは、その集合部から分岐部にわたって、スワール通路4bとバイパス通路4cに仕切られており、これらの通路4b,4cはそれぞれ、吸気ポートを介して各燃焼室3cに連通している。バイパス通路4cには、スワール装置13が設けられており、スワール装置13は、スワール弁13aと、これを開閉するアクチュエータ13bと、スワール制御弁13cを備えている。スワール制御弁13cの開度をECU2で制御することにより、スワール弁13aの開度を変化させることによって、燃焼室3c内に発生するスワールの強さが制御される。
また、エンジン3には、EGR管14aおよびEGR制御弁14bを有するEGR装置14が設けられている。EGR管14aは、吸気管4と排気管5の間に、具体的には、吸気マニホールド4aの集合部のスワール通路4bと排気管5の過給機8よりも上流側とをつなぐように接続されている。このEGR管14aを介して、エンジン3の排ガスの一部が吸気管4にEGRガスとして還流し、それにより、燃焼室3c内の燃焼温度が低下することによって、排ガス中のNOxが低減される。
EGR制御弁14bは、EGR管14aに取り付けられたリニア電磁弁で構成されており、そのバルブリフト量が、ECU2によってリニアに制御されることにより、EGRガス量が制御される。
また、EGR装置14にはEGRガスを冷却するためのEGR冷却装置15が設けられており、EGR冷却装置15は、バイパス通路15aと、EGR通路切換弁15bと、EGR管14aのEGR制御弁14bよりも下流側に設けられたEGRクーラ15cを有している。バイパス通路15aは、EGR管14aのEGR制御弁14bよりも下流側に、EGRクーラ15cをバイパスするように設けられており、EGR通路切換弁15bはバイパス通路15aの分岐部に取り付けられている。EGR通路切換弁15bは、ECU2による制御によって、EGR管14aのEGR通路切換弁15bよりも下流側の部分を、EGR管14a側とバイパス通路15a側に選択的に切り換える。
以上により、EGR通路切換弁15bがバイパス通路15a側に切り換えられた場合には、EGRガスは、バイパス通路15aに通され、吸気管4に還流する。一方、逆側に切り換えられた場合には、EGRガスは、EGRクーラ15cで冷却された後、吸気管4に還流する。
また、排気管5の過給機8よりも下流側には、上流側から順に、酸化触媒16および排ガス浄化フィルタ17が設けられている。酸化触媒16は、排ガス中のHCおよびCOを酸化し、排ガスを浄化する。排ガス浄化フィルタ17は、排ガス中の煤などの粒子状物質(以下「PM」という)を捕集することによって、大気中に排出されるPMを低減する。また、排ガス浄化フィルタ17の表面には、酸化触媒16と同様の触媒が担持されている。
さらに、排気管5の排ガス浄化フィルタ17のすぐ上流側には、排ガス温度センサ37が設けられている。排ガス温度センサ37は、排ガス浄化フィルタ17のすぐ上流側の排ガスの温度(以下「フィルタ前ガス温度」という)TDPFGを検出し、その検出信号をECU2に出力する。ECU2にはさらに、アクセル開度センサ38から、アクセルペダル(図示せず)の操作量(以下「アクセル開度」という)APを表す検出信号が、エンジン3を始動するためのイグニッションスイッチ(以下「IG・SW」という)39から、ON信号およびOFF信号が、それぞれ出力される。
ECU2は、I/Oインターフェース、CPU、RAMおよびROMなどからなるマイクロコンピュータで構成されており、このROMに記憶された制御プログラムに従い、前述した各種のセンサ31〜38およびIG・SW39からの出力信号に応じて、各種の処理を実行する。
具体的には、暖機制御処理および再生制御処理を実行する。この暖機制御処理は、エンジン3および酸化触媒16の本来の性能を発揮させるために、これらを暖機する暖機制御を実行するためのものである。この暖機制御は、エンジン3の始動後で、かつ、検出されたエンジン水温TWおよび吸気温TAがそれぞれの所定のしきい値よりも低いときに、実行される。また、暖機制御中には、インジェクタ6による燃料噴射は、メイン噴射、パイロット噴射およびポスト噴射に分けて行われる。このメイン噴射は、エンジン3の出力を得るためのものであり、圧縮行程に行われる。また、パイロット噴射は、燃焼室3cを暖めるためのものであり、メイン噴射に先立って行われる。さらに、ポスト噴射は、排ガス中に未燃燃料を含ませ、燃焼させることによって、排ガスを昇温するためのものであり、膨張行程または排気行程に行われる。
さらに、暖機制御中には、吸入空気量QA、噴射圧力PRAIL、過給圧PACT、上記のメイン噴射のタイミング、パイロット噴射の燃料量、パイロット噴射のタイミング、ポスト噴射の燃料量、ポスト噴射のタイミング、およびスワール制御弁の開度が制御され、それにより、燃焼温度や排ガスの温度が高められることによって、エンジン3および酸化触媒16が暖機される。この場合、吸入空気量QAは、インテークシャッタ12の開度を制御することと、EGR制御弁14bのバルブリフト量の制御によりEGRガス量を制御することによって、制御される。また、エンジン3に供給される混合気の空燃比は、暖機制御中以外のときよりも、リッチ側に制御される。さらに、暖機制御中には、エンジン3の本体の温度がまだ低い状態にあるとともに、空燃比が上記のようにリッチ側に制御されるため、良好な燃焼状態が得られず、その結果、PM排出量は、暖機制御中以外のときよりも多くなる傾向にある。
また、前述した再生制御処理は、排ガス浄化フィルタ17に堆積したPMを燃焼させ、排ガス浄化フィルタ17を再生するためのものであり、図3は、この再生制御処理を示している。本処理は、IG・SW39の出力信号がOFFからONに切り換わるのに伴って開始され、前述したTDC信号の発生に同期して実行される。まず、図3のステップ1(「S1」と図示。以下同じ)では、PM堆積量SQPMDPFを算出する。このPM堆積量SQPMDPFは、排ガス浄化フィルタ17に堆積されているPMの堆積量である。その算出処理については後述する。
次に、再生フラグF_REDPFが「1」であるか否かを判別する(ステップ2)。この答がNOで、再生制御中でないときには、ステップ1で算出されたPM堆積量SQPMDPFが、再生制御の開始判定用の所定のしきい値QREFSよりも大きいか否かを判別する(ステップ3)。この答がNOで、SQPMDPF≦QREFSのときには、そのまま本処理を終了する。
一方、ステップ3の答がYESで、PM堆積量SQPMDPFがしきい値QREFSを上回ったときには、再生フラグF_REDPFを「1」にセットし(ステップ4)、再生制御を開始する。この再生制御は、前述したポスト噴射を行うことで、排ガス中に未燃燃料を含ませることによって実行される。この再生制御により、ポスト噴射によって供給された未燃燃料が、酸化触媒16などで酸化され、燃焼することによって、排ガス浄化フィルタ17が昇温されることで、排ガス浄化フィルタ17に堆積したPMが燃焼し、排ガス浄化フィルタ17が再生される。
一方、前記ステップ2の答がYESで、再生制御中のときには、PM堆積量SQPMDPFが、再生制御の終了判定用の所定のしきい値QREFEよりも小さいか否かを判別する(ステップ5)。この答がNOで、SQPMDPF≧QREFEのときには、そのまま本処理を終了し、再生制御を継続する。
一方、ステップ5の答がYESで、PM堆積量SQPMDPFがしきい値QREFEを下回ったときには、再生フラグF_REDPFを「0」にセットする(ステップ6)ことによって、再生制御を終了し、本処理を終了する。
図4は、図3のステップ1で実行されるPM堆積量SQPMDPFの算出サブルーチンを示している。まず、図4のステップ11では、PM排出量QPMを算出する。このPM排出量QPMは、エンジン3から1TDC当たりに排出されたPMの排出量である。その算出処理については後述する。
次いで、検出されたフィルタ前ガス温度TDPFGに基づき、所定のマップ(図示せず)を検索することによって、PM燃焼量FPMを算出する(ステップ12)。このPM燃焼量FPMは、排ガス浄化フィルタ17において1TDC当たりに燃焼されたPMの燃焼量である。次に、ステップ11で算出されたPM排出量QPMから、ステップ12で算出されたPM燃焼量FPMを減算することによって、1TDC当たりのPM堆積量QPMDPFを算出する(ステップ13)。
次いで、そのときに得られているPM堆積量SQPMDPFを、その前回値SQPMDPFZとして設定する(ステップ14)。次に、ステップ13で算出された1TDC当たりのPM堆積量QPMDPFを、ステップ14で設定された前回値SQPMDPFZに加算することによって、PM堆積量SQPMDPFを算出し(ステップ15)、本処理を終了する。
次に、図4のステップ11で実行されるPM排出量QPMを算出する処理について説明する前に、図5を参照しながら、PM排出量QPMの算出に用いられる総発生熱量SCALを算出する処理について説明する。本処理は、IG・SW39の出力信号がOFFからONに切り換わるのに伴って開始され、TDC信号の発生ごとに実行される。
まず、図5のステップ21では、そのときに得られている噴射量積算値SQINJを、その前回値SQINJZとして設定する。この噴射量積算値SQINJは、エンジン3の始動時、すなわちIG・SW39の出力信号がOFFからONに切り換わったときからの燃料噴射量QINJの積算値であり、エンジン3の始動時に値0にリセットされる。
また、この燃料噴射量QINJは、前述したメイン噴射用の燃料量であり、図6に示す燃料噴射量QINJ算出処理のステップ31において、算出されたエンジン回転数NEと、検出されたアクセル開度APに応じ、所定のマップ(図示せず)を検索することによって算出される。この燃料噴射量QINJ算出処理は、IG・SW39の出力信号がOFFからONに切り換わるのに伴って開始され、TDC信号の発生に同期して実行される。さらに、燃料噴射量QINJに基づく制御信号がインジェクタ6に出力されることによって、メイン噴射の燃料量が燃料噴射量QINJになるように制御される。
図5に戻り、ステップ21に続くステップ22では、今回の燃料噴射量QINJを、ステップ21で設定された前回値SQINJZに加算することによって、噴射量積算値SQINJを算出する。次いで、ステップ22で算出された噴射量積算値SQINJに応じ、所定のマップ(図示せず)を検索することによって、総発生熱量SCALを算出し(ステップ23)、本処理を終了する。この総発生熱量SCALは、エンジン3の始動時から発生した熱量の総量である。
図7は、図4のステップ11で実行されるPM排出量QPMの算出サブルーチンを示している。まず、図7のステップ41では、エンジン回転数NEおよび燃料噴射量QINJに応じ、所定のマップ(図示せず)を検索することによって、PM排出量QPMの基本値QPMBを算出する。
次いで、吸気温TAおよびエンジン水温TWに応じ、所定のマップ(図示せず)を検索することによって、補正量CORを算出する(ステップ42)。この補正量CORは、上記の基本値QPMBを補正するために加算されるものであり、上記のマップでは、吸気温TAが低いほど、また、エンジン水温TWが低いほど、燃焼室3cにおいて燃料が燃焼しにくいことによってPMが発生しやすいため、より大きな値に設定されている。次に、ステップ41で算出された基本値QPMBに、ステップ42で算出された補正量CORを加算することによって、PM排出量QPMを算出する(ステップ43)。
次いで、暖機制御フラグF_WARMが「1」であるか否かを判別する(ステップ44)。この暖機制御フラグF_WARMは、前述した暖機制御中に、「1」にセットされるものである。このステップ44の答がNOで、暖機制御中でないときには、そのまま本処理を終了する。
一方、ステップ44の答がYESで、暖機制御中のときには、エンジン回転数NEおよび燃料噴射量QINJに応じ、図8に示す所定のマップを検索することによって、暖機制御用の補正量の基本値CORWBを算出する(ステップ45)。この基本値CORWBは、PM排出量QPMを補正するためのものであり、上記のマップでは、全体として正値に設定されている。
次いで、燃料噴射量QINJと、前記ステップ23で算出された総発生熱量SCALに応じ、図9に示す所定のマップを検索することによって、暖機制御用の第1補正係数KCORW1を算出する(ステップ46)。この第1補正係数KCORW1は、基本値CORWBを補正するためのものであり、上記のマップでは、全体として正値に設定されており、燃料噴射量QINJが小さいほど、また、総発生熱量SCALが小さいほど、より大きな値に設定されている。
次に、エンジン水温TWおよび総発生熱量SCALに応じ、図10に示す所定のマップを検索することによって、暖機制御用の第2補正係数KCORW2を算出する(ステップ47)。この第2補正係数KCORW2は、第1補正係数KCORW1とともに基本値CORWBを補正するためのものであり、上記のマップでは、全体として正値に設定されており、エンジン水温TWが低いほど、また、総発生熱量SCALが小さいほど、より大きな値に設定されている。
上記のように、第1および第2補正係数KCORW1,2が、総発生熱量SCALが小さいほど、より大きな値に設定されているのは、エンジン3の暖機が進んでいないことによって、エンジン3の本体の温度が低いことで、PM排出量QPMが多いと考えられるためである。
次いで、前記ステップ45で算出された基本値CORWBに、ステップ46および47でそれぞれ算出された第1および第2補正係数KCORW1,2を乗算することによって、暖機制御用の補正量CORWを算出する(ステップ48)。次に、前記ステップ43で算出されたPM排出量QPMに、ステップ48で算出された補正量CORWを加算した値を、PM排出量QPMとして設定する(ステップ49)ことによって、PM排出量QPMを補正し、本処理を終了する。
また、本実施形態における各種の要素と、特許請求の範囲に記載された発明(以下「本発明」という)の各種の要素との対応関係は、次のとおりである。すなわち、本実施形態におけるECU2が、本発明における運転状態検出手段、排出量推定手段、暖機制御判定手段、排出量補正手段、堆積量算出手段、および総発生熱量算出手段に相当する。また、本実施形態における排気管5が本発明における排気通路に相当し、本実施形態におけるクランク角センサ32、水温センサ33および吸気温センサ36が、本発明における運転状態検出手段に相当する。
さらに、本実施形態におけるエンジン回転数NE、燃料噴射量QINJ、エンジン水温TW、および吸気温TAが、本発明における内燃機関の運転状態に相当する。また、本実施形態におけるPM排出量QPMおよびPM堆積量SQPMDPFが、本発明における粒子状物質の排出量および粒子状物質の堆積量にそれぞれ相当する。
以上のように、本実施形態によれば、エンジン回転数NE、燃料噴射量QINJ、エンジン水温TWおよび吸気温TAに応じて、PM排出量QPMが算出される。また、そのように算出されたPM排出量QPMが、暖機制御中には、暖機制御用の補正量CORWを加算することによって補正される。この補正量CORWは、基本値CORWBに、第1および第2補正係数KCORW1,2を乗算することによって算出され、これらの基本値CORWB、第1および第2補正係数KCORW1,2はいずれも、正値として算出される。このように、暖機制御中、PM排出量QPMを増大側に補正するので、PM排出量QPMを適切に算出することができる。
また、暖機制御中、上記のように適切に算出されたPM排出量QPMに基づいて、PM堆積量SQPMDPFを算出するので、このPM堆積量SQPMDPFを適切に算出することができる。さらに、適切に算出されたPM堆積量SQPMDPFに基づいて、前述した再生制御の実行の可否を判定するので、この再生制御を適切なタイミングで実行することができる。これにより、排ガス浄化フィルタ17の熱劣化と、再生制御で実行されるポスト噴射によるオイルダイリューションを、抑制することができるとともに、燃費を向上させることができる。
さらに、暖機制御中、燃料の燃焼によりエンジン3の始動時から発生した熱量の総量である総発生熱量SCALを、エンジン3の始動時からの燃料噴射量QINJの積算値である噴射量積算値SQINJに応じて算出するので、適切に算出することができる。また、適切に算出された総発生熱量SCALに応じて、PM排出量QPMを補正するための第1および第2補正係数KCORW1,2を算出するので、暖機制御中において、PM排出量QPMをより適切に算出することができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、暖機制御の実行の可否を、エンジン水温TWおよび吸気温TAに応じて判定しているが、エンジン3の始動時からの経過時間に応じて判定してもよい。また、この暖機制御が酸化触媒16を活性化するために暖機するものである場合には、酸化触媒16の温度に応じて、暖機制御の実行の可否を判定してもよい。その場合、酸化触媒16の温度は、センサによる検出、あるいは演算による推定によって取得される。
また、実施形態では、総発生熱量SCALを、噴射量積算値SQINJ、すなわち、エンジン3の始動時からの燃料噴射量QINJの積算値に応じて算出しているが、エンジン3の始動時からの燃料噴射量QINJの平均値と、始動時からの経過時間に応じて算出してもよい。あるいは、そのような燃料噴射量QINJに基づくパラメータに加え、メイン噴射の噴射タイミングや、エンジン回転数NE、吸入空気量QAなどに応じて、総発生熱量SCALを算出してもよい。さらに、実施形態では、PM排出量QPMを算出するためのパラメータとして、エンジン回転数NE、燃料噴射量QINJ、エンジン水温TWおよび吸気温TAを用いているが、PM排出量QPMと相関関係にあるとともに、エンジン3の運転状態を表すのであれば、これらに代えて、または、これらとともに、次のようなパラメータを用いてもよい。例えば、パイロット噴射の燃料量や、メイン噴射の噴射時期、エンジン3を潤滑する潤滑油の温度、EGRガス量などを用いてもよい。
また、実施形態では、暖機制御中、PM排出量QPMを補正するための補正量CORWを、基本値CORWB、第1および第2補正係数KCORW1,2に応じて算出しているが、総発生熱量SCALに応じた第1および第2補正係数KCORW1,2の少なくとも一方と、基本値CORWBを用いて算出してもよく、あるいは、この少なくとも一方のみを用いて算出してもよい。さらに、実施形態では、エンジン3は、車両用のディーゼルエンジンであるが、内燃機関であれば、他の産業用の各種のエンジンでもよく、例えば、ガソリンエンジンや、クランクシャフトを鉛直方向に配置した船外機などのような船舶推進機用エンジンでもよい。その他、本発明の趣旨の範囲内で、各種のパラメータの算出手法や細部の構成を適宜、変更することが可能である。
1 制御装置
2 ECU(運転状態検出手段、排出量推定手段、暖機制御判定手段、
排出量補正手段、堆積量算出手段、総発生熱量算出手段)
3 エンジン
5 排気管(排気通路)
17 排ガス浄化フィルタ
32 クランク角センサ(運転状態検出手段)
33 水温センサ(運転状態検出手段)
36 吸気温センサ(運転状態検出手段)
NE エンジン回転数(内燃機関の運転状態)
QINJ 燃料噴射量(内燃機関の運転状態)
TW エンジン水温(内燃機関の運転状態)
TA 吸気温(内燃機関の運転状態)
QPM PM排出量(粒子状物質の排出量)
SQPMDPF PM堆積量(粒子状物質の堆積量)
SCAL 総発生熱量

Claims (3)

  1. 内燃機関から排気通路に排ガスに含まれて排出された粒子状物質の排出量に応じて前記内燃機関を制御するための内燃機関の制御装置であって、
    前記内燃機関の運転状態を検出する運転状態検出手段と、
    当該検出された内燃機関の運転状態に応じて、前記粒子状物質の排出量を推定する排出量推定手段と、
    前記内燃機関が始動後の暖機制御中であるか否かを判定する暖機制御判定手段と、
    当該暖機制御判定手段により前記暖機制御中であると判定されているときに、前記推定された粒子状物質の排出量を増大側に補正する排出量補正手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記排気通路には、排ガス中の粒子状物質を捕集する排ガス浄化フィルタが設けられており、
    前記暖機制御中であると判定されているときに、前記補正された粒子状物質の排出量に基づいて、前記排ガス浄化フィルタに堆積した粒子状物質の堆積量を算出する堆積量算出手段をさらに備えることを特徴とする、請求項1に記載の内燃機関の制御装置。
  3. 前記内燃機関の始動時からの燃料噴射量に応じて、燃料の燃焼により前記内燃機関の始動時から発生した熱量の総量を総発生熱量として算出する総発生熱量算出手段をさらに備え、
    前記排出量補正手段は、前記粒子状物質の排出量の補正を、前記算出された総発生熱量に応じて行うことを特徴とする、請求項1または2に記載の内燃機関の制御装置。
JP2009117369A 2009-05-14 2009-05-14 内燃機関の制御装置 Withdrawn JP2010265803A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117369A JP2010265803A (ja) 2009-05-14 2009-05-14 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117369A JP2010265803A (ja) 2009-05-14 2009-05-14 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2010265803A true JP2010265803A (ja) 2010-11-25

Family

ID=43362987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117369A Withdrawn JP2010265803A (ja) 2009-05-14 2009-05-14 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2010265803A (ja)

Similar Documents

Publication Publication Date Title
JP4733002B2 (ja) 内燃機関の排ガス浄化装置
EP1959110B1 (en) Exhaust emission control device and method for internal combustion engine
JP4667346B2 (ja) 内燃機関の制御装置
JP2006316746A (ja) 内燃機関の排ガス浄化装置
JP4463144B2 (ja) 内燃機関の排ガス浄化装置
US7900440B2 (en) Exhaust emission control device and method for internal combustion engine and engine control unit
JP6332299B2 (ja) 車両の制御装置
JP4733003B2 (ja) 内燃機関の排ガス浄化装置
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP4447510B2 (ja) 内燃機関の排ガス浄化装置
JP4510654B2 (ja) 内燃機関の排ガス浄化装置
JP4510656B2 (ja) 内燃機関の排ガス浄化装置
JP2006207487A (ja) 内燃機関の排ガス浄化装置
JP4610404B2 (ja) ディーゼルエンジンの制御装置
EP2175122A2 (en) Exhaust gas purification system for internal combustion engine
JP4505370B2 (ja) 内燃機関の制御装置
JP4468287B2 (ja) 内燃機関の排ガス浄化装置
JP5374214B2 (ja) 内燃機関の制御装置
JP2008128218A (ja) 内燃機関の排ガス浄化装置
JP2010265803A (ja) 内燃機関の制御装置
JP2006316742A (ja) 内燃機関の制御装置
JP2011012599A (ja) 内燃機関の排ガス浄化装置
JP2010112282A (ja) 圧縮着火式内燃機関の制御装置
JP2011099335A (ja) 内燃機関の排ガス処理装置
JP2006002744A (ja) 内燃機関の排ガス浄化装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807