JP2007217911A - Construction method of underground cavity and tunnel construction method - Google Patents

Construction method of underground cavity and tunnel construction method Download PDF

Info

Publication number
JP2007217911A
JP2007217911A JP2006037921A JP2006037921A JP2007217911A JP 2007217911 A JP2007217911 A JP 2007217911A JP 2006037921 A JP2006037921 A JP 2006037921A JP 2006037921 A JP2006037921 A JP 2006037921A JP 2007217911 A JP2007217911 A JP 2007217911A
Authority
JP
Japan
Prior art keywords
shield
roof
tunnel
roof shield
tunnels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006037921A
Other languages
Japanese (ja)
Other versions
JP4803429B2 (en
Inventor
Koichi Hamaguchi
幸一 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006037921A priority Critical patent/JP4803429B2/en
Publication of JP2007217911A publication Critical patent/JP2007217911A/en
Application granted granted Critical
Publication of JP4803429B2 publication Critical patent/JP4803429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently construct a branch confluent part in an underground cavity and a tunnel. <P>SOLUTION: A plurality of roof shield tunnels 6 are constructed outside a construction expected position of the underground cavity in a state of being arranged at a predetermined interval. A shield roof forepoling 3 is constructed for surrounding the construction expected position. An improved zone is formed in a joining expected position between adjacent roof shield tunnels from the inside of the respective roof shield tunnels. The underground cavity is constructed by excavating its inside by precedently constructing a series of permanent lining walls 4 for joining the mutual adjacent roof shield tunnels between the respective roof shield tunnels and in the roof shield tunnels. The underground cavity being the branch confluence part in a road tunnel is constructed by the construction method. The improved zone is formed as a freezing zone 8 by a freezing construction method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は地中に空洞やトンネルを施工するための工法に係わり、特にたとえば大深度・大断面の道路トンネルの構築に際してその分岐合流部を施工するために適用して好適な工法に関する。   The present invention relates to a construction method for constructing cavities and tunnels in the ground, and more particularly to a construction method suitable for application to constructing a branching junction when constructing a road tunnel having a large depth and a large cross section.

周知のように、トンネルを構築するためのトンネル工法としてはNATM(New Austrian Tunneling Method)あるいはシールド工法が代表的であるが、未固結地盤の都市圏における道路トンネルの施工に際しては、地表および地中の既存構造物に対する悪影響を回避するべく地山に対する高度の支保性能が要求され、また施工中および完成後の止水性能と地下水保全性能が高度に要求されることから、シールド工法の採用が最も一般的である。
また、近年においては様々な新工法も提案され、たとえば特許文献1には本坑掘削に先立って導坑から人工地山アーチを先行施工するという鯨骨工法(WBR工法)が提案されている。
特開平11−159275号公報
As is well known, NATM (New Austrian Tunneling Method) or shield method is a typical tunneling method for constructing a tunnel, but when constructing road tunnels in urban areas with unconsolidated ground, In order to avoid adverse effects on existing structures inside, high support performance for ground is required, and water stoppage performance and groundwater conservation performance during construction and after completion are highly required. The most common.
In recent years, various new construction methods have been proposed. For example, Patent Document 1 proposes a whale bone construction method (WBR construction method) in which an artificial ground arch is pre-constructed from a guide shaft prior to excavation of a main mine.
JP-A-11-159275

ところで、道路トンネルをシールド工法により施工するに際しては本線トンネルの他にランプトンネルを設け、それら双方のトンネルを要所にて接合して分岐合流部を施工する必要があるが、そのような分岐合流部の施工は必ずしも容易ではない。
すなわち、本線トンネルおよびランプトンネルはそれぞれ在来のシールド工法により地山を安定に支保し、また止水性を確保しつつ支障なく施工できるが、分岐合流部では断面を漸次変化させつつ双方のシールドトンネルどうしを接合する必要があることから、分岐合流部の施工に際しては在来のシールド工法をそのまま適用できるものではなく、何らかの補助工法の採用が不可欠である。
By the way, when constructing a road tunnel by the shield method, it is necessary to install a ramp tunnel in addition to the main tunnel, and join both tunnels at important points to construct a branch junction. Construction of the part is not always easy.
In other words, the main tunnel and the ramp tunnel can be constructed without hindrance while maintaining stable ground and securing water sealing by the conventional shield method, but both shield tunnels are gradually changed in cross section at the branch junction. Since it is necessary to join each other, the conventional shield method cannot be applied as it is in the construction of the branch and junction part, and it is indispensable to adopt some kind of auxiliary method.

そのため、分岐合流部の施工に際してたとえば特許文献1に示される鯨骨工法を適用することも考えられるが、その鯨骨工法のようにセメント系注入材による人工地山アーチを単に分岐合流部の施工予定位置の上方に造成することのみでは、必ずしも万全の支保効果が得られないことも想定される。   For this reason, it is conceivable to apply, for example, the whale skeleton method disclosed in Patent Document 1 at the time of construction of the branch junction. It is also assumed that the full support effect cannot always be obtained only by creating it above.

上記事情に鑑み、本発明はシールド工法によるトンネル施工に際してその分岐合流部を効率的に施工することが可能であることはもとより、そのような分岐合流部のみならず各種用途の大規模な地中空洞を施工する場合一般に広く適用することが可能な有効適切な工法を提供することを目的とする。   In view of the above circumstances, the present invention is not only capable of efficiently constructing the branch / merging portion in tunnel construction by the shield method, but also in the large-scale underground for various uses as well as such a branch / merging portion. An object of the present invention is to provide an effective and appropriate method that can be widely applied in general when constructing a cavity.

請求項1の発明の地中空洞の施工方法は、地中を掘削して地中空洞を施工するに際し、 地中空洞の施工予定位置の外側に、複数のルーフシールドトンネルを所定間隔で配列した状態で施工して、施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、該改良ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、該本設覆工壁の内側を掘削して地中空洞を完成させることを特徴とする。   In the underground cavity construction method according to the first aspect of the present invention, when excavating the underground and constructing the underground cavity, a plurality of roof shield tunnels are arranged at predetermined intervals outside the planned construction position of the underground cavity. Construction of a shield roof tip receiving construction that surrounds the planned construction position is performed, and an improvement zone is formed from the inside of the roof shield tunnel to a joint planned position between adjacent roof shield tunnels. After excavating between the matching roof shield tunnels, a series of permanent lining walls that join adjacent roof shield tunnels between each roof shield tunnel and in each roof shield tunnel are pre-constructed, and then the permanent lining It is characterized by excavating the inside of the wall to complete the underground cavity.

請求項2の発明のトンネル工法は、上記の地中空洞の施工方法をシールド工法による複数のシールドトンネルどうしの分岐合流部の施工に適用するものであって、施工するべき分岐合流部の外側に、その延長方向に沿う複数のルーフシールドトンネルを分岐合流部の輪郭に沿って所定間隔で配列した状態で施工して、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、該改良ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、該本設覆工壁の内側を掘削して分岐合流部を完成させることを特徴とする。   The tunnel construction method of the invention of claim 2 applies the construction method of the above-mentioned underground cavity to the construction of the branching / merging portion between a plurality of shield tunnels by the shield construction method, and is provided outside the branching / merging portion to be constructed. The construction of a plurality of roof shield tunnels extending along the extension direction in a state of being arranged at predetermined intervals along the outline of the branch merge section, constructing a shield roof tip receiving work surrounding the planned construction position of the branch merge section, From the inside of the roof shield tunnel, an improved zone is formed at a position where the adjacent roof shield tunnels are to be joined, and the adjacent roof shield tunnels are excavated in the improved zone, between the roof shield tunnels and in each roof shield tunnel. Next, after constructing a series of permanent lining walls that join adjacent roof shield tunnels together, Characterized in that to complete the branching and joining portion by drilling inside the factory walls.

請求項3の発明は、上記のトンネル工法を道路トンネルにおける分岐合流部の施工に適用するものであって、本線シールドトンネルよりもランプシールドトンネルを先行掘進して、ランプシールドトンネルが分岐合流部の施工予定位置に少なくとも達するまで掘進して停止させ、該ランプシールドトンネルの先端部付近からルーフシールド機を発進させて、施工するべき分岐合流部の外側に、その延長方向に沿う多数のルーフシールドトンネルを分岐合流部の輪郭に沿って所定間隔で配列した状態で施工することにより、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーンを形成し、該凍結ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工し、本線シールドトンネルを掘進してその内側を通過させ、前記本設覆工壁の内側を掘削して分岐合流部を完成させることを特徴とする。   The invention of claim 3 applies the above tunneling method to the construction of the branch junction in the road tunnel, and advances the lamp shield tunnel ahead of the main shield tunnel so that the lamp shield tunnel A number of roof shield tunnels extending along the extension direction outside the branching junction to be constructed by digging and stopping until reaching the planned construction position at least, starting the roof shield machine from the vicinity of the tip of the lamp shield tunnel Is constructed in a state of being arranged at predetermined intervals along the outline of the branch and merge section, thereby constructing a shield roof tip receiving work that surrounds the planned construction position of the branch and merge section, and the adjacent roof from the inside of the roof shield tunnel. A freezing zone is formed at a position where the shield tunnel is to be joined, and adjacent to each other in the freezing zone Excavation between roof shield tunnels, a series of permanent lining walls that join adjacent roof shield tunnels between each roof shield tunnel and in each roof shield tunnel are pre-established, and the main shield tunnel is excavated. And the inside of the permanent lining wall is excavated to complete the branching junction.

請求項1の発明の地中空洞の施工方法によれば、地中空洞の掘削に先だってその施工予定位置をシールドルーフ先受工で取り囲み、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、改良ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、その先行覆工壁の内側を掘削して地中空洞を完成させるので、地山に対する充分な支保性能や止水性能を確保しつつ地中空洞を安全かつ効率的に掘削し施工することが可能であり、地表あるいは地中の既存構造物に対する万全な沈下防止と周辺の地下水保全を図ることができる。
特に、シールドルーフ先受工は複数のルーフシールドトンネルを所定間隔で配列した構造であるので、大規模な先受工としての所望剛性を充分に確保できることはもとより、その施工は在来のシールド工法により容易にかつ精度良く施工できるものであるし、施工するべき地中空洞の形態や規模に応じてルーフシールドトンネルの本数やその配列を設定することによって、最適な形態、構造のシールドルーフ先受工を自由に構築することができる。
しかも、各ルーフシールドトンネル内からその周囲地山を改良して改良ゾーンを形成した後、さらにその改良ゾーンを掘削してそこに本設覆工壁を先行施工するので、地中空洞の掘削に際してはシールドルーフ先受工と本設覆工壁の全体とによって万全の支保効果が得られる。
According to the underground cavity construction method of the first aspect of the present invention, prior to excavation of the underground cavity, the construction planned position is surrounded by the shield roof tip receiving work, and an improved zone is formed at the joint position between adjacent roof shield tunnels. Then, excavation was conducted between adjacent roof shield tunnels in the improved zone, and a series of main lining walls were joined in advance between each roof shield tunnel and in each roof shield tunnel. Later, the inside of the preceding lining wall is excavated to complete the underground cavity, so that the underground cavity can be excavated and constructed safely and efficiently while ensuring sufficient support performance and water stoppage performance for the natural ground. It is possible to prevent subsidence on the surface or existing structures in the ground and conserve the surrounding groundwater.
In particular, the shield roof tip construction has a structure in which a plurality of roof shield tunnels are arranged at a predetermined interval, so that the desired rigidity as a large-scale prior construction can be sufficiently secured, and the construction is a conventional shield construction method. The number of roof shield tunnels and their arrangement can be set according to the shape and scale of the underground cavity to be constructed. You can build your work freely.
Furthermore, after improving the surrounding ground from each roof shield tunnel to form an improved zone, the improved zone is excavated and the main lining wall is pre-constructed there, so when excavating the underground cavity With the shield roof tip construction and the whole lining wall, the full support effect can be obtained.

請求項2の発明のトンネル工法によれば、上記の施工方法をトンネルの分岐合流部としての地中空洞を施工する場合に適用し、上記と同様にその分岐合流部の予定位置を取り囲むようにシールドルーフ先受工を形成し、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、シールドルーフ先受工の端部にも改良ゾーンを形成したうえで本設覆工壁を先行施工し、その内側を掘削して分岐合流部を完成させるので、万全の支保性能や止水性能を確保でき、分岐合流部を安全かつ効率的に施工することが可能である。   According to the tunnel construction method of the invention of claim 2, the above construction method is applied to the case of constructing an underground cavity as a branch merging portion of the tunnel, so that the planned position of the branch merging portion is surrounded similarly to the above. Form a shield roof tip receiving construction, form an improvement zone at the planned joining position between adjacent roof shield tunnels, form an improvement zone at the end of the shield roof tip receiving construction, and then construct the main lining wall in advance And since the inside of the branch is excavated to complete the branch and merge part, it is possible to ensure the full support performance and water stop performance, and to construct the branch and merge part safely and efficiently.

請求項3の発明のトンネル工法によれば、上記のトンネル工法を道路トンネルの施工に適用するに際して、ランプシールドトンネルを本線シールドトンネルに先行させ、ランプシールドトンネルが分岐合流部の施工予定位置に達した時点でそこからシールドルーフ先受工の施工に着手することにより、それとの並行作業により本線シールドトンネルの掘進を行うこともできるので最も効率的な施工が可能である。また、改良ゾーンを凍結工法による凍結ゾーンとして形成するので、地盤改良品質が安定向上し、したがって改良範囲を小さくでき、コスト削減や工期短縮に寄与できる。さらに、分岐合流部の掘削に先立って本設覆工壁を先行施工するので、分岐合流部の施工に関わる全体工期の短縮と工費軽減を図ることができ、都市圏における大深度・大断面トンネルの施工に適用して最適である。   According to the tunnel construction method of the invention of claim 3, when the above tunnel construction method is applied to the construction of the road tunnel, the lamp shield tunnel is preceded by the main shield tunnel, and the lamp shield tunnel reaches the planned construction position of the branch junction. At that time, by starting construction of the shield roof tip construction from there, it is possible to dig the main shield tunnel by parallel work with it, so the most efficient construction is possible. Moreover, since the improvement zone is formed as a freezing zone by a freezing method, the ground improvement quality is stably improved, and therefore the improvement range can be reduced, which can contribute to cost reduction and shortening of the construction period. In addition, the main lining wall is pre-constructed prior to excavation of the junction and junction, so the overall construction period and construction cost for the junction and junction can be shortened. It is most suitable to be applied to construction.

本発明のトンネル工法を未固結地盤の都市圏における大深度・大断面の道路トンネルの施工に適用する場合の一実施形態を図1〜図9を参照して説明する。
本実施形態では、図1〜図2にその概要を示すように、本線シールドトンネル1とランプシールドトンネル2とをいずれも在来のシールド工法により施工するとともに、それらの分岐合流部には予めシールドルーフ先受工3と凍結ゾーン(改良ゾーン)8を施工したうえで本設覆工壁4を先行施工していき、その内側を掘削することで分岐合流部となる地中空洞を掘削することを主眼とするものである。
なお、本実施形態では本線シールドトンネル1の直径がたとえば16m程度、ランプシールドトンネル2の直径がたとえば11m程度であることを想定している。また、本実施形態における分岐合流部の全体の断面形状は、図2〜図3に示されるように手前側(図3(a)参照)から前方側(図3(b)参照)に向かって漸次縮小するような横長楕円形状とされ、上述のように本実施形態ではそのような分岐合流部の断面形状に合致する本設覆工壁4を内部の掘削に先立って先行施工することを主眼とするものである。
One embodiment when the tunnel construction method of the present invention is applied to construction of a road tunnel having a large depth and a large section in an urban area of unconsolidated ground will be described with reference to FIGS.
In this embodiment, as shown in FIG. 1 to FIG. 2, the main shield tunnel 1 and the lamp shield tunnel 2 are both constructed by a conventional shield method, and shields are provided in advance at the junctions of these branches. After constructing the roof tip receiving work 3 and the freezing zone (improving zone) 8, constructing the main lining wall 4 in advance, and excavating the inside to excavate the underground cavity that becomes the branching junction Is the main focus.
In the present embodiment, it is assumed that the diameter of the main shield tunnel 1 is about 16 m, for example, and the diameter of the lamp shield tunnel 2 is about 11 m, for example. In addition, as shown in FIGS. 2 to 3, the overall cross-sectional shape of the branching / merging portion in the present embodiment is from the front side (see FIG. 3A) to the front side (see FIG. 3B). In this embodiment, as described above, the main lining wall 4 that matches the cross-sectional shape of such a branching / merging portion is preliminarily constructed prior to excavation inside. It is what.

具体的には、本実施形態においては本線シールドトンネル1よりもランプシールドトンネル2を先行掘進し、図2に示すようにランプシールドトンネル2が分岐合流部の施工予定位置に達した時点で(あるいは分岐合流部に所定距離進入した時点で)掘進を停止させる。そして、ランプシールドトンネル2の先端部付近の側壁部からルーフシールド機5を発進させ、分岐合流部の施工予定位置の外側に複数(図示例では16本)のルーフシールドトンネル6を分岐合流部の輪郭に沿って所定間隔で配列した状態で施工し、それら複数のルーフシールドトンネル6の全体によって上記のシールドルーフ先受工3を構成するものである。   Specifically, in the present embodiment, the lamp shield tunnel 2 is advanced ahead of the main shield tunnel 1, and when the lamp shield tunnel 2 reaches the planned construction position of the branch and merge section as shown in FIG. 2 (or The excavation is stopped (when a predetermined distance has been entered into the junction). And the roof shield machine 5 is started from the side wall part near the front-end | tip part of the lamp shield tunnel 2, and plural (16 in the illustrated example) roof shield tunnels 6 are arranged outside the planned construction position of the branch joint part. Construction is carried out in a state of being arranged at predetermined intervals along the contour, and the shield roof tip receiving work 3 is constituted by the entirety of the plurality of roof shield tunnels 6.

それらルーフシールドトンネル6の間隔とその配列は、後工程により形成する凍結ゾーン8(あるいは薬液による改良ゾーン)が、隣り合うルーフシールドトンネル6間で周辺地山に対する支保機能および止水機能を有効に発揮し得るように地盤条件等を勘案して設定するものであり、本実施形態では図3に示したようにそれら16本のルーフシールドトンネル6を分岐合流部の輪郭に沿って充分に密に配列している。   The interval between the roof shield tunnels 6 and the arrangement thereof are such that the freezing zone 8 (or the improvement zone by chemical solution) formed in the subsequent process effectively supports the surrounding natural ground between adjacent roof shield tunnels 6 and the water stop function. In this embodiment, the 16 roof shield tunnels 6 are sufficiently densely arranged along the contour of the branch / merging portion as shown in FIG. Arranged.

各ルーフシールドトンネル6は、小径(たとえば直径4m程度)のルーフシールド機5を図2に示すようにランプシールドトンネル2の先端部付近のトンネル側壁部から発進させた後に、前方に向けて旋回させて分岐合流部の延長方向(トンネル軸方向)に沿うように施工されるものであるが、本実施形態では上述のように分岐合流部は前方に向かって漸次断面形状が縮小されていくことから、図2〜図3に示すように分岐合流部の断面形状に対応して各ルーフシールドトンネル6の相互間隔も前方にいくほど狭めていって、シールドルーフ先受工3の全体形状を全体として先細り形状としている。   Each of the roof shield tunnels 6 starts the roof shield machine 5 having a small diameter (for example, about 4 m in diameter) from the tunnel side wall near the tip of the lamp shield tunnel 2 as shown in FIG. However, in this embodiment, as described above, the cross-sectional shape of the branching / merging portion is gradually reduced toward the front as described above. As shown in FIG. 2 to FIG. 3, the mutual interval between the roof shield tunnels 6 is narrowed toward the front corresponding to the cross-sectional shape of the branch and merge part, and the overall shape of the shield roof tip receiver 3 as a whole is reduced. It has a tapered shape.

各ルーフシールドトンネル6の施工に際しては、ルーフシールド機5を1台ないし数台程度用意し、それをランプシールドトンネル2から順次発進させていき、分岐合流部の先端部に達したらスキンプレートおよびカッター装置等の外殻装置を残置して内部装置のみを回収し、回収した内部装置をランプシールドトンネル2内、もしくは地上ヤードにおいて新たな外殻装置に組み込むことで新たなルーフシールド機5を組み立て、それを再び発進させれば良い。たとえば、本実施形態では全16本のルーフシールドトンネル6を設けることから、4台のルーフシールド機5を用意してそれぞれ4回ずつ転用することが考えられる。
勿論、可能であれば全てのルーフシールドトンネル6をそれぞれ独立のルーフシールド機5により同時に施工することでも良いし、あるいは、分岐合流部の先端部に達したルーフシールド機5をそこからUターンさせて他のルーフシールドトンネル6を逆方向に連続的に施工することも考えられる。
また、ランプシールドトンネル2の側壁部からルーフシールド機5を発進させるための手法としては、在来のシールドトンネルの側壁部からのシールド機の発進手法、および在来のシールドトンネルどうしのT字接合技術をそのまま採用可能である。
When constructing each roof shield tunnel 6, prepare one or several roof shield machines 5, start them sequentially from the lamp shield tunnel 2, and when they reach the tip of the branch junction, the skin plate and cutter Assembling a new roof shield machine 5 by leaving the outer shell device such as a device and collecting only the inner device, and incorporating the collected inner device into the new outer shell device in the lamp shield tunnel 2 or on the ground yard, Just start it again. For example, in this embodiment, since all 16 roof shield tunnels 6 are provided, it is conceivable that four roof shield machines 5 are prepared and diverted four times each.
Of course, if possible, all the roof shield tunnels 6 may be simultaneously constructed by independent roof shield machines 5, or the roof shield machine 5 that has reached the tip of the branching junction is U-turned from there. It is also conceivable to continuously construct another roof shield tunnel 6 in the opposite direction.
Further, as a method for starting the roof shield machine 5 from the side wall portion of the lamp shield tunnel 2, a method for starting the shield machine from the side wall portion of the conventional shield tunnel and a T-junction between the conventional shield tunnels are used. The technology can be used as it is.

上記のシールドルーフ先受工3の施工後、隣り合うルーフシールドトンネル間接合予定位置を含むその周囲に凍結工法による地山改良手段としての凍結管を図3〜図4に示すように設置して凍結ゾーン8を形成する。この地山改良手段としての凍結ゾーン8の具体的な形成時期は、全16本のルーフシールドトンネル6の施工が完了している必要はなく、ルーフシールドトンネル6が隣り合って施工されているところがあれば、その施工がされているところから順次形成していくようにすれば良い。
その具体的な施工方法としては、各ルーフシールドトンネル6の内部からそれに隣り合っているルーフシールドトンネル6の上部および下部に向けてそれぞれ斜め後方(斜め前方でも良い)に長尺の放射凍結管9aをたとえば1m程度の間隔で密に多数打ち込むとともに、各ルーフシールドトンネル6内には埋込凍結管9bを取り付け、それらの凍結管によって周囲地山を凍結させることによって、シールドルーフ先受工3の内外の全体を覆うような凍結ゾーン8を形成する。凍結ゾーン8の厚みは地山状況やルーフシールドトンネル6間の間隔等を考慮して設定すれば良いが、たとえば1m程度で充分である。
凍結管9aを斜め方向に打設するのは、ルーフシールドトンネル6に対して直交方向に打設する場合に比して1本あたりの打設長さは長くなるが、一方でルーフシールドトンネル6からの打設間隔が大きくなるために打設本数が少なくなるので、結果的に施工効率が良くなりコスト低減が図れるからである。
After the construction of the shield roof tip receiver 3, a freezing pipe as a ground improvement means by a freezing method is installed around it including the position where the adjacent roof shield tunnel is to be joined as shown in FIGS. Freezing zone 8 is formed. The concrete formation time of the freezing zone 8 as the natural ground improvement means does not require that the construction of all 16 roof shield tunnels 6 is completed, but the roof shield tunnels 6 are constructed adjacent to each other. If there is, it should be formed sequentially from the place where it is constructed.
As a specific construction method thereof, a long radiation freezing tube 9a is obliquely rearward (or may be obliquely forward) from the inside of each roof shield tunnel 6 toward the upper and lower portions of the roof shield tunnel 6 adjacent thereto. For example, by installing a large number of buried freezing pipes 9b in each roof shield tunnel 6 and freezing the surrounding ground with these freezing pipes, A freezing zone 8 is formed so as to cover the entire inside and outside. The thickness of the freezing zone 8 may be set in consideration of ground conditions, the distance between the roof shield tunnels 6 and the like, but for example, about 1 m is sufficient.
Placing the freezing tube 9a in an oblique direction is longer in the length per one than in the case where it is placed in the direction orthogonal to the roof shield tunnel 6, but on the other hand, the roof shield tunnel 6a. This is because the number of placements is reduced because the distance between placements is increased, resulting in improved construction efficiency and cost reduction.

そして、図5に示すようにシールドルーフ先受工3の手前側の端部に対しては、ルーフシールドトンネル6内からその内側の地山に妻部凍結管9cを打ち込んでランプシールドトンネル2および本線シールドトンネル1の周囲を凍結させることにより、分岐合流部の手前側(大径側)の妻部の位置にその周囲の凍結ゾーン8と一体に妻部凍結ゾーン10を形成する。
なお、分岐合流部の前方側(小径側)の妻部に対しては、図3(b)に示したように上記の凍結ゾーン8を本線シールドトンネル1の周囲にも形成することで充分であるが、必要であればそこにも上記と同様に妻部凍結管9cを打ち込んで妻部凍結ゾーン10をさらに形成することでも良い。
また、上記のような凍結工法による凍結ゾーン8を形成することに代えて、薬液注入による地盤改良による改良ゾーンを形成することでも良く、その場合には凍結管に代えて薬液注入管を打ち込めば良い。
Then, as shown in FIG. 5, the end portion on the near side of the shield roof tip receiving work 3 is driven into the ground mountain on the inner side from the roof shield tunnel 6 by inserting the wife frozen tube 9c into the lamp shield tunnel 2 and By freezing the periphery of the main line shield tunnel 1, the end portion freezing zone 10 is formed integrally with the surrounding freezing zone 8 at the position of the end portion on the near side (large diameter side) of the branch and merge portion.
Note that it is sufficient to form the above-mentioned freezing zone 8 also around the main shield tunnel 1 as shown in FIG. However, if necessary, the wife frozen zone 10 may be further formed by driving the wife frozen tube 9c into the same as described above.
Further, instead of forming the freezing zone 8 by the freezing method as described above, an improved zone by ground improvement by chemical solution injection may be formed. In this case, if a chemical solution injection tube is driven instead of the freezing tube good.

以上により、分岐合流部の施工位置で、少なくとも隣り合うルーフシールド間の接合予定位置に凍結ゾーン8が形成されるので、その接合予定位置の安定性が増すとともに止水性も確保される。そこで、接合予定位置でルーフシールドトンネル6どうしを連結する形態で分岐合流部の本設覆工壁4を先行施工する。   As described above, since the freezing zone 8 is formed at the joint position between the adjacent roof shields at the construction position of the branch joint part, the stability of the joint position is increased and the water stoppage is secured. Therefore, the main lining wall 4 of the branching / merging portion is preliminarily constructed in such a form that the roof shield tunnels 6 are connected to each other at a planned joining position.

すなわち、図1に示されているようにルーフシールドトンネル6のセグメントを一部撤去してその外側の地山を掘削することにより、隣り合っているルーフシールドトンネル6間に空洞を形成し、図6〜図7に示すようにその空洞内において鉄筋20を組み立てるとともに、必要に応じて補剛材(支柱、桁、屋根などの地山崩落防止枠)21を組み立て、かつ型枠22を設置してその内部に覆工コンクリートを打設充填することによって、隣り合うルーフシールドトンネル6どうしを連結する形態で覆工体23を施工する。なお、補剛材21に型枠22の機能を持たせてそれらを兼用しても良い。
そのような覆工体23を全てのルーフシールドトンネル6間に形成していき、ルーフシールドトンネル6間の覆工体23の形成が済んだところから順次、各ルーフシールドトンネル6の内部にも同様に鉄筋20を組み立てるとともに必要に応じて補剛材21を組み立てて覆工コンクリートを打設することによって同様の覆工体23を相互に連結しつつ形成していき、最終的には図8〜図9に示すように各ルーフシールドトンネル6間および各ルーフシールドトンネル6内に、全体として剛に連結されたリング状断面の一連の本設覆工壁4を施工する。
That is, as shown in FIG. 1, by partially removing a segment of the roof shield tunnel 6 and excavating a natural ground outside thereof, a cavity is formed between the adjacent roof shield tunnels 6. As shown in FIGS. 6 to 7, the reinforcing bars 20 are assembled in the cavities, the stiffener (frames for preventing collapse of rocks such as columns, girders, and roofs) 21 is assembled as necessary, and the mold 22 is installed. The lining body 23 is constructed in such a manner that the adjacent roof shield tunnels 6 are connected to each other by placing and filling the lining concrete inside. Note that the stiffener 21 may have the function of the mold 22 and may also be used.
Such a covering body 23 is formed between all the roof shield tunnels 6, and the same is applied to the inside of each roof shield tunnel 6 in sequence from the point where the formation of the covering body 23 between the roof shield tunnels 6 is completed. By assembling the reinforcing bars 20 and assembling the stiffening material 21 as necessary and placing the lining concrete, the similar lining bodies 23 are formed while being connected to each other. As shown in FIG. 9, a series of permanent lining walls 4 having a ring-shaped cross section rigidly connected as a whole are constructed between the roof shield tunnels 6 and in each roof shield tunnel 6.

上記の本設覆工壁4を効率的に施工するためには、図1に示しているように、各ルーフシールドトンネル6のセグメントとして、主桁と横桁とをフレーム状に組んだ鋼製フレームに対して鋼板製のスキンプレートを取り付けた鋼製セグメント30を用いることとして、ルーフシールドトンネル6間の掘削に際しては鋼製フレームを残して支保効果を損なうことなく鋼製スキンプレートのみを撤去すると良い。
また、ルーフシールドトンネル6間の掘削は、ルーフシールドトンネル6内からその側方を掘削することで行えば良いが、分岐合流部の手前側ではルーフシールドトンネル6間に充分な間隔があるので、図1に示すようにそこでは簡易なルーフシールド35を設置してその内側を小形ロードヘッダー等の掘削機36を用いてオープンシールド工法の手法で掘進することも可能である。
いずれにしても、その掘削に際しては隣り合っているルーフシールドトンネル6自体を作業通路として有効に利用して資材や掘削土の搬送を効率的に行うことができ、ルーフシールドトンネル6内への覆工体23の施工はそのような作業通路としての供用が完了したものから順次行えば良い。
In order to efficiently construct the above-mentioned main lining wall 4, as shown in FIG. 1, as a segment of each roof shield tunnel 6, a steel made of a main girder and a horizontal girder assembled in a frame shape. By using the steel segment 30 with the steel plate made of steel plate attached to the frame, when excavating between the roof shield tunnels 6, leaving the steel frame and removing only the steel skin plate without impairing the support effect. good.
Further, the excavation between the roof shield tunnels 6 may be performed by excavating the side from the inside of the roof shield tunnel 6, but there is a sufficient interval between the roof shield tunnels 6 on the front side of the branching junction. As shown in FIG. 1, it is possible to install a simple roof shield 35 and excavate the inside thereof by an open shield method using an excavator 36 such as a small road header.
In any case, when excavating, the adjacent roof shield tunnel 6 itself can be effectively used as a work path to efficiently transport materials and excavated soil. The construction of the work body 23 may be carried out in sequence from the completion of the service as such a work passage.

以上のようにして本設覆工壁4を先行施工した後、本線シールドトンネル1を掘進してシールドルーフ先受工3の内側を通過させる。(なお、シールドルーフ先受工3や凍結ゾーン8の施工と並行して本線シールドトンネル1を掘進してシールドルーフ先受工3の内側を通過させるようにしても良い。)
そして、図8に示すようにその内側全体を掘削して大断面の分岐合流部を完成させる。その掘削は、分岐合流部の内側を通過している本線シールドトンネル1のセグメントを解体してその周囲を拡幅していくことで行えば良く、その際には細かな加背割を行う必要はないので、大型重機を支障なく使用して効率的な掘削作業を行うことができる。
なお、分岐合流部を掘削することでその内面側に各ルーフシールドトンネル6のセグメントが露出することになるが、図8に示すようにそのセグメントは撤去して本設覆工壁4を露出させれば良く、それにより分岐合流部の内面を自ずと平坦面とすることができる。ただし、必ずしもそのようにする必要はなく、たとえばインバート部に位置するルーフシールドトンネル6はそのままにインバート部に埋め殺すことでも良く、その場合にはルーフシールドトンネル内全体に覆工コンクリートを充填してしまえば良い。
そして、最終的に分岐合流部の両端部に対して妻壁となる覆工壁を本設覆工壁4の内側にそれぞれ設け、手前側の妻壁には本線シールドトンネル1とランプシールドトンネル2とを接合し、前方側の妻壁には本線シールドトンネル1を接合すれば、分岐合流部の覆工全体の完成となる。
After the main lining wall 4 is preliminarily constructed as described above, the main shield tunnel 1 is dug to pass the inside of the shield roof tip receiver 3. (In addition, the main shield tunnel 1 may be dug in parallel with the construction of the shield roof tip receiver 3 and the freezing zone 8 to pass the inside of the shield roof tip receiver 3).
Then, as shown in FIG. 8, the entire inside is excavated to complete a branching junction having a large cross section. The excavation may be performed by dismantling the segments of the main shield tunnel 1 passing through the inside of the branching junction and widening the surroundings, and in that case, it is necessary to perform a fine split split. Therefore, an efficient excavation work can be performed using a large heavy machine without any trouble.
In addition, although excavating the branch junction part, the segment of each roof shield tunnel 6 will be exposed to the inner surface side, but as shown in FIG. 8, the segment is removed and the main lining wall 4 is exposed. Therefore, the inner surface of the branching / merging portion can be naturally made flat. However, it is not always necessary to do so. For example, the roof shield tunnel 6 located in the invert portion may be buried in the invert portion as it is. In that case, the entire roof shield tunnel is filled with lining concrete. Just do it.
Finally, a lining wall that becomes a wife wall is provided inside the main lining wall 4 at both ends of the branching junction, and the main shield tunnel 1 and the lamp shield tunnel 2 are provided on the front wall. If the main shield tunnel 1 is joined to the front wall, the entire lining of the branching junction is completed.

本実施形態の工法によれば、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工3を構築し、ルーフシールドトンネル6の内側から、隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーン8を形成し、該凍結ゾーン8内において隣り合うルーフシールドトンネル6間を掘削して、各ルーフシールドトンネル6間および各ルーフシールドトンネル6内に、隣り合うルーフシールドトンネル6どうしを接合する一連の本設覆工壁4を先行施工するので、分岐合流部の施工に際しては地山に対する充分な支保性能と止水性能を確保でき、地表あるいは地中の既存構造物に対する万全な沈下防止と、万全な地下水保全を図ることができる。   According to the construction method of the present embodiment, the shield roof tip receiving work 3 that surrounds the planned construction position of the branching / merging portion is constructed, and the freezing zone 8 is formed from the inside of the roof shield tunnel 6 to the planned joining position between adjacent roof shield tunnels. A series of permanent installations are made by excavating between adjacent roof shield tunnels 6 in the freezing zone 8 and joining adjacent roof shield tunnels 6 between the roof shield tunnels 6 and in each roof shield tunnel 6. Since the lining wall 4 is constructed in advance, it is possible to secure sufficient support performance and water stoppage performance for the ground in the construction of the branch and junction, and prevent the complete settlement of the ground surface or existing structures in the ground, and complete groundwater Conservation can be achieved.

特に、シールドルーフ先受工3を複数のルーフシールドトンネル6を密に配列することで構築するので、それを充分に高剛性とできるばかりでなく、分岐合流部の形状に対応する最適な断面形状のシールドルーフ先受工3を自由にかつ高精度で施工することができる。
また、凍結ゾーン8の厚さの範囲内においてルーフシールドトンネル6間を掘削して覆工体23を施工するとともに、ルーフシールドトンネル6内にも同様の覆工体23を一体に連結して施工して、それら一連の覆工体23による本設覆工壁4を先行施工してからその内側を掘削するので、大規模な分岐合流部のような地中大空洞を掘削に際して万全の支保効果と止水効果が得られる。
In particular, since the shield roof tip receiver 3 is constructed by closely arranging a plurality of roof shield tunnels 6, not only can it be made sufficiently rigid, but also the optimum cross-sectional shape corresponding to the shape of the branching junction The shield roof tip receiving work 3 can be freely and highly accurately constructed.
Further, excavation is performed between the roof shield tunnels 6 within the range of the thickness of the freezing zone 8 to construct the lining body 23, and the same lining body 23 is also integrally connected to the roof shield tunnel 6. Then, since the main lining wall 4 made by the series of lining bodies 23 is preliminarily constructed, the inside thereof is excavated, so that a full support effect can be obtained when excavating a large underground cavity such as a large branch merging section. And the water stop effect is obtained.

なお、トンネル完成後には凍結ゾーン8はいずれは消失してしまうが、ルーフシールドトンネル6の一部は残置されて本設覆工壁4の一部として機能するので、シールドルーフ先受工3を単なる仮設として設ける場合よりも遙かに合理的である。   Although the freezing zone 8 will eventually disappear after the tunnel is completed, a part of the roof shield tunnel 6 is left behind and functions as a part of the main lining wall 4. It is far more rational than the provisional provision.

また、本実施形態では、ランプシールドトンネル2を本線シールドトンネル1に先行させることにより、そのランプシールドトンネル2が分岐合流部の施工予定位置に達した時点でそこからシールドルーフ先受工3の施工に早期着手できるとともに、それとの並行作業により本線シールドトンネル1の掘進が可能であるので、その場合には最も効率的な施工が可能であり、全体工期の短縮を充分に図ることができる。
さらに、本実施形態のトンネル工法は、基本的にはいずれも多くの実績のある在来のシールド工法や凍結工法、掘削工法を有機的に組み合わせるものであるから、安全性や信頼性に優れるばかりでなく、比較的低コストでの施工が可能であり、特に都市圏における大深度・大断面の道路トンネルを施工する際に適用して最適な工法であるといえる。
Moreover, in this embodiment, when the lamp shield tunnel 2 precedes the main line shield tunnel 1, when the lamp shield tunnel 2 reaches the construction planned position of the branch and merge section, the shield roof tip receiving work 3 is constructed therefrom. In addition, the main shield tunnel 1 can be excavated by parallel work therewith, and in this case, the most efficient construction is possible, and the entire construction period can be sufficiently shortened.
Furthermore, since the tunnel construction method of this embodiment is basically an organic combination of the well-proven conventional shield construction method, freezing construction method, and excavation construction method, it is not only excellent in safety and reliability. In addition, it can be constructed at a relatively low cost, and can be said to be an optimum construction method especially when constructing road tunnels with large depths and large sections in urban areas.

以上で本発明の実施形態を説明したが、上記実施形態はあくまで好適な一例に過ぎず、本発明は上記実施形態に限定されるものでは勿論ない。
たとえば上記実施形態は未固結地盤の都市圏における大深度・大断面の道路トンネルへの適用例であるが、本発明のトンネル工法は分岐合流部を有するものであれば様々な規模、用途、形態のトンネルを施工する場合全般に広く適用できるものであるし、施工対象のトンネルにおける分岐合流部の規模や形態に応じて、また周辺環境等の諸条件を考慮して様々な設計的変更が可能である。
すなわち、ルーフシールドトンネル6の本数やそれによるシールドルーフ先受工3全体の規模や形態は、所望の先受効果を確保できる範囲で適宜変更して良いし、シールドルーフ先受工3に一体に形成する凍結ゾーン8や妻部凍結ゾーン10の範囲、本設覆工壁4の形態やその施工方法、その他の各工程の細部についても、本発明の要旨を逸脱しない範囲で最適設計すれば良く、必要に応じて適宜の補助工法を採用しても勿論良い。
Although the embodiment of the present invention has been described above, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment.
For example, the above embodiment is an application example to a road tunnel having a large depth and a large cross section in an urban area of unconsolidated ground, but the tunnel construction method of the present invention has various scales, uses, and so on as long as it has a branching junction. It can be widely applied to the construction of tunnels in various forms, and various design changes can be made depending on the size and form of the branching junction in the tunnel to be constructed and considering various conditions such as the surrounding environment. Is possible.
That is, the number of roof shield tunnels 6 and the size and form of the entire shield roof tip receiving work 3 may be appropriately changed within a range in which a desired receiving effect can be secured. What is necessary is just to design optimally in the range which does not deviate from the summary of this invention also about the range of the freezing zone 8 and the wife freezing zone 10 to form, the form of the permanent lining wall 4, the construction method, and other details of each process. Of course, an appropriate auxiliary method may be adopted as necessary.

また、上記実施形態では凍結工法を採用したが、地下水圧があまりかからないような条件下では凍結工法に代えて薬液注入工法も採用可能であり、その工法の選択は地盤条件等によって適宜採用されるものである。勿論、薬液注入による改良ゾーンを形成した場合には、その改良ゾーンもそのまま残るのでこれにも本設覆工壁としての機能を期待することができる。   Further, although the freezing method is adopted in the above embodiment, a chemical injection method can be adopted instead of the freezing method under a condition where the groundwater pressure is not so high, and the selection of the construction method is appropriately adopted depending on the ground conditions and the like. Is. Of course, when an improved zone is formed by injecting a chemical solution, the improved zone remains as it is, so that a function as a permanent lining wall can be expected.

さらに、上記実施形態では、ランプシールドトンネル2からルーフシールド機5を発進するようにしたが、それに代えてルーフシールド機5を本線シールドトンネル1から発進させることとし、その他は上記実施形態と同じようにしても良い。この場合は、本線シールドトンネル1が分岐合流部の拡幅区間付近に達したら、その後方において本線シールドトンネル1の側壁部からルーフシールド機5を発進させるとともに、それに並行して本線シールドトンネル1をそのまま掘進を進めれば良い。そして、シールドルーフ先受工3を構築し、ルーフシールドトンネル6の周囲やシールドルーフ先受工3の端部内側に改良ゾーンを形成して本設覆工壁4を形成し、ランプシールドトンネル2のシールド機が到達してから分岐合流部を掘削すれば良い。勿論、本線シールドトンネル1とランプシールドトンネル2の双方からルーフシールド機を発進させるようにしても良い。
さらに、ルーフシールド機5をランプシールドトンネル2や本線シールドトンネル1から発進させることに代えて、可能であれば別途設けた立坑から発進させたり、あるいはルーフシールド機5を発進させるための発進室を地中に設けて、そこからルーフシールド機5を発進させることも考えられる。
Further, in the above embodiment, the roof shield machine 5 is started from the lamp shield tunnel 2, but instead, the roof shield machine 5 is started from the main line shield tunnel 1, and the others are the same as in the above embodiment. Anyway. In this case, when the main shield tunnel 1 reaches the vicinity of the widening section of the branch merge section, the roof shield machine 5 is started from the side wall portion of the main shield tunnel 1 behind the main shield tunnel 1 and the main shield tunnel 1 is left as it is. You just need to advance. Then, a shield roof tip receiving work 3 is constructed, an improvement zone is formed around the roof shield tunnel 6 or inside the end portion of the shield roof tip receiving work 3 to form a permanent lining wall 4, and the lamp shield tunnel 2 After the arrival of the shield machine, the branching junction may be excavated. Of course, the roof shield machine may be started from both the main line shield tunnel 1 and the lamp shield tunnel 2.
Furthermore, instead of starting the roof shield machine 5 from the lamp shield tunnel 2 or the main line shield tunnel 1, a start room for starting the roof shield machine 5 or starting the roof shield machine 5 from a separate shaft if possible is provided. It is also conceivable that the roof shield machine 5 is started from the ground.

さらになお、上記実施形態はトンネル施工に際してその分岐合流部としての地中空洞を施工する場合の適用例であるが、本発明の地中空洞の施工方法はトンネルの分岐合流部の施工のみならず、たとえば大規模な地中タンク、地下鉄の駅舎部をはじめとする各種の地中構造物の施工に際して所望の形態、規模の地中空洞を施工する場合全般に広く適用できるものである。
この場合、地中空洞の空洞形成部の施工予定位置の外側に、上記実施形態と同様の複数のルーフシールドトンネルを所定間隔で配列して地中空洞の空洞形成部の施工予定位置を取り囲むシールドルーフ先受工を構築し、前記ルーフシールドトンネルの内側から隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、その改良ゾーン内を掘削して各ルーフシールドトンネル間および各ルーフシールドトンネル内に一連の本設覆工壁を先行施工する。その後、本設覆工壁の内側を掘削して地中空洞を完成させることになる。そして、シールドルーフ先受工や改良ゾーン(凍結ゾーン)、本設覆工壁の施工方法については、施工すべき地中空洞の規模や形態、地山状況、その他の状況に応じて最適に設計すれば良いことは言うまでもない。
Furthermore, although the said embodiment is an application example in the case of constructing the underground cavity as the branch merge part at the time of tunnel construction, the construction method of the underground cavity of this invention is not only the construction of the branch merge part of a tunnel. For example, it can be widely applied to the construction of underground cavities of a desired form and scale in the construction of various underground structures such as large underground tanks and subway station buildings.
In this case, a plurality of roof shield tunnels similar to those of the above embodiment are arranged at predetermined intervals outside the planned construction position of the underground cavity forming portion, and the shield surrounding the planned construction position of the underground cavity forming portion. Construct a roof tip receiving construction, form an improvement zone at the planned joining position between adjacent roof shield tunnels from the inside of the roof shield tunnel, and excavate the improved zone between each roof shield tunnel and within each roof shield tunnel A series of main lining walls will be installed in advance. Then, the inside of the permanent lining wall is excavated to complete the underground cavity. The shield roof tip construction, improvement zone (freezing zone), and construction method of the main lining wall are optimally designed according to the size and form of underground cavities to be constructed, ground conditions, and other conditions. It goes without saying that it should be done.

本発明の実施形態であるトンネル工法の概要を示す図である。It is a figure which shows the outline | summary of the tunnel construction method which is embodiment of this invention. 同、分岐合流部の平面図である。It is a top view of a branch junction part. 同、分岐合流部の各部の断面図であり、(a)は図2におけるIIIa−IIIa部矢視図、(b)は図2におけるIIIb−IIIb部矢視図である。It is sectional drawing of each part of a branch merge part, (a) is a IIIa-IIIa part arrow view in FIG. 2, (b) is a IIIb-IIIb part arrow view in FIG. 同、分岐合流部に凍結ゾーンを形成するための凍結管の打込み状況を示す拡大図である。It is an enlarged view which shows the driving | running | working condition of the freezing pipe | tube for forming a freezing zone in a branch joint part. 同、分岐合流部の端部の断面図(図2におけるV−V部矢視図)である。FIG. 5 is a cross-sectional view of the end portion of the branch merge section (a view taken along the line VV in FIG. 2). 同、本設覆工壁の施工状況を示す図である。It is a figure which shows the construction status of this lining wall. 同、拡大図である。It is an enlarged view of the same. 同、本設覆工壁を施工した状態を示す図である。It is a figure which shows the state which constructed the permanent lining wall. 同、拡大図である。It is an enlarged view of the same.

符号の説明Explanation of symbols

1 本線シールドトンネル
2 ランプシールドトンネル
3 シールドルーフ先受工
4 本設覆工壁
5 ルーフシールド機
6 ルーフシールドトンネル
8 凍結ゾーン(改良ゾーン)
9a 放射凍結管
9b 埋込凍結管
9c 妻部凍結管
10 妻部凍結ゾーン(改良ゾーン)
20 鉄筋
21 補剛材
22 型枠
23 覆工体
30 鋼製セグメント
35 ルーフシールド
36 掘削機
1 Main Line Shield Tunnel 2 Lamp Shield Tunnel 3 Shield Roof Tip Receipt 4 Main Lined Wall 5 Roof Shield Machine 6 Roof Shield Tunnel 8 Freezing Zone (Improvement Zone)
9a Radiation freezing tube 9b Embedded freezing tube 9c Tsumabyo freezing tube 10 Tsumabyo freezing zone (improved zone)
DESCRIPTION OF SYMBOLS 20 Reinforcement 21 Stiffening material 22 Formwork 23 Covering body 30 Steel segment 35 Roof shield 36 Excavator

Claims (3)

地中を掘削して地中空洞を施工するに際し、
地中空洞の施工予定位置の外側に、複数のルーフシールドトンネルを所定間隔で配列した状態で施工して、施工予定位置を取り囲むシールドルーフ先受工を構築し、
前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、
該改良ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、
該本設覆工壁の内側を掘削して地中空洞を完成させることを特徴とする地中空洞の施工方法。
When excavating underground and constructing underground cavities,
Construction of a plurality of roof shield tunnels arranged at predetermined intervals outside the planned construction position of the underground cavity, building a shield roof tip receiving work surrounding the planned construction position,
From the inside of the roof shield tunnel, an improved zone is formed at the junction planned position between adjacent roof shield tunnels,
After excavating between adjacent roof shield tunnels in the improved zone, a series of main lining walls that join adjacent roof shield tunnels between each roof shield tunnel and each roof shield tunnel are pre-constructed. ,
An underground cavity construction method comprising excavating the inside of the permanent lining wall to complete an underground cavity.
シールド工法により施工する複数のシールドトンネルどうしの分岐合流部を施工するに際し、
施工するべき分岐合流部の外側に、その延長方向に沿う複数のルーフシールドトンネルを分岐合流部の輪郭に沿って所定間隔で配列した状態で施工して、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工を構築し、
前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に改良ゾーンを形成し、
該改良ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工した後、
該本設覆工壁の内側を掘削して分岐合流部を完成させることを特徴とするトンネル工法。
When constructing a branching junction between multiple shield tunnels constructed by the shield method,
Shield that surrounds the planned construction position of the branch merge section by constructing a plurality of roof shield tunnels along the extension direction along the contour of the branch merge section at predetermined intervals on the outside of the branch merge section to be constructed Build a roof receiving work,
From the inside of the roof shield tunnel, an improved zone is formed at the junction planned position between adjacent roof shield tunnels,
After excavating between adjacent roof shield tunnels in the improved zone, a series of main lining walls that join adjacent roof shield tunnels between each roof shield tunnel and each roof shield tunnel are pre-constructed. ,
A tunnel construction method characterized by excavating the inside of the permanent lining wall to complete a branching junction.
シールド工法により施工する本線シールドトンネルとランプシールドトンネルどうしの分岐合流部を施工するに際し、
本線シールドトンネルよりもランプシールドトンネルを先行掘進して、ランプシールドトンネルが分岐合流部の施工予定位置に少なくとも達するまで掘進して停止させ、
該ランプシールドトンネルの先端部付近からルーフシールド機を発進させて、施工するべき分岐合流部の外側に、その延長方向に沿う多数のルーフシールドトンネルを分岐合流部の輪郭に沿って所定間隔で配列した状態で施工することにより、分岐合流部の施工予定位置を取り囲むシールドルーフ先受工を構築し、
前記ルーフシールドトンネルの内側から、隣り合うルーフシールドトンネル間接合予定位置に凍結ゾーンを形成し、
該凍結ゾーン内において隣り合うルーフシールドトンネル間を掘削して、各ルーフシールドトンネル間および各ルーフシールドトンネル内に、隣り合うルーフシールドトンネルどうしを接合する一連の本設覆工壁を先行施工し、
本線シールドトンネルを掘進してその内側を通過させ、
前記本設覆工壁の内側を掘削して分岐合流部を完成させることを特徴とするトンネル工法。
When constructing the branching junction between the main shield tunnel and the lamp shield tunnel constructed by the shield method,
Advance the lamp shield tunnel ahead of the main line shield tunnel, dig up and stop until the lamp shield tunnel reaches at least the planned construction position of the branching junction,
A roof shield machine is started from the vicinity of the tip of the lamp shield tunnel, and a number of roof shield tunnels along the extension direction are arranged at predetermined intervals along the outline of the branch merge section outside the branch merge section to be constructed. By constructing in a state that has been done, we built a shield roof tip receiving work that surrounds the planned construction position of the branch and merge part,
From the inside of the roof shield tunnel, a freezing zone is formed at a position where the adjacent roof shield tunnel is to be joined,
Excavating between adjacent roof shield tunnels in the freezing zone, a series of main lining walls that join adjacent roof shield tunnels between each roof shield tunnel and in each roof shield tunnel are pre-constructed,
Excavate the main shield tunnel and let it pass inside,
A tunnel construction method characterized by excavating the inside of the permanent lining wall to complete a branching junction.
JP2006037921A 2006-02-15 2006-02-15 Construction method of underground cavity Active JP4803429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037921A JP4803429B2 (en) 2006-02-15 2006-02-15 Construction method of underground cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037921A JP4803429B2 (en) 2006-02-15 2006-02-15 Construction method of underground cavity

Publications (2)

Publication Number Publication Date
JP2007217911A true JP2007217911A (en) 2007-08-30
JP4803429B2 JP4803429B2 (en) 2011-10-26

Family

ID=38495490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037921A Active JP4803429B2 (en) 2006-02-15 2006-02-15 Construction method of underground cavity

Country Status (1)

Country Link
JP (1) JP4803429B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303156A (en) * 2006-05-11 2007-11-22 Shimizu Corp Shield roof construction method
JP2009264047A (en) * 2008-04-28 2009-11-12 Mitsubishi Heavy Industries Tunneling Machinery & Geotechnology Co Ltd Tunnel excavating method
WO2010007305A2 (en) * 2008-07-17 2010-01-21 Ecole Polytechnique Method for constructing an underground tunnel or hole to create an impervious plug for the storage of hazardous, particularly radioactive, waste
JP2010043440A (en) * 2008-08-11 2010-02-25 Ohbayashi Corp Method of increasing width of shield tunnel
JP2011184899A (en) * 2010-03-05 2011-09-22 Shimizu Corp Shield roof construction method
JP2011184897A (en) * 2010-03-05 2011-09-22 Shimizu Corp Shield roof construction method
JP2012046951A (en) * 2010-08-26 2012-03-08 Ohbayashi Corp Method for constructing large-section tunnel with expanded section
JP2015151674A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of forming widening part of shield tunnel
JP2015151675A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of constructing large-cross-section tunnel
JP2015151672A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of forming widening part of shield tunnel
JP2016153601A (en) * 2014-11-05 2016-08-25 前田建設工業株式会社 Construction method for underground widened part
JP2016160717A (en) * 2015-03-05 2016-09-05 西松建設株式会社 Freezing method and freezing device of shield tunnel construction
JP2016176267A (en) * 2015-03-20 2016-10-06 株式会社奥村組 Connection structure of pipe roof
JP2017089104A (en) * 2015-11-02 2017-05-25 株式会社奥村組 Structure and method for constructing tunnel lining body
JP2017172117A (en) * 2016-03-18 2017-09-28 清水建設株式会社 Traffic line shield tunnel and construction method of large cross-section underground space
CN116220701A (en) * 2023-05-09 2023-06-06 中交第一航务工程局有限公司 Newly built tunnel and existing tunnel reconstruction and extension parallel construction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137992A (en) * 1984-12-10 1986-06-25 株式会社大林組 Construction method of large caliber pit
JPH04319198A (en) * 1991-04-19 1992-11-10 Rikiyou:Kk Construction method of tunnel
JPH0681597A (en) * 1992-09-04 1994-03-22 Taisei Corp Constructing method for underground space
JPH08218795A (en) * 1995-02-20 1996-08-27 Ohbayashi Corp Method of constructing underground space
JPH09235983A (en) * 1996-03-04 1997-09-09 Taisei Corp Connection method of tunnel
JP2001193383A (en) * 2000-01-07 2001-07-17 Kajima Corp Tunnel construction method and tunnel
JP2005336854A (en) * 2004-05-27 2005-12-08 Kumagai Gumi Co Ltd Earth retaining method and earth retaining structure of width expanding object part of shield tunnel
JP2006348718A (en) * 2005-05-17 2006-12-28 Taisei Corp Construction method of underground structure and underground structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137992A (en) * 1984-12-10 1986-06-25 株式会社大林組 Construction method of large caliber pit
JPH04319198A (en) * 1991-04-19 1992-11-10 Rikiyou:Kk Construction method of tunnel
JPH0681597A (en) * 1992-09-04 1994-03-22 Taisei Corp Constructing method for underground space
JPH08218795A (en) * 1995-02-20 1996-08-27 Ohbayashi Corp Method of constructing underground space
JPH09235983A (en) * 1996-03-04 1997-09-09 Taisei Corp Connection method of tunnel
JP2001193383A (en) * 2000-01-07 2001-07-17 Kajima Corp Tunnel construction method and tunnel
JP2005336854A (en) * 2004-05-27 2005-12-08 Kumagai Gumi Co Ltd Earth retaining method and earth retaining structure of width expanding object part of shield tunnel
JP2006348718A (en) * 2005-05-17 2006-12-28 Taisei Corp Construction method of underground structure and underground structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303156A (en) * 2006-05-11 2007-11-22 Shimizu Corp Shield roof construction method
JP2009264047A (en) * 2008-04-28 2009-11-12 Mitsubishi Heavy Industries Tunneling Machinery & Geotechnology Co Ltd Tunnel excavating method
WO2010007305A2 (en) * 2008-07-17 2010-01-21 Ecole Polytechnique Method for constructing an underground tunnel or hole to create an impervious plug for the storage of hazardous, particularly radioactive, waste
FR2934007A1 (en) * 2008-07-17 2010-01-22 Ecole Polytech PROCESS FOR CONSTRUCTING A UNDERGROUND GALLERY OR WELL FOR REALIZING A SEALED PLUG FOR STORING HAZARDOUS WASTE AND IN PARTICULAR RADIOACTIVE WASTE.
WO2010007305A3 (en) * 2008-07-17 2010-03-18 Ecole Polytechnique Method for constructing an underground tunnel or hole to create an impervious plug for the storage of hazardous, particularly radioactive, waste
JP2011528119A (en) * 2008-07-17 2011-11-10 エコール ポリテクニック Construction method of underground tunnels or holes to form impervious plugs for storing hazardous wastes, especially radioactive waste
JP2010043440A (en) * 2008-08-11 2010-02-25 Ohbayashi Corp Method of increasing width of shield tunnel
JP2011184899A (en) * 2010-03-05 2011-09-22 Shimizu Corp Shield roof construction method
JP2011184897A (en) * 2010-03-05 2011-09-22 Shimizu Corp Shield roof construction method
JP2012046951A (en) * 2010-08-26 2012-03-08 Ohbayashi Corp Method for constructing large-section tunnel with expanded section
JP2015151674A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of forming widening part of shield tunnel
JP2015151675A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of constructing large-cross-section tunnel
JP2015151672A (en) * 2014-02-10 2015-08-24 株式会社大林組 Method of forming widening part of shield tunnel
JP2016153601A (en) * 2014-11-05 2016-08-25 前田建設工業株式会社 Construction method for underground widened part
JP2016160717A (en) * 2015-03-05 2016-09-05 西松建設株式会社 Freezing method and freezing device of shield tunnel construction
JP2016176267A (en) * 2015-03-20 2016-10-06 株式会社奥村組 Connection structure of pipe roof
JP2017089104A (en) * 2015-11-02 2017-05-25 株式会社奥村組 Structure and method for constructing tunnel lining body
JP2017172117A (en) * 2016-03-18 2017-09-28 清水建設株式会社 Traffic line shield tunnel and construction method of large cross-section underground space
CN116220701A (en) * 2023-05-09 2023-06-06 中交第一航务工程局有限公司 Newly built tunnel and existing tunnel reconstruction and extension parallel construction method
CN116220701B (en) * 2023-05-09 2023-08-01 中交第一航务工程局有限公司 Newly built tunnel and existing tunnel reconstruction and extension parallel construction method

Also Published As

Publication number Publication date
JP4803429B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4803429B2 (en) Construction method of underground cavity
JP4958035B2 (en) Shield roof construction method
JP4803428B2 (en) Tunnel construction method
JP4793655B2 (en) Tunnel construction method
JP4771170B2 (en) Construction method of underground cavity
JP5316894B2 (en) Shield roof construction method
CN106837357B (en) A kind of no-dig technique pipe-roof method using curve pipe canopy
JP4660822B2 (en) Construction method of support structure in branching junction
KR101244257B1 (en) Method for digging tunnel
JP2007303155A (en) Construction method of underground cavity and tunnel construction method
JP4183470B2 (en) Underground structure and its construction method
JP4296549B2 (en) Underground support structure, its construction method and tunnel construction method
JP4730595B2 (en) Construction method of underground cavity
JP4228311B2 (en) Tunnel construction method
KR20050020451A (en) Shield tunneling construction method and tunnel structure
JP4471521B2 (en) Shield construction method, large section tunnel and its construction method, and shield machine
JP5012149B2 (en) Ground support structure and ground support method
JP2017043983A (en) Underground structure, and construction method of underground structure
JP6624441B2 (en) Construction method of the wall
KR100926501B1 (en) Roof and shield tunneling construction method (rsm) and tunnel structure
JP4376770B2 (en) Construction method of shield tunnel fork or junction
JPH05280296A (en) Large scale underground structure and construction method thereof
JPH0464697A (en) Construction of tunneling space
JP5158631B2 (en) Construction method of tunnel junction
KR20210002947A (en) Two-side semicircle arch type leading pipe and structure of non-excavation type tunnel using thereof and method of constructing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4803429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3