JP2010256000A - ヒートパイプ用内面溝付管及びヒートパイプ - Google Patents

ヒートパイプ用内面溝付管及びヒートパイプ Download PDF

Info

Publication number
JP2010256000A
JP2010256000A JP2009291298A JP2009291298A JP2010256000A JP 2010256000 A JP2010256000 A JP 2010256000A JP 2009291298 A JP2009291298 A JP 2009291298A JP 2009291298 A JP2009291298 A JP 2009291298A JP 2010256000 A JP2010256000 A JP 2010256000A
Authority
JP
Japan
Prior art keywords
fins
fin
tube
pipe
grooved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291298A
Other languages
English (en)
Inventor
Nobuaki Hinako
伸明 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2009291298A priority Critical patent/JP2010256000A/ja
Publication of JP2010256000A publication Critical patent/JP2010256000A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

【課題】加工性及び生産性に優れ、品質上も安定し、更に、冷却性能に優れたヒートパイプ用内面溝付管及びヒートパイプを提供する。
【解決手段】管軸直交断面にて、管周方向に隣接するフィンが交互に管周方向の異なる方向に傾斜して傾斜フィン3が形成されており、これらの傾斜フィンのうち、その頂部が相互に遠ざかる方向に傾斜した隣接する傾斜フィンの相互間の溝部に補助フィン30が形成されている。管周方向に連続して並ぶ5個の傾斜フィン3及び補助フィン30のうち、2個以上の割合で、傾斜フィン又は補助フィンの頂部から溝底にかけて形成される斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹み4が形成されている。傾斜フィン3の高さHが0.05乃至0.30mm、補助フィン30の高さhと傾斜フィン3の高さHの比h/Hが0.1乃至0.9である。
【選択図】図1

Description

本発明はパソコンの中央演算処理装置(CPU)等の放熱・冷却に用いられるヒートパイプとして使用され、水を冷媒(作動液)として用いる内面溝付管及びその内面溝付管を加工して作られるヒートパイプに関する。
近時、パソコンの高速化に伴いCPUの発熱量が大きくなり、CPUの冷却に使用されるヒートパイプに高伝熱性能が求められている。更に、携帯性の要求からノート型パソコンの薄肉化が進められている。このように発熱量の大きな薄肉化されたノート型パソコンへの内蔵の必要性から、ヒートパイプには銅又は銅合金製の伝熱管の内面に溝を設け、溝間の突起としてのフィンを形成することにより、伝熱管と冷媒(作動液)である水との接触面積を増やすことによって伝熱性能を向上させた内面溝付管が使用されている。この内面溝付管は、偏平加工してヒートパイプに供される。図3(a)は偏平加工された内面溝付管の断面図、(b)は、偏平加工された内面溝付管の曲線部を示す断面図である。図3に示すように、内面溝付管1は偏平加工されることにより、管軸直交断面において半円形の曲線部11bを直線部11aで結んだ形状となる。そして、曲線部11bの管内面における曲率半径は、元の内面溝付管の内半径より小さくなっている。そのため、管の曲線部にあるフィン同士は接近し、曲線部におけるフィン間の溝の幅は狭まり、曲線部の溝部、特に曲線部中央付近の溝部断面積は小さくなる。そのため、溝部に保持できる作動液量が減少するとともに作動液の流れは阻害される。
ヒートパイプ内の作動液は気体と液体の状態で存在する。作動液はCPU等の熱源(蒸発部側)付近で管壁から熱を奪い、液体から気体となる。そのため蒸発部側の圧力が高くなり、気体となった作動液は圧力の低い放熱部側(凝縮部側)へ管断面中心部を流れる。放熱部側に流れた気体は熱を管壁に放出し、気体から液体となり、毛細管力によって溝部を凝縮部側から蒸発部側へと流れる。
従来、ヒートパイプには溝部が管軸に対するリード角を有し、フィン根元に傾斜部を持つことにより、作動液が溝部を凝縮部から蒸発部へと流れやすくしている内面溝付管が使用されている。
例えば、特許文献1には、互いに平行に延びる多数の突条が金属管内面に形成され、これらの突条が隣接する1対ずつ互いに接近する方向に傾斜させられ、対をなす突条の間には開口幅が底幅以下の管状溝が形成されるとともに、対をなさない突条の間には底幅よりも開口幅が広い幅広溝が形成されることで、蒸発管として使用される際には管状溝内部に気泡が発生しやすく、この気泡が核となって熱媒液体の蒸発を促進し、凝縮管として使用される際には開口幅の広がった幅広溝で液膜が生じにくく、液膜による管内面と熱媒気体との熱交換が阻害されないようにした冷媒として例えばR−11を使用する空調装置や冷蔵庫等の熱交換器用内面溝付伝熱管が提案されている。更に、この内面溝付伝熱管の製造方法として、多数の平行溝を有する第1のプラグを金属管に通し、金属管内面に多数の突条を形成した後、この突条を1対ずつ収容しうる平行溝を有する第2のプラグを管内に挿入して、管内に形成された突条の隣接する1対ずつを互いに接近させる方向に傾斜させる手法が開示されている。
また、特許文献2には、管軸に平行またはリード角を有する複数本のU字状の主溝及び主溝に対して交差角を持つ複数本のV字状の副溝を圧延加工によって断続的に板材に施し、その後ロールフォーミングによって溝成形面を内側に向けて円弧状に丸め、電縫加工によって管体にした内面溝付管が提案されている。また、成形されたV字状のフィンが溝上部の開口幅を部分的に狭めて管状溝を形成し、管状溝内に気泡が発生しやすくして、この気泡が核となって蒸発を促進することによって気化効率を高め、更に、溝内での表面張力による作動液の輸送効率が向上することが開示されている。
また、特許文献3には、管軸に平行またはリード角を有する複数本の主溝を圧延加工によって板材に施した後、主溝と一定角度で交差するV字状の副溝を間欠的に板材に施し、その後ロールフォーミングによって溝成形面を内側に向けて円弧状に丸め、電縫加工によって管体にした内面溝付伝熱管が提案されている。また、管内面に形成される主溝とV字溝の交差部では、主溝間に形成される突条がV字溝によって分割されて左右に傾斜した傾斜壁が形成され、隣接する傾斜壁の間には底部よりも開口幅が小さい管状溝が間欠的に形成され、突条のみが形成された領域と管状溝が形成された領域とが交互に形成されることで、管状溝内では作動液の気泡が発生しやすくし、突条のみが形成された領域では気泡が滞留しないようにして、作動液の流速が大きい場合においても熱媒流体と伝熱管との伝熱効率低下が少なくなることが開示されている。
特開平5−106991号公報 特開平3−234302号公報 特開平6−101986号公報
しかしながら、前述の従来技術には以下のような問題点がある。特許文献1に提案されている内面溝付管は、内面溝付管に偏平加工を施して、直線部及び曲線部を有する形状とし、水を冷媒(作動液)として使用するヒートパイプとして用いる場合においては、偏平管の曲線部にあるフィン同士が接近し、曲線部におけるフィン間の溝の幅が狭まって作動液の流路として有効に活用できなくなる場合がある。そのため、蒸発部側に作動液が不足してドライアウトしやすく、冷却性能が十分に得られない。また、特許文献1に例示された内面溝付管はリード角が大きいため、管内面に溝加工を施す際、溝付プラグ外面の溝と管の引き抜き方向とがなす角度が大きくなり、溝付プラグの損耗が大きく、加工性が悪く、加工コストが大きくなる。
また、特許文献2及び3に記載の内面溝付管は、板材に圧延による溝加工及びロールフォーミングを施した後、電縫加工によって管に成形するため、管内面に電縫加工による溶接部が生じてしまい品質上安定しないという欠点を有している。更に、管内面に形成されるフィンの形状が管軸方向に変化するため、製品として伝熱性能が安定しない場合が多く、品質を保証し難いという問題がある。
本発明はかかる問題点に鑑みてなされたものであって、加工性及び生産性に優れ、品質上も安定し、更に、冷却性能に優れたヒートパイプ用内面溝付管及びヒートパイプを提供することを目的とする。
本発明に係るヒートパイプ用内面溝付管は、管内面に管軸方向と平行又は傾斜する方向に伸びるフィンが形成された銅又は銅合金製のヒートパイプ用内面溝付管において、
前記管の外径が4乃至10mm、前記フィンの管軸に対するリード角βが0乃至20°であり、
更に、管軸直交断面にて、管周方向に隣接するフィンが交互に管周方向の異なる方向に傾斜して傾斜フィンを構成しており、
更に、これらの傾斜フィンのうち、その頂部が相互に遠ざかる方向に傾斜した隣接する傾斜フィンの相互間の溝部に補助フィンが形成されており、
頂部が相互に接近する方向に傾斜した隣接する傾斜フィンの対に対し、管の中心から前記傾斜フィンの互いに接近した斜面に引いた2本の接線の前記斜面との2接点間の距離をsとするとき、
前記傾斜フィンの高さHが0.05乃至0.30mm、前記傾斜フィンの根元幅Lが0.10乃至0.25mm、前記傾斜フィン間に形成される溝底幅Lが0.10乃至0.35mm、前記接点間距離sと前記溝底幅Lの比s/Lが0.85以下であり、前記補助フィンの高さhと傾斜フィンの高さHの比h/Hが0.1乃至0.9であり、
更に、管軸直交断面にて、管周方向に連続して並ぶ5個の傾斜フィン及び補助フィンのうち、2個以上の割合で、前記傾斜フィン又は補助フィンの頂部から前記溝底にかけて形成される斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹みが形成されていることを特徴とする。
更に、本発明に係るヒートパイプ用内面溝付管は、管内面にプラグにより溝形状を転造加工することにより、前記フィンが管内面に形成されていることが好ましい。
更に本発明に係るヒートパイプは、前述のヒートパイプ用内面溝付管を、その円形断面を偏平状に成形したものであり、冷媒(作動液)として水を使用することを特徴とする。
本発明のヒートパイプ用内面溝付管によれば、管内面に形成される傾斜フィンを1対ずつ互いに接近する方向に傾斜させたことで、この頂部が互いに接近する方向に傾斜した傾斜フィン間に管状溝が形成されて、液体の作動液が凝縮部側から蒸発部側へと毛細管力によって流れやすくなり、更に、傾斜フィン根元部分が傾斜させられて傾斜フィンの斜面と溝底面とがなす角度が鋭角となる溝においては、毛細管力が高く、偏平加工されて用いられる場合においても、作動液の循環を保つことができる。
また、本発明においては、隣接する傾斜フィンのうち、その頂部が相互に異なる方向に傾斜した傾斜フィン間の溝においては、補助フィンが形成されているので、傾斜フィンの斜面と溝底面とがなす角度が鈍角となる溝においても、補助フィンの斜面と傾斜フィンの斜面とが鋭角をなして交差するため、この補助フィンと傾斜フィンとの間に毛細管力が作用する。即ち、補助フィンを、頂部が相互に遠ざかる方向に傾斜した傾斜フィン間の溝部に設けることにより、傾斜フィン及び補助フィンを含む全てのフィンの隣接する側面のなす角度が確実に鋭角となり、この隣接する側面間のフィン根元部で毛細管力が作用し、冷媒(水)の運搬能力が向上し、伝熱性能が向上する。仮に、補助フィンが設けられていないとすると、隣接する傾斜フィンのなかで、それらの頂部が相互に遠ざかる方向に傾斜した傾斜フィンの相互間のなす角度は鈍角であり、毛細管力の効果による冷媒の運搬能力が低下する。しかし、本発明においては、少なくとも、この溝部分には、補助フィンを設けたので、傾斜フィンと補助フィンとの斜面同士がなす角度は鋭角となり、この溝部分においても、毛細管力による冷媒の運搬能力の向上が確実に得られ、伝熱性能が向上する。
更に、傾斜フィンの斜面に切り欠き状の凹みを設けたことで性能が向上する。つまり、蒸発部では切り欠き状の凹みが気泡の起点となって核沸騰が起こりやすくなり、最大熱容量が増加する。また、凝縮部及び凝縮と蒸発の中間域においては、切り欠き状の凹みが作動液を毛細管力で蒸発部側へと流れやすくし、熱抵抗が低下する。更に、本発明のヒートパイプ用内面溝付管は、管内に形成されるフィンの形状が管軸方向に均一であるため品質上安定している。更に、成形される溝の管軸に対するリード角が小さいため、管内面に溝を設ける際に溝付プラグの損耗を抑えられ、加工性、生産性に優れている。
また、本発明のヒートパイプ用内面溝付管を偏平加工して、水を作動液として使用するヒートパイプとして用いる場合においては、成形される溝の管軸に対するリード角が小さいため、偏平加工された場合においても冷却性能を保つことができる。
本発明の第1実施形態に係るヒートパイプ用内面溝付管の一部を示す管軸直交断面図である。 同じくその数値の定義を示す管軸直交断面図である。 (a)は偏平加工された内面溝付管の断面図、(b)は偏平加工された内面溝付管の曲線部を示す断面図である。 溝形状を示す管軸直交断面図である。 本実施形態のヒートパイプ用内面溝付管の製造装置の一部を示す断面図である。 本実施形態のヒートパイプ用内面溝付管の製造方法において、タンデム転造過程における第2の溝付プラグ及び内面溝付管及び転動ボールの一部を示す断面図である。 本実施形態のヒートパイプ用内面溝付管の偏平加工後における内面の展開図であり、リード角βが小さい場合を示す。 本実施形態のヒートパイプ用内面溝付管の偏平加工後における内面の展開図であり、リード角βが大きい場合を示す。 本実施形態のヒートパイプ用内面溝付管における管軸直交断面での内面溝付管の一部を示す断面図である。 試験に使用したヒートパイプを示す図である。 冷却伝熱性能の試験装置を示す図である。
以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は本発明の第1実施形態に係るヒートパイプ用内面溝付管の周方向の一部を示す管軸直交断面図である。本実施形態のヒートパイプ用内面溝付管1は、銅又は銅合金製であり、管軸方向に平行又は傾斜する方向に延びるフィン3が、管軸直交断面において管周方向に複数個形成されている。このフィン3間が溝2となっており、フィン3が、管軸方向に傾斜する方向に延びている場合は、溝2は螺旋状の内面溝を形成する。
フィン3は、管軸直交断面において、管周方向に隣接するフィンが交互に管周方向の異なる方向に傾斜して傾斜フィンを構成している。即ち、傾斜フィン3は、管周方向に隣り合うもののうち、その頂部が相互に接近する方向に傾斜する2個の傾斜フィン3が1対の傾斜フィン対を構成し、これらの傾斜フィン3の各対が管周方向に配置されている。そして、各傾斜フィン3の間の溝2内に、補助フィン30が1個おきに形成されている。即ち、補助フィン30は、隣接する傾斜フィン3のうち、その頂部が相互に遠ざかる方向に傾斜した傾斜フィン3間の溝2に形成されている。即ち、隣接する傾斜フィン3のうち、その頂部が相互に接近する方向に傾斜した傾斜フィン3間の溝2には、補助フィン30は形成されていない。この補助フィン30も傾斜フィン3及び溝2と共に、管軸に平行に直線状に延び、又は管軸に対し傾斜して螺旋状に延びている。
また、管周方向に連続して並ぶ5個の傾斜フィン3及び補助フィン30のうち、2個以上の割合で、傾斜フィン3又は補助フィン30の頂部から傾斜フィン3間の溝2の底部にかけて形成されるフィン斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹み4が形成されている。
本発明においては、内面溝付管1の外径は4乃至10mm、傾斜フィン3(溝2)の管軸に対するリード角βは0乃至20°である。また、図2に示すように、管軸直交断面において、頂部が相互に接近する方向に傾斜した各対の2個の傾斜フィン3に対し、その相互に対向するフィン斜面に、伝熱管の中心Oから引いた接線と、前記フィン斜面との接点を夫々P及びPとしたとき、接点P及びP間の距離をsとする。このとき、溝底を基準とする傾斜フィン3頂部の最も高い位置までの高さHは0.05乃至0.30mmである。更に、傾斜フィン3の根元幅Lが0.10乃至0.25mm、傾斜フィン3の間に形成される溝底幅Lが0.10乃至0.35mm、接点間距離sと溝底幅Lとの比s/Lは0.85以下である。また、補助フィン30のフィン高さhと傾斜フィン3のフィン高さHの比h/Hは0.1乃至0.9である。なお、傾斜フィン3のフィン高さHは、伝熱管の中心から傾斜フィンに接する円を描いたとき、前記円と傾斜フィンの接点の溝底からの高さである。
ヒートパイプ用内面溝付管1は、偏平加工を施されると図3(a)に示すように、半円形の曲線部11bを直線部11aで結ぶ形状となる。偏平加工を施されることによって、前述の接点間距離sは直線部11aにおいて拡大し、図3(b)に示すように曲線部11bにおいて縮小する。ヒートパイプの蒸発及び凝縮伝熱に寄与するのは、直線部11aに形成されたフィンであり、偏平加工を施されることによって直線部11aにある傾斜フィン3の接点間距離sは拡大する。内面溝付管の接点間距離sは、直線部11aの溝底部から互いに接近する方向に傾斜させられた1対のフィン斜面に向けて垂直に延びる接線の接点間距離s’に対応する。そしてこの接点間距離s’と溝底幅Lとの比s’/Lは0.02乃至0.90であることが望ましい。
以下、上記各数値限定の理由について説明する。
「リード角β:0乃至20°」
内面溝付管を偏平加工すると、図3(a)に示すように、内面溝付管1は直線部11a及び曲線部11bを有する形状となる。この偏平加工した内面溝付管をヒートパイプとして使用する場合においては、図3(b)に示すように管の曲線部にある傾斜フィン同士は接近し、傾斜フィン間の溝の幅は狭まるため、溝部を凝縮部側から蒸発部側へと流れる液体の作動液の循環量は減少する。図7及び図8は、内面溝付管の内面の展開図であり、図7はリード角βが小さい場合、図8はリード角βが大きい場合を示す。図7及び図8に示す破線は、偏平加工による曲線部11bの影響を受ける傾斜フィン、実線は偏平加工による曲線部11bの影響を受けない傾斜フィンを示す。図7及び図8に示すように、リード角βが大きくなるに従って、単位長さ当たりの管において曲線部11bを通る傾斜フィンの数は増えるため、性能は低下する。更に、蒸発部から凝縮部へと流れる蒸気がほぼ管軸に平行な流れであるのに対し、凝縮部から蒸発部へと流れる液体の作動液の流れはリード角βによって傾斜フィンの斜面に垂直な速度成分を持ち、リード角βが大きくなるに伴い、より強く流れが阻害されてしまう。また、凝縮部で液体となった作動液は毛細管力によって溝底部を蒸発部側へと流れるが、リード角βが大きくなると、作動液の流動長さがそれだけ増大するため流れが遅くなる。そして、作動液の循環量低下により蒸発部側に作動液が不足するとドライアウトしやすくなり、蒸発部側での潜熱による熱の移動が行われる量が減少して、急激に冷却性能が低下する。更にまた、リード角βが大きいと、管内面に溝を加工する際に溝付プラグの損耗が大きく、加工性が低下し、加工コストが増大する。リード角βが20°を超えると、偏平加工された管において、管の曲線部において溝部面積が減少する頻度が増えて作動液の循環量が減るのに加え、作動液のフィン斜面に直交する速度成分が大きくなり、更に、作動液の流動長さが増大するためドライアウトしやすくなる。このため、管内面の傾斜フィン及び溝の管軸に対するリード角βは0乃至20°である。
「傾斜フィンの高さH:0.05乃至0.30mm」
本発明において、傾斜フィンの高さは溝部から傾斜フィンの頂部までの高さの最大値である。傾斜フィンの高さが小さいと溝部断面積が小さくなり溝部に保持できる作動液量が減るため、作動液循環量が減り、凝縮部側から蒸発部側へと流れる冷媒(作動液)が蒸発部側に不足してドライアウトを生じ、冷却性能が低下しやすくなる。一方、傾斜フィンの高さが大きいと、ヒートパイプを偏平加工した際に曲線部となる部分で、傾斜フィンの先端同士が接触する程接近して溝部面積が狭くなり、溝部に保持される作動液の循環量が減り冷却性能が低下する。傾斜フィンの高さが0.05mm未満であると、溝部断面積の減少によってドライアウトを生じ、冷却性能が低下する。傾斜フィンの高さが0.30mmを超えると、溝部に保持される作動液の循環量が減り冷却性能が低下する。このため、傾斜フィンの高さHは0.05乃至0.30mmである。
「接点間距離sと溝底幅Lとの比s/L:0.85以下」
接点間距離sと溝底幅Lとの比s/Lが大きいことは傾斜フィンの接近距離が小さいことを示す。接点間距離sと溝底幅Lとの比s/Lが0.85を超えると、蒸発部側から凝縮部側へ図9のCの領域を流れる蒸気と凝縮部側から蒸発部側へとAの領域を流れる液体の作動液(互いに逆向きの流れ)の接触面積が増えて、液相と気相の間に生じる摩擦が大きくなるため、蒸気及び液体の作動液の流動速度が低下し、ヒートパイプに加工したときの熱交換性能が低下する。ヒートパイプ用内面溝付管を偏平加工してヒートパイプを製作すると、内面溝付管の管軸直交断面における断面形状は、図3に示すように、半円形の曲線部11bを直線部11aで結ぶ形状となる。偏平加工を施されることによって接点間距離sは、直線部11aにおいて拡大し、曲線部11bにおいて縮小する。ヒートパイプの蒸発及び凝縮伝熱に寄与するのは、直線部11aに形成された傾斜フィンであり、偏平加工を施されることによって接点間距離sは大きくなるため、偏平加工前の内面溝付管において接点間距離sと溝底幅Lとの比s/Lは0であってもよい。従って、接点間距離sと溝底幅Lとの比s/Lは0.85以下である。また、接点間距離sと溝底幅Lとの比s/Lは0.01乃至0.80であることが望ましく、更に、0.05乃至0.75であることがより望ましい。
「フィン根元幅L:0.10乃至0.25mm」
フィン根元幅Lが0.10mm未満であると、管内に溝及びフィンを形成する第1の転造工程において、第1の溝付プラグの溝部に管材が充満することが困難となり、フィン成形ができない。フィン根元幅Lが0.25mmを超えると、内面溝付管の単位重量が増えるとともに、単位長さあたりに必要な材料が増えるため、コストアップとなる。従って、フィン根元幅Lは0.10乃至0.25mmである。
「溝底幅L:0.10乃至0.35mm」
溝底幅が減ると、互いに接近する方向に傾斜させられた1対の傾斜フィン3間に形成された管状溝の断面積が減って、図9に示すAの領域を毛細管力によって凝縮部側から蒸発部側へと流れる液体の作動液の循環量が減るため、冷却伝熱性能は低下する。溝底幅が広くなると溝部面積が増えて保持しうる作動液の量が増えるため、作動液の循環量が増加して冷却性能は向上するが、溝底幅が広くなりすぎるとメニスカスの高さが低くなって毛細管力が得られなくなる。本発明においては、図9のBの領域において、管断面の中央部を蒸発部側から凝縮部側へ流れる蒸気と溝部を凝縮部側から蒸発部側へと流れる液体の作動液との接触面積が増えるため、蒸気と液体の作動液との間に生じる摩擦力によって冷媒の循環量が減り、冷却伝熱性能は低下する。また、溝底幅が大きくなるに従い傾斜フィン3の根元幅は小さくなるため、管内に溝2及び傾斜フィン3を形成する第1の転造工程において、第1の溝付プラグの溝部に管材が充満することが困難となり、傾斜フィン3の成形が難しくなる。溝底幅が0.10mm未満であると、管状溝の断面積不足によって冷却伝熱性能は低下する。溝底幅が0.35mmを超えると、管内に傾斜フィン3を成形することが困難となり、更に、蒸気と液体の作動液の間に生じる摩擦力によって冷却伝熱性能は低下する。従って溝底幅Lは0.10乃至0.35mmである。
「切り欠き状の凹みを持つフィンの割合:連続する5個のフィンの内2個以上」
傾斜フィン3及び補助フィン30の斜面に切り欠き状の凹み4を設けると、蒸発部では切り欠き状の凹み4が気泡の起点となって核沸騰が起こりやすく最大熱容量が増加する。また、凝縮部及び凝縮と蒸発の中間域においては、切り欠き状の凹み4が作動液を毛細管力で蒸発部側へと流れやすくし、熱抵抗が低下する。切り欠き状の凹み4を持つ突起の割合が連続する5個の傾斜フィン3及び補助フィン30のうち、2個未満であると、最大熱容量の増加及び熱抵抗の低下が十分得られない。切り欠き状の凹み4を持つ傾斜フィン3及び補助フィン30の割合が連続する5個のフィンの内2個以上になると、核沸騰の頻度が大きくなり、毛細管力で作動液を凝縮部から蒸発部側へと供給しやすくなるため冷却効率が高まり、ドライアウトしにくくなる。このため、切り欠き状の凹み4を持つフィンの割合は、連続する5個のフィンの内2個以上とする。
「補助フィンの高さhと傾斜フィンの高さHとの比h/Hが0.1乃至0.9」
補助フィン30は溝2における冷媒の毛細管力を高める。図4は、溝2の形状を示す管軸直交断面を示す。図4に示すように、頂部が相互に接近する方向に傾斜した1対のフィン3間に形成された溝2の形状22は、十分に小さいものであり、毛細管力が優れており、冷媒(水)の運搬能力は高い。しかし、この溝2の隣の溝、即ち、頂部が相互に離間するように傾斜した1対のフィン間に形成された溝2の形状21は、逆台形状をなし、形状21の下辺と側辺は、鈍角をなす。この形状21のように、傾斜フィン3の斜面と溝2の底面とがなす角度が鈍角であるような溝2においては、毛細管力が弱く、冷媒の運搬応力が低い。
しかし、本発明の場合は、図1、図2及び図4に示すように、この逆台形状をなす形状21の溝2内に、補助フィン30が形成されている。このため、形状21の部分においても、傾斜フィン3と補助フィン30とは、その斜面が鋭角をなす。このため、傾斜フィン3と補助フィン30との間に形成される溝は、十分に小さく、毛細管力が優れたものである。従って、この溝における冷媒の運搬能力は高い。しかし、補助フィンの高さhと傾斜フィンの高さHとの比h/Hが0.1未満であると、毛細管力が不十分であり、冷媒の運搬能力の向上効果が得られない。一方、補助フィンの高さhと傾斜フィンの高さHとの比h/Hが0.9を超えると、狭い台形の形状22の溝2で、傾斜フィン3と補助フィン30とが接触したり、形状22の溝2で補助フィン30を除く空間部分の断面積が小さくなり、冷媒(水)の運搬能力が低下する。よって、補助フィンの高さhと傾斜フィンの高さHとの比h/Hは0.1乃至0.9とする。
次に、本発明の実施形態に係るヒートパイプ用内面溝付管の製造方法について説明する。図5は本実施形態のヒートパイプ用内面溝付管の転造装置10を示す断面図、図6は本実施形態のヒートパイプ用内面溝付管のタンデム転造工程における第2の溝付プラグ5並びに内面溝付管及び転造ボールの一部を示す断面図である。図7及び図8は、前述の如く、本実施形態のヒートパイプ用内面溝付管を偏平加工した後にその内面を展開したときの模式図である。図5に示すように、銅又は銅合金からなる素管17内に、螺旋状の溝が表面に形成された第1の溝付プラグ9とこの溝付プラグ9に連結軸を介して相対的に回転可能に連結された縮径プラグ7とが挿入され、縮径プラグ7の位置に整合して、素管の外面に接するダイス8が設置されている。また、溝付プラグ9の位置に整合する位置に、複数個の転造ボール6が素管17の外面にその周方向に転動するように配置されている。この転造ボール6が素管17の外面にその周方向に転動することにより、素管17を溝付プラグ9の溝に向けて押圧する。なお、この転造ボール6の代わりに、1対の転造ロールを設置して、転造ロールにより素管17を縮径する方向に圧下してもよい。上述のごとく、本実施形態では、第1の溝付プラグ9により、図6に示すように、大きなフィン3aが所定のピッチで形成されると共に、この大きなフィン3a間の溝2に、一つおきに補助フィン30が形成される。
このような素管17内面のフィン形状は、第1の溝付プラグ9における大きなフィン3aを形成するための深い溝を所定のピッチ(フィン3aのピッチ)で形成し、この深い溝間に形成されるランド部(フィン頂部)に、補助フィン30を形成するための浅い溝を形成したものを、第1の溝付プラグとして使用することにより形成できる。この場合に、補助フィン30用の浅い溝は、第1の溝付プラグ9のランド部(フィン頂部)に対し、1個おきにランド部(フィン頂部)に形成すればよい。
そして、第1の溝付プラグ9には、連結軸を介して、第2の溝付プラグ5が溝付プラグ9に対して相対的に回転可能に連結されている。この溝付プラグ5の溝形状は、図6に示すように、その周方向に1個の溝に対し、内面溝付管(溝が形成された素管17)の2個のフィン3a(後工程で傾斜フィン3となる大きなフィン)が入るだけのピッチで、溝が形成されている。即ち、第1の溝付プラグ9におけるフィン3aを形成するための溝のピッチの実質的に2倍のピッチで、第2の溝付プラグ5の溝部52が形成されている。この第2の溝付プラグ5は溝部52の間にフィン51がフィン3aの実質的に2倍のピッチで形成されている。そして、溝付プラグ6の位置に整合する位置に、複数個の転造ボール6が素管17の外面にその周方向に転動するように配置されている。この転造ボール6が素管17の外面にその周方向に転動することにより、素管17を溝付プラグ5の溝に向けて押圧する。なお、この転造ボール6の代わりに、1対の転造ロールを設置して、転造ロールにより素管17を縮径する方向に圧下してもよい。
この場合に、フィン51は、補助フィン30が形成された溝2に噛み合うように、第1の溝付プラグ9と第2の溝付プラグ5とが同期される。即ち、第2の溝付プラグ5のフィン51は、補助フィン30が形成されたフィン3a間にのみ入り込み、補助フィン30が形成されていないフィン3a間には、入らないので、第2の溝付プラグ5を通過した素管17の管内面は、補助フィン30を挟むようにして形成されたフィン3a同士が、その頂部が遠ざかるように、フィン5aにより押し広げられる。従って、図1に示すように、この転造装置により、頂部が相互に接近する方向に傾斜した傾斜フィン3間には、補助フィン30が存在せず、頂部が相互に遠ざかるように傾斜した傾斜フィン3間には、補助フィン30が存在する内面溝付管が得られる。
なお、上述のごとく、第2の溝付プラグ5においては、その溝部52内に、第1の溝付プラグ9で形成した2個のフィン3a(両者間に補助フィン30が存在しないもの)が入り、そのフィン51が隣接するフィン3a間の補助フィン30の上部に入り込むことが必要である。このため、第1の溝付プラグ9と第2の溝付プラグ5とは、同期して回転する必要がある。このためには、例えば、第1の溝付プラグ9と第2の溝付プラグ5とを連結する連結軸に半径方向外方に突出する突起を設け、第1の溝付プラグ9と第2の溝付プラグ5には、その連結軸が挿通される軸孔にキー溝を形成して、前記突起が前記キー溝に嵌合するようにして、第1の溝付プラグ9と第2の溝付プラグ5の回転を同期させればよい。
このように構成された転造装置10においては、以下に示すようにして、傾斜フィン3及び補助フィン30が形成される。素管17内に、溝付プラグ5,9及びプラグ7を挿入する。そして、素管17を図5の右方に引き抜くことにより、縮径ダイス8により素管17を縮径加工すると共に、縮径ダイス8は、素管17の引抜力に抗して、プラグ7を縮径ダイス8に整合する位置に保持する。また、このプラグ7がその位置に保持されることにより、連結棒を介して連結された溝付プラグ9,5もフローティング状態でその位置に保持される。そして、素管17の引抜の過程で、素管17は、転造ボール6により第1の溝付プラグ9に向けて押圧され、素管17の管肉が溝付プラグ9の溝内に侵入して、素管17の内面に第1の溝付プラグ9の溝に対応するフィンが形成される。このとき、素管17自体は回転しない。このため、管内面に形成する溝(フィン)が管軸方向に平行の溝(平行のフィン形成)の場合は、第1の溝付プラグ9は回転しないが、管内面に形成する溝が管軸方向に傾斜する方向に延びる螺旋溝(螺旋フィン)の場合は、第1の溝付プラグ9は素管17の引抜と共に、一方向に回転する。第1の溝付プラグ9は内面溝付管のフィンに対応する形状の溝が形成されたものであり、後工程で傾斜フィン3となる大きなフィン3a用の大きな溝と、補助フィン30となる小さなフィン用の小さな溝とが形成されている。この第1の溝付プラグ9により、素管17の管内面には、図6に示すように、後工程で傾斜フィン3となる大きなフィン3aと、補助フィン30とが、管内面に管半径方向に垂直に起立した状態で、管周方向に交互に形成される。
次いで、このフィン3a及び補助フィン30が形成された素管17は、その内面が転造装置10の転造ボール6により第2の溝付プラグ5に向けて押圧される。この第2の溝付プラグ5は、図6に示すように、フィン3aの2倍のピッチでフィン51が形成されているので、フィン51は補助フィン30の上部のフィン3a間に入り込む。このフィン51はその斜面の間隔が、フィン3aの斜面の間隔に対し、フィン51が補助フィン30に接触しない状態で、フィン3aの斜面に接触するような大きさを有しており、第2の溝付プラグ5に管内面が押圧されたときに、フィン3aはフィン51に接触してフィン51により押し広げられて傾き、傾斜フィン3となるが、補助フィン30はフィン51に接触しないので、傾斜しない。これにより、図1に示すように、大きな傾斜フィン3間の溝2に1個おきに、小さな補助フィン30が形成された本実施形態の内面溝付管が得られる。この第2の溝付プラグ5も、内面溝付管の溝(フィン)が螺旋溝(螺旋フィン)の場合は、素管17の引抜に応じて、一方向に回転する。
但し、この図1に示すように、傾斜フィン3の側面には、第1の溝付プラグ9によるフィン3aの形成時に形成された凹み4が形成されている。図1には図示を省略するが、補助フィン30にも凹み4が形成される。この凹み4は、第1の溝付プラグ9に素管17の内面が押圧されてその管肉が第1の溝付プラグ9の溝間に侵入してフィン3a及び補助フィン30を形成する際に、第1の溝付プラグ9のランド部(フィン頂部)と溝部斜面の境界部において管肉の溝付プラグ溝内への侵入が阻害されて、切欠状に形成される。この凹み4は転造ボール6の回転方向にも関係しており、この回転方向に応じてフィン3a及び補助フィン30のいずれか一方の斜面に形成されるか、又は両斜面に形成される。このような凹み4を形成するためには、第1の溝付プラグ9のランド部(フィン頂部)と溝部斜面との境界部における曲率半径Rをフィン高さに対して十分小さくすればよい。これにより、第1の溝付プラグ9の頂部と溝部斜面の境界部において管肉の溝付プラグ溝内への侵入が阻害されて、切り欠き状に管肉が満たされない凹み4が形成される。また、第1の溝付プラグ9の溝に侵入してフィン形状となった素管17内面の管肉が、転造ボール6と溝付プラグ9との間を抜ける際、第1の溝付プラグ9によって引き抜き力に対して逆方向の抗力を受け、管内面に生成された傾斜フィン3の斜面に切り欠き状の凹み4が形成されることもある。
更に詳述すると、第1溝付プラグ9により、図6に示すようにフィン3a及び補助フィン30が2個のフィン3aに対して1個の補助フィン30の割合で形成される。これは、第1の溝付プラグ9の断面形状が図6のフィン3a及び補助フィン30の逆の断面形状を有しているからであり、転造ボール6により素管17が第1の溝付プラグ9に押圧されて、素管17の管肉が第1の溝付プラグ9の溝に入り込んで、素管17にはフィン3a,補助フィン30が形成され、第1の溝付プラグ9のランド部(溝間のフィン形状の頂部)により、素管17の溝2の底面が形成される。なお、第1の溝付プラグ9のランド部(フィン頂部)と溝部斜面との境界部は、特定の曲率半径Rの曲面をなしている。上述の転造ボール6による圧延時には、この第1の溝付プラグ9のランド部(フィン頂部)と溝部斜面との境界部(即ち、素管17の溝2の底面とフィン3a,補助フィン30の斜面との境界部)にて、管肉の第1の溝付プラグ9の溝内への侵入が阻害されると、フィン3a,補助フィン30の斜面に凹み4が切欠状に形成される。この場合、第1の溝付プラグ9のランド部と溝部斜面との境界部の曲率半径Rが大きい方が、転造加工時に素管17の管肉のプラグ溝内への流入が円滑になり、プラグ溝内への管肉の充填が十分に行われる。逆に、曲率半径Rが小さいほど,管肉のプラグ溝内への管肉の充填が行われにくくなり、プラグ溝内への管肉の流動が不足することにより、素管17のフィン3a,補助フィン30の斜面に凹み(窪み)が形成されやすくなる。
本実施形態のヒートパイプ用内面溝付管は、上述のごとく、タンデム転造によって製造され、図5に示すように、第1の溝付プラグ9によって溝2及び傾斜フィン3が形成された素管17は、第1の溝付プラグ9と連結された第2の溝付プラグ5及び転動ボール6若しくは転動ロールによって、2度目の転造を施される。図6に示すように、第2の転造工程において、第2の溝付プラグ5は第1の転造工程にて素管17内面に形成された複数の溝2に対して一つ置きにフィン51が配置され、このフィン51の斜面がなす山頂角は、第1の転造工程にて素管17内面に形成される傾斜フィン3斜面がなす山頂角よりも大きく設けられている。転造ロール又は転造ボール6によって図6の白抜き矢印方向の押圧力を受けると、フィン3aは溝付プラグ5の各溝部52に1対ずつ収まるとともに、フィン51により押圧されて互いに接近する方向に傾斜し、傾斜フィン3に加工される。その後、製造装置の成形部でさらに縮径されて内面溝付管として仕上げられる。そして、完成した内面溝付管1に作動液として水を封入し、厚さ3mm程度に偏平加工して、ヒートパイプに供される。本実施形態においては、第1の溝付プラグ9及び第2の溝付プラグ5により、内面溝付管の内面フィン形状を形成することができるので、加工性が優れていると共に、生産性も高い。そして、安定して上述の高性能の内面溝付管を得ることができる。
本実施形態のヒートパイプ用内面溝付管は、上述の如く、管の内面に転造加工によって溝(フィン)が成形されて製造されるため、管内面に溶接部がなく、また、フィン形状が管軸方向に均一に形成されるため、圧延加工によって溝を成形した後電縫加工によって管に成形する製造方法に比して品質上安定している。
なお、第1の溝付プラグ9において、素管は、若干圧延されて、素管移動方向の下流側の方が直径が小さくなっている。従って、素管17が第1の溝付プラグ9を通過するときの速度と、第2の溝付プラグ5を通過するときの速度とが異なる。しかも、素管17の引抜速度自体が、転造工程において、変化する可能性もある。そうすると、第1の溝付プラグ9と第2の溝付プラグ5とをキー溝により同期させたとしても(回転角度を一定角度相対的にずらして同一の速度で回転するようにしたとしても)、ある特定の条件でのみ、図6に示す状態が作りだせるに過ぎない。しかしながら、第1の溝付プラグ9の終端と第2の溝付プラグ5の始端とを接触させる程度に相互に近接して設置することにより、第1の溝付プラグ9と第2の溝付プラグ5とを素管が通過するときの間の時間差を小さくすることにより、確実に、フィン51が補助フィン30が形成された溝2にのみ入り込むようにすることができる。また、定常状態では、引抜速度を極力一定に制御すると共に、圧延による直径の減少に起因する速度差を見込んで、第1の溝付プラグ9と第2の溝付プラグ5の回転角度を設定することにより、更に、確実に、フィン51を補助フィン30が形成された溝2内にのみ、噛み合わせることができる。
そして、このように補助フィン30が、頂部が相互に遠ざかる方向に傾斜した隣接傾斜フィン3間の溝2に形成されているので、この溝2の形状21が逆台形状であっても、補助フィン30の存在により補助フィン30と傾斜フィン3とのなす角度が鋭角になっており、この補助フィン30と傾斜フィン3との間隙では毛細管力が十分に作用し、冷媒の運搬能力が優れた内面溝付管が得られる。また、頂部が相互に接近する方向に傾斜した隣接傾斜フィン3間の溝2には、補助フィン30が形成されていないが、この溝2は、その上端部の開口が狭くなるように、傾斜フィン3が形成されているので、十分に高い毛細管力を得ることができる。よって、本実施形態も伝熱性能が高い内面溝付管を得ることができる。一方、本実施形態は、隣接する傾斜フィン3がその頂部が相互に接近する方向に傾斜している溝2においては、補助フィン30が存在しないので、この部分の冷媒通路を極端に狭めてしまうことが回避される。また、上述のように、狭い溝2には、補助フィン30を形成しないので、転造装置における加工性及び生産性が優れている。
次に、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。下記表1及び表2は夫々実施例及び比較例の形状条件を示し、表3及び表4は夫々実施例及び比較例の測定条件及び評価結果を示す。なお、本実施例は、図1に示すフィン形状を有する内面溝付管についてのものである。
この実施例及び比較例のヒートパイプの製造には、外径10mm、肉厚0.4mmの素管に対し、上述の製造方法で溝(フィン)を形成し、外径6mm、底肉厚0.3mmに加工した内面溝付管を使用した。この内面溝付管の構成(形状、寸法)を下記表1及び表2に示す。また、実施例及び比較例の内面溝付管について、管の内面に形成されたお互いに接近する方向に傾斜させられた8対のフィンについて接点間距離を計測し、その平均値をその実施例又は比較例の接点間距離sとした。
そして、この内面溝付管を長さ210mmに切断後、内面を洗浄し油分を除去した。次に、管の一方の端部を口絞り長さ5mm区間縮径し、TIG溶接で塞いだ後、他方の端部を口絞り長さ5mm区間縮径した。次に、TIG溶接していない管端より0.6±0.01cc入れた後、水が漏れないよう管を温め、管内の水を蒸発させながら、開口端をTIG溶接して塞いだ。そして、両端を5mm区間ずつ縮径され、更に両端をTIG溶接によって塞がれて長さ200mmとなった管を、厚さ3mmに偏平加工後、図10に示すように、管端から100mmの位置にて曲げ半径30mmでL字状に曲げ加工した。この管の寸法は表5に示すとおりである。
図11は本実施形態の内面溝付管の性能測定に用いた実験装置を示す。ヒートパイプ11は管端より25mmの区間を加熱部であるヒーター12によって加熱した。本実施例においては、ヒーター12により入力電力30Wにてヒートパイプ11を10分間加熱後、T型熱電対式温度計を用いて加熱部温度、凝縮部温度及び雰囲気温度を測定した。ここで加熱部温度はヒーター12によって加熱される管端より10mmの位置14におけるヒートパイプ11の表面温度であり、凝縮部温度はヒートパイプ11のヒーター12によって加熱されない管端より20mmの位置15におけるヒートパイプ表面温度であり、雰囲気温度は実験時の大気温度測定点16における温度である。
ヒートパイプの性能は、下記数式1及び2にて算出したパラメータを用いて評価する。
Figure 2010256000
ここで、Qは管の冷却性能を示すパラメータとして用いる冷却効率であり、ヒーター12による加熱に対し、加熱部温度の上昇度を示す値である。ここで、Tは加熱部温度で、加熱される管端より10mmの位置14におけるヒートパイプ11の表面温度、Tは雰囲気温度、Wはヒーターによる入力電力である。加熱部温度の上昇が少ない方がヒートパイプの冷却性能に優れるので、Q値が小さい方が冷却性能に優れていると判断できる。
Figure 2010256000
ここで、ΔTは管の加熱部と凝縮部の温度差で、ヒートパイプのように蒸気と液体が混合して流動する管内流において発生するドライアウトの有無を判断するのに用いる値であり、値が小さいほど性能に優れている。即ち、蒸気の割合が増して液体が管壁を流れることができなくなると、急激に熱伝達率が低下するためにヒートパイプがその役割を果たすことができなくなる。また、Tは凝縮部温度で、ヒートパイプ11のヒーター12によって加熱されない管端より20mmの位置15におけるヒートパイプ表面温度である。
Figure 2010256000
Figure 2010256000
Figure 2010256000
Figure 2010256000
Figure 2010256000
この表1乃至表4に示すように、実施例1乃至17はリード角βが本発明の範囲を満足するので、本発明の範囲を満足しない比較例1に比して冷却性能に優れている。また、実施例1乃至17はフィン高さHが本発明の範囲を満足するので、本発明の範囲を満足しない比較例2及び3に比して冷却性能に優れている。更に、実施例1乃至17は接点間距離sと溝底幅Lとの比s/Lが本発明の範囲を満足するので、本発明の範囲を満足しない比較例4に比して冷却性能に優れている。実施例1乃至17はフィン根元幅Lが本発明の範囲を満足するので、本発明の範囲を満足しない比較例5及び6に比して冷却性能に優れている。実施例1乃至17は溝底幅Lが本発明の範囲を満足するので、本発明の範囲を満足しない比較例7及び8に比して冷却性能に優れている。実施例1乃至17は補助フィンの高さhと傾斜フィンの高さHとの比h/Hが本発明の範囲を満足するので、本発明の範囲から外れる比較例10及び11に比して、冷却性能が優れている。また、比較例12〜18は、補助フィンが存在しない(h/H=0)ので、伝熱効率が低かった。本発明の実施例1乃至17は切り欠き状の凹みを持つ突起の割合が本発明の範囲を満足するので、本発明の範囲を満足しない比較例9に比して冷却性能に優れている。
1:内面溝付管、2:溝、3:フィン、4:切り欠き状の凹み、5:第2の溝付プラグ、6:転造ボール、7:縮径プラグ、8:縮径ダイス、9:第1の溝付プラグ、10:転造装置、11:ヒートパイプ、11a:直線部、11b:曲線部、12:ヒーター、14:加熱部温度測定点、15:凝縮部温度測定点、16:雰囲気温度測定点、17:管、18:管壁、30:補助フィン、51:フィン、52:溝、β:リード角、H:フィン高さ、s:フィン先端間隔、L:フィン底幅、L:溝底幅、W:ヒーターによる入力電力、T:加熱部温度、T:雰囲気温度、T:凝縮部温度

Claims (2)

  1. 管内面に管軸方向と平行又は傾斜する方向に伸びるフィンが形成された銅又は銅合金製のヒートパイプ用内面溝付管において、前記管の外径が4乃至10mm、前記フィンの管軸に対するリード角βが0乃至20°であり、
    更に、管軸直交断面にて、管周方向に隣接するフィンが交互に管周方向の異なる方向に傾斜して傾斜フィンを構成しており、
    更に、これらの傾斜フィンのうち、その頂部が相互に遠ざかる方向に傾斜した隣接する傾斜フィンの相互間の溝部に補助フィンが形成されており、
    頂部が相互に接近する方向に傾斜した隣接する傾斜フィンの対に対し、管の中心から前記傾斜フィンの互いに接近した斜面に引いた2本の接線の前記斜面との2接点間の距離をsとするとき、
    前記傾斜フィンの高さHが0.05乃至0.30mm、前記傾斜フィンの根元幅Lが0.10乃至0.25mm、前記傾斜フィン間に形成される溝底幅Lが0.10乃至0.35mm、前記接点間距離sと前記溝底幅Lの比s/Lが0.85以下であり、前記補助フィンの高さhと傾斜フィンの高さHの比h/Hが0.1乃至0.9であり、
    更に、管軸直交断面にて、管周方向に連続して並ぶ5個の傾斜フィン及び補助フィンのうち、2個以上の割合で、前記傾斜フィン又は補助フィンの頂部から前記溝底にかけて形成される斜面の片側又は両側に管軸と平行若しくは斜面を上る方向若しくは斜面を下る方向に切り欠き状の凹みが形成されていることを特徴とするヒートパイプ用内面溝付管。
  2. 請求項1に記載のヒートパイプ用内面溝付管を、その円形断面を偏平状に成形したものであり、冷媒(作動液)として水を使用することを特徴とするヒートパイプ。
JP2009291298A 2009-03-31 2009-12-22 ヒートパイプ用内面溝付管及びヒートパイプ Pending JP2010256000A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291298A JP2010256000A (ja) 2009-03-31 2009-12-22 ヒートパイプ用内面溝付管及びヒートパイプ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009088300 2009-03-31
JP2009291298A JP2010256000A (ja) 2009-03-31 2009-12-22 ヒートパイプ用内面溝付管及びヒートパイプ

Publications (1)

Publication Number Publication Date
JP2010256000A true JP2010256000A (ja) 2010-11-11

Family

ID=43317115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291298A Pending JP2010256000A (ja) 2009-03-31 2009-12-22 ヒートパイプ用内面溝付管及びヒートパイプ

Country Status (1)

Country Link
JP (1) JP2010256000A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154495A (ja) * 2011-01-21 2012-08-16 Daikin Industries Ltd 熱交換器及び空気調和機
US20120285664A1 (en) * 2011-05-13 2012-11-15 Rochester Institute Of Technology Devices with an enhanced boiling surface with features directing bubble and liquid flow and methods thereof
WO2014077081A1 (ja) * 2012-11-15 2014-05-22 東芝ホームテクノ株式会社 ヒートパイプ、スマートフォン、タブレット端末または携帯情報端末
JP2014098530A (ja) * 2012-11-15 2014-05-29 Toshiba Home Technology Corp ヒートパイプ
CN104949564A (zh) * 2015-07-08 2015-09-30 赤峰宝山能源(集团)贺麒铜业有限责任公司 一种直齿高低齿内螺纹传热管
JP2018091552A (ja) * 2016-12-02 2018-06-14 株式会社Uacj 内面溝付管

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154495A (ja) * 2011-01-21 2012-08-16 Daikin Industries Ltd 熱交換器及び空気調和機
US20120285664A1 (en) * 2011-05-13 2012-11-15 Rochester Institute Of Technology Devices with an enhanced boiling surface with features directing bubble and liquid flow and methods thereof
US10697629B2 (en) * 2011-05-13 2020-06-30 Rochester Institute Of Technology Devices with an enhanced boiling surface with features directing bubble and liquid flow and methods thereof
US11598518B2 (en) 2011-05-13 2023-03-07 Rochester Institute Of Technology Devices with an enhanced boiling surface with features directing bubble and liquid flow and methods thereof
WO2014077081A1 (ja) * 2012-11-15 2014-05-22 東芝ホームテクノ株式会社 ヒートパイプ、スマートフォン、タブレット端末または携帯情報端末
JP2014098530A (ja) * 2012-11-15 2014-05-29 Toshiba Home Technology Corp ヒートパイプ
CN104949564A (zh) * 2015-07-08 2015-09-30 赤峰宝山能源(集团)贺麒铜业有限责任公司 一种直齿高低齿内螺纹传热管
JP2018091552A (ja) * 2016-12-02 2018-06-14 株式会社Uacj 内面溝付管

Similar Documents

Publication Publication Date Title
Vicente et al. Experimental investigation on heat transfer and frictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtl numbers
JP2010256000A (ja) ヒートパイプ用内面溝付管及びヒートパイプ
US7267166B2 (en) Grooved tubes for heat exchangers that use a single-phase fluid
JP2010532855A (ja) 段付き頂部を具えたフィン付きチューブ
JP4925597B2 (ja) ヒートパイプ用伝熱管及びヒートパイプ
JP2008261566A (ja) 二重管式熱交換器
JP2009243864A (ja) ヒートパイプ用内面溝付管及びヒートパイプ
JP4389565B2 (ja) 沸騰用伝熱管及びその製造方法
JP2008241180A (ja) ヒートパイプ用伝熱管およびヒートパイプ
KR101200597B1 (ko) 복합 전열관, 이를 이용한 열교환기 및 열교환 시스템
JP2011106746A (ja) 伝熱管、熱交換器及び伝熱管加工品
JP2006189232A (ja) ヒートパイプ用伝熱管およびヒートパイプ
JP5243831B2 (ja) ヒートパイプ用内面溝付管及びヒートパイプ
JP2009243863A (ja) ヒートパイプ用内面溝付管及びヒートパイプ
JP2005291599A (ja) ヒートパイプ用内面溝付管およびヒートパイプ
JP2006130558A (ja) 熱交換器の製造方法
JP2010133581A (ja) ヒートパイプ用内面溝付管及びヒートパイプ
CN109312992A (zh) 热交换器管
CN101498563B (zh) 传热管及其制造方法和用途
JPH09101093A (ja) 内面溝付伝熱管
JP5289088B2 (ja) 熱交換器及び伝熱管
JP2000121272A (ja) 内面溝付伝熱管および熱交換器
JP2701956B2 (ja) 伝熱用電縫管
JP4632487B2 (ja) 内面溝付伝熱管及びその製造方法
JP2003302179A (ja) 自励振動型ヒートパイプ