JP2010249867A - 可変分散補償器 - Google Patents

可変分散補償器 Download PDF

Info

Publication number
JP2010249867A
JP2010249867A JP2009096036A JP2009096036A JP2010249867A JP 2010249867 A JP2010249867 A JP 2010249867A JP 2009096036 A JP2009096036 A JP 2009096036A JP 2009096036 A JP2009096036 A JP 2009096036A JP 2010249867 A JP2010249867 A JP 2010249867A
Authority
JP
Japan
Prior art keywords
metal tube
coil
optical fiber
dispersion compensator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009096036A
Other languages
English (en)
Other versions
JP5321210B2 (ja
Inventor
Yasuhisa Shimakura
泰久 島倉
Mitsunobu Gotoda
光伸 後藤田
Kiichi Yoshiara
喜市 吉新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009096036A priority Critical patent/JP5321210B2/ja
Publication of JP2010249867A publication Critical patent/JP2010249867A/ja
Application granted granted Critical
Publication of JP5321210B2 publication Critical patent/JP5321210B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 光ファイバを伝送路に用いた光通信システムにおいて、光学特性が良好であり、応答速度が早く、かつ低消費電力の可変分散補償器を提供する。
【解決手段】 コイル3とは非接触に金属管2を配置し、コイル3に供給する交流電流の電流量を電源回路4で制御することで金属管2に付加する温度分布を調整する。誘導加熱により発熱する金属管2により、金属管2の内側に配置した光ファイバ1のチャープグレーティングに温度分布を形成し、波長分散を補償する。
【選択図】 図1

Description

本発明は、光通信システムにおける光信号の波長分散(以下、分散と称す。)を補償する可変分散補償器に関するものである。
光ファイバを伝送路に用いた光通信システムでは、分散により光信号の波形が歪むため、信号の劣化を生じる。これは、波長の異なる光信号の波束の群速度が異なるためであり、光信号の波束が一定距離を伝搬するのに要する時間、即ち群遅延時間(単位:ps)が異なるためである。この群遅延時間の波長に対する傾きが分散(単位:ps/nm)である。
通常の光ファイバ伝送路に用いられるシングルモードファイバ(SMF)では、波長1550nm近辺の光信号が伝搬する場合、伝送路1km当たり、約16ps/(nm・km)の分散値を有する。これは、波長が1nm異なる光信号が1kmのシングルモードファイバを伝搬するのに要する群遅延時間の差が約16psという意味である。例えば、波長が1nm異なる光信号が100kmの光ファイバを伝搬した場合の群遅延時間は、100倍の1600psとなる。
一方、変調された光信号は、変調方式やビットレート(伝送速度)により決まる幾つかの線スペクトルの広がりを持ち、その包絡線はガウス分布型となる。例えば、RZ(Return to Zero)方式においては、ビットレートが10Gbpsのときは、それぞれの線スペクトルの間隔は0.08nmであるが、ビットレートが40Gbpsになると線スペクトルの間隔は0.32nmとなる。即ち、線スペクトルの広がりはビットレートに比例して増大する。
また、NRZ(Non Return to Zero)方式では、線スペクトルの広がりは、RZ方式と比較すると半分となる。即ち、NRZ方式においては、ビットレートが20Gbpsのときは、線スペクトルの間隔は0.04nmであり、ビットレートが40Gbpsのときは、線スペクトルの間隔は0.16nmとなる。
ビットレートが高くなるに従い、光信号の成分である線スペクトルの間隔が広がるため、光ファイバ伝送路を伝搬したときの群遅延時間の差が大きくなり、光信号の歪みが増大する。また、光信号が受ける分散の影響はビットレートの二乗に比例して大きくなる。
このような分散を補償するために、伝送路である光ファイバの分散と反対の符号の分散を持つ分散補償ファイバやチャープグレーティング等の分散補償器が開発されている。しかし、上記分散補償器は一定の分散しか補償できない。このため、光ファイバの温度変動、外力による光ファイバの応力変化等により、光ファイバの分散が時間とともに変化する動的な分散補償には対応できなかった。
そこで、温調素子(発熱/吸熱素子)を用いて光ファイバの軸方向の温度分布を調節し、光ファイバの分散を補償する可変分散補償器が開発されている(例えば、特許文献1参照)。チャープグレーティングが形成されている光ファイバが、複数の金属リング(熱伝導手段)に挿入されており、複数の金属リング上に温調素子が配置されている。温調素子は、温度コントローラからの制御信号によって発熱または吸熱する。温調素子の熱は金属リングを伝導し、チャープグレーティングに付加され、各部分のブラッグ反射波長が変化する。これにより、チャープグレーティングに入射した光信号に付加される分散が変化する。
特開2004−334052号公報
しかしながら、従来の可変分散補償器では、温調素子を金属リング外周面の一箇所に配置しているため、金属リングの温度を均一にするには金属リングの肉厚を厚くする必要がある。また、金属リングは、直線ガイドや温調素子と接触しているため、接触物を介して金属リングの熱が伝導してしまう。このため、金属管の加熱に必要な消費電力が増加し、かつ分散補償の応答速度が低下するという問題がある。
また、複数の金属リングを用いてチャープグレーティングに温度を付加しており、複数の金属リング間は樹脂やガラスなどで形成される直線ガイドが配置されている。そのため、チャープグレーティングの光軸方向に線形な温度分布を形成する際、樹脂やガラス部分において局所的に温度が低下し、階段状の温度リップルが発生してしまう。この温度リップルは、チャープグレーティングの光学特性の劣化に大きく影響し、伝送性能の大幅な劣化を引き起こす。
本発明の目的は、チャープグレーティングに温度リップルの少ない線形な温度分布を形成するとともに、低消費電力で応答速度が速い可変分散補償器を提供することである。
本発明に係る可変分散補償器は、チャープグレーティングを有する光ファイバと、光ファイバの光軸方向に沿ってチャープグレーティングの温度分布を調整する金属管と、光ファイバの光軸方向に沿って設けられたコイルと、コイルに流れる交流電流の電流量を調整する電源回路とを備えたものである。
本発明によれば、コイルからの誘導加熱により金属管をほぼ非接触で加熱するため、効率良く金属管を加熱することができる。このため、金属管の加熱に要する消費電力を低減し、かつ分散補償の応答速度を向上することができる。
また、本発明によれば、金属管とコイルとの間で誘導加熱を用いることにより、チャープグレーティングに温度リップルの少ない線形な温度分布を形成するため、チャープグレーティングの光学特性の劣化を抑制できる。
本発明の実施の形態1による可変分散補償器を示す構成図である。 本発明の実施の形態1による金属管の温度分布を示すグラフである。 本発明の実施の形態1による光ファイバの光学特性を示すグラフである。 本発明の実施の形態1による可変分散補償器を示す構成図である。 本発明の実施の形態1による可変分散補償器を示す断面図である。 本発明の実施の形態1によるチャープグレーティングの温度分布を示すグラフである。 本発明の実施の形態1によるチャープグレーティングの群遅延特性を示すグラフである。 本発明の実施の形態2による可変分散補償器を示す構成図である。 本発明の実施の形態2による可変分散補償器を示す断面図である。 本発明の実施の形態2による可変分散補償器を示す断面図である。 本発明の実施の形態3による可変分散補償器を示す構成図である。 本発明の実施の形態3による金属管の温度分布を示すグラフである。 本発明の実施の形態3による可変分散補償器の挿入損失特性を示すグラフである。
本発明に係る可変分散補償器の実施の形態について、図面を参照して説明する。以下の各図において、同一符号は、同一または相当の構成(実質的に同一の部材)を示す。
実施の形態1.
図1は本発明の実施の形態1による可変分散補償器を示す構成図である。金属管2の内部にはチャープグレーティングを形成した光ファイバ1が挿入されている。図1では、光ファイバ1が1本の場合を例にしているが、金属管2の内部に光ファイバ1を複数本挿入した構成でもよい。金属管2の外側に、金属管2の管断面の中心に対して同一円心状となるように巻線されたコイル3が設けられている。これは、後述する誘導加熱の効率を最大とするための配置であり、コイル3は金属管2に沿って(光ファイバ1の光軸方向に沿って)設けられていればよく、コイル3の外部に金属管2を配置してもよい。コイル3のコイルピッチは、光ファイバ1の光軸方向に沿って徐々に変化している。コイル3には電源回路4から交流電圧が印加される。
次に、動作について説明する。電源回路4により、コイル3に交流電流を流すと磁力線が発生する。発生した磁力線によってコイル3内部に配置した金属管2に渦電流が流れる。渦電流と金属管2が有する電気抵抗とでジュール熱が発生し、金属管2自体が発熱する。このような電磁誘導を利用した加熱は、誘導加熱と呼ばれる。誘導加熱を利用することで、物理的な接触無しに金属管2を加熱することができる。なお、以下の各実施の形態において、コイル3に流す交流電流を特に高周波電流とすると、誘導加熱の効率が向上する。
金属管2の発熱量は、発生する渦電流の大きさの2乗に比例する。また、渦電流の大きさは発生する磁力線に比例する。そして、磁力線の大小は交流電流の電流量、コイル3の巻数、金属管2とコイル3との距離によって決まる。従って、コイル3に流す交流電流の電流量、コイル3の巻数、金属管2とコイル3との距離を変化させることにより、金属管2に様々な温度を加えることができる。
本実施の形態1による可変分散補償器は、光ファイバ1の光軸方向に沿って、コイル3のコイルピッチを徐々に変化させた構成である。前述のように、誘導加熱によって金属管2が発熱するが、コイルピッチが場所によって異なる(即ち、単位長さ当たりの巻数が場所によって異なる)ため、発熱分布は一様ではない。巻数の多いところ(即ちコイルピッチが小さいところ)では磁力線が多くなるため発熱量は大きい。一方、巻数の少ないところ(即ちコイルピッチが大きいところ)では、磁力線が少なくなるため発熱量は小さい。光ファイバ1の光軸方向に沿ってコイル3のコイルピッチ(単位長さ当たりの巻数)を徐々に変化させた構成の場合、誘導加熱による発熱量が光軸方向に沿って徐々に変化する。このため、金属管2に温度勾配を形成することができる。
図2は本発明の実施の形態1による金属管2の温度分布を示すグラフである。コイル3に流す交流電流の電流量を変更して、金属管2に形成される温度分布を各々測定したものである。金属管2の位置は、0[mm]が図1に示すA点に対応しており、60[mm]が図1に示すB点に対応している。金属管2及びコイル3の長さはあくまでも一例であって、これに制限されるものではない。実線11はコイル3に流れる電流が0[A]の場合を示している。コイル3に交流電流が流れないため誘導加熱が発生せず、実線11で示すように金属管2の温度は一定となる。コイル3に交流電流を流すと、電流量に応じて実線12〜14で示すように金属管2に温度勾配が形成される。電源回路4により、コイル3に流す交流電流の電流量を調整することで、温度勾配の傾きを任意に設定可能であることがわかる。
図3は本発明の実施の形態1による金属管2内部に配置した光ファイバ1の光学特性を示すグラフである。特に、光ファイバ1のチャープグレーティングの群遅延特性を示している。図3に示す実線31〜34はそれぞれ、図2に示す実線11〜14に対応している。例えば、コイル3に電流を流さない場合(金属管2の温度分布が図2の実線11の場合)は、チャープグレーティングは図3の実線31に示す群遅延特性を有する。コイル3に交流電流を流し、金属管2の温度分布が図2の実線12のようになると、チャープグレーティングは図3の実線32に示す群遅延特性を有する。
金属管2を介して、温度勾配をチャープグレーティングに施すと、チャープグレーティング各部分のブラッグ反射波長が変化し、チャープグレーティングに入射した光信号に付加される分散が変化する。即ち、コイル3に流す交流電流の電流量を制御することで、任意の分散を設定することができ、可変分散補償器を構成することができる。本構成の場合、金属管2に非接触で加熱することができるため、効率良く加熱することができる。また、熱容量は金属管2だけで決まるため、応答速度が非常に早い。しかし、実際に可変分散補償器を製造する場合は、金属管2の外壁に完全に非接触で製造することは困難である。そこで、例えば、図4に示す構成で可変分散補償器を実現する。
図4は本発明の実施の形態1による可変分散補償器を示す構成図である。図4に示すように、金属管2を支持するため金属管2の両端に支柱5を設ける。支柱5は熱伝導率が非常に低い物質が望ましい。支柱5の熱伝導率が高いと、金属管2から支柱5を介して熱が伝導してしまうため、金属管2の温度が低下する。このため、誘導加熱での発熱量がより多く必要となり、可変分散補償器の消費電力が増大する。本発明を構成するにあたり、支柱5を設けることに限らない。図5は本発明の実施の形態1による可変分散補償器を示す断面図である。図5(a)は光ファイバ1の光軸方向に垂直な断面を示しており、図5(b)は光ファイバ1の光軸方向の断面を示している。図5に示すように、金属管2の周囲に熱伝導率が低い絶縁物6を配置し、絶縁物6の周囲にコイル3を形成してもよい。
図1、図4及び図5に、様々な構成の可変分散補償器を示したが、光ファイバ1のチャープグレーティングの温度分布に温度リップルが極力発生しない構成であることが望ましい。例えば、本実施の形態1とは異なり、管と管との間に隙間がある連続していない複数の管を使用した場合、管と管との隙間で光ファイバ1(チャープグレーティング)の温度が低下し、温度リップルが生じる。この温度リップルはチャープグレーティングの光学特性の劣化を引き起こす。図6は本発明の実施の形態1によるチャープグレーティングの温度分布を示すグラフである。図中、実線15は本実施の形態1のように連続した管を使用した場合のチャープグレーティングの温度分布を示している。なお、本実施の形態1との比較のため、破線16は管と管との間に隙間のある非連続な管を使用した場合のチャープグレーティングの温度分布を示している。
連続した管を使用した場合は、実線15に示すように温度リップルのない滑らかで線形な温度分布となるが、非連続な管を使用した場合は、破線16に示すように管と管との隙間で温度が低下し温度リップルが発生している。破線16は、60mmのチャープグレーティングに対して24個の管を使用した場合を示している。管と管との隙間が大きくなるほど、温度リップルも大きくなる。
図7は本発明の実施の形態1によるチャープグレーティングの群遅延特性を示すグラフである。図7は、温度分布が図6に示すような状態である場合のチャープグレーティングの群遅延特性を示している。図中、実線35は、温度分布が図6の実線15で示す場合のチャープグレーティングの群遅延特性を示しており、破線36は、温度分布が図6の破線16で示す場合のチャープグレーティングの群遅延特性を示している。
破線16で示すような温度リップルの大きい温度分布をチャープグレーティングに付加した場合は、破線36に示すように群遅延リップルも大きくなる。群遅延リップルは、光信号の伝送特性に大きく影響する。伝送シミュレータで計算すると、破線36で示す群遅延特性の場合には、約3dBのパワーペナルティが発生している。
一方、実線15で示すような温度リップルの小さな温度分布をチャープグレーティングに付加した場合は、実線35に示すように群遅延リップルは非常に小さくなる。実線35で示す群遅延特性の場合には、伝送シミュレータで計算するパワーペナルティは0.5dB以下となり、非常に良好な伝送性能を提供できることがわかる。
本発明の実施の形態1によれば、コイル3からの誘導加熱により金属管2を非接触で加熱するため、効率良く加熱することができる。これにより、金属管2の加熱に要する消費電力が減少し、かつ分散補償の応答速度が向上するという効果がある。
また、金属管2とコイル3との間で誘導加熱を用いることにより、チャープグレーティングに温度リップルが小さく線形な温度分布を付加している。このため、チャープグレーティングの光学特性の劣化を抑制し、伝送性能が向上するという効果がある。
実施の形態2.
実施の形態1では、金属管2とコイル3との距離は一定であったが、変化させてもよい。図8は本発明の実施の形態2による可変分散補償器を示す構成図である。実施の形態1においては、光ファイバ1の光軸方向に沿ってコイル3の巻数を変化させることで、金属管2に発生する渦電流を制御している。一方、本実施の形態2では、コイル3の巻数ではなく、金属管2とコイル3との距離を変化させることで、金属管2に発生する渦電流を制御する。
金属管2の発熱量は、コイル3に流す交流電流の電流量、コイル3の巻数、金属管2とコイル3との距離(より厳密には金属管2とコイル3を形成する金属線の断面中心との距離)によって決まる。つまり、光ファイバ1の光軸方向に沿って、金属管2とコイル3との距離を徐々に変化させることにより、金属管2の温度分布を制御できる。図8に示すように、光ファイバ1の光軸方向に沿って、コイル3のコイル径を徐々に変化させれば、コイル径が小さな箇所では金属管2の発熱量は大きく、コイル径が大きな箇所では金属管2の発熱量は小さくなる。
図9は本発明の実施の形態2による可変分散補償器を示す断面図である。図9(a)は光ファイバ1の光軸方向に垂直な断面を示しており、図9(b)は光ファイバ1の光軸方向の断面を示している。金属管2とコイル3との間に熱伝導率の低い絶縁物6を配置し、図9(b)に示すように絶縁物6の厚みを光ファイバの光軸方向に沿って変化させることで金属管2とコイル3との距離を高精度に調整できるため、金属管2に付加する温度分布を高精度に実現することができる。
図10は本発明の実施の形態2による可変分散補償器を示す断面図である。図10(a)は光ファイバ1の光軸方向に垂直な断面を示しており、図10(b)は光ファイバ1の光軸方向の断面を示している。図10(b)に示すように、絶縁物6の厚みは一定であるが、コイル3を形成する金属線の直径を徐々に変化させている。コイル3の金属線の直径が大きくなるに従い、金属線の断面の中心と金属管2との距離が大きくなり、金属管2に付加する温度分布を調整することができる。
本発明の実施の形態2によれば、実施の形態1と同様の効果が得られる。さらに、絶縁物6を用いることで金属管2とコイル3との距離を高精度に調整できるので、金属管2に付加する温度分布の精度が高まり、高精度な分散補償が可能となる。
実施の形態3.
実施の形態1では、コイル3は単数であったが、複数のコイルで構成してもよい。本実施の形態3では、実施の形態1に係る可変分散補償器と比較すると、コイルの個数が相違する。図11は本発明の実施の形態3による可変分散補償器を示す構成図である。
光ファイバ1の光軸方向に沿って、複数のコイル3a〜3gを配置しており、各々のコイル3a〜3gに供給する交流電流の電流量を個別に制御することができる電源回路4を備える。各々のコイル3a〜3gに対向する金属管2の各箇所は、各々のコイル3a〜3gに流れる交流電流の電流量に応じて発熱量が異なる。金属管2に温度勾配を形成したい場合は、光ファイバ1の光軸方向に沿って徐々に各々のコイル3a〜3gに流す電流量を増加あるいは減少させればよい。
図12は本発明の実施の形態3による金属管2の温度分布を示すグラフである。金属管2の位置は、0[mm]が図11に示すA点に対応しており、60[mm]が図11に示すB点に対応している。金属管2及びコイル3の長さはあくまでも一例であって、これに制限されるものではない。実線17はコイル3a〜3gの交流電流が全て0[A]の場合を示している。なお、コイル3a〜3gに流す交流電流の電流量を、光ファイバ1の光軸方向に沿って(A点側からB点側へ向けて)、0[A]から徐々に増加させれば温度勾配を形成するとともに、金属管2の片端側(A点側)では発熱量を0[J]にすることができる。温度勾配の傾きは、隣接するコイルそれぞれに流れる電流量の差分に比例する。コイル3a〜3gに流す交流電流の電流量を各々調整することにより、実線18〜20に示すように、温度勾配の傾きを任意に設定可能である。
実施の形態1では、分散を可変調整するためには、必ずコイル3に交流電流を流すことになるため、図2の実線12〜14に示すように金属管3の片端側(金属管位置0[mm]の箇所、即ちA点)の温度が必ず上昇する。分散は温度の傾きによって決まるため、この温度上昇は分散にとっては不要である。本実施の形態3では金属管2の片端側(A点側)を発熱させるためのコイル3aに流す交流電流を0[A]に設定できるので、図12の実線18〜20に示すように、金属管3の片端側(A点側)での温度上昇が発生していない。不要な発熱を削減することで、更に消費電流を低減することができる。
また、本実施の形態3では、複数のコイル3a〜3gの全てに同じ電流量を供給すれば、金属管2の全体を均一に温度上昇させることができる。金属管2の温度勾配が変化しない場合は、チャープグレーティングの分散も変化しない。図13は本発明の実施の形態3による可変分散補償器の挿入損失特性を示すグラフである。実線41の状態から、チャープグレーティング全体を均一に温度上昇させると、挿入損失特性は一点鎖線42へとシフトする。即ち、チャープグレーティングの温度上昇に伴い、挿入損失特性の中心波長が長波長側へシフトする。金属管2の温度勾配は変化させずに、金属管2全体を均一に温度上昇/下降させることで、チャープグレーティングの分散を変化させずに、中心波長だけを任意に変更可能である。この特性を利用して、実施の形態3による可変分散補償器をフィルタとして使用することができる。
本発明の実施の形態3によれば、実施の形態1と同様の効果が得られる。また、複数のコイル3a〜3gを用いて金属管2に温度分布を形成するため、金属管2の片端側での温度上昇を発生させず不要な発熱を削減することで、消費電流を低減することができる。
さらに、本発明の実施の形態3によれば、金属管2の全体を均一に温度上昇/下降させることで、チャープグレーティングの分散を変化させずに、中心波長だけを変化させることができる。
1 光ファイバ
2 金属管
3、3a〜3g コイル
4 電源回路

Claims (5)

  1. チャープグレーティングが形成された光ファイバと、
    前記光ファイバの光軸方向に沿って前記チャープグレーティングの温度分布を調整する金属管と、
    前記光ファイバの光軸方向に沿って設けられたコイルと、
    前記コイルに流れる交流電流の電流量を調整する電源回路と、
    を備えた可変分散補償器。
  2. 前記コイルを複数備え、
    前記電源回路は、複数のコイルそれぞれに流れる交流電流の電流量を個別に制御することを特徴とする請求項1記載の可変分散補償器。
  3. 前記コイルのコイルピッチが、前記光ファイバの光軸方向に沿って変化していることを特徴とする請求項1記載の可変分散補償器。
  4. 前記コイルを形成する金属線の断面中心と前記金属管との距離が、前記光ファイバの光軸方向に沿って変化していることを特徴とする請求項1記載の可変分散補償器。
  5. 前記金属線の直径が、前記光ファイバの光軸方向に沿って変化していることを特徴とする請求項4記載の可変分散補償器。
JP2009096036A 2009-04-10 2009-04-10 可変分散補償器 Expired - Fee Related JP5321210B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096036A JP5321210B2 (ja) 2009-04-10 2009-04-10 可変分散補償器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096036A JP5321210B2 (ja) 2009-04-10 2009-04-10 可変分散補償器

Publications (2)

Publication Number Publication Date
JP2010249867A true JP2010249867A (ja) 2010-11-04
JP5321210B2 JP5321210B2 (ja) 2013-10-23

Family

ID=43312314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096036A Expired - Fee Related JP5321210B2 (ja) 2009-04-10 2009-04-10 可変分散補償器

Country Status (1)

Country Link
JP (1) JP5321210B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151794A (ja) * 1984-08-20 1986-03-14 電気興業株式会社 誘導加熱コイル
JP2002529906A (ja) * 1998-11-05 2002-09-10 インダクトサーム・コーポレイション 温度分布を制御するための誘導加熱装置及び方法
JP2003207752A (ja) * 2002-01-11 2003-07-25 Hitachi Cable Ltd 可変分散補償器
JP2004258462A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 可変分散補償器
JP2005321601A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd 分散補償モジュール
JP2010026296A (ja) * 2008-07-22 2010-02-04 Mitsubishi Electric Corp 可変分散補償器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151794A (ja) * 1984-08-20 1986-03-14 電気興業株式会社 誘導加熱コイル
JP2002529906A (ja) * 1998-11-05 2002-09-10 インダクトサーム・コーポレイション 温度分布を制御するための誘導加熱装置及び方法
JP2003207752A (ja) * 2002-01-11 2003-07-25 Hitachi Cable Ltd 可変分散補償器
JP2004258462A (ja) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp 可変分散補償器
JP2005321601A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd 分散補償モジュール
JP2010026296A (ja) * 2008-07-22 2010-02-04 Mitsubishi Electric Corp 可変分散補償器

Also Published As

Publication number Publication date
JP5321210B2 (ja) 2013-10-23

Similar Documents

Publication Publication Date Title
JP3677183B2 (ja) 調整可能なチャープを有する光回折格子デバイス
US6307988B1 (en) Optical fiber communication system incorporating automatic dispersion compensation modules to compensate for temperature induced variations
EP0737873B1 (en) Dispersion managed optical waveguide
US6370300B1 (en) Optical communication system incorporating automatic dispersion compensation modules
US20040017972A1 (en) Tunable chromatic dispersion compensator
Rogers et al. Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp
CN102597826A (zh) 用于低色散多模光纤的经修正的折射率分布
KR20020032296A (ko) 광분산 등화기
JP3754615B2 (ja) グレーティング用温度制御装置、温度制御パターンを記憶手段に記憶させる方法、グレーティング用温度制御装置を自動制御する方法及び可変分散等化器
JP2005227786A (ja) 低いベンディング損失を有する光ファイバー
JP5321210B2 (ja) 可変分散補償器
WO2003089960A2 (en) Wideband, multi-core dispersion compensation fiber
JP3907531B2 (ja) 可変分散補償器
JP5655304B2 (ja) 光ファイバ線引き炉および光ファイバ線引き方法
JP5359412B2 (ja) 可変分散補償器
JP5051037B2 (ja) 可変分散補償器
TW560118B (en) Dynamic gain slope compensator
JP5149532B2 (ja) 可変分散補償器
JP5086196B2 (ja) 光波長合分波回路
CN1274337A (zh) 由预成形件拉成光导纤维的设备和方法
JP2004334052A (ja) 可変分散補償モジュール
JP2004258462A (ja) 可変分散補償器
KR100659270B1 (ko) 화상형성장치의 히팅롤러 조립체
JP3910170B2 (ja) 可変分散補償装置及びその製造方法
CN115395359B (zh) 一种抑制光纤sbs效应的方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

LAPS Cancellation because of no payment of annual fees