JP2006342518A - Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface - Google Patents

Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface Download PDF

Info

Publication number
JP2006342518A
JP2006342518A JP2005166997A JP2005166997A JP2006342518A JP 2006342518 A JP2006342518 A JP 2006342518A JP 2005166997 A JP2005166997 A JP 2005166997A JP 2005166997 A JP2005166997 A JP 2005166997A JP 2006342518 A JP2006342518 A JP 2006342518A
Authority
JP
Japan
Prior art keywords
frozen ground
frozen
heat insulating
ground surface
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166997A
Other languages
Japanese (ja)
Inventor
Yukio Yabe
幸男 矢部
Yasuki Kodama
泰樹 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005166997A priority Critical patent/JP2006342518A/en
Publication of JP2006342518A publication Critical patent/JP2006342518A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation coating structure of a frozen ground surface and an insulation coating method for the frozen ground surface capable of preventing a construction period from being increased and securely reducing the change of the cross sectional shape of a hollow formed in the ground at low cost by maintaining the self-supporting property of the surface of a frozen ground without using a steel support or a support structure formed of a shotcrete. <P>SOLUTION: An insulator 15 is stuck on the surface 13 of the frozen ground formed around the hollow in the ground through a freezing material 14 frozen to the surface 13 of the frozen ground by a self-retaining water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、凍結地盤表面に施される凍結地盤表面の断熱被覆構造および凍結地盤表面の断熱被覆方法に関する。   The present invention relates to a heat insulating coating structure on a frozen ground surface applied to the surface of a frozen ground and a heat insulating coating method on the frozen ground surface.

近年、道路トンネルにおいてシールド工法により施工する本線シールドトンネルとランプシールドトンネルどうしの分岐合流部を施工するトンネル工法(SR−J工法)が提案されている。このSR−J工法は、まず、本線シールドトンネルよりもランプシールドトンネルを先行掘進し、ランプシールドトンネルが分岐合流部の施工予定位置に少なくとも達するまで掘進して停止し、その先端部付近からルーフシールド機を発進させることにより、分岐合流部の延長方向に沿う多数のルーフシールドトンネルを分岐合流部の外側にその輪郭に沿って密に配列した状態で施工することにより、分岐合流部を取り囲むシールドルーフ先受工を構築する。そして、前記ルーフシールドトンネルの内側からその周囲地山を凍結させてルーフシールドトンネル間に凍結ゾーンを形成する。また、前記ルーフシールドトンネルの施工と並行して本線シールドトンネルを掘進してシールドルーフ先受工の内側を通過させる。その後、ルーフシールドトンネルの両端部からその内側地山に凍結管を挿入して、シールドルーフ先受工の両端部内側の地盤を凍結させて凍結ゾーンを形成する。しかる後に、シールドルーフ先受工および凍結ゾーンの内側において本線シールドトンネルを拡幅してその拡幅部にランプシールドトンネルの先端部を接合するとともに分岐合流部の覆工壁を施工する。   In recent years, a tunnel construction method (SR-J construction method) has been proposed in which a branching junction between a main shield tunnel and a lamp shield tunnel constructed by a shield construction method in a road tunnel is constructed. In this SR-J method, first, the lamp shield tunnel is advanced ahead of the main line shield tunnel, and is stopped until the lamp shield tunnel reaches at least the planned construction position of the branch junction, and the roof shield starts from the vicinity of the tip. Shield roof that surrounds the branch junction by constructing a number of roof shield tunnels along the extension direction of the branch junction by placing the machine in a state of being closely arranged along the outline of the branch junction Build a pre-construction. Then, the surrounding ground is frozen from the inside of the roof shield tunnel to form a freezing zone between the roof shield tunnels. In parallel with the construction of the roof shield tunnel, the main shield tunnel is dug to pass through the inside of the shield roof tip receiver. Thereafter, freeze tubes are inserted into the inner ground from both ends of the roof shield tunnel, and the ground inside both ends of the shield roof tip receiver is frozen to form a freezing zone. After that, the main shield tunnel is widened inside the shield roof tip receiving and freezing zone, the tip of the lamp shield tunnel is joined to the widened portion, and the lining wall of the branching junction is constructed.

上記したSR−J工法によるトンネル工事においては、凍結ゾーンの地盤の表面は、凍結によって固結されて自立性が高くなっているが、凍結された地盤表面の自立性を長期的に維持するために、支保構造が形成される。この支保構造は、通常のNATM(New Austrian Tunneling Method)工法による場合と同様に、鋼製支保工と吹付けコンクリートとから構成され、拡幅された地盤の表面に吹付けコンクリートが直接吹き付けられる。   In the tunnel construction by the SR-J method described above, the surface of the ground in the freezing zone is consolidated by freezing and becomes more independent, but in order to maintain the independence of the frozen ground surface for a long period of time. In addition, a support structure is formed. This support structure is composed of a steel support and shotcrete, as in the case of a normal NATM (New Austrian Tunneling Method) method, and the shotcrete is directly sprayed on the surface of the widened ground.

また、近年では、地盤を凍結させる際の凍結効果を向上させるべく、地盤表面に断熱材を設置する工法が提案されている。この工法は、地下にトンネルを掘削し、この掘削トンネルの内部より周囲の地盤に凍結管を貫入させるとともに、地盤表面にポリウレタンフォーム等の極低温で可撓性を有する断熱材を設置した後、トンネル内に水を注入して充填し、その後、凍結管を介して低温ガス(冷媒)をトンネル周囲の地盤に循環させて地盤を凍結させる工法である(例えば、特許文献1参照。)。
特開平4−120317号公報
In recent years, a method of installing a heat insulating material on the ground surface has been proposed in order to improve the freezing effect when freezing the ground. This method is to excavate a tunnel underground, let the frozen pipe penetrate into the surrounding ground from the inside of this tunnel, and after installing a heat insulating material having flexibility at a very low temperature such as polyurethane foam on the ground surface, In this method, water is injected into the tunnel for filling, and then the ground is frozen by circulating low temperature gas (refrigerant) through the freezing pipe to the ground around the tunnel (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 4-120317

しかしながら、上記した支保構造によって地盤表面の自立性を維持させる工法では、シールドルーフ先受工の両端部内側の地盤は凍結されて−15℃程度の凍土となっているため、この凍土からなる地盤に直接吹き付けられた吹付けコンクリートが固まらず、支保効果を発揮することができない場合がある。また、掘削されたトンネルは、掘削開始から約3年間、支保工と吹付けコンクリートとからなる支保構造によって支持された状態であるため、吹付けコンクリートの劣化やひび割れの発生等の問題がある。また、吹付けコンクリートにひび割れが発生すると、凍結地盤の温度が局所的に高くなり、強度および変形係数の低下によって掘削トンネルの天端面の沈下量が増加し、凍結地盤が崩壊する虞がある。つまり、上記した支保構造によると、吹付けコンクリートの固化不良や劣化、ひび割れによって、地盤を適当に支持できない場合があり、トンネル内周面の変位を低減させる効果についての確実性が低いという問題が存在する。
また、掘進作業は複数の区間に分割して行い、各施工段階で支保工の建て込みと吹付けコンクリートの吹付け作業を行うことになるため、工期が長くなるという問題が存在する。
さらに、工事期間中における凍結地盤表面の融解を阻止して当該地盤の自立性を維持するため、上述した凍結管による凍結運転を継続的に行う必要があり、コストが高くなるという問題が存在する。
However, in the method of maintaining the independence of the ground surface by the support structure described above, the ground inside the both ends of the shield roof tip receiver is frozen and becomes frozen soil of about -15 ° C. The sprayed concrete sprayed directly onto the surface may not solidify and may not be able to exert its support effect. Further, since the excavated tunnel is supported by a support structure composed of a support work and shotcrete for about three years from the start of excavation, there are problems such as deterioration of the shotcrete and occurrence of cracks. In addition, when cracks occur in shotcrete, the temperature of the frozen ground locally increases, and the amount of settlement on the top face of the excavation tunnel increases due to a decrease in strength and deformation coefficient, which may cause the frozen ground to collapse. In other words, according to the support structure described above, the ground may not be properly supported due to poor solidification or deterioration of the shotcrete, and cracks, and there is a problem that the reliability of the effect of reducing the displacement of the inner peripheral surface of the tunnel is low. Exists.
In addition, the excavation work is divided into a plurality of sections, and support work is built and spray concrete is sprayed at each construction stage, so there is a problem that the construction period becomes long.
Furthermore, in order to prevent melting of the frozen ground surface during the construction period and maintain the independence of the ground, it is necessary to continuously perform the freezing operation using the above-mentioned freezing pipe, and there is a problem that costs increase. .

また、上記した従来の地盤表面の凍結方法では、地盤表面に断熱材を設置した後、当該地盤を凍結させる方法であり、凍結させる前の地盤表面の自立性を維持させるべく、トンネルを掘削した後、鋼製支保工や吹付けコンクリート等からなる支保構造が必要になるため、複数の区間に分割して掘進作業が行われ、各施工段階で支保工の建て込みと吹付けコンクリートの吹付け作業を行うことになり、工期が長くなるという問題が存在する。   In addition, the conventional ground surface freezing method described above is a method of freezing the ground after installing a heat insulating material on the ground surface, and a tunnel was excavated to maintain the independence of the ground surface before freezing. Later, since a support structure made of steel support or shotcrete is required, excavation work is carried out by dividing it into multiple sections. There is a problem that the work period becomes longer and the construction period becomes longer.

本発明は、上記した従来の問題が考慮されたものであり、鋼製支保工や吹付けコンクリートからなる支保構造を用いずに、凍結地盤の表面の自立性を長期に維持させることで、工期が長くなることがなく、地中に形成された空洞の断面形状の変形を低コスト且つ確実に低減させることができる凍結地盤表面の断熱被覆構造および凍結地盤表面の断熱被覆方法を提供することを目的とする。   The present invention takes the above-described conventional problems into consideration, and maintains the self-supporting property of the surface of the frozen ground for a long period without using a support structure made of steel support or shotcrete. It is possible to provide a heat insulation coating structure on a frozen ground surface and a method for heat insulation coating on a frozen ground surface that can reduce the deformation of the cross-sectional shape of the cavity formed in the ground at low cost and with certainty. Objective.

請求項1記載の凍結地盤表面の断熱被覆構造に係る発明は、地中空洞の周囲に形成された凍結地盤の表面に、自己の保水により凍結地盤表面に凍着する凍着材を介して、断熱材が貼り付けられていることを特徴としている。   The invention related to the heat insulating coating structure on the frozen ground surface according to claim 1 is provided on the surface of the frozen ground formed around the underground cavity via a freezing material that freezes on the frozen ground surface by its own water retention, It is characterized by affixing a heat insulating material.

請求項2記載の凍結地盤表面の断熱被覆方法に係る発明は、地中空洞の周囲に形成された凍結地盤の表面に、保水性を有する凍着材に保水させて凍結地盤表面に凍着させることで、凍着材を介して、断熱材を貼り付けることを特徴としている。   In the invention relating to the heat insulating coating method for the frozen ground surface according to claim 2, the surface of the frozen ground formed around the underground cavity is water-retained by a freezing material having water retention and is frozen to the frozen ground surface. Thus, the heat insulating material is pasted through the freezing material.

上記した特徴により、凍着材の水が低温の凍結地盤によって直ぐに凍ることで、凍着材は凍結地盤の表面に対して付着性能を発揮する。この凍着材によって断熱材が凍結地盤の表面に適当に貼着される。また、凍結地盤の表面に貼着された断熱材によって、凍結された地盤表面の融解が阻止されて凍結状態が維持される。   Due to the above-described characteristics, the water of the freezing material immediately freezes on the frozen ground at a low temperature, so that the freezing material exhibits the adhesion performance to the surface of the frozen ground. The heat insulating material is appropriately attached to the surface of the frozen ground by this freezing material. In addition, the heat insulating material adhered to the surface of the frozen ground prevents melting of the frozen ground surface and maintains the frozen state.

請求項3記載の発明は、請求項1記載の凍結地盤表面の断熱被覆方法において、断熱材に凍着材を予め付設させておくことを特徴としている。   The invention described in claim 3 is characterized in that, in the heat insulating coating method for a frozen ground surface according to claim 1, a freeze-fitting material is previously attached to the heat insulating material.

このような特徴により、凍着材が付設された断熱材を凍結地盤表面に押し当てるだけで、凍結地盤表面に断熱被覆層が形成される。   With such a feature, a heat insulating coating layer is formed on the frozen ground surface only by pressing the heat insulating material provided with the freezing material against the frozen ground surface.

本発明に係る凍結地盤表面の断熱被覆構造および凍結地盤表面の断熱被覆方法によれば、
凍結地盤の表面に対して付着性能を発揮する凍着材によって断熱材が凍結地盤の表面に適当に貼着され、この断熱材によって、凍結された地盤表面の融解が阻止されて凍結状態が維持されるため、凍結地盤の表面の自立性を長期に亘って維持させることができる。これによって、鋼製支保工や吹付けコンクリートからなる支保構造が省略可能となり、地中に形成された空洞の断面形状の変形を確実に低減させることができ、さらに、コストダウンを図ることができるとともに工期の短縮を図ることができる。
According to the heat insulation coating structure of the frozen ground surface and the heat insulation coating method of the frozen ground surface according to the present invention,
A heat insulating material is properly attached to the surface of the frozen ground by a freezing material that exhibits adhesion performance to the surface of the frozen ground, and this heat insulating material prevents the frozen ground surface from melting and maintains the frozen state. Therefore, the free standing of the surface of the frozen ground can be maintained for a long time. As a result, a support structure made of steel support work or shotcrete can be omitted, deformation of the cross-sectional shape of the cavity formed in the ground can be reliably reduced, and cost can be further reduced. At the same time, the construction period can be shortened.

また、凍着材の表面に予め断熱材を付設させておくことで、凍着材および断熱材を別々に設置する場合に比べて、空洞内における作業が簡略化され、これによって、工期の短縮を図ることができる。   In addition, by pre-installing a heat insulating material on the surface of the freezing material, the work inside the cavity is simplified compared to the case where the freezing material and the heat insulating material are installed separately, thereby shortening the construction period. Can be achieved.

以下、本発明に係る凍結地盤表面の断熱被覆構造および凍結地盤表面の断熱被覆方法の実施の形態について、図面に基いて説明する。なお、本実施の形態では、道路トンネルでシールド工法により施工する本線シールドトンネル1とランプシールドトンネル2どうしの分岐合流部を施工する場合を例にして説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a heat insulating covering structure on a frozen ground surface and a heat insulating covering method on a frozen ground surface according to the present invention will be described below with reference to the drawings. In the present embodiment, a case where a branching junction between the main shield tunnel 1 and the lamp shield tunnel 2 constructed by a shield method in a road tunnel is constructed will be described as an example.

まず、地中に形成された空洞の周囲に凍結地盤を形成する工程について説明する。なお、図1は分岐合流部を築造するトンネル工法の概要を表した斜視図であり、図2は分岐合流部全体を表した平面図であり、図3(a)は凍結地盤を形成する方法を表す図2に示すA−A間の断面図であり、図3(b)は凍結地盤を形成する方法を表す図2に示すB−B間の断面図である。   First, the process of forming the frozen ground around the cavity formed in the ground will be described. 1 is a perspective view showing an outline of a tunneling method for constructing a branch / merging portion, FIG. 2 is a plan view showing the entire branch / merging portion, and FIG. 3 (a) is a method for forming a frozen ground. 2 is a cross-sectional view taken along the line A-A shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along the line BB shown in FIG. 2 showing a method for forming a frozen ground.

図1に示すように、まず、本線シールドトンネル1よりもランプシールドトンネル2を先行掘進し、図2に示すように、ランプシールドトンネル2が分岐合流部の施工予定位置に少なくとも達するまで掘進して停止させる。そして、ランプシールドトンネル2の先端部付近の側壁部から図1に示すルーフシールド機5を発進させ、分岐合流部の施工予定位置の外側に分岐合流部の延長方向に沿う複数(図示例では20本)のルーフシールドトンネル6…を掘削する。これらルーフシールドトンネル6…は、分岐合流部の輪郭に沿って所定間隔で配列した状態で施工し、それら複数のルーフシールドトンネル6…の全体によって上記のシールドルーフ先受工3を構成する。   As shown in FIG. 1, first, the lamp shield tunnel 2 is advanced ahead of the main shield tunnel 1, and as shown in FIG. 2, the lamp shield tunnel 2 is excavated until it reaches at least the planned construction position of the branch junction. Stop. Then, the roof shield machine 5 shown in FIG. 1 is started from the side wall near the front end of the lamp shield tunnel 2, and a plurality of (20 in the illustrated example) along the extension direction of the branch / merging portion are arranged outside the planned construction position of the branch / merging portion. Excavate the roof shield tunnel 6). These roof shield tunnels 6 are constructed in a state of being arranged at a predetermined interval along the contour of the branch and merge part, and the shield roof tip receiving work 3 is constituted by the whole of the plurality of roof shield tunnels 6.

一方、上記のようなシールドルーフ先受工3の施工と並行して本線シールドトンネル1を掘進し、本線シールドトンネル1をシールドルーフ先受工3の内側を通過させる。
また、図3(a)、図3(b)に示すように、ルーフシールドトンネル6…内に複数の凍結管7…をそれぞれ設置し、これら複数の凍結管7…により各ルーフシールドトンネル6…の周囲地山を凍結させ、各ルーフシールドトンネル6,6間に凍結地盤8…をそれぞれ形成する。
また、本線シールドトンネル1がシールドルーフ先受工3の内側を通過した後に、図3(a)、図3(b)に示すように、ルーフシールドトンネル6の両端部からその内側地山に複数のボーリングを行って、各ボーリング孔に凍結管9をそれぞれ挿入し、図2に示すシールドルーフ先受工3の両端部に位置する凍結範囲10の地山を凍結させ、凍結地盤11を形成する。
以上の工程により、分岐合流部の施工予定位置は、シールドルーフ先受工3および凍結地盤8,11により取り囲まれてその外側の地山と隔絶された状態となる。
On the other hand, the main shield tunnel 1 is dug in parallel with the construction of the shield roof tip receiver 3 as described above, and the main shield tunnel 1 is passed through the inside of the shield roof tip receiver 3.
3 (a) and 3 (b), a plurality of freezing pipes 7 are installed in the roof shield tunnel 6 ..., respectively, and the roof shielding tunnel 6 ... The frozen ground 8 is formed between the roof shield tunnels 6 and 6, respectively.
In addition, after the main line shield tunnel 1 passes through the inside of the shield roof tip receiving work 3, as shown in FIGS. 3 (a) and 3 (b), a plurality of roof shield tunnels 6 are connected to the inner ground from both ends thereof. The freezing pipe 9 is inserted into each boring hole, and the ground in the freezing range 10 located at both ends of the shield roof tip receiver 3 shown in FIG. 2 is frozen to form the frozen ground 11. .
Through the above steps, the planned construction position of the branching / merging portion is surrounded by the shield roof tip receiving work 3 and the frozen grounds 8 and 11, and is isolated from the outer ground.

次に、シールドルーフ先受工3および凍結地盤8,11により取り囲まれた本線シールドトンネル1を拡幅させる工程を行う。図4(a)は本線シールドトンネル1を拡幅させた状態を表す図2に示すA−A間の断面図であり、図4(b)は本線シールドトンネル1を拡幅させた状態を表す図2に示すB−B間の断面図である。   Next, a step of widening the main shield tunnel 1 surrounded by the shield roof tip receiving work 3 and the frozen grounds 8 and 11 is performed. 4A is a cross-sectional view taken along the line AA in FIG. 2 showing a state where the main shield tunnel 1 is widened, and FIG. 4B is a diagram showing a state where the main shield tunnel 1 is widened. It is sectional drawing between BB shown in FIG.

図4(a),図4(b)に示すように、シールドルーフ先受工3の内側において、例えば本線シールドトンネル1の拡幅側の側壁の一部を撤去し、そこからバックホー等の掘削機械を搬入し、その掘削機械によって分岐合流部の拡幅部分を上方から下方に向かって掘削するとともに本線シールドトンネル1の側壁の不要部分を撤去することによって、本線シールドトンネル1を拡幅させて大断面の空洞12が形成される。この空洞12の壁面は、全体的或いは部分的に凍結されており、凍結地盤8,11からなる空洞12の壁面(凍結地盤表面13)は自立された状態になっている。   As shown in FIGS. 4 (a) and 4 (b), for example, a part of the wide side wall of the main shield tunnel 1 is removed inside the shield roof tip receiver 3, and excavating machines such as a backhoe are removed therefrom. And the excavating machine excavates the widened portion of the branch and merge portion from above to below and removes the unnecessary portion of the side wall of the main shield tunnel 1 to widen the main shield tunnel 1 and A cavity 12 is formed. The wall surface of the cavity 12 is wholly or partially frozen, and the wall surface (the frozen ground surface 13) of the cavity 12 composed of the frozen grounds 8 and 11 is in a self-supporting state.

次に、上記した凍結地盤表面13に施される断熱被覆構造について説明する。なお、図5は、断熱被覆構造を表した拡大断面図である。   Next, the heat insulation coating structure applied to the above frozen ground surface 13 will be described. FIG. 5 is an enlarged cross-sectional view showing the heat insulation coating structure.

図5に示すように、凍結地盤表面13に施される断熱被覆構造は、凍結地盤表面13に凍着材14を介して断熱材15が貼り付けられた構成からなっている。凍着材14および断熱材15は、それぞれ空洞12の内周面に沿って設置される平面状の部材であり、凍着材14は凍結地盤表面13に貼着され、この凍着材14の内側面(表面)に断熱材15が積層された構成となっている。   As shown in FIG. 5, the heat insulating covering structure applied to the frozen ground surface 13 has a configuration in which a heat insulating material 15 is attached to the frozen ground surface 13 via a freezing material 14. The freezing material 14 and the heat insulating material 15 are planar members respectively installed along the inner peripheral surface of the cavity 12, and the freezing material 14 is attached to the frozen ground surface 13. The heat insulating material 15 is laminated on the inner side surface (surface).

凍着材14は、凍結地盤表面13に当接させたときに、自己で保水している水が凍ることによって凍結地盤表面13に凍着されるものである。材質としては、合成樹脂や合成繊維、天然材料等、自己保水性があれば特にこだわるものではなく、形状としては、織布状、不織布状、スポンジ状であり、比較的薄いシート状のものが好適に使用される。この凍着材14の断熱材15への貼り付けでは、断熱材15の全面にするか或いは一部にするか、その貼り付け形態は、使用する現場の状況等に応じて適宜、使い分ければよい。
断熱材15としては、断熱性の他に可撓性のある平面状の部材が使用され、例えば、グラスウールやロックウール、発泡ポリウレタン、発泡ポリスチレン等が使用できるが、将来的に、断熱材15の内側に後述する覆工4が施工されて凍結地盤8,11の凍結状態が解除されたときに、断熱材15が潰れると地山が緩む虞があることを鑑みて、好ましくは、比較的に硬くて潰れ難い発泡ポリウレタン、発泡ポリスチレン等の断熱性合成樹脂発泡体が使用される。なお、断熱材15として、発泡ポリウレタン、発泡ポリスチレン等の断熱性合成樹脂発泡体を使用する場合は、その厚さが3〜4cm程度のものが使用され、グラスウールやロックウールを使用する場合は、その厚さが10cm程度のものが使用される。
When the freezing material 14 is brought into contact with the frozen ground surface 13, the frozen water is frozen on the frozen ground surface 13 by freezing the water retained by itself. The material is not particularly particular as long as it has self-water retention, such as synthetic resin, synthetic fiber, natural material, etc. The shape is woven, non-woven, sponge, and relatively thin sheet Preferably used. In attaching the freezing material 14 to the heat insulating material 15, the heat insulating material 15 may be applied to the entire surface or a part of the heat insulating material 15. Good.
As the heat insulating material 15, a flexible planar member is used in addition to heat insulating properties. For example, glass wool, rock wool, foamed polyurethane, foamed polystyrene, or the like can be used. In view of the possibility that the ground will loosen when the heat insulating material 15 is crushed when the lining 4 described later is applied and the frozen ground 8 and 11 are released from the frozen state, A heat-insulating synthetic resin foam such as foamed polyurethane and foamed polystyrene that is hard and hardly crushed is used. In addition, when using a heat insulating synthetic resin foam such as foamed polyurethane and foamed polystyrene as the heat insulating material 15, those having a thickness of about 3 to 4 cm are used, and when using glass wool or rock wool, Those having a thickness of about 10 cm are used.

次に、上記した構成からなる断熱被覆構造を凍結地盤表面13に施工する断熱被覆方法について説明する。   Next, the heat insulation coating method which constructs the heat insulation coating structure which consists of an above-described structure on the frozen ground surface 13 is demonstrated.

まず、断熱材15の表面に予め凍着材14を構成するシート材17(本実施の形態ではシート状の不織布とした)を付設させた断熱パネル16(被覆材)を成形する。具体的には、シート材17を2m角程度に切り分け、このシート材17を広げてその上に発泡ポリウレタン、発泡ポリスチレン等の断熱性合成樹脂発泡体(断熱材15)を上記所定の厚さに吹き付けることで、断熱パネル16を成形する。なお、この工程を現場で行って断熱パネル16を現場で成形させてもよく、或いは上記工程を工場で行って、成形された断熱パネル16を現場に搬入してもよい。また、断熱材15を成形品として、接着或いは溶着でシート材17を断熱材15に貼り付けるようにしてもよい。   First, a heat insulating panel 16 (covering material) in which a sheet material 17 (in this embodiment, a sheet-like non-woven fabric) constituting the freezing material 14 is previously attached to the surface of the heat insulating material 15 is formed. Specifically, the sheet material 17 is cut into about 2 m square, the sheet material 17 is spread, and a heat insulating synthetic resin foam (heat insulating material 15) such as polyurethane foam and polystyrene foam is formed on the sheet material 17 to the predetermined thickness. The heat insulation panel 16 is shape | molded by spraying. In addition, this process may be performed on-site and the heat insulation panel 16 may be shape | molded on-site, or the said process may be performed in a factory and the molded heat insulation panel 16 may be carried in to the field. Moreover, you may make it stick the sheet | seat material 17 to the heat insulating material 15 by adhesion | attachment or welding by using the heat insulating material 15 as a molded article.

次に、上記した断熱パネル16のシート材17側の面を水湿ししてシート材17に水を十分に含ませて保水させた後、当該シート材17側の面を凍結地盤表面13側にして該凍結地盤表面13に付着させた状態で、断熱パネル16を凍結地盤表面13に押し当てる。
上記した方法により、断熱パネル16を凍結地盤表面13に隙間無く貼着させることで、凍結地盤表面13に断熱被覆構造が設置される。
Next, the surface on the sheet material 17 side of the heat insulating panel 16 described above is wetted with water so that the sheet material 17 sufficiently contains water, and the surface on the sheet material 17 side is then frozen ground surface 13 side. Then, the heat insulating panel 16 is pressed against the frozen ground surface 13 in a state where it is adhered to the frozen ground surface 13.
By the above-described method, the heat insulation panel 16 is adhered to the frozen ground surface 13 without a gap, so that the heat insulating coating structure is installed on the frozen ground surface 13.

上記した断熱被覆構造が設置された後、図4に示すように、断熱被覆構造の内側に空洞12の内周面に沿って断面形状横長楕円状の覆工4を周知の工法によって施工する。   After the above-described heat insulation coating structure is installed, as shown in FIG. 4, a covering 4 having a cross-sectional shape that is horizontally long and elliptical is applied along the inner peripheral surface of the cavity 12 by a well-known method.

上記した構成からなる凍結地盤表面13の断熱被覆構造および凍結地盤表面13の断熱被覆方法によれば、シート材17の水が低温の凍結地盤によって直ぐに凍ることで、凍着材14は凍結地盤表面13に対して付着性能を発揮する。凍結地盤表面13に対して付着性能を発揮する凍着材14によって断熱材15が凍結地盤表面13に適当に貼着され、この断熱材15によって、凍結地盤表面13の融解が阻止されて凍結状態が維持される。このため、凍結地盤表面13の自立性を長期に亘って維持させることができるとともに、例えばコンクリート造の覆工4を打設するときに掘削面側の温度が低下しないので、覆工4の品質を向上させることができる。   According to the heat insulating covering structure of the frozen ground surface 13 and the heat insulating covering method of the frozen ground surface 13 having the above-described configuration, the water of the sheet material 17 is immediately frozen by the low temperature frozen ground, so that the freezing material 14 becomes the frozen ground surface. Adhesion performance is demonstrated with respect to 13. The heat insulating material 15 is appropriately attached to the frozen ground surface 13 by the freezing material 14 exhibiting the adhesion performance to the frozen ground surface 13, and the heat insulating material 15 prevents the frozen ground surface 13 from being melted and frozen. Is maintained. For this reason, the self-supporting property of the frozen ground surface 13 can be maintained over a long period of time, and the temperature on the excavation surface side does not decrease when, for example, a concrete lining 4 is placed, so the quality of the lining 4 Can be improved.

また、空洞12の断面形状の変形を解析すると、上記した断熱被覆構造のみを設置して支保構造を省略した場合における空洞12の天端面沈下量の増加は、従来の支保構造を設置する場合と比較して10%程度であるという結果が得られており、上記した断熱被覆構造を設置した場合は、鋼製支保工や吹付けコンクリートからなる支保構造を省略することができる。これによって、固化不良や劣化、ひび割れの虞がある吹付けコンクリートによって空洞12の内側を支持する必要がなく、地中に形成された空洞12の断面形状の変形を確実に低減させることができる。また、凍結地盤表面13は断熱材15で覆われた構成となるため、凍結地盤表面13の融解を阻止するために行う継続的な冷凍運転が不要となり、コストの低減を図ることができる。さらに、鋼製支保工や吹付けコンクリートからなる支保構造の組み立て作業がなくなるため、施工サイクルが大幅に短くなり、工期を1/2〜1/3程度まで短縮することができる。   Further, when the deformation of the cross-sectional shape of the cavity 12 is analyzed, when the support structure is omitted by installing only the above-described heat insulation coating structure, the increase in the amount of settlement of the top end surface of the cavity 12 is the case where the conventional support structure is installed. In comparison, a result of about 10% was obtained, and when the above-described heat insulating coating structure is installed, a support structure made of steel support or sprayed concrete can be omitted. Accordingly, there is no need to support the inside of the cavity 12 with shotcrete that may cause poor solidification, deterioration, or cracks, and deformation of the cross-sectional shape of the cavity 12 formed in the ground can be reliably reduced. Further, since the frozen ground surface 13 is covered with the heat insulating material 15, the continuous freezing operation for preventing the frozen ground surface 13 from being melted is unnecessary, and the cost can be reduced. Furthermore, since the assembly work of the support structure made of steel support work or shotcrete is eliminated, the construction cycle is significantly shortened, and the work period can be shortened to about 1/2 to 1/3.

なお、断熱パネル16は軽量であるため、凍着材14の全面が凍結地盤表面13に密着していなくても、凍結地盤表面13から剥がれ落ちることはなく、例え天井面であっても剥れ落ちることはない。   In addition, since the heat insulation panel 16 is lightweight, even if the entire surface of the freezing material 14 is not in close contact with the frozen ground surface 13, it does not fall off from the frozen ground surface 13, for example, even on the ceiling surface. Never fall.

また、シート材17の表面に予め断熱材15を付設させておき、シート材17が付設された断熱材15のシート材17側の面を水湿しした後、シート材17側の面を凍結地盤表面13側にして、シート材17が付設された断熱材15を凍結地盤表面13に押し当てるため、凍着材14および断熱材15を別々に設置する場合に比べて、空洞12内における作業が簡略化される。これによって、工期の短縮を図ることができる。   Further, a heat insulating material 15 is attached to the surface of the sheet material 17 in advance, and the surface on the sheet material 17 side of the heat insulating material 15 provided with the sheet material 17 is wetted, and then the surface on the sheet material 17 side is frozen. Since the heat insulating material 15 provided with the sheet material 17 is pressed against the frozen ground surface 13 on the ground surface 13 side, the work in the cavity 12 is performed as compared with the case where the freezing material 14 and the heat insulating material 15 are separately installed. Is simplified. As a result, the construction period can be shortened.

以上、本発明に係る凍結地盤表面の断熱被覆構造および凍結地盤表面の断熱被覆方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した実施の形態では、トンネルの分岐合流部の空洞12における凍結地盤表面13の断熱被覆構造および断熱被覆方法について説明したが、本発明は、立坑やトンネル、坑道、地下貯蔵施設等の大地下空間の壁面に適用してもよい。   As described above, the embodiment of the heat insulating coating structure on the frozen ground surface and the method of heat insulating coating on the frozen ground surface according to the present invention has been described, but the present invention is not limited to the above-described embodiment, and departs from the gist thereof. It is possible to change appropriately within the range not to be. For example, in the above-described embodiment, the heat insulating covering structure and the heat insulating covering method of the frozen ground surface 13 in the cavity 12 of the branch junction of the tunnel have been described. However, the present invention can be applied to shafts, tunnels, tunnels, underground storage facilities, and the like. You may apply to the wall of a large underground space.

また、上記した実施の形態では、断熱被覆構造を施工する際、シート材17の表面に予め断熱材15を付設させて断熱パネル16を成形しておき、この断熱パネル16のシート材17側の面を水湿しした後、シート材17側の面を凍結地盤表面13側にして、シート材17が付設された断熱材15を凍結地盤表面13に押し当てているが、本発明は、パネル状の被覆材(シート材の表面に予め断熱材を付設させたもの)でなくてもよく、たとえば帯状の被覆材を凍結地盤表面に押し当てる構成であってもよい。さらに、本発明に係る請求項1記載の断熱被覆構造や請求項2記載の断熱被覆方法は、凍着材を凍結地盤の表面に貼り付けた後、その凍着材の表面に断熱材を吹き付け、或いは貼着させることで断熱被覆構造を形成してもよい。   Moreover, in above-mentioned embodiment, when constructing a heat insulation coating structure, the heat insulating material 15 is previously attached to the surface of the sheet material 17, the heat insulating panel 16 is shape | molded, and the sheet material 17 side of this heat insulating panel 16 is provided. After the surface is wetted with water, the surface on the sheet material 17 side is set to the frozen ground surface 13 side, and the heat insulating material 15 provided with the sheet material 17 is pressed against the frozen ground surface 13. For example, a belt-shaped covering material may be pressed against the surface of the frozen ground. Furthermore, in the heat insulation coating structure according to claim 1 and the heat insulation coating method according to claim 2 according to the present invention, after the freezing material is attached to the surface of the frozen ground, the heat insulating material is sprayed on the surface of the freezing material. Or you may form a heat insulation coating structure by making it stick.

本発明の実施形態におけるトンネル工法の概要を示す図である。It is a figure which shows the outline | summary of the tunnel construction method in embodiment of this invention. 本発明の実施形態における分岐合流部の平面図である。It is a top view of the branch merge part in the embodiment of the present invention. 図2に示すA−A間の断面図である。It is sectional drawing between AA shown in FIG. 図2に示すB−B間の断面図である。It is sectional drawing between BB shown in FIG. 本発明の実施形態における断熱被覆構造および断熱被覆方法を表す拡大図である。It is an enlarged view showing the heat insulation coating structure and the heat insulation coating method in embodiment of this invention.

符号の説明Explanation of symbols

12 空洞
13 凍結地盤表面
14 凍着材
15 断熱材
17 シート材
12 Cavity 13 Frozen Ground Surface 14 Freezing Material 15 Heat Insulating Material 17 Sheet Material

Claims (3)

地中空洞の周囲に形成された凍結地盤の表面に、自己の保水により凍結地盤表面に凍着する凍着材を介して、断熱材が貼り付けられていることを特徴とする凍結地盤表面の断熱被覆構造。   The surface of the frozen ground formed by the surface of the frozen ground formed around the underground cavity is bonded to the surface of the frozen ground by freezing the surface of the frozen ground by its own water retention. Thermal insulation coating structure. 地中空洞の周囲に形成された凍結地盤の表面に、保水性を有する凍着材に保水させて凍結地盤表面に凍着させることで、凍着材を介して、断熱材を貼り付けることを特徴とする凍結地盤表面の断熱被覆方法。   The surface of the frozen ground formed around the underground cavity is water-fitted with a water-frozen freezing material and freeze-frozen on the frozen ground surface, so that the heat insulating material is pasted through the freezing material. A heat insulating coating method for a frozen ground surface, which is characterized. 請求項1記載の凍結地盤表面の断熱被覆方法において、
断熱材に凍着材を予め付設させておくことを特徴とする凍結地盤表面の断熱被覆方法。
In the heat insulation coating method of the frozen ground surface of Claim 1,
A method for heat insulating coating of a frozen ground surface, wherein a freeze-fitting material is attached to the heat insulating material in advance.
JP2005166997A 2005-06-07 2005-06-07 Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface Pending JP2006342518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166997A JP2006342518A (en) 2005-06-07 2005-06-07 Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166997A JP2006342518A (en) 2005-06-07 2005-06-07 Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface

Publications (1)

Publication Number Publication Date
JP2006342518A true JP2006342518A (en) 2006-12-21

Family

ID=37639679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166997A Pending JP2006342518A (en) 2005-06-07 2005-06-07 Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface

Country Status (1)

Country Link
JP (1) JP2006342518A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156907A (en) * 2006-12-25 2008-07-10 Shimizu Corp Construction method for underground cavern
JP2008308907A (en) * 2007-06-15 2008-12-25 Shimizu Corp Tunnel construction method
JP2010248758A (en) * 2009-04-14 2010-11-04 Taisei Corp Hollow pipe body and tunnel construction method using the same
CN106150529A (en) * 2016-08-01 2016-11-23 绍兴文理学院 A kind of heat insulation preliminary bracing structure in tunnel, Permafrost Area
JP2017166211A (en) * 2016-03-16 2017-09-21 ケミカルグラウト株式会社 Freezing method
JP2018127839A (en) * 2017-02-09 2018-08-16 戸田建設株式会社 Arrangement structure of frozen ducts and water stop method of the ground
CN109372558A (en) * 2018-12-27 2019-02-22 中水电四局武汉轨道交通工程有限公司 A kind of construction method of subway large section tunnel tunneling support replacement and main structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818000A (en) * 1982-03-18 1983-02-02 シオン・樹脂工業株式会社 Method and apparatus for preventing freezing in tunnel
JPH0332307U (en) * 1989-08-04 1991-03-28
JPH04120317A (en) * 1990-09-11 1992-04-21 Taisei Corp Cryogenic pre-freezing method for frozen type underground lng tank
JPH09123162A (en) * 1995-10-27 1997-05-13 Tokyo Seimitsu Co Ltd Device for holding work of wire saw
JPH09123163A (en) * 1995-10-27 1997-05-13 Tokyo Seimitsu Co Ltd Device for holding work of wire saw
JP2001085715A (en) * 1999-09-09 2001-03-30 Canon Inc Isolation method of semiconductor layer and manufacturing method of solar battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818000A (en) * 1982-03-18 1983-02-02 シオン・樹脂工業株式会社 Method and apparatus for preventing freezing in tunnel
JPH0332307U (en) * 1989-08-04 1991-03-28
JPH04120317A (en) * 1990-09-11 1992-04-21 Taisei Corp Cryogenic pre-freezing method for frozen type underground lng tank
JPH09123162A (en) * 1995-10-27 1997-05-13 Tokyo Seimitsu Co Ltd Device for holding work of wire saw
JPH09123163A (en) * 1995-10-27 1997-05-13 Tokyo Seimitsu Co Ltd Device for holding work of wire saw
JP2001085715A (en) * 1999-09-09 2001-03-30 Canon Inc Isolation method of semiconductor layer and manufacturing method of solar battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156907A (en) * 2006-12-25 2008-07-10 Shimizu Corp Construction method for underground cavern
JP2008308907A (en) * 2007-06-15 2008-12-25 Shimizu Corp Tunnel construction method
JP2010248758A (en) * 2009-04-14 2010-11-04 Taisei Corp Hollow pipe body and tunnel construction method using the same
JP2017166211A (en) * 2016-03-16 2017-09-21 ケミカルグラウト株式会社 Freezing method
CN106150529A (en) * 2016-08-01 2016-11-23 绍兴文理学院 A kind of heat insulation preliminary bracing structure in tunnel, Permafrost Area
JP2018127839A (en) * 2017-02-09 2018-08-16 戸田建設株式会社 Arrangement structure of frozen ducts and water stop method of the ground
JP7043123B2 (en) 2017-02-09 2022-03-29 戸田建設株式会社 Freezing pipe placement structure and ground water stoppage method
CN109372558A (en) * 2018-12-27 2019-02-22 中水电四局武汉轨道交通工程有限公司 A kind of construction method of subway large section tunnel tunneling support replacement and main structure

Similar Documents

Publication Publication Date Title
JP4793655B2 (en) Tunnel construction method
JP2006342518A (en) Insulation coating structure of frozen ground surface, and insulation coating method for frozen ground surface
JP4803428B2 (en) Tunnel construction method
JP4803429B2 (en) Construction method of underground cavity
JP4958035B2 (en) Shield roof construction method
KR101665515B1 (en) Direct-boring pipe roof tunnel construction method and structure non-cutting natural ground
JP5316894B2 (en) Shield roof construction method
JP5302746B2 (en) Hollow tube and tunnel construction method using the same
JP6733862B2 (en) Construction method of the underground widening part
JP4771170B2 (en) Construction method of underground cavity
CN205013018U (en) Severe cold district tunnel portal section waterproof heat -insulating layer construction structures
JP6127193B1 (en) Construction method of large section underground structure
JP4730595B2 (en) Construction method of underground cavity
JP4228311B2 (en) Tunnel construction method
JP2011080241A (en) Construction method of tunnel
JP6257814B1 (en) Construction method of large section underground structure
JP6764512B1 (en) How to build an underground structure
JP6624441B2 (en) Construction method of the wall
JPH06102957B2 (en) Underground joining method of shield tunnel
JP4376770B2 (en) Construction method of shield tunnel fork or junction
JP7021419B2 (en) Construction method of underground widening part
JP6062098B1 (en) Construction method of large section underground structure
JP3765048B2 (en) How to build a tunnel
JP2742026B2 (en) Underground tunnel joining method and segment
JP6764513B1 (en) How to build an underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615