JP2010248758A - Hollow pipe body and tunnel construction method using the same - Google Patents

Hollow pipe body and tunnel construction method using the same Download PDF

Info

Publication number
JP2010248758A
JP2010248758A JP2009098042A JP2009098042A JP2010248758A JP 2010248758 A JP2010248758 A JP 2010248758A JP 2009098042 A JP2009098042 A JP 2009098042A JP 2009098042 A JP2009098042 A JP 2009098042A JP 2010248758 A JP2010248758 A JP 2010248758A
Authority
JP
Japan
Prior art keywords
freezing
hollow tube
tube
tunnel
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009098042A
Other languages
Japanese (ja)
Other versions
JP5302746B2 (en
Inventor
Yasuo Nishida
Hiroshi Ogura
Toru Sato
徹 佐藤
浩 小椋
泰夫 西田
Original Assignee
Iseki Poly-Tech Inc
Seiken Co Ltd
Taisei Corp
大成建設株式会社
株式会社イセキ開発工機
株式会社精研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki Poly-Tech Inc, Seiken Co Ltd, Taisei Corp, 大成建設株式会社, 株式会社イセキ開発工機, 株式会社精研 filed Critical Iseki Poly-Tech Inc
Priority to JP2009098042A priority Critical patent/JP5302746B2/en
Publication of JP2010248758A publication Critical patent/JP2010248758A/en
Application granted granted Critical
Publication of JP5302746B2 publication Critical patent/JP5302746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow pipe body capable of efficiently forming the frozen ground. <P>SOLUTION: The hollow pipe body 1 pushed into the ground comprises freezing pipes 11 extending in the axial direction at the inside hollow side of a body comprising a steel pipe 12 and a reinforced concrete 13 and a heat insulating section 15 surrounding the inside hollow side inside the freezing pipes. The freezing pipes 11, 11 extends to positions at both sides of the hollow 10 of the body. The freezing pipes are further embedded in an additional concrete 14 integrated with the steel pipe and the reinforced concrete. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、都市部や地盤の弱い場所に、地下鉄や道路又はそれらの合流分岐部などに利用されるトンネルを構築する際に使用する中空管体、及びトンネルの構築方法に関するものである。   The present invention relates to a hollow tube body used when building a tunnel used for a subway, a road, or a junction branching portion thereof in an urban area or a weak ground, and a tunnel building method.

従来、地盤を掘削して地中に空洞を形成するに際して、地表面の沈下などを抑えるために、複数の鋼管を先行して地中に向けて押し込んで平屋根状のパイプルーフを構築し、そのパイプルーフで保護された内側の地盤を、剛性の高い連続地中壁や支持杭などの支保工によって支持しながら掘削する方法が知られている(特許文献1など参照)。   Conventionally, when excavating the ground and forming a cavity in the ground, in order to suppress subsidence of the ground surface etc., a plurality of steel pipes are pushed ahead into the ground to construct a flat roof-like pipe roof, There is known a method of excavating the inner ground protected by the pipe roof while supporting it with a support structure such as a continuous wall with high rigidity and a support pile (see Patent Document 1).

また、特許文献2には、線形に曲線部が含まれるトンネルを構築するために開発された曲線パイプルーフ工法が開示されている。   Patent Document 2 discloses a curved pipe roof construction method developed to construct a tunnel that linearly includes a curved portion.

さらに、特許文献3,4には、地盤の弱い場所にトンネルを掘削する際に、前方掘削面の崩落を防ぐために、長尺の先受け鋼材を掘進方向に向けて放射状に打設して対処する方法が開示されている。   Furthermore, in Patent Documents 3 and 4, when excavating a tunnel in a weak ground, a long steel plate is cast radially in the direction of excavation to prevent the front excavation surface from collapsing. A method is disclosed.

そして、特許文献5には、小型のシールド掘削機によって複数のトンネルを断面視環状になるように間隔を置いて構築し、それらのトンネルを使って環状の凍結ゾーンを形成し、その内側にトンネルの分岐合流部を構築する方法が開示されている。 In Patent Document 5, a plurality of tunnels are constructed so as to have an annular shape in a sectional view by a small shield excavator, and an annular freezing zone is formed using these tunnels. Is disclosed.

特許第3511145号公報Japanese Patent No. 3511145 特開2000−240391号公報Japanese Patent Laid-Open No. 2000-240391 特開2004−19359号公報JP 2004-19359 A 特開平10−231700号公報JP-A-10-231700 特開2007−217910号公報JP 2007-217910 A

しかしながら、平屋根状のパイプルーフを構築した場合、そのパイプルーフに作用する荷重をすべて支保工で支持させなければならないので、支保工が大掛りになって内部掘削の支障になったり、工事費が高くなったりする原因になっていた。また、隣接するパイプルーフ同士を継手などで連結させる場合、連結部の拘束力が強くなるため、曲線部を設けることが難しい。   However, when a flat roof-shaped pipe roof is constructed, all loads acting on the pipe roof must be supported by a support work, which can be a big problem that hinders internal excavation and increases the construction cost. It became the cause that became high. Moreover, when connecting adjacent pipe roofs with a joint etc., since the constraining force of a connection part becomes strong, it is difficult to provide a curved part.

他方、先受け鋼材は、横断方向に間隔を置いて配置されているので、先受け鋼材間では横断方向に断面力が伝達できず、アーチ効果を発揮させることができない。また、特許文献4に開示されているようにアーチ状の支保工で先受け鋼材間を連結する場合であっても、掘削から支保工を設置するまでの間に地盤の緩みが進行して変形を抑えることができない。   On the other hand, since the receiving steel materials are arranged at intervals in the transverse direction, the cross-sectional force cannot be transmitted in the transverse direction between the receiving steel materials, and the arch effect cannot be exhibited. Moreover, even if it is a case where the receiving steel materials are connected by an arch-shaped support as disclosed in Patent Document 4, the loosening of the ground progresses between the excavation and the installation of the support, and deformation occurs. Can not be suppressed.

また、特許文献5に開示されている小型のシールド掘削機を使う方法では、土被りの浅い地盤には適用が難しい。さらに、シールド掘削機を使う方法では、機械費などの初期コストが高くなるため、距離の短いトンネルを構築する場合には不経済である。   In addition, the method using the small shield excavator disclosed in Patent Document 5 is difficult to apply to a ground with a shallow earth covering. Furthermore, the method using the shield excavator increases the initial cost such as the machine cost, which is uneconomical when constructing a tunnel with a short distance.

そこで、本発明は、効率的に凍土部を形成することが可能な中空管体、及びそれを使って極力、地盤の変形を抑えることが可能なうえに、線形に曲線部を含むトンネルであっても容易に構築することが可能なトンネルの構築方法を提供することを目的としている。   Therefore, the present invention is a hollow tube body that can efficiently form a frozen soil part, and a tunnel including a curved part in a linear manner that can suppress deformation of the ground as much as possible. The object is to provide a tunnel construction method that can be easily constructed even if it exists.

前記目的を達成するために、本発明の中空管体は、地盤に押し込まれる中空管体であって、本体の内空側に軸方向に延設される凍結管と、前記凍結管より内空側を囲繞する断熱層とを備えたことを特徴とする。   In order to achieve the above object, a hollow tube body of the present invention is a hollow tube body that is pushed into the ground, and includes a freezing tube that extends in the axial direction on the inner side of the main body, and the freezing tube And a heat insulating layer surrounding the inner air side.

ここで、前記凍結管は、前記本体の内空を挟んで対峙する位置にそれぞれ延設させることができる。また、前記本体の内空を挟んで対峙して延設される2本の凍結管の間に更に凍結管を延設させることもできる。   Here, the freezing tubes can be extended to positions facing each other across the inner space of the main body. In addition, a freezing tube can be further extended between two freezing tubes that are provided to face each other with the inner space of the main body interposed therebetween.

さらに、前記凍結管は、前記本体の外周面側と一体化されるコンクリート製の壁の内部に埋設されるのが好ましい。さらに、前記凍結管は、端部を前記本体の内空に向けて突出している構成が好ましい。   Furthermore, it is preferable that the freezing pipe is embedded in a concrete wall integrated with the outer peripheral surface side of the main body. Furthermore, it is preferable that the freezing tube has a projecting end toward the inner space of the main body.

また、本発明のトンネルの構築方法は、少なくとも上方が断面視アーチ状に形成されるトンネルを構築する方法であって、上記中空管体を、前記トンネルの延伸方向に向け、前記トンネルの上方アーチの外周の地盤に周方向に間隔を置いて、複数本、押し込むに際して、前記複数の中空管体にそれぞれ延設される凍結管が前記周方向に並んで配置されるように押し込む工程と、前記凍結管に低温の不凍液を搬送させて前記中空管体間を含む前記トンネルの外周に凍土部を形成する工程と、前記凍土部の内周側を掘削する工程と、掘削面に断熱材を吹き付ける工程とを備えたことを特徴とする。   Further, the tunnel construction method of the present invention is a method of constructing a tunnel having at least the upper part formed in an arch shape in cross-section, and the hollow tube body is directed in the extending direction of the tunnel, and the tunnel is located above the tunnel. A step of pushing in so that a plurality of cryotubes respectively extending in the plurality of hollow tubular bodies are arranged side by side in the circumferential direction when pushing in a plurality of circumferentially spaced grounds on the outer circumference of the arch; A step of conveying a low-temperature antifreeze liquid to the freezing pipe to form a frozen soil portion on the outer periphery of the tunnel including between the hollow tube bodies, a step of excavating an inner peripheral side of the frozen soil portion, and a heat insulation on the excavation surface And a step of spraying a material.

ここで、中空管体に凍結管が3本延設されている場合は、2本の凍結管が前記周方向に並んで配置されるとともに、残りの1本の凍結管が前記トンネルの中心と反対側の地盤側に配置されるように押し込むことが好ましい。   Here, when three freezing tubes are extended in the hollow tube body, two freezing tubes are arranged side by side in the circumferential direction, and the remaining freezing tube is the center of the tunnel. It is preferable to push in so that it may be arrange | positioned at the ground side on the opposite side.

このように構成された本発明の中空管体は、本体の軸方向に凍結管が予め延設されており、その凍結管より内空側には断熱層が形成されている。そして、この中空管体を地盤に押し込み、凍結管に不凍液などの低温の流体を流すと、断熱層のない外側に向かって冷熱が伝達されることになる。   In the hollow tube body of the present invention configured as described above, a freezing tube is previously extended in the axial direction of the main body, and a heat insulating layer is formed on the inner side of the freezing tube. When this hollow tube is pushed into the ground and a low-temperature fluid such as antifreeze is passed through the freezing tube, cold heat is transmitted toward the outside without the heat insulating layer.

このように断熱層によって凍結管から伝達される冷熱の内空側への放熱が抑えられるため、効率的に中空管体の外側に凍土部を形成することができる。また、断熱層が凍結管の内空側に配置されていれば、本体の内空にモルタルなどを充填しなくてもよいので、現場での作業を軽減でき、その分工期を短縮できる。   Thus, since the heat radiation to the inner space side of the cold heat transmitted from the freezing pipe is suppressed by the heat insulating layer, the frozen soil portion can be efficiently formed outside the hollow tubular body. Further, if the heat insulating layer is disposed on the inner space side of the freezing tube, it is not necessary to fill the inner space of the main body with mortar, etc., so that the work at the site can be reduced and the work period can be shortened.

また、本体の内空を挟んで対峙する位置に凍結管がそれぞれ配置されていれば、凍土部を中空管体の両側に広げていくことができ、帯状の凍土部を効率的に形成することができる。   In addition, if the freezing pipes are arranged at positions facing each other across the inner space of the main body, the frozen soil part can be spread on both sides of the hollow tubular body, and the belt-like frozen soil part is efficiently formed. be able to.

さらに、中空管体に凍結管が3本延設されている場合は、2本の凍結管を周方向に並んで配置させて、残りの1本の凍結管をトンネルの中心と反対側の地盤側に配置させれば、中空管体より外周側の地盤を効率的に凍結させることができる。   Further, when three freezing tubes are extended in the hollow tube body, two freezing tubes are arranged side by side in the circumferential direction, and the remaining freezing tube is placed on the side opposite to the center of the tunnel. If it is arranged on the ground side, the ground on the outer peripheral side from the hollow tube can be efficiently frozen.

また、凍結管が本体の外周面側と一体化されるコンクリート製の壁の内部に埋設されていれば、冷熱が壁の内部を伝達されて外周面側に迅速に到達するため、短時間で効率的に中空管体の外側に凍土部を形成することができる。   In addition, if the freezing pipe is embedded in a concrete wall that is integrated with the outer peripheral surface side of the main body, the cold heat is transmitted through the wall and quickly reaches the outer peripheral surface side, so that it takes a short time. The frozen soil portion can be efficiently formed outside the hollow tube body.

さらに、中空管体の端部において凍結管の端部が内空に向けて突出していれば、新たに中空管体を継ぎ足す場合に、凍結管同士を容易に接続することができる。このことにより、掘削進捗に応じた凍土形成範囲が任意に設定できるので、凍結にかかる規模やコストを最小限にできる。   Furthermore, if the end of the freezing tube protrudes toward the inner space at the end of the hollow tube, it is possible to easily connect the freezing tubes to each other when a new hollow tube is added. As a result, the frozen soil formation range according to the progress of excavation can be set arbitrarily, so that the scale and cost for freezing can be minimized.

また、本発明のトンネルの構築方法では、トンネルの上方アーチの外周の地盤に、周方向に間隔を置いて複数本の中空管体を凍結管が並ぶように位置合わせをして押し込む。そして、その中空管体内の凍結管によって不凍液を搬送させて、トンネルの外周にアーチ状の凍土部を形成し、その後に、凍土部の内周側を掘削し、掘削面には断熱材を吹き付ける。   In the tunnel construction method of the present invention, a plurality of hollow tubes are aligned and pushed into the ground on the outer periphery of the upper arch of the tunnel at intervals in the circumferential direction so that the frozen tubes are aligned. Then, antifreeze is transported by the freezing pipe in the hollow pipe body to form an arched frozen soil part on the outer periphery of the tunnel, and then the inner peripheral side of the frozen soil part is excavated, and a heat insulating material is provided on the excavated surface. Spray.

このため、掘削前からアーチ状の凍土部が形成されており、掘削当初からアーチ効果を発揮させることができるので、掘削による地盤の緩みを最小限にして変形を極力、抑えることができる。   For this reason, since the arch-like frozen soil part is formed before excavation and the arch effect can be exhibited from the beginning of excavation, the deformation can be suppressed as much as possible by minimizing the loosening of the ground due to excavation.

さらに、これらの中空管体は、周方向に間隔を置いて押し込まれるので、中空管体間が拘束されず、線形に曲線部を含むトンネルであっても、容易に構築することができる。 Furthermore, since these hollow tube bodies are pushed in at intervals in the circumferential direction, the hollow tube bodies are not constrained and can be easily constructed even in a tunnel including a curved portion linearly. .

本発明の実施の形態の中空管体の構成を説明する横断面図である。 It is a cross-sectional view explaining the structure of the hollow tube body of embodiment of this invention. 本発明の実施の形態の中空管体の構成を説明するために側面を一部破断した破断図である。 It is the fracture | rupture figure which partially fractured | ruptured the side surface in order to demonstrate the structure of the hollow tube body of embodiment of this invention. 中空管体同士を連結した継手付近の構成を説明する縦断面図である。 It is a longitudinal cross-sectional view explaining the structure of the joint vicinity which connected hollow tube bodies. 周方向に間隔を置いて押し込まれた中空管体と凍土部の構成を説明する部分拡大横断面図である。 It is a partial expanded cross-sectional view explaining the structure of the hollow tube body and the frozen soil part which were pushed in at intervals in the circumferential direction. トンネルの外周に凍土部を形成する工程を説明する横断面図である。 It is a cross-sectional view explaining the process of forming a frozen soil part on the outer periphery of a tunnel. 凍土部の内周側を掘削して断熱材及び防水材を吹き付ける工程を説明する説明図である。 It is explanatory drawing explaining the process of excavating the inner peripheral side of a frozen soil part and spraying a heat insulating material and a waterproofing material. トンネルの内周側にコンクリート製の覆工部を設ける工程を説明する横断面図である。 It is a cross-sectional view explaining the process of providing the concrete lining part in the inner peripheral side of a tunnel. 実施例の中空管体の構成を説明する横断面図である。 It is a cross-sectional view explaining the structure of the hollow tube body of an Example. 周方向に間隔を置いて押し込まれた中空管体と凍土部の構成を説明する部分拡大横断面図である。 It is a partial expanded cross-sectional view explaining the structure of the hollow tube body and the frozen soil part which were pushed in at intervals in the circumferential direction.

以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態の中空管体1の構成を説明する横断面図であり、図2は、中空管体1の構成を説明するために本体の一部を破断させた破断図である。   FIG. 1 is a cross-sectional view illustrating the configuration of the hollow tube body 1 of the present embodiment, and FIG. 2 is a broken view in which a part of the main body is broken to illustrate the configuration of the hollow tube body 1. FIG.

この中空管体1は、推進工法などによって地盤に水平方向に向けて押し込まれる管材である。この中空管体1の本体は、鋼管、ヒューム管などによっても形成することができるが、本実施の形態では、鉄筋コンクリート遠心成形管を本体に使った中空管体1について説明する。   The hollow tube 1 is a tube material that is pushed horizontally into the ground by a propulsion method or the like. The main body of the hollow tube 1 can be formed by a steel tube, a fume tube, or the like, but in this embodiment, the hollow tube 1 using a reinforced concrete centrifugal formed tube as the main body will be described.

この中空管体1は、外周面を形成する鋼管部12とその鋼管部12の内周面に沿って略均等な厚みで形成される鉄筋コンクリート部13とによって形成される本体と、その鉄筋コンクリート部13の内周面に沿って内空10を挟んで対峙する2箇所にそれぞれ延設される凍結管11,11と、それらの凍結管11,11を埋設させる付加コンクリート部14と、その付加コンクリート部14の内周面に形成される断熱層15とを備えている。   The hollow tube 1 includes a main body formed by a steel pipe portion 12 forming an outer peripheral surface and a reinforced concrete portion 13 formed with a substantially uniform thickness along the inner peripheral surface of the steel pipe portion 12, and the reinforced concrete portion. The freezing pipes 11 and 11 respectively extended in two places facing the inner space 10 along the inner peripheral surface 13, the additional concrete portion 14 for embedding the freezing pipes 11 and 11, and the additional concrete And a heat insulating layer 15 formed on the inner peripheral surface of the portion 14.

この円筒状の鋼管部12の内周面には、軸心に向けて突出されるリブ12aが周方向に間隔を置いて略等間隔で設けられている。そして、このリブ12aを埋設可能な厚さの鉄筋コンクリート部13が、遠心成形によって環状に形成される。   On the inner peripheral surface of the cylindrical steel pipe portion 12, ribs 12a protruding toward the axial center are provided at substantially equal intervals with intervals in the circumferential direction. And the reinforced concrete part 13 of the thickness which can embed this rib 12a is formed in cyclic | annular form by centrifugal molding.

また、凍結管11は、中空管体1の軸方向と並行に延設される中空の鋼管で、内部には塩化カルシウム水溶液などの不凍液を搬送させる。さらに、内空10を挟んで対峙する位置に2本の凍結管11,11が配管されているので、中空管体1の両側(図1では上下方向)に向けて冷熱が拡散しやすい構造となっている。   The freezing tube 11 is a hollow steel tube that extends in parallel with the axial direction of the hollow tube 1 and carries an antifreeze such as a calcium chloride aqueous solution therein. Furthermore, since the two freezing pipes 11 and 11 are piped at positions facing each other with the inner space 10 therebetween, a structure in which cold heat is likely to diffuse toward both sides (vertical direction in FIG. 1) of the hollow tubular body 1. It has become.

また、付加コンクリート部14は、凍結管11,11を配管した後に、その周囲に注入されるコンクリートが遠心成形されることによって形成される。この付加コンクリート部14によって、鋼管部12と鉄筋コンクリート部13と凍結管11,11と付加コンクリート部14とが一体化される。   Further, the additional concrete portion 14 is formed by centrifugally molding concrete poured around the freezing pipes 11 and 11. By this additional concrete part 14, the steel pipe part 12, the reinforced concrete part 13, the frozen pipes 11 and 11, and the additional concrete part 14 are integrated.

さらに、付加コンクリート部14の内周面には、発泡ウレタンなどを吹き付けて断熱層15を形成する。この断熱層15は、発泡ウレタンなどの独立気泡が多数、介在するものであれば、熱伝導率の小さい気泡によって高い断熱性能を確保することができる。   Further, the heat insulating layer 15 is formed on the inner peripheral surface of the additional concrete portion 14 by spraying urethane foam or the like. If the heat insulating layer 15 includes a large number of closed cells such as urethane foam, high heat insulating performance can be ensured by bubbles having low thermal conductivity.

一方、図3は、上述した中空管体1と同じ構成の2本の中空管体1A,1Bを連結した継手付近の構成を説明する縦断面図である。この継手付近では、先行して地盤に押し込まれた中空管体1Aの後端に、新たな中空管体1Bの前端を差し込んで連結させている。   On the other hand, FIG. 3 is a longitudinal sectional view for explaining the configuration in the vicinity of the joint connecting the two hollow tube bodies 1A and 1B having the same configuration as the hollow tube body 1 described above. In the vicinity of the joint, the front end of a new hollow tube 1B is inserted and connected to the rear end of the hollow tube 1A that has been pushed into the ground in advance.

この中空管体1Aの後端には、鉄筋コンクリート部13の後端より後方に鋼管部12から張り出された受口部12cが形成されている。また、鉄筋コンクリート部13の後端付近にはリブ12aが埋設されている。   At the rear end of the hollow tubular body 1A, a receiving portion 12c is formed protruding from the steel pipe portion 12 behind the rear end of the reinforced concrete portion 13. A rib 12a is embedded in the vicinity of the rear end of the reinforced concrete portion 13.

これに対して、中空管体1Bの前端には、鋼管部12の直径より一段小さくなった差込口12dが形成されるとともに、リブ12aが鉄筋コンクリート部13に埋設されている。   In contrast, an insertion port 12d that is one step smaller than the diameter of the steel pipe portion 12 is formed at the front end of the hollow tubular body 1B, and a rib 12a is embedded in the reinforced concrete portion 13.

また、この差込口12dの外周面には、リング状の止水材16が2条になって取り付けられている。さらに、中空管体1Bの前端面には、中空管体1Aの後端面と当接する位置にリング状のガスケット17が貼り付けられている。   Moreover, the ring-shaped water stop material 16 is attached to the outer peripheral surface of this insertion port 12d in two strips. Further, a ring-shaped gasket 17 is attached to the front end surface of the hollow tube 1B at a position where it abuts on the rear end surface of the hollow tube 1A.

また、中空管体1A(1B)の端部には、凍結管11の端部が内空10に向けて突出する突出部11aが設けられている。そして、この突出部11a,11a間を接続管111によって連結することで、前方の中空管体1Aの凍結管11と後方の中空管体1Bの凍結管11とが接続される。   Further, at the end of the hollow tube 1 </ b> A (1 </ b> B), a protruding portion 11 a where the end of the freezing tube 11 protrudes toward the inner space 10 is provided. And the freezing tube 11 of the front hollow tubular body 1A and the freezing tube 11 of the rear hollow tubular body 1B are connected by connecting the projecting portions 11a and 11a by the connecting tube 111.

このように構成された中空管体1は、図4,7に示すようにトンネル8の上方アーチの外周に沿って、周方向に略等間隔に配置される。すなわち、このトンネル8は、トンネル8の外周の地盤20に、周方向に間隔を置いて環状に配置される複数本の中空管体1,・・・と、中空管体1,1間を含むトンネル8の外周を囲繞するように断面視環状に形成される凍土部2と、凍土部2の内周面にトンネル8の内空形状に沿って形成される断熱吹付け層4及び防水吹付け層5と、さらにその防水吹付け層5の内周面に形成されるコンクリート製の覆工部6及び底盤61と、その覆工部6の内周側に配置されて壁面を形成するプレキャストパネル7とによって主に構成される。   The hollow tube 1 configured as described above is arranged at substantially equal intervals in the circumferential direction along the outer periphery of the upper arch of the tunnel 8 as shown in FIGS. That is, the tunnel 8 includes a plurality of hollow tubes 1,... Disposed between the hollow tubes 1 and 1 on the ground 20 on the outer periphery of the tunnel 8 in a ring shape at intervals in the circumferential direction. The frozen ground portion 2 formed in an annular shape in cross section so as to surround the outer periphery of the tunnel 8 including the heat insulating spray layer 4 formed along the inner shape of the tunnel 8 on the inner peripheral surface of the frozen soil portion 2 and waterproofing The spraying layer 5, the concrete lining portion 6 and the bottom plate 61 formed on the inner peripheral surface of the waterproof spraying layer 5, and the inner surface of the lining portion 6 are arranged to form a wall surface. It is mainly composed of the precast panel 7.

この凍土部2は、アーチ効果が発揮されやすいように、トンネル8の内空形状に関わらず、断面視略円形の環状に形成するのが好ましい。すなわち、本実施の形態では、図7に示すように、トンネル8の内空形状が断面視馬蹄形に形成されており、底盤61とその下方の円弧状の凍土部2との間には地盤20が残されている。   The frozen soil portion 2 is preferably formed in an annular shape having a substantially circular cross-sectional view regardless of the shape of the inner space of the tunnel 8 so that the arch effect is easily exhibited. That is, in the present embodiment, as shown in FIG. 7, the inner shape of the tunnel 8 is formed in a horseshoe shape in cross section, and the ground 20 is between the bottom plate 61 and the arc-shaped frozen soil portion 2 below. Is left.

また、アーチ効果が発揮されやすい凍土部2を形成するために、中空管体1は、図4に示すようにトンネル8の外周に想定される外円線S上に凍結管11,・・・が並ぶように位置合わせをして地盤20に押し込まれる。   Moreover, in order to form the frozen soil part 2 in which the arch effect is easily exhibited, the hollow tube body 1 has a frozen pipe 11,... On the outer circle S assumed on the outer periphery of the tunnel 8 as shown in FIG.・ Position it so that it is lined up and push it into the ground 20.

そして、このような向きで中空管体1,・・・を配置すると、隣接する中空管体1,1の凍結管11,11間の距離が最も短くなり、凍結管11,11に不凍液を循環させると短時間で中空管体1,1間に凍土部2が形成されてアーチ効果が発揮されることになる。   When the hollow tubes 1,... Are arranged in such a direction, the distance between the freezing tubes 11, 11 of the adjacent hollow tubes 1, 1 is the shortest, and the antifreezing liquid is placed in the freezing tubes 11, 11. When circulates, the frozen soil part 2 is formed between the hollow tube bodies 1 and 1 in a short time, and the arch effect is exhibited.

また、凍土部2の生成状態を確認する手段として、地盤20には中空管体1に並行に測温管21が押し込まれ、中空管体1の内部には測温管22が配置される。この測温管22は、図4に示すように、凍結管11,11と同様に断熱層15より外周側の位置で、凍結管11,11の間に配置される。   Further, as a means for confirming the generation state of the frozen soil portion 2, a temperature measuring tube 21 is pushed into the ground 20 in parallel with the hollow tube 1, and a temperature measuring tube 22 is disposed inside the hollow tube 1. The As shown in FIG. 4, the temperature measuring tube 22 is disposed between the freezing tubes 11 and 11 at a position on the outer peripheral side of the heat insulating layer 15 similarly to the freezing tubes 11 and 11.

このようにして形成される凍土部2の内周面に沿って設けられる断熱吹付け層4は、発泡瞬結スラリーなどの断熱材を掘削面に吹き付けることによって形成される。   The heat insulating spray layer 4 provided along the inner peripheral surface of the frozen soil portion 2 formed in this manner is formed by spraying a heat insulating material such as a foamed instantaneous setting slurry onto the excavation surface.

この発泡瞬結スラリーには、ウレタン系の発泡ウレタン、又はセメント系の発泡モルタル若しくはEPS(発泡スチロール)粒やビニロンを混入した発泡モルタルなどが使用できる。このような発泡瞬結スラリーによって形成される断熱吹付け層4は、熱伝導率の小さい独立気泡が多数、介在しているので、高い断熱性能を確保することができる。   For the instant foaming slurry, urethane-based foamed urethane, cement-based foamed mortar, foamed mortar mixed with EPS (foamed polystyrene) particles or vinylon, or the like can be used. Since the heat insulating spray layer 4 formed of such a foaming and setting slurry has a large number of closed cells having low thermal conductivity, high heat insulating performance can be ensured.

そして、この断熱吹付け層4は、内周側に打設されるコンクリートの硬化熱によって凍土部2が融解することがない程度の厚さ、又は凍土部2の冷熱によって内周側に打設されるコンクリートが硬化不良を起こすことがない程度の厚さに吹き付けられる。   And this heat insulation spraying layer 4 is cast in the inner peripheral side by the thickness of the extent that the frozen soil part 2 is not melted by the hardening heat of the concrete casted on the inner peripheral side, or the cold heat of the frozen soil part 2 The resulting concrete is sprayed to a thickness that does not cause poor curing.

また、防水吹付け層5は、ウレタン系やアスファルト系の防水材を断熱吹付け層4の内周面に吹き付けることによって形成される。このように吹き付けによる方法であれば、断熱吹付け層4の表面に凹凸があっても容易に防水構造を形成することができる。   The waterproof spray layer 5 is formed by spraying a urethane or asphalt waterproof material on the inner peripheral surface of the heat insulating spray layer 4. Thus, if it is the method by spraying, even if the surface of the heat insulation spraying layer 4 has an unevenness | corrugation, a waterproof structure can be formed easily.

そして、これらの断熱吹付け層4及び防水吹付け層5は、図7に示すようにトンネル8の内空形状を囲繞するように形成される。   Then, the heat insulating spray layer 4 and the waterproof spray layer 5 are formed so as to surround the inner shape of the tunnel 8 as shown in FIG.

また、トンネル8の底部に位置する防水吹付け層5の内周面側には、鉄筋コンクリートによって底盤61が構築される。また、この底盤61の両側縁から鉄筋コンクリートによって断面視半円状の覆工部6が構築される。   Further, on the inner peripheral surface side of the waterproof spray layer 5 located at the bottom of the tunnel 8, a bottom board 61 is constructed of reinforced concrete. In addition, the lining portion 6 having a semicircular cross-sectional view is constructed from reinforced concrete from both side edges of the bottom plate 61.

さらに、この覆工部6の内周面側には、工場などで円弧板状に成形されたプレキャストパネル7が配置される。ここで、このプレキャストパネル7を型枠として機能させる場合は、プレキャストパネル7を設置した後に、その外周側にコンクリートを充填して覆工部6を構築する。   Further, a precast panel 7 formed in an arc plate shape at a factory or the like is disposed on the inner peripheral surface side of the lining portion 6. Here, when making this precast panel 7 function as a formwork, after installing the precast panel 7, the outer peripheral side is filled with concrete and the lining part 6 is constructed.

次に、本実施の形態のトンネル8の構築方法について説明する。 Next, a method for constructing the tunnel 8 according to the present embodiment will be described.

まず、工場又は作業ヤードにおいて凍結管11,11が延設された中空管体1を製作する。この中空管体1は、例えば直径を1000mm程度にし、その内部に配管される凍結管11の直径は100mm程度にする。 First, the hollow tube body 1 in which the freezing tubes 11 and 11 are extended is manufactured in a factory or a work yard. The hollow tube 1 has a diameter of about 1000 mm, for example, and the freezing tube 11 piped therein has a diameter of about 100 mm.

他方、トンネル8を施工する現場では、トンネル8に隣接する位置の地盤20に発進立坑(図示せず)を設けておく。そして、この発進立坑の内部から図4に示すように、外円線S上に凍結管11,11が並ぶように中空管体1の向きを合わせる。   On the other hand, at the site where the tunnel 8 is constructed, a start shaft (not shown) is provided on the ground 20 adjacent to the tunnel 8. Then, as shown in FIG. 4, the orientation of the hollow tube body 1 is adjusted so that the frozen tubes 11 and 11 are arranged on the outer circular line S from the inside of the start shaft.

ここで、この中空管体1の先端には例えば泥水式の推進機(図示せず)が配置されており、推進機によって地盤20を切削させるとともに、中空管体1の後端を発進立坑に設置した推進ジャッキ(図示せず)によって押すことで推力を与え、中空管体1を地盤20に押し込んでいく。   Here, for example, a muddy water type propulsion device (not shown) is disposed at the tip of the hollow tube body 1, and the ground 20 is cut by the propulsion device and the rear end of the hollow tube body 1 is started. Thrust is given by pushing with a propulsion jack (not shown) installed in the shaft, and the hollow tube 1 is pushed into the ground 20.

また、この中空管体1は、1本の長さが発進立坑の内空の幅よりも短い長さに成形されているため、例えば図3に示すように、先行する中空管体1Aを所定の長さまで押し込んだ時点で新たな中空管体1Bを継ぎ足し、この継ぎ足し作業を繰り返すことで、所望する長さになるまで押し込みを続ける。   Further, since this hollow tube 1 is formed so that one length is shorter than the width of the inner space of the start shaft, for example, as shown in FIG. 3, the preceding hollow tube 1A When the tube is pushed down to a predetermined length, a new hollow tube 1B is added, and the addition is repeated until the desired length is reached.

さらに、図4に示すように、外円線S上の別の位置では、押し込まれた中空管体1とは周方向に間隔を置いて順次、中空管体1,・・・の押し込みを同様の手順でおこなう。   Further, as shown in FIG. 4, at another position on the outer circular line S, the hollow tubes 1,... Are sequentially pushed in at a distance from the pushed hollow tube 1 in the circumferential direction. Follow the same procedure.

また、中空管体1より外周側に離隔した位置の地盤20には、図4,5に示すように測温管21を押し込み、地盤20の温度を計測できるようにする。また、地盤20に押し込む中空管体1のいくつかは、内部に測温管22が延設されたものとし、中空管体1の温度を計測できるようにする。   Moreover, as shown in FIGS. 4 and 5, a temperature measuring tube 21 is pushed into the ground 20 at a position separated from the hollow tube 1 on the outer peripheral side so that the temperature of the ground 20 can be measured. Further, some of the hollow tubes 1 pushed into the ground 20 are provided with temperature measuring tubes 22 extending therein so that the temperature of the hollow tubes 1 can be measured.

そして、図5に示すように、トンネル8の外周を囲繞するように断面視環状の凍土部2を形成する。   Then, as shown in FIG. 5, a frozen soil portion 2 having an annular cross-sectional view is formed so as to surround the outer periphery of the tunnel 8.

この凍土部2の構築は、発進立坑から凍結管11,・・・に不凍液として塩化カルシウム水溶液を循環させることによっておこなわれる。すなわち、最先端に配置された中空管体1の内空10では、凍結管11,11の突出部11a,11a間が先端側で連結されており、発進立坑から送り出された不凍液は、一方の凍結管11で先端まで搬送された後に、他方の凍結管11に流れ込んで発進立坑に戻される。そして、地盤20との熱交換で温度が上昇して発進立坑に戻ってきた不凍液を冷凍機(図示せず)で冷却し、再び凍結管11に送り出す。   The construction of the frozen soil portion 2 is performed by circulating an aqueous calcium chloride solution as an antifreeze solution from the starting shaft to the freezing pipes 11. That is, in the inner space 10 of the hollow tube 1 arranged at the foremost end, the protrusions 11a and 11a of the freezing tubes 11 and 11 are connected on the tip side, and the antifreeze liquid fed from the start shaft is After being transported to the tip by the freezing pipe 11, it flows into the other freezing pipe 11 and is returned to the start shaft. Then, the antifreeze liquid whose temperature has risen due to heat exchange with the ground 20 and has returned to the start shaft is cooled by a refrigerator (not shown) and sent out to the freezing pipe 11 again.

このようにして低温の不凍液を凍結管11,11によって中空管体1内で循環させると、その冷熱は断熱層15のない本体の外周側の地盤20に移動し、地盤20に凍土部2が形成される。この凍土部2の生成状態は、測温管21,22によって計測される温度によって推定することができる。   When the low-temperature antifreeze is circulated in the hollow tube 1 by the freezing tubes 11 and 11 in this way, the cold heat moves to the ground 20 on the outer peripheral side of the main body without the heat insulating layer 15, and the frozen 20 Is formed. The generation state of the frozen soil part 2 can be estimated by the temperature measured by the temperature measuring tubes 21 and 22.

そして、図5に示すような環状の凍土部2が完成すると、その内周側の地盤20は、凍土部2のアーチ効果で保護されることになる。そこで、発進立坑に搬入されたバックホウなどの掘削機3を使って、図6に示すように凍土部2の内周側の掘削をおこなう。   When the annular frozen ground portion 2 as shown in FIG. 5 is completed, the ground 20 on the inner peripheral side is protected by the arch effect of the frozen soil portion 2. Therefore, the excavator 3 such as a backhoe carried into the start shaft is used to excavate the inner peripheral side of the frozen soil portion 2 as shown in FIG.

この掘削は、凍土部2によって保護された内周側の掘削となるため、小断面に分割して段階的におこなう必要がなく、トンネル8の全断面を一度に掘削することができるので掘削効率がよい。   Since this excavation is excavation on the inner circumference side protected by the frozen soil portion 2, it is not necessary to divide into small sections and perform it step by step, and the entire section of the tunnel 8 can be excavated at a time. Is good.

そして、掘削面には、掘削の進行に伴って発泡瞬結スラリーなどの断熱材を吹き付けて断熱吹付け層4を形成することで、掘削によって露出した凍土面を保護することができる。   Then, a surface of the frozen soil exposed by excavation can be protected by spraying a heat insulating material such as an instant foaming slurry on the excavation surface to form the heat insulating spray layer 4.

また、このように掘削に伴って断熱材を吹き付けるのであれば、工事や大気の流入によってトンネル8内の温度が上昇しても、凍土部2にはその熱が伝達されず融解を防ぐことができる。   Further, if the heat insulating material is blown in conjunction with excavation in this way, even if the temperature in the tunnel 8 rises due to construction or inflow of air, the heat is not transmitted to the frozen soil part 2 to prevent melting. it can.

さらに、断熱吹付け層4の内周面側には、ウレタン系材料などの防水材を吹き付けることによって、防水吹付け層5を形成する。   Further, a waterproof spray layer 5 is formed on the inner peripheral surface side of the heat insulating spray layer 4 by spraying a waterproof material such as urethane material.

そして、防水吹付け層5の内周面側には覆工部6用の配筋をおこない、さらにその内周側には、図7に示すようにプレキャストパネル7を取り付ける。また、プレキャストパネル7の脚部間には、平板状にコンクリートを打設して底盤61を構築する。   And the reinforcement for the lining part 6 is performed on the inner peripheral surface side of the waterproof spray layer 5, and the precast panel 7 is attached to the inner peripheral side as shown in FIG. Further, between the legs of the precast panel 7, concrete is placed in a flat plate shape to construct the bottom board 61.

一方、プレキャストパネル7の外周側にもコンクリートを打設する。このコンクリートは、プレキャストパネル7と防水吹付け層5との隙間に流れ込んで、下方から頂部に向けて充填されることで覆工部6が構築される。   On the other hand, concrete is also placed on the outer peripheral side of the precast panel 7. The concrete flows into the gap between the precast panel 7 and the waterproof spray layer 5 and is filled from the bottom toward the top, whereby the lining portion 6 is constructed.

以上に説明したトンネル8内周側の掘削作業、断熱吹付け層4及び防水吹付け層5の吹き付け作業、プレキャストパネル7の取り付け作業、コンクリートの打設作業は、トンネル8の全長にわたって一度におこなわれるのではなく、単位長さで逐次おこなわれてその作業が繰り返される。   The excavation work on the inner peripheral side of the tunnel 8 described above, the spraying work of the heat insulating spray layer 4 and the waterproof spray layer 5, the mounting work of the precast panel 7 and the concrete placing work are performed at once over the entire length of the tunnel 8. Rather than being done, the work is repeated in unit length.

これに対して中空管体1,・・・の押し込みは、トンネル8全長にわたって一度におこなうことができる。また、トンネル8内周側の掘削からの一連の作業は、所定距離分に限定しておこない、これに相応する区間のみ予め凍結運転し、順次この区間を移動していくこともできる。このことにより、掘削、構築の進捗に応じた凍土形成範囲が任意に設定できるので、凍結にかかる規模やコストを最小限にできる。   On the other hand, the hollow tubes 1,... Can be pushed in at once over the entire length of the tunnel 8. Further, a series of operations from excavation on the inner peripheral side of the tunnel 8 can be performed only for a predetermined distance, and only a section corresponding to this can be frozen in advance, and this section can be moved sequentially. As a result, the frozen ground formation range according to the progress of excavation and construction can be set arbitrarily, so that the scale and cost for freezing can be minimized.

次に、本実施の形態の中空管体1、及びそれを使用したトンネル8の構築方法の作用について説明する。   Next, the effect | action of the construction method of the hollow tube 1 of this Embodiment and the tunnel 8 using the same is demonstrated.

このように構成された本実施の形態の中空管体1は、本体の軸方向に凍結管11,11が予め延設されており、その凍結管11,11より内空側を囲繞する断熱層15が形成されている。   In the hollow tube body 1 of the present embodiment configured as described above, the freezing tubes 11 and 11 are previously extended in the axial direction of the main body, and the heat insulating material surrounding the inner air side from the freezing tubes 11 and 11. Layer 15 is formed.

そして、この中空管体1を地盤20に押し込み、凍結管11,11に不凍液などの低温の流体を流すと、不凍液の冷熱は、断熱層15のない中空管体1の外周面側に向かって伝達されることになる。   When the hollow tube 1 is pushed into the ground 20 and a low-temperature fluid such as antifreeze is passed through the freezing tubes 11, 11, the cold of the antifreeze is transferred to the outer peripheral surface of the hollow tube 1 without the heat insulating layer 15. Will be transmitted toward.

このように断熱層15によって凍結管11,11から伝達される冷熱の内空10への放熱が抑えられるため、内空10にモルタルなどを充填しなくても、中空管体1の外側の地盤20に冷熱を効率的に伝達させて凍土部2を形成することができ、現場での作業を軽減できるので、その分工期を短縮できる。   As described above, since the heat radiation of the cold heat transmitted from the freezing tubes 11 and 11 to the inner space 10 is suppressed by the heat insulating layer 15, even if the inner space 10 is not filled with mortar or the like, The frozen soil portion 2 can be formed by efficiently transmitting cold heat to the ground 20, and the work on site can be reduced, so that the work period can be shortened.

すなわち、従来の凍結工法では、中空の管体を地盤20に押し込んだ後に凍結管を差し込んでいたため、現場での凍結管の配管作業が必要になるだけでなく、地盤20に効率的に冷熱を伝導させるために、管体の内部にモルタルなどを充填する作業が必要であったが、本実施の形態の中空管体1を使用することで、これらの作業を省略することができる。   That is, in the conventional freezing method, the hollow tube is pushed into the ground 20 and then the frozen tube is inserted, so that not only the piping work of the frozen tube on site is required, but also the ground 20 is efficiently cooled. However, the work of filling the inside of the tube with mortar or the like is necessary, but by using the hollow tube 1 of the present embodiment, these operations can be omitted.

また、内空10を挟んで対峙する位置に凍結管11,11がそれぞれ配置されていれば、凍土部2を中空管体1の両側に広げていくことができ、帯状の凍土部2を効率的に形成することができる。   Moreover, if the freezing pipes 11 and 11 are respectively disposed at positions facing each other with the inner space 10 interposed therebetween, the frozen ground part 2 can be spread on both sides of the hollow tubular body 1, and the belt-like frozen ground part 2 can be formed. It can be formed efficiently.

さらに、凍結管11,11が外周面側の鋼管部12と一体化される付加コンクリート部14の内部に埋設されていれば、凍結管11の冷熱は、付加コンクリート部14、鉄筋コンクリート部13及び鋼管部12という順に迅速に伝達されるため、短時間で効率的に中空管体1の外側に凍土部2を形成することができる。   Furthermore, if the freezing pipes 11 and 11 are embedded in the additional concrete part 14 integrated with the steel pipe part 12 on the outer peripheral surface side, the cold heat of the freezing pipe 11 is added to the additional concrete part 14, the reinforced concrete part 13 and the steel pipe. Since the parts are quickly transmitted in the order of the parts 12, the frozen soil part 2 can be efficiently formed outside the hollow tube 1 in a short time.

また、付加コンクリート部14、鉄筋コンクリート部13及び鋼管部12は、環状に一体化されているため、中空管体1の全周にも冷熱が広がり、効率的に中空管体1の周囲に凍土部2を形成することができる。   Moreover, since the additional concrete part 14, the reinforced concrete part 13, and the steel pipe part 12 are integrated in an annular shape, cold heat spreads around the entire circumference of the hollow tubular body 1 and efficiently surrounds the hollow tubular body 1. The frozen soil part 2 can be formed.

さらに、中空管体1の端部において、凍結管11の端部が内空10に向けて突出された突出部11aが設けられていれば、新たに中空管体1を継ぎ足す場合に、凍結管11,11同士の接続も内空10から容易におこなうことができる。   Further, if the end portion of the hollow tube body 1 is provided with a protruding portion 11a in which the end portion of the freezing tube 11 protrudes toward the inner space 10, the hollow tube body 1 is newly added. The freezing tubes 11 and 11 can be easily connected from the inner space 10.

そして、この突出部11aの存在により、任意の位置の突出部11aで冷凍機(図示せず)と凍結管11とを連結させることができ、掘削、構築の進捗に応じて凍土形成範囲を限定的にするなど任意に設定できるので、凍結にかかる規模やコストを最小限にできる。   The presence of the projecting portion 11a allows the freezer (not shown) and the freezing pipe 11 to be connected by the projecting portion 11a at an arbitrary position, and limits the frozen soil formation range according to the progress of excavation and construction. Since it can be set arbitrarily, such as to do so, the scale and cost for freezing can be minimized.

また、このように構成された本実施の形態のトンネル8の構築方法では、トンネル8の上方アーチの外周の地盤20に、周方向に間隔を置いて複数本の中空管体1,・・・を押し込む。そして、その中空管体1内の凍結管11,11に不凍液を搬送させて、トンネル8の外周に環状(アーチ状)の凍土部2を形成し、その後に、凍土部2の内周側を掘削し、掘削面には断熱吹付け層4を吹き付けによって形成する。   Further, in the construction method of the tunnel 8 of the present embodiment configured as described above, a plurality of hollow tubular bodies 1,... Are provided on the ground 20 on the outer periphery of the upper arch of the tunnel 8 at intervals in the circumferential direction.・ Push in. Then, the antifreezing liquid is conveyed to the freezing pipes 11, 11 in the hollow tube body 1, and the annular (arch-shaped) frozen soil portion 2 is formed on the outer periphery of the tunnel 8, and then the inner peripheral side of the frozen soil portion 2. The heat insulating spray layer 4 is formed on the excavation surface by spraying.

このため、掘削前から閉成された環状の凍土部2が形成されており、掘削当初からアーチ効果を発揮させることができるので、掘削による地盤20の緩みを最小限にして変形を極力、抑えることができる。   For this reason, the annular frozen soil part 2 closed before excavation is formed, and since the arch effect can be exhibited from the beginning of excavation, the deformation of the ground 20 is minimized and the deformation is suppressed as much as possible. be able to.

特に、凍土部2を形成する方法であるため、河川直下などの被圧水下や玉石混じり礫層においても安全にトンネル8を構築することができる。   In particular, since the frozen soil portion 2 is formed, the tunnel 8 can be safely constructed even under pressured water such as directly under a river or in a gravel layer mixed with cobblestone.

また、上方アーチの外周に中空管体1,・・・を押し込んでおくことで、上方地盤がこれらの中空管体1,・・・によって先受けされるので、剥離落下を確実に抑えることができる。   Moreover, since the upper ground is received in advance by these hollow tube bodies 1, ... by pushing the hollow tube bodies 1, ... into the outer periphery of the upper arch, it is possible to reliably suppress peeling and dropping. be able to.

すなわち、本実施の形態のトンネル8の構築方法には、中空管体1,・・・を地盤20に押し込むパイプルーフ工法が組み込まれているため、土被りの浅い地盤20でも安全にトンネル8を構築することができる。また、中空管体1を押し込む工法であれば、高価なシールド掘削機を使用しないので、経済的である。   That is, the construction method of the tunnel 8 according to the present embodiment incorporates a pipe roof construction method for pushing the hollow tubes 1,... Into the ground 20, so that the tunnel 8 can be safely used even in the ground 20 with a shallow earth covering. Can be built. Moreover, if it is the construction method which pushes in the hollow tube 1, since an expensive shield excavator is not used, it is economical.

さらに、これらの中空管体1,・・・は、周方向に間隔を置いて押し込まれるので、中空管体1,1間が拘束されず、線形がS字やクロソイド曲線となるトンネル8であっても、容易に構築することができる。   Further, since these hollow tube bodies 1,... Are pushed at intervals in the circumferential direction, the hollow tube bodies 1, 1 are not constrained, and the tunnel 8 has a linear S shape or clothoid curve. Even so, it can be easily constructed.

また、掘削面に断熱材を吹き付けて断熱吹付け層4を形成することで、掘削面からの凍土部2の融解を防止することができる。特に、トンネル8の内周面側にコンクリート製の覆工部6を設ける場合は、コンクリートの硬化熱で凍土部2が融解するとアーチ効果が低減するおそれがあるが、断熱吹付け層4を介在させることで融解を防止することができる。   Moreover, by melting the excavated surface by forming a heat insulating spray layer 4 by spraying a heat insulating material on the excavated surface, it is possible to prevent the frozen soil portion 2 from melting. In particular, when the concrete lining portion 6 is provided on the inner peripheral surface side of the tunnel 8, the arch effect may be reduced if the frozen soil portion 2 is melted by the heat of hardening of the concrete, but the heat insulating spray layer 4 is interposed. Melting can be prevented.

さらに、凍土部2の低温が硬化前の覆工部6に伝達されると、コンクリートの硬化不良が起きるおそれがあるが、断熱吹付け層4を介在させて冷熱を遮断することで良質なコンクリートにすることができる。   Furthermore, when the low temperature of the frozen soil part 2 is transmitted to the lining part 6 before hardening, there is a risk that the concrete may be hardened, but the high-quality concrete can be obtained by interposing the insulating spray layer 4 to block the cold heat. Can be.

また、プレキャストパネル7を取り付け、それを型枠にしてコンクリートを充填する方法であれば、型枠を脱型する手間が不要となり、迅速かつ容易にトンネル8の覆工部6を構築することができる。   In addition, if the method of attaching the precast panel 7 and filling it with the mold as a formwork is not necessary to remove the mold, the lining part 6 of the tunnel 8 can be constructed quickly and easily. it can.

さらに、工場などの品質管理されたところで製作されたプレキャストパネル7を利用することで、品質の高い覆工(トンネル内壁)を形成することができる。また、プレキャストパネル7であれば、高強度にするなど材質の調整も容易におこなうことができる。   Furthermore, a high-quality lining (tunnel inner wall) can be formed by using the precast panel 7 manufactured in a factory where quality is controlled. Moreover, if it is the precast panel 7, adjustment of a material, such as making it high intensity | strength, can also be performed easily.

次に、前記実施の形態とは別の形態の中空管体91について、図8,9を参照しながら説明する。なお、前記実施の形態で説明した内容と同一乃至均等な部分の説明については同一符号を付して説明する。   Next, a hollow tube 91 having a form different from that of the above embodiment will be described with reference to FIGS. The description of the same or equivalent parts as those described in the above embodiment will be given the same reference numerals.

この実施例で説明する中空管体91は、前記実施の形態で説明した中空管体1に凍結管911を加えた構成となっている。   The hollow tube 91 described in this example has a configuration in which a freezing tube 911 is added to the hollow tube 1 described in the above embodiment.

この凍結管911は、図8に示すように、内空10を挟んで対峙する2箇所にそれぞれ延設される凍結管11,11の間に延設される。すなわち、凍結管911は、鉄筋コンクリート部13の内周面に隣接する位置であって、一方の凍結管11から鉄筋コンクリート部13の内周面に沿って他方の凍結管11に至る円弧の中間地点に配管される。   As shown in FIG. 8, the freezing tube 911 is extended between freezing tubes 11 and 11 that are respectively extended at two locations facing each other across the inner space 10. That is, the freezing pipe 911 is a position adjacent to the inner peripheral surface of the reinforced concrete portion 13, and at an intermediate point of an arc extending from one freezing pipe 11 along the inner peripheral surface of the reinforced concrete portion 13 to the other freezing pipe 11. It is plumbed.

そして、この凍結管911は、他の凍結管11,11と同様に、付加コンクリート部14の内部に埋設され、断熱層15を介して内空10に隣接することになる。   The freezing pipe 911 is embedded in the additional concrete portion 14 and is adjacent to the inner space 10 through the heat insulating layer 15, similarly to the other freezing pipes 11 and 11.

さらに、このように製作された中空管体91は、図9に示すように、トンネル8の中心とは反対側の地盤側(外円線Sの外側)に凍結管911が配管されるように押し込まれる。   Furthermore, as shown in FIG. 9, the hollow tube body 91 manufactured in this manner is configured such that a freezing tube 911 is piped on the ground side opposite to the center of the tunnel 8 (outside the outer circular line S). Is pushed into.

一方、中空管体91に3本の凍結管11,11,911を配管した場合は、例えば凍結管911によって中空管体91の先端まで不凍液を送り出し、残りの凍結管11,11を通して不凍液を戻すという循環をさせることができる。なお、内空10に図示しない戻り管を配管し、凍結管911と連結して循環させる構成であってもよい。   On the other hand, when three freezing tubes 11, 11, 911 are piped to the hollow tube 91, for example, the antifreeze is sent to the tip of the hollow tube 91 by the freezing tube 911, and the antifreeze is passed through the remaining freezing tubes 11, 11. Can be circulated. In addition, the structure which circulates by connecting the return pipe which is not illustrated in the inner space 10, and connecting with the freezing pipe 911 may be sufficient.

このように構成された中空管体91を使うことで、凍結後の工程で掘削がおこなわれるトンネル8の中心側の地盤20よりも、トンネル8の外周側の地盤20に凍土部2を厚く形成することができるので、効率的である。   By using the hollow tube body 91 configured in this way, the frozen soil portion 2 is thicker on the ground 20 on the outer peripheral side of the tunnel 8 than on the ground 20 on the center side of the tunnel 8 where excavation is performed in the process after freezing. Since it can be formed, it is efficient.

また、凍結管911を追加することによって、地盤20が凍結するまでにかかる時間を短くすることができる。さらに、凍土部2の厚みの調整も容易におこなえるようになり、凍結効率を向上させることができる。   Moreover, by adding the freezing tube 911, the time taken for the ground 20 to freeze can be shortened. Furthermore, the thickness of the frozen soil portion 2 can be easily adjusted, and the freezing efficiency can be improved.

なお、この他の構成および作用効果については、前記実施の形態と略同様であるため説明を省略する。   Other configurations and operational effects are substantially the same as those in the above-described embodiment, and thus the description thereof is omitted.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態及び実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to the embodiment and the example, and the design change is within a range not departing from the gist of the present invention. Are included in the present invention.

例えば、前記実施の形態では、内空形状が断面視馬蹄形のトンネル8を構築する場合について説明したが、これに限定されるものではなく、断面視円形や断面視楕円形のトンネルであってもよい。   For example, in the above-described embodiment, the case where the tunnel 8 having a horseshoe-shaped cross section is constructed is described. However, the present invention is not limited to this, and a tunnel having a circular cross section or an elliptical cross section may be used. Good.

また、前記実施の形態では、円形に近い環状の凍土部2を形成したが、これに限定されるものではなく、上方がアーチ状で閉成された形状であれば、例えば馬蹄形のトンネル8の内空形状に近い形状の凍土部であってもよい。さらに、地盤20の地質や、許容沈下量によっては、上方アーチの頂部付近にのみ又は頂部から脚部にかけての半円状に中空管体1,・・・を配置して凍土部2を形成する構成であってもよい。   Moreover, in the said embodiment, although the cyclic | annular frozen soil part 2 near circular was formed, it is not limited to this, For example, if the upper part is the shape closed by the arch shape, for example, the horseshoe-shaped tunnel 8 of It may be a frozen soil part having a shape close to the interior shape. Furthermore, depending on the geology of the ground 20 and the allowable subsidence amount, the frozen soil portion 2 is formed by arranging the hollow tubes 1,... Only in the vicinity of the top of the upper arch or in a semicircular shape from the top to the leg. It may be configured to.

また、前記実施の形態では、防水吹付け層5の内側にコンクリートを打設して覆工部6を構築する方法について説明したが、これに限定されるものではなく、コンクリートを打設する前に鋼製内部支保工を設置する方法であれば、凍土部2の厚さを薄くしても地盤20の変形を抑えることができるので、凍結範囲を低減することが可能になる。   Moreover, in the said embodiment, although the method of placing concrete inside the waterproof spraying layer 5 and constructing the lining part 6 was demonstrated, it is not limited to this, Before placing concrete If the method is to install a steel internal support, the deformation of the ground 20 can be suppressed even if the thickness of the frozen soil portion 2 is reduced, so that the freezing range can be reduced.

1,1A,1B 中空管体
10 内空
11 凍結管
11a 突出部
12 鋼管部(本体)
13 鉄筋コンクリート部(本体)
14 付加コンクリート部(コンクリート製の壁)
15 断熱層
2 凍土部
20 地盤
4 断熱吹付け層(断熱材)
5 防水吹付け層(防水材)
6 覆工部(コンクリート)
8 トンネル
91 中空管体
911 凍結管
1, 1A, 1B Hollow tube body 10 Inner space 11 Freezing tube 11a Protruding portion 12 Steel tube portion (main body)
13 Reinforced concrete part (main body)
14 Additional concrete section (concrete wall)
15 Thermal insulation layer 2 Frozen soil part 20 Ground 4 Thermal insulation spray layer (thermal insulation) 15 Thermal insulation layer 2 Frozen soil part 20 Ground 4 Thermal insulation spray layer (thermal insulation)
5 Waterproof spray layer (waterproof material) 5 Waterproof spray layer (waterproof material)
6 lining (concrete) 6 lining (concrete)
8 Tunnel 91 Hollow tube body 911 Freezing tube 8 Tunnel 91 Hollow tube body 911 Freezing tube

Claims (7)

  1. 地盤に押し込まれる中空管体であって、
    本体の内空側に軸方向に延設される凍結管と、
    前記凍結管より内空側を囲繞する断熱層とを備えたことを特徴とする中空管体。
    A hollow tube pushed into the ground,
    A freezing pipe extending in the axial direction on the inner air side of the main body,
    A hollow tube body comprising a heat insulating layer surrounding an inner space side of the freezing tube.
  2. 前記本体の内空を挟んで対峙する位置に前記凍結管がそれぞれ延設されることを特徴とする請求項1に記載の中空管体。 The hollow tube body according to claim 1, wherein the freezing tubes are respectively extended at positions facing each other across the inner space of the main body.
  3. 前記本体の内空を挟んで対峙して延設される2本の凍結管の間に更に凍結管が延設されることを特徴とする請求項2に記載の中空管体。   The hollow tube body according to claim 2, wherein a freezing tube is further extended between two freezing tubes that are extended to face each other with the inner space of the main body interposed therebetween.
  4. 前記本体の外周面側と一体化されるコンクリート製の壁の内部に前記凍結管が埋設されていることを特徴とする請求項1乃至3のいずれか一項に記載の中空管体。 The hollow tube body according to any one of claims 1 to 3, wherein the freezing tube is embedded in a concrete wall integrated with the outer peripheral surface side of the main body.
  5. 前記凍結管は、端部が前記本体の内空に向けて突出していることを特徴とする請求項1乃至4のいずれか一項に記載の中空管体。 The hollow tube body according to any one of claims 1 to 4, wherein an end portion of the freezing tube projects toward an inner space of the main body.
  6. 少なくとも上方が断面視アーチ状に形成されるトンネルを構築する方法であって、
    請求項1乃至5のいずれか一項に記載の中空管体を、前記トンネルの延伸方向に向け、前記トンネルの上方アーチの外周の地盤に周方向に間隔を置いて、複数本、押し込むに際して、前記複数の中空管体にそれぞれ延設される凍結管が前記周方向に並んで配置されるように押し込む工程と、
    前記凍結管に低温の不凍液を搬送させて前記中空管体間を含む前記トンネルの外周に凍土部を形成する工程と、
    前記凍土部の内周側を掘削する工程と、
    掘削面に断熱材を吹き付ける工程とを備えたことを特徴とするトンネルの構築方法。 A method of constructing a tunnel, which comprises a process of spraying a heat insulating material on an excavated surface. A method of constructing a tunnel having at least an upper part formed in an arch shape in cross section, A method of constructing a tunnel having at least an upper part formed in an arch shape in cross section,
    When the hollow tube body according to any one of claims 1 to 5 is pushed in toward the extending direction of the tunnel, and a plurality of the hollow tube bodies are circumferentially spaced from the ground of the outer periphery of the upper arch of the tunnel. A step of pushing so that the frozen tubes respectively extending in the plurality of hollow tube bodies are arranged side by side in the circumferential direction; When the hollow tube body according to any one of claims 1 to 5 is pushed in toward the extending direction of the tunnel, and a plurality of the hollow tube bodies are arrangedly spaced from the ground of the outer peripheral of the upper arch of the tunnel A step of pushing so that the frozen tubes respectively extending in the plurality of hollow tube bodies are arranged side by side in the preceding direction;
    Forming a frozen soil portion on the outer periphery of the tunnel including between the hollow tubes by transporting a low-temperature antifreeze to the freezing pipe; Forming a frozen soil portion on the outer peripheral of the tunnel including between the hollow tubes by transporting a low-temperature antifreeze to the freezing pipe;
    Excavating the inner peripheral side of the frozen soil part; Excavating the inner peripheral side of the frozen soil part;
    And a step of spraying a heat insulating material on the excavation surface. And a step of spraying a heat insulating material on the excavation surface.
  7. 少なくとも上方が断面視アーチ状に形成されるトンネルを構築する方法であって、
    請求項3に記載の中空管体を、前記トンネルの延伸方向に向け、前記トンネルの上方アーチの外周の地盤に周方向に間隔を置いて、複数本、押し込むに際して、前記複数の中空管体にそれぞれ延設される凍結管のうち2本が前記周方向に並んで配置されるとともに、残りの1本の凍結管が前記トンネルの中心と反対側の地盤側に配置されるように押し込む工程と、
    前記凍結管に低温の不凍液を搬送させて前記中空管体間を含む前記トンネルの外周に凍土部を形成する工程と、
    前記凍土部の内周側を掘削する工程と、
    掘削面に断熱材を吹き付ける工程とを備えたことを特徴とするトンネルの構築方法。 A method of constructing a tunnel, which comprises a process of spraying a heat insulating material on an excavated surface. A method of constructing a tunnel having at least an upper part formed in an arch shape in cross section, A method of constructing a tunnel having at least an upper part formed in an arch shape in cross section,
    When the hollow tube body according to claim 3 is pushed in toward the extending direction of the tunnel and spaced apart in the circumferential direction on the ground on the outer periphery of the upper arch of the tunnel, the plurality of hollow tubes Two of the freezing pipes extending in the body are arranged side by side in the circumferential direction, and the remaining one freezing pipe is pushed in so as to be arranged on the ground side opposite to the center of the tunnel. Process, When the hollow tube body according to claim 3 is pushed in toward the extending direction of the tunnel and spaced apart in the arranged direction on the ground on the outer peripheral of the upper arch of the tunnel, the plurality of hollow tubes Two of the freezing pipes extending in the body are arranged side by side in the conducting direction, and the remaining one freezing pipe is pushed in so as to be arranged on the ground side opposite to the center of the tunnel. Process,
    Forming a frozen soil portion on the outer periphery of the tunnel including between the hollow tubes by transporting a low-temperature antifreeze to the freezing pipe; Forming a frozen soil portion on the outer peripheral of the tunnel including between the hollow tubes by transporting a low-temperature antifreeze to the freezing pipe;
    Excavating the inner peripheral side of the frozen soil part; Excavating the inner peripheral side of the frozen soil part;
    And a step of spraying a heat insulating material on the excavation surface. And a step of spraying a heat insulating material on the excavation surface.
JP2009098042A 2009-04-14 2009-04-14 Hollow tube and tunnel construction method using the same Expired - Fee Related JP5302746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098042A JP5302746B2 (en) 2009-04-14 2009-04-14 Hollow tube and tunnel construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098042A JP5302746B2 (en) 2009-04-14 2009-04-14 Hollow tube and tunnel construction method using the same

Publications (2)

Publication Number Publication Date
JP2010248758A true JP2010248758A (en) 2010-11-04
JP5302746B2 JP5302746B2 (en) 2013-10-02

Family

ID=43311391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098042A Expired - Fee Related JP5302746B2 (en) 2009-04-14 2009-04-14 Hollow tube and tunnel construction method using the same

Country Status (1)

Country Link
JP (1) JP5302746B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536273A (en) * 2012-03-30 2012-07-04 中建市政建设有限公司 26-meter large-span space one-step forming construction method
JP2017043983A (en) * 2015-08-27 2017-03-02 鹿島建設株式会社 Underground structure, and construction method of underground structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160998A (en) * 1984-08-31 1986-03-28 Seiken Co Replacement of tail packing of muddy water shield machine byfreezing method
JP2004332387A (en) * 2003-05-08 2004-11-25 Kajima Corp Freezing method and freezer of jacking pipe arrival part
JP2006342518A (en) * 2005-06-07 2006-12-21 Shimizu Corp Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface
JP2007217910A (en) * 2006-02-15 2007-08-30 Shimizu Corp Underground cavity construction method and tunnel construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160998A (en) * 1984-08-31 1986-03-28 Seiken Co Replacement of tail packing of muddy water shield machine byfreezing method
JP2004332387A (en) * 2003-05-08 2004-11-25 Kajima Corp Freezing method and freezer of jacking pipe arrival part
JP2006342518A (en) * 2005-06-07 2006-12-21 Shimizu Corp Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface
JP2007217910A (en) * 2006-02-15 2007-08-30 Shimizu Corp Underground cavity construction method and tunnel construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536273A (en) * 2012-03-30 2012-07-04 中建市政建设有限公司 26-meter large-span space one-step forming construction method
JP2017043983A (en) * 2015-08-27 2017-03-02 鹿島建設株式会社 Underground structure, and construction method of underground structure

Also Published As

Publication number Publication date
JP5302746B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
CN102661171B (en) Frost damage prevention drainage system for tunnel
CN103244128B (en) A kind of big cross section Karst Tunnel double-side approach remaining core soil in advance construction method
KR101582173B1 (en) The structure assembly for building a tunnel and building method thereof
CN105909260B (en) For protecting the subway station water sealing structure and its construction method of groundwater environment
CN103590425A (en) Peaty soft soil stratum subway station construction technology
EP1355039B1 (en) Method of constructing an extended free chamber between two tunnel segments
US4365913A (en) Method and device for building in the ground vertical walled structures starting from a subterranean conduit
KR101018282B1 (en) Method for constructing fabric for undergound tunnel
CN104482298B (en) HDPE (high-density polyethylene) steel-plastic composite spiral winding drainage pipe installation construction method
CN103410161A (en) Slant grouting control steel anchor pipe frame and construction method thereof
CN104675403A (en) Underground space construction method and supporting structure
JP2003314197A (en) Conduit repairing method and conduit interior repairing structure
WO2005024183A1 (en) Concrete element for cladding a tunnel
CN106907159B (en) Shallow-buried underground excavation subway station separated open type structure and construction method thereof
WO1989008181A1 (en) Reinforced concrete construction for road tunnels
CN104675405B (en) Rectangular pipe jacking machine tunnel entering auxiliary structure and construction method
KR100438794B1 (en) Construction method for three arch excavation tunnel
CN104832196B (en) Pipe curtain freezing process supporting construction and its construction method
JP4183470B2 (en) Underground structure and its construction method
CN101985882B (en) Construction method of rigid primary support of mould-building concrete of plateau permafrost tunnel
JP4803429B2 (en) Construction method of underground cavity
KR100701633B1 (en) Load dispersing plate for supporting central part of a twin tunnel and a construction method of a twin tunnel using the load dispersing plate
JP2006322222A (en) Construction method of large-sectional tunnel
CN105908765B (en) For protecting the open trench tunnel water sealing structure and construction method of groundwater environment
CN101575859B (en) Anti-seepage joint of underground continuous walls and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees