JP2010237183A - Low coherence interferometer and optical microscope - Google Patents

Low coherence interferometer and optical microscope Download PDF

Info

Publication number
JP2010237183A
JP2010237183A JP2009088480A JP2009088480A JP2010237183A JP 2010237183 A JP2010237183 A JP 2010237183A JP 2009088480 A JP2009088480 A JP 2009088480A JP 2009088480 A JP2009088480 A JP 2009088480A JP 2010237183 A JP2010237183 A JP 2010237183A
Authority
JP
Japan
Prior art keywords
light
objective lens
laser light
measurement
low coherence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009088480A
Other languages
Japanese (ja)
Inventor
Junichi Kosugi
純一 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2009088480A priority Critical patent/JP2010237183A/en
Publication of JP2010237183A publication Critical patent/JP2010237183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low coherence interferometer allowing highly accurate measurement regardless of measurement range with suppressing an influence of disturbance (e.g., temperature change, vibration) on measurement precision. <P>SOLUTION: The low coherence interferometer 1, for measuring a three-dimensional shape or a film thickness of a measured object 2 includes: a light source 11 emitting white light; an objective lens 14 which focuses the white light to the measured object and is movable in an optical axis direction, an optical multiplexer demultiplexer 16 which divides the white light into object light 3 irradiating the measured object 2 and reference light 4 irradiating a reference mirror 17 and combines the object light 3 reflected by the measured object and the reference light 4 reflected by the reference mirror 17 to output white interference light, a white light detector 20 detecting the white interference light output from the optical multiplexer demultiplexerr 16, and a movement amount measurement instrument 30 measuring a movement amount of the objective lens in the optical axis direction, in which the movement amount measurement instrument has a laser light source 31 emitting laser light and a reflective film 32 formed on the optical axis and reflecting the laser light. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は低コヒーレンス干渉計及び光学顕微鏡に関する。詳しくは、測定対象の三次元形状測定又は膜厚測定に供され、対物レンズ位置の移動量測定を介して高さ方向の界面位置を精密に測定するための低コヒーレンス干渉計及び光学顕微鏡に関する。   The present invention relates to a low coherence interferometer and an optical microscope. More specifically, the present invention relates to a low-coherence interferometer and an optical microscope that are used for three-dimensional shape measurement or film thickness measurement of a measurement target and precisely measure the interface position in the height direction through measurement of the amount of movement of the objective lens position.

測定対象の三次元形状測定又は膜厚測定において、対物レンズの光軸方向(高さ方向:Z方向)の基準位置からの移動量を測定する場合、Z軸ステージを高さ方向(Z方向)に移動させて対物レンズとの間隔を変化させ、測定対象に対する対物レンズ位置の移動量を測定していた。この移動量は、(A)Z軸ステージとしてステッピングモータを用いたアクチュエータ(移動レンジ約数百mm)を使用する場合は、アクチュエータに取り付けた精密リニアスケール(例えば回折格子を利用したガラススケール)により測定し、(B)Z軸ステージとしてピエゾアクチュエータ(移動レンジ約数百μm)を使用する場合は、ピエゾアクチュエータと組み合わせた静電容量センサにより測定していた。   When measuring the amount of movement of the objective lens from the reference position in the optical axis direction (height direction: Z direction) in measuring the three-dimensional shape or film thickness of the measurement object, the Z-axis stage is moved in the height direction (Z direction). The distance between the objective lens and the objective lens was changed to measure the amount of movement of the objective lens position relative to the measurement object. (A) When using an actuator using a stepping motor as the Z-axis stage (moving range of about several hundred mm), the amount of movement depends on a precision linear scale (for example, a glass scale using a diffraction grating) attached to the actuator. (B) When a piezo actuator (moving range of about several hundred μm) was used as the Z-axis stage, it was measured by a capacitance sensor combined with the piezo actuator.

上記(A)の精密リニアスケールで対物レンズの移動量を測定する場合には、測定すべき移動量は対物レンズの光軸上における移動量であるのに、精密リニアスケールが設置されている位置が対物レンズの光軸から離れているため、外乱(例えば温度変化や振動)の影響により測定精度が低くなるという問題があった。また、上記(B)の静電容量センサで対物レンズの移動量を測定する場合には、静電容量センサの測定分解能は測定レンジに比例するため(一般的には0.03%程度で比例)、測定レンジが長くなると高い測定精度を保つことができないという問題、静電容量センサは対物レンズの光軸に近い位置に設置されるが厳密には光軸上ではないため外乱(例えば温度変化や振動)の影響により測定精度が低くなるという問題があった。   When measuring the movement amount of the objective lens with the precision linear scale of (A) above, the movement amount to be measured is the movement amount on the optical axis of the objective lens, but the position where the precision linear scale is installed. Is far from the optical axis of the objective lens, there is a problem that the measurement accuracy is lowered due to the influence of disturbance (for example, temperature change or vibration). Further, when the movement amount of the objective lens is measured by the capacitance sensor (B), the measurement resolution of the capacitance sensor is proportional to the measurement range (generally proportional to about 0.03%). ), A problem that high measurement accuracy cannot be maintained when the measurement range becomes long, and the capacitance sensor is placed close to the optical axis of the objective lens, but is not strictly on the optical axis, so disturbance (for example, temperature change) There is a problem that the measurement accuracy is lowered due to the influence of vibration and vibration.

ところで、光軸方向の対物レンズ移動量測定にレーザ光を使用する三次元形状測定装置が提案されている(例えば特許文献1)。この装置では、白色光源(広帯域光源)とレーザ光源(コヒーレント光源)とを共に測定対象と参照鏡に入射し、測定対象で反射された物体光と参照鏡で反射された参照光を合波してそれぞれ白色光の干渉縞とレーザ光の干渉縞を形成する。このとき、レーザ光の干渉縞によって測定対象に対する対物レンズ位置の移動量を求め、白色光の干渉縞を解析することでXY平面の各点における測定対象の表面位置(すなわち表面形状)を求める。レーザ光で対物レンズ位置の移動量を測定することで、レーザ光の高いコヒーレンス性により、測定レンジに依存しない高精度の測定ができる。   Incidentally, a three-dimensional shape measuring apparatus that uses laser light for measuring the amount of movement of the objective lens in the optical axis direction has been proposed (for example, Patent Document 1). In this device, both a white light source (broadband light source) and a laser light source (coherent light source) are incident on the measurement target and the reference mirror, and the object light reflected by the measurement target and the reference light reflected by the reference mirror are combined. Then, white light interference fringes and laser light interference fringes are formed. At this time, the movement amount of the objective lens position with respect to the measurement object is obtained by the interference fringe of the laser light, and the surface position (that is, the surface shape) of the measurement object at each point on the XY plane is obtained by analyzing the interference fringe of the white light. By measuring the amount of movement of the objective lens position with laser light, high accuracy measurement independent of the measurement range can be performed due to the high coherence of the laser light.

また、レーザ光を光軸近傍で測定対象に照射することにより、アッベの原理を近似的に満たし、外乱(例えば温度変化や振動)の測定精度への影響を抑制することができる。なお、アッベの原理とは、高い測定精度を実現するためには測定物と基準(スケール)を同一の軸上に配置すべきという原理である。   Further, by irradiating the measurement target with laser light in the vicinity of the optical axis, Abbe's principle can be approximately satisfied and the influence of disturbance (for example, temperature change and vibration) on measurement accuracy can be suppressed. Abbe's principle is the principle that the object to be measured and the reference (scale) should be placed on the same axis in order to achieve high measurement accuracy.

特許第4180084号公報Japanese Patent No. 4180084

しかしながら、上記レーザ光を使用する装置では測定対象にレーザ光を照射するため、測定対象の表面における傾斜、表面粗さ、吸収などの表面状態に影響を受けて、測定精度が不安定になるという問題があった。さらに、通常の三次元形状測定装置では薄膜の表側界面と裏側界面の光学的距離を測定することができるが、この装置は対物レンズ位置の移動量を測定対象で反射したレーザ光で測定するため、測定対象が薄膜である場合には、表裏界面での反射光の干渉によって測定対象に対する対物レンズ位置の移動量における測定精度が低下するという問題や、薄膜裏面での反射光の干渉縞による測定対象に対する対物レンズ位置の移動量測定の結果は、薄膜の屈折率のばらつきによって正確な値にならないという問題があった。   However, since the apparatus using the laser beam irradiates the measurement target with the laser beam, the measurement accuracy becomes unstable due to the influence of the surface condition such as the inclination, surface roughness, absorption, etc. on the surface of the measurement target. There was a problem. Furthermore, an ordinary three-dimensional shape measuring device can measure the optical distance between the front and back interfaces of a thin film, but this device measures the amount of movement of the objective lens position with the laser beam reflected by the measurement object. When the object to be measured is a thin film, the measurement accuracy in the amount of movement of the objective lens position relative to the object to be measured decreases due to interference of reflected light at the front and back interfaces, or measurement by interference fringes of reflected light on the back surface of the thin film The result of measuring the amount of movement of the objective lens position relative to the object has a problem that it does not become an accurate value due to variations in the refractive index of the thin film.

本発明は、測定対象の三次元形状測定又は膜厚測定について、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない、かつ測定対象の表面状態に影響を受けない高精度な三次元形状測定又は膜厚測定を可能にする低コヒーレンス干渉計を提供することを目的とする。
また、対物レンズの移動量を高精度で測定可能な光学顕微鏡を提供することを目的とする。
The present invention can suppress the influence on the measurement accuracy due to disturbance (for example, temperature change and vibration) in the three-dimensional shape measurement or film thickness measurement of the measurement object, and does not depend on the measurement range and affects the surface condition of the measurement object. An object of the present invention is to provide a low-coherence interferometer that enables highly accurate three-dimensional shape measurement or film thickness measurement that is not received.
Another object of the present invention is to provide an optical microscope capable of measuring the amount of movement of the objective lens with high accuracy.

上記課題を解決するために、本発明の第1の態様に係る低コヒーレンス干渉計1は、例えば図1に示すように、測定対象2の三次元形状測定又は膜厚測定に供される低コヒーレンス干渉計であって、コヒーレンス長が短い低コヒーレンス光を射出する低コヒーレンス光源11と、低コヒーレンス光を測定対象2に集光させ、光軸方向に移動可能な対物レンズ14と、対物レンズ14の通過前又は通過後の低コヒーレンス光を測定対象2に照射する物体光3と参照鏡17に照射する参照光4とに分波し、かつ測定対象2で反射された物体光3と参照鏡17で反射された参照光4を合波して低コヒーレンス干渉光を出力させる光分波合波器16と、光分波合波器16から出力された低コヒーレンス干渉光を検出する低コヒーレンス光検出器20と、対物レンズ14の光軸方向の移動量を測定するための移動量測定器30を備え、移動量測定器30は、レーザ光を射出するレーザ光源31と、光軸上又は光軸の近傍に形成されレーザ光を反射する反射体32を有する。   In order to solve the above-described problem, a low coherence interferometer 1 according to the first aspect of the present invention is provided with a low coherence provided for three-dimensional shape measurement or film thickness measurement of a measurement object 2 as shown in FIG. A low-coherence light source 11 that emits low-coherence light having a short coherence length, an objective lens 14 that collects the low-coherence light on the measurement object 2 and is movable in the optical axis direction, and an objective lens 14. The object light 3 and the reference mirror 17 which are demultiplexed into the object light 3 which irradiates the measurement object 2 with the low-coherence light before or after the passage and the reference light 4 which irradiates the reference mirror 17 and are reflected by the measurement object 2. The optical demultiplexing / multiplexing unit 16 for combining the reference light 4 reflected by the optical output and outputting the low coherence interfering light, and the low coherence detecting for detecting the low coherence interfering light output from the optical demultiplexing / multiplexing unit 16. With vessel 20 A moving amount measuring device 30 for measuring the moving amount of the objective lens 14 in the optical axis direction is provided. The moving amount measuring device 30 is formed on the optical axis or in the vicinity of the optical axis with a laser light source 31 that emits laser light. And has a reflector 32 for reflecting the laser beam.

ここにおいて、三次元形状測定には、表面形状の測定だけでなく、測定対象の表面が透明膜の場合には膜厚分布の測定や膜内の欠陥(異物、傷など)分布の測定なども含まれる。また、コヒーレンス長が短いとは、重ね合わさった光波の可干渉距離が短いことをいい、自然光の場合は数波長程度(数μm程度)が一般的である。また、光軸方向とは、対物レンズ14の光軸をいうが、中を通る低コヒーレンス光の光軸及び低コヒーレンス光から分波された物体光3の光軸と一致する。また、反射体は反射膜、反射鏡を含み、入射光の一部を反射するものも含む。また、光軸上に形成されたとは反射体が光軸と交差することを意味する。   Here, the three-dimensional shape measurement includes not only the measurement of the surface shape, but also the measurement of the film thickness distribution and the distribution of defects (foreign matter, scratches, etc.) in the film when the surface to be measured is a transparent film. included. Also, the short coherence length means that the coherence distance of the superimposed light waves is short, and in the case of natural light, about several wavelengths (about several μm) are common. The optical axis direction refers to the optical axis of the objective lens 14, and coincides with the optical axis of the low-coherence light passing through and the optical axis of the object light 3 demultiplexed from the low-coherence light. Further, the reflector includes a reflective film and a reflecting mirror, and includes a reflector that reflects a part of incident light. Further, being formed on the optical axis means that the reflector intersects the optical axis.

本態様のように構成すると、測定対象2の三次元形状測定又は膜厚測定において、光軸上又は光軸の近傍に形成された反射体からの反射光を用いて測定するので、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、また、測定に用いるレーザ光のコヒーレンス長は数m程度から数十km程度と長いので、測定レンジに依存しない高精度の測定ができる。したがって、測定対象の三次元形状測定又は膜厚測定について、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない高精度の測定を可能にする低コヒーレンス干渉計を提供できる。また、対物レンズ14の表面に形成した反射体32からの反射光を用いて対物レンズ14の移動量を測定するので、測定対象表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けない。   According to this configuration, in the three-dimensional shape measurement or film thickness measurement of the measurement object 2, since the measurement is performed using the reflected light from the reflector formed on or near the optical axis, disturbance (for example, The influence on the measurement accuracy due to temperature changes and vibrations can be suppressed, and the coherence length of the laser light used for the measurement is as long as about several meters to several tens of kilometers, so that highly accurate measurement independent of the measurement range can be performed. Therefore, for the three-dimensional shape measurement or film thickness measurement of the object to be measured, the low coherence interferometer that can suppress the influence on the measurement accuracy due to disturbance (for example, temperature change and vibration) and enables high-precision measurement independent of the measurement range. Can provide. Moreover, since the amount of movement of the objective lens 14 is measured using the reflected light from the reflector 32 formed on the surface of the objective lens 14, the influence of the surface state (surface roughness, slope, absorption, etc.) of the measurement target surface is affected. I do not receive it.

また、本発明の第2の態様に係る低コヒーレンス干渉計1は、第1の態様に係る低コヒーレンス干渉計において、例えば図3に示すように、反射体は、光軸上で対物レンズ14に形成された反射膜32である。   Further, the low coherence interferometer 1 according to the second aspect of the present invention is the low coherence interferometer according to the first aspect. For example, as shown in FIG. 3, the reflector is placed on the objective lens 14 on the optical axis. The reflection film 32 is formed.

本態様のように構成すると、反射膜32は対物レンズ14に密着して形成されるので、反射膜32からのレーザ反射光を用いることにより、対物レンズ14の移動量を非常に精密に測定できる。また、光軸上に形成され、アッベの原理を満たすので外乱(例えば温度変化や振動)による測定精度への影響を受けない。   When configured in this manner, the reflective film 32 is formed in close contact with the objective lens 14, so that the amount of movement of the objective lens 14 can be measured very precisely by using the laser reflected light from the reflective film 32. . In addition, since it is formed on the optical axis and satisfies Abbe's principle, it is not affected by the measurement accuracy due to disturbance (for example, temperature change or vibration).

上記課題を解決するために、本発明の第3の態様に係る低コヒーレンス干渉計1Aは、例えば図7に示すように、測定対象2の三次元形状測定又は膜厚測定に供される低コヒーレンス干渉計であって、コヒーレンス長が短い低コヒーレンス光を射出する低コヒーレンス光源11と、低コヒーレンス光を測定対象2に集光させ、光軸方向に移動可能な対物レンズ14と、対物レンズ14の通過前又は通過後の低コヒーレンス光を測定対象2に照射する物体光3と参照鏡17に照射する参照光4とに分波し、かつ測定対象2で反射された物体光3と参照鏡17で反射された参照光4を合波して低コヒーレンス干渉光を出力させる光分波合波器16と、光分波合波器16から出力された低コヒーレンス干渉光を検出する低コヒーレンス光検出器20と、対物レンズ14の光軸方向の移動量を測定するための移動量測定器30を備え、移動量測定器30は、レーザ光を射出するレーザ光源31と、対物レンズ14の近傍に設けられ対物レンズ14と一体的に移動するレーザ光を反射する反射体43を有する。   In order to solve the above-described problem, a low coherence interferometer 1A according to the third aspect of the present invention is provided with a low coherence provided for three-dimensional shape measurement or film thickness measurement of a measurement object 2, for example, as shown in FIG. A low-coherence light source 11 that emits low-coherence light having a short coherence length, an objective lens 14 that collects the low-coherence light on the measurement object 2 and is movable in the optical axis direction, and an objective lens 14. The object light 3 and the reference mirror 17 which are demultiplexed into the object light 3 which irradiates the measurement object 2 with the low-coherence light before or after the passage and the reference light 4 which irradiates the reference mirror 17 and are reflected by the measurement object 2. The optical demultiplexing / multiplexing unit 16 for combining the reference light 4 reflected by the optical output and outputting the low coherence interfering light, and the low coherence detecting for detecting the low coherence interfering light output from the optical demultiplexing / multiplexing unit 16. Vessel 20 The moving amount measuring device 30 for measuring the moving amount of the objective lens 14 in the optical axis direction is provided. The moving amount measuring device 30 is provided near the objective lens 14 and a laser light source 31 that emits laser light. A reflector 43 that reflects the laser light that moves integrally with the lens 14 is provided.

ここにおいて、対物レンズ14の近傍とは、対物レンズの筐体40Bに接触しているか、筐体40Bから数mm以内の位置にあることを意味する。本態様のように構成すると、反射体43は対物レンズ14に対して固定された位置関係にあるので、反射体43で反射されるレーザ光を用いることにより、対物レンズ14の移動量を精密に測定できる。また、反射体43は比較的光軸に近い位置にあり、アッベの原理を近似的に満たすので外乱(例えば温度変化や振動)による測定精度への影響を抑制できる。したがって、測定対象の三次元形状測定又は膜厚測定について、温度変化や振動等の外乱による測定精度への影響を抑制でき、測定レンジに依存しない高精度の測定を可能にする低コヒーレンス干渉計を提供できる。また、対物レンズ14と一体的に移動する反射体43からの反射光を用いて対物レンズ14の移動量を測定するので、測定対象表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けない。   Here, the vicinity of the objective lens 14 means that it is in contact with the housing 40B of the objective lens or is at a position within several mm from the housing 40B. With this configuration, since the reflector 43 is in a fixed positional relationship with the objective lens 14, the amount of movement of the objective lens 14 is precisely determined by using the laser light reflected by the reflector 43. It can be measured. In addition, the reflector 43 is located at a position relatively close to the optical axis and approximately satisfies Abbe's principle, so that the influence on the measurement accuracy due to disturbance (for example, temperature change and vibration) can be suppressed. Therefore, a low-coherence interferometer that can suppress the influence on the measurement accuracy due to disturbances such as temperature changes and vibrations for the three-dimensional shape measurement or film thickness measurement of the measurement target, and enables high-precision measurement independent of the measurement range. Can be provided. In addition, since the amount of movement of the objective lens 14 is measured using the reflected light from the reflector 43 that moves integrally with the objective lens 14, the influence of the surface state (surface roughness, slope, absorption, etc.) of the measurement target surface Not receive.

また、本発明の第4の態様に係る低コヒーレンス干渉計は、第3の態様に係る低コヒーレンス干渉計において、例えば図7に示すように、反射体は、対物レンズ14を当該低コヒーレンス干渉計1Aに取り付けるための対物レンズ取り付け部材40に形成された反射鏡43である。   Further, the low coherence interferometer according to the fourth aspect of the present invention is the low coherence interferometer according to the third aspect. For example, as shown in FIG. 7, the reflector includes the objective lens 14 and the low coherence interferometer. It is the reflecting mirror 43 formed in the objective lens attachment member 40 for attaching to 1A.

ここにおいて、対物レンズ取り付け部材40(40A又は40B)とは、対物レンズを当該低コヒーレンス干渉計1Aに取り付ける部材であり、対物レンズ14を保持する筐体40B及び筐体40Bを低コヒーレンス干渉計1Aに取り付けるためのレボルバ40Aを含む。本態様のように構成すると、反射鏡43は対物レンズ14の近傍にある対物レンズ取り付け部材に形成されるので、アッベの原理を近似的に満たし、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、また、反射体の取り付けを容易にできる。   Here, the objective lens attachment member 40 (40A or 40B) is a member that attaches the objective lens to the low coherence interferometer 1A, and the housing 40B and the housing 40B that hold the objective lens 14 are the low coherence interferometer 1A. Includes a revolver 40A for attachment to the housing. With this configuration, since the reflecting mirror 43 is formed on the objective lens mounting member in the vicinity of the objective lens 14, the Abbe principle is approximately satisfied, and the measurement accuracy due to disturbance (for example, temperature change or vibration) is improved. In addition, the reflector can be easily attached.

また、本発明の第5の態様に係る低コヒーレンス干渉計1は、第1ないし第4のいずれかの態様に係る低コヒーレンス干渉計において、例えば図1に示すように、移動量測定器30は、レーザ光源31から射出されたレーザ光を測定レーザ光5と参照レーザ光6に分波し、測定レーザ光5を反射体32に照射させ、反射体32で反射された測定レーザ光5を参照レーザ光6と合波し干渉させて干渉レーザ光を出力させるレーザ光干渉光学系33と、レーザ光干渉光学系33から出力された干渉レーザ光を検出するレーザ光検出器21と、レーザ光検出器21で検出された干渉レーザ光の強度の対物レンズ14の移動による変化に基づいて対物レンズ14の移動量を算出する移動量演算部23を有する。   The low coherence interferometer 1 according to the fifth aspect of the present invention is the low coherence interferometer according to any one of the first to fourth aspects. For example, as shown in FIG. The laser light emitted from the laser light source 31 is demultiplexed into the measurement laser light 5 and the reference laser light 6, the measurement laser light 5 is irradiated onto the reflector 32, and the measurement laser light 5 reflected by the reflector 32 is referred to. Laser light interference optical system 33 that combines and interferes with laser light 6 to output interference laser light, laser light detector 21 that detects the interference laser light output from laser light interference optical system 33, and laser light detection And a movement amount calculation unit 23 for calculating the movement amount of the objective lens 14 based on the change of the intensity of the interference laser light detected by the detector 21 due to the movement of the objective lens 14.

ここにおいて、移動量測定器30は対物レンズ14の移動量算出に係る部分であり、図1ではレーザ光源31、レーザ光干渉光学系33、レーザ光検出器21、移動量演算部23を有して構成される。また、レーザ光干渉光学系33はレーザ光の干渉に係る部分であり、図1ではビームスプリッタ35〜38(37は反射鏡でも良い)、ビームスプリッタ34、ビームスプリッタ13及び反射体32を有して構成される。また、干渉レーザ光の強度は測定レーザ光5と参照レーザ光6の光路長差に対して周期的に変化し(図4参照)、対物レンズ14の移動量に対しても周期的に変化するので、これを干渉波の波形とすると、干渉波の波数(サイクル数)と位相差の変化から移動量を算出できる。本態様のように構成すると、コヒーレンス性の高いレーザ光の干渉波の波形を用いて対物レンズの移動量を測定するので、移動量を精密に測定できる。   Here, the movement amount measuring device 30 is a part related to the calculation of the movement amount of the objective lens 14, and in FIG. 1, it has a laser light source 31, a laser light interference optical system 33, a laser light detector 21, and a movement amount calculation unit 23. Configured. The laser beam interference optical system 33 is a part related to laser beam interference. In FIG. 1, the laser beam interference optical system 33 includes a beam splitter 35 to 38 (37 may be a reflecting mirror), a beam splitter 34, a beam splitter 13, and a reflector 32. Configured. Further, the intensity of the interference laser light periodically changes with respect to the optical path length difference between the measurement laser light 5 and the reference laser light 6 (see FIG. 4), and also periodically changes with the amount of movement of the objective lens 14. Therefore, when this is the waveform of the interference wave, the movement amount can be calculated from the change in the wave number (cycle number) of the interference wave and the phase difference. If comprised like this aspect, since the movement amount of an objective lens is measured using the waveform of the interference wave of a laser beam with high coherence property, the movement amount can be measured accurately.

また、本発明の第6の態様に係る共焦点顕微鏡は、第1ないし第5のいずれかの態様の低コヒーレンス干渉計を備える。このように構成すると、上記態様のコヒーレンス干渉計を備えるので、測定対象の三次元形状測定又は膜厚測定に用いる場合に、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない、かつ測定対象の表面状態に影響を受けない高精度の測定を可能にする共焦点顕微鏡を提供することができる。   A confocal microscope according to a sixth aspect of the present invention includes the low coherence interferometer according to any one of the first to fifth aspects. When configured in this way, since the coherence interferometer of the above aspect is provided, when used for three-dimensional shape measurement or film thickness measurement of a measurement target, it is possible to suppress the influence on the measurement accuracy due to disturbance (for example, temperature change and vibration), It is possible to provide a confocal microscope that enables high-precision measurement that does not depend on the measurement range and is not affected by the surface state of the measurement target.

また、本発明の第7の態様に係る光学顕微鏡は、対物レンズ14の光軸方向の移動量を測定するための移動量測定器30を備え、移動量測定器30は、レーザ光を射出するレーザ光源31と、光軸上又は光軸の近傍に形成されレーザ光を反射する反射体を有する。
このように構成すると、本態様に係る移動量測定器は、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない高精度の測定ができ、また、測定対象表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けないので、対物レンズの移動量を高精度で測定可能な光学顕微鏡を提供できる。
The optical microscope according to the seventh aspect of the present invention includes a movement amount measuring device 30 for measuring the movement amount of the objective lens 14 in the optical axis direction, and the movement amount measuring device 30 emits laser light. The laser light source 31 includes a reflector that is formed on or near the optical axis and reflects the laser light.
If comprised in this way, the moving amount measuring device which concerns on this aspect can suppress the influence on the measurement accuracy by disturbance (for example, a temperature change or vibration), can perform the high precision measurement which is not dependent on a measurement range, and is a measuring object. Since it is not affected by the surface condition (surface roughness, slope, absorption, etc.) of the surface, an optical microscope capable of measuring the amount of movement of the objective lens with high accuracy can be provided.

また、本発明の第8の態様に係る光学顕微鏡は、対物レンズの光軸方向の移動量を測定するための移動量測定器を備え、移動量測定器は、レーザ光を射出するレーザ光源と、対物レンズの近傍に設けられ対物レンズと一体的に移動するレーザ光を反射する反射体を有する。
このように構成すると、本態様に係る移動量測定器は、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない高精度の測定ができ、また、測定対象表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けないので、対物レンズの移動量を高精度で測定可能な光学顕微鏡を提供できる。
The optical microscope according to the eighth aspect of the present invention includes a movement amount measuring device for measuring the movement amount of the objective lens in the optical axis direction. The movement amount measuring device includes a laser light source that emits laser light, And a reflector that is provided in the vicinity of the objective lens and reflects the laser light that moves integrally with the objective lens.
If comprised in this way, the moving amount measuring device which concerns on this aspect can suppress the influence on the measurement accuracy by disturbance (for example, a temperature change or vibration), can perform the high precision measurement independent of a measurement range, and is a measuring object. Since it is not affected by the surface condition (surface roughness, slope, absorption, etc.) of the surface, an optical microscope capable of measuring the amount of movement of the objective lens with high accuracy can be provided.

本発明によれば、測定対象の三次元形状測定又は膜厚測定において、外乱(例えば温度変化や振動)が測定精度に与える影響を抑制でき、測定レンジに依存しない、かつ測定対象の表面状態に影響を受けない高精度の測定を可能にする低コヒーレンス干渉計を提供することができる。
また、対物レンズの移動量を高精度で測定可能な光学顕微鏡を提供することができる。
According to the present invention, in the three-dimensional shape measurement or film thickness measurement of the measurement object, the influence of disturbance (for example, temperature change or vibration) on the measurement accuracy can be suppressed, and the surface state of the measurement object is independent of the measurement range. It is possible to provide a low-coherence interferometer that enables highly accurate measurement that is not affected.
In addition, it is possible to provide an optical microscope capable of measuring the amount of movement of the objective lens with high accuracy.

実施例1における低コヒーレンス干渉計の構成例を示す図である。3 is a diagram illustrating a configuration example of a low coherence interferometer in Embodiment 1. FIG. 白色光による干渉を説明するための図である。It is a figure for demonstrating the interference by white light. 反射膜の模式図である。It is a schematic diagram of a reflecting film. レーザ光による干渉を説明するための図である。It is a figure for demonstrating the interference by a laser beam. 実施例2における反射膜の形成を説明するための図である。6 is a diagram for explaining formation of a reflective film in Example 2. FIG. 実施例3における反射膜の形成を説明するための図である。6 is a diagram for explaining formation of a reflective film in Example 3. FIG. 実施例4における低コヒーレンス干渉計の構成例を示す図である。10 is a diagram illustrating a configuration example of a low coherence interferometer in Embodiment 4. FIG. 実施例5における反射鏡の設置を説明するための図である。It is a figure for demonstrating installation of the reflective mirror in Example 5. FIG. 実施例6における反射鏡の設置を説明するための図である。It is a figure for demonstrating installation of the reflective mirror in Example 6. FIG.

以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する部分には同一符号を付し,重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

本実施例では、反射膜を対物レンズの表面に形成する例で、光分波合波器を対物レンズと一体化した干渉対物レンズを用いる例について説明する。   In this embodiment, an example in which a reflection film is formed on the surface of an objective lens and an interference objective lens in which an optical demultiplexer / multiplexer is integrated with an objective lens will be described.

図1に本実施例における低コヒーレンス干渉計1の構成例を示す。低コヒーレンス干渉計1は、測定対象2を搭載するXYステージ10と、光軸方向に移動可能な対物レンズ14と、低コヒーレンス光を射出し、対物レンズ14を通して測定対象2に照射する照射光学系と、照射光学系の途中に配置され、測定対象2に向かう低コヒーレンス光を測定対象2に照射する物体光3と参照鏡17に照射する参照光4とに分波し、かつ測定対象2で反射された物体光3と参照鏡17で反射された参照光4を合波して低コヒーレンス干渉光を出力させる光分波合波器16と、光分波合波器16から出力される低コヒーレンス干渉光を低コヒーレンス光検出器20に導く検出光学系と、対物レンズ14の光軸方向の移動量を測定するための移動量測定器30を備えて構成される。照射光学系は、低コヒーレンス光源11と、低コヒーレンス光源11から射出される低コヒーレンス光の光軸上にコリメータレンズ12、ビームスプリッタ34、ビームスプリッタ13がこの順序で配置され、また、ビームスプリッタ13で反射された低コヒーレンス光の光軸上に対物レンズ14、光分波合波器16及びXYステージ10がこの順序で配置されている。検出光学系は、光分波合波器16から出力される低コヒーレンス干渉光の光軸上に対物レンズ14、ビームスプリッタ13、結像レンズ18及び低コヒーレンス光検出器20がこの順序で配置されている。移動量測定器30は対物レンズ14の光軸方向の移動量を測定するもので、移動量測定器30はレーザ光源31、レーザ光干渉光学系33、レーザ光検出器21、移動量演算部23を有して構成される。また、レーザ光干渉光学系33はレーザ光の干渉に係る部分であり、ビームスプリッタ35〜38、ビームスプリッタ34、ビームスプリッタ13及び反射体としての反射膜32を有して構成される。以下に、本実施例における低コヒーレンス干渉計1の構成及び作用について説明する。   FIG. 1 shows a configuration example of a low coherence interferometer 1 in the present embodiment. The low coherence interferometer 1 includes an XY stage 10 on which a measurement target 2 is mounted, an objective lens 14 that can move in the optical axis direction, and an irradiation optical system that emits low coherence light and irradiates the measurement target 2 through the objective lens 14. In the middle of the irradiation optical system, the low-coherence light directed toward the measuring object 2 is split into the object light 3 that irradiates the measuring object 2 and the reference light 4 that irradiates the reference mirror 17, and the measuring object 2 An optical demultiplexing / multiplexing unit 16 for combining the reflected object beam 3 and the reference light 4 reflected by the reference mirror 17 to output low coherence interference light, and a low output from the optical demultiplexing / multiplexing unit 16. A detection optical system that guides coherence interference light to the low-coherence light detector 20 and a movement amount measuring device 30 for measuring the movement amount of the objective lens 14 in the optical axis direction are configured. In the irradiation optical system, a low-coherence light source 11, a collimator lens 12, a beam splitter 34, and a beam splitter 13 are arranged in this order on the optical axis of low-coherence light emitted from the low-coherence light source 11. The objective lens 14, the optical demultiplexer / multiplexer 16 and the XY stage 10 are arranged in this order on the optical axis of the low-coherence light reflected by. In the detection optical system, the objective lens 14, the beam splitter 13, the imaging lens 18, and the low coherence light detector 20 are arranged in this order on the optical axis of the low coherence interference light output from the optical demultiplexer / multiplexer 16. ing. The movement amount measuring device 30 measures the movement amount of the objective lens 14 in the optical axis direction. The movement amount measuring device 30 includes a laser light source 31, a laser light interference optical system 33, a laser light detector 21, and a movement amount calculation unit 23. It is comprised. The laser beam interference optical system 33 is a part related to laser beam interference, and includes a beam splitter 35 to 38, a beam splitter 34, a beam splitter 13, and a reflection film 32 as a reflector. Hereinafter, the configuration and operation of the low coherence interferometer 1 in the present embodiment will be described.

測定対象2はXYステージ10上に搭載され、低コヒーレンス干渉計1により三次元形状の測定に供される。本実施例では、XYステージ10はZ方向(対物レンズ14の光軸方向)に固定されるが、XY方向(光軸に垂直な平面内)には移動可能であり、例えば、XY方向にはステッピングモータなどにより駆動される。低コヒーレンス光源11はコヒーレンス長が短い低コヒーレンス光(例としてハロゲンランプ光源)を射出する。例えば、ハロゲンランプなどの白色光源を使用できる。ハロゲンランプは近赤外光から可視光まで混合した白色光を射出し、コヒーレンス長は例えば数μm程度となる。本実施例では低コヒーレンス光としてこの白色光を使用する。かかる白色光を用いると、測定対象2に照射され反射される物体光3と参照鏡17に照射され反射される参照光4の光路長がほぼ一致した時に干渉縞が局所的に発生するので、得られた干渉縞を解析することで測定対象2の三次元形状を精密に測定できる。本実施例ではこの低コヒーレンス干渉計はマイケルソン型干渉計で構成されている。また、光源の波長帯域を制限するフィルタを用いて、波長帯域を制限した低コヒーレンス干渉計とすることもできる。   The measurement object 2 is mounted on the XY stage 10 and is subjected to measurement of a three-dimensional shape by the low coherence interferometer 1. In this embodiment, the XY stage 10 is fixed in the Z direction (the optical axis direction of the objective lens 14), but is movable in the XY direction (in a plane perpendicular to the optical axis). For example, in the XY direction, It is driven by a stepping motor or the like. The low coherence light source 11 emits low coherence light having a short coherence length (for example, a halogen lamp light source). For example, a white light source such as a halogen lamp can be used. The halogen lamp emits white light mixed from near infrared light to visible light, and the coherence length is, for example, about several μm. In this embodiment, this white light is used as the low coherence light. When such white light is used, interference fringes are locally generated when the optical path lengths of the object light 3 irradiated and reflected on the measurement object 2 and the reference light 4 irradiated and reflected on the reference mirror 17 are substantially the same. By analyzing the obtained interference fringes, the three-dimensional shape of the measuring object 2 can be accurately measured. In this embodiment, the low coherence interferometer is a Michelson interferometer. Further, a low-coherence interferometer with a limited wavelength band can be obtained by using a filter that limits the wavelength band of the light source.

図2は白色光による干渉を説明するための図である。横軸に光路長差を、縦軸に検出光強度を示す。物体光3と参照光4の光路長が一致した時に干渉は最大になり、最大の強度が得られる。そして、物体光3と参照光4の光路長の差がゼロである近傍で干渉は最大になり、最大の強度が得られる。そして、光路長差が白色光のコヒーレンス長以内(±lc以内)であるとき、局所的に干渉が生じ、検出光強度が光路長差の変化によって周期的に変動する干渉縞が発生する。干渉波のピークは包絡線を描き、光路長の差が大きくなるに従い徐々に小さくなり、光路長の差が±lcで干渉は消滅する。干渉縞の本数は数本程度である。   FIG. 2 is a diagram for explaining interference due to white light. The horizontal axis represents the optical path length difference, and the vertical axis represents the detected light intensity. When the optical path lengths of the object light 3 and the reference light 4 coincide, the interference becomes maximum, and the maximum intensity is obtained. In the vicinity where the difference between the optical path lengths of the object beam 3 and the reference beam 4 is zero, the interference becomes maximum and the maximum intensity is obtained. When the optical path length difference is within the coherence length of white light (within ± lc), interference occurs locally, and interference fringes are generated in which the detected light intensity varies periodically due to the change in the optical path length difference. The peak of the interference wave draws an envelope and gradually decreases as the optical path length difference increases, and the interference disappears when the optical path length difference is ± lc. The number of interference fringes is about several.

図1に戻り、照射光学系において、低コヒーレンス光源11から射出される低コヒーレンス光の光軸上にコリメータレンズ12、ビームスプリッタ34、ビームスプリッタ13がこの順序で配置されている。また、ビームスプリッタ13で反射された低コヒーレンス光の光軸上に対物レンズ14、光分波合波器16及びXYステージ10がこの順序で配置されている。低コヒーレンス光源11から射出された低コヒーレンス光はコリメータレンズ12で略平行光束となり、ビームスプリッタ34を透過し、ビームスプリッタ13で反射され略平行光束となり、対物レンズ14に入射される。ビームスプリッタ34は後述するレーザ光干渉光学系33からの測定レーザ光5を白色光と合波するためのものである。ビームスプリッタ13は、白色光の一部を反射し、一部を透過する。例えば反射率50%、透過率50%とする。なお、低コヒーレンス光源11からの低コヒーレンス光を光ファイバを通し、光ファイバの出射端で拡散レンズによりコリメータレンズ12に投光しても良い。   Returning to FIG. 1, in the irradiation optical system, the collimator lens 12, the beam splitter 34, and the beam splitter 13 are arranged in this order on the optical axis of the low coherence light emitted from the low coherence light source 11. An objective lens 14, an optical demultiplexer / multiplexer 16 and an XY stage 10 are arranged in this order on the optical axis of the low coherence light reflected by the beam splitter 13. The low coherence light emitted from the low coherence light source 11 becomes a substantially parallel light beam by the collimator lens 12, passes through the beam splitter 34, is reflected by the beam splitter 13, becomes a substantially parallel light beam, and enters the objective lens 14. The beam splitter 34 is for combining the measurement laser beam 5 from the laser beam interference optical system 33 described later with white light. The beam splitter 13 reflects a part of white light and transmits a part thereof. For example, the reflectance is 50% and the transmittance is 50%. Note that low-coherence light from the low-coherence light source 11 may be transmitted through an optical fiber and projected onto the collimator lens 12 by a diffusion lens at the output end of the optical fiber.

対物レンズ14は低コヒーレンス光を測定対象2に集光させる。ビームスプリッタ13から反射された低コヒーレンス光の光軸が対物レンズ14の光軸と一致している。本実施例では対物レンズ14は干渉対物レンズ15(図の一点鎖線内)の構成をしており、光分波合波器16及び参照鏡17と一体的に構成されている。光分波合波器16は、対物レンズ14を通った低コヒーレンス光を測定対象2に照射する物体光3と参照鏡17に照射する参照光4とに分波し、かつ測定対象2で反射されて戻ってきた物体光3と参照鏡17で反射されて戻ってきた参照光4を合波して低コヒーレンス干渉光を出力させる。光分波合波器16は、例えば、白色光の一部を反射し、一部を透過するビームスプリッタを使用でき、例えば反射率50%、透過率50%とする。対物レンズ14を通ってビームスプリッタ16に入射された光束は物体光3と参照光4に分波される。ビームスプリッタ16を透過した物体光3は、測定対象2に照射され、測定対象2で反射されてビームスプリッタ16に戻る。ビームスプリッタ16で反射された参照光4は、参照鏡17に照射され、参照鏡17で反射されてビームスプリッタ16に戻る。測定対象2で反射されて戻ってきた物体光3と参照鏡17で反射されて戻ってきた参照光4はビームスプリッタ16で合波されて、低コヒーレンス干渉光となり、対物レンズ14に向けて出力される。   The objective lens 14 focuses the low coherence light on the measurement object 2. The optical axis of the low coherence light reflected from the beam splitter 13 coincides with the optical axis of the objective lens 14. In the present embodiment, the objective lens 14 has a configuration of an interference objective lens 15 (within the one-dot chain line in the figure), and is configured integrally with the optical demultiplexer-multiplexer 16 and the reference mirror 17. The optical demultiplexer / multiplexer 16 demultiplexes the low-coherence light that has passed through the objective lens 14 into the object light 3 that irradiates the measurement object 2 and the reference light 4 that irradiates the reference mirror 17, and is reflected by the measurement object 2. Then, the returned object beam 3 and the reference beam 4 reflected by the reference mirror 17 are combined to output low coherence interference light. The optical demultiplexer-multiplexer 16 can use, for example, a beam splitter that reflects part of white light and transmits part of it. For example, the reflectance is 50% and the transmittance is 50%. A light beam incident on the beam splitter 16 through the objective lens 14 is demultiplexed into the object light 3 and the reference light 4. The object light 3 transmitted through the beam splitter 16 is irradiated onto the measurement object 2, reflected by the measurement object 2, and returned to the beam splitter 16. The reference light 4 reflected by the beam splitter 16 is irradiated on the reference mirror 17, reflected by the reference mirror 17, and returned to the beam splitter 16. The object light 3 reflected and returned by the measurement object 2 and the reference light 4 reflected and returned by the reference mirror 17 are combined by the beam splitter 16 to become low coherence interference light, which is output toward the objective lens 14. Is done.

ビームスプリッタ16を透過して、測定対象2に照射され、測定対象2で反射されてビームスプリッタ16に戻る物体光3の光路長と、ビームスプリッタ16で反射されて、参照鏡17に照射され、参照鏡17で反射されてビームスプリッタ16に戻る参照光4の光路長がほぼ等しくなるときに物体光3は測定対象2で合焦し、参照光4は参照鏡17で合焦するようにビームスプリッタ16及び参照鏡17が配置される。物体光3の光路長と参照光4の光路長がほぼ一致する時に白色光の干渉縞が局所的に発生する。測定対象2の表面の高低差が白色光のコヒーレンス長以内であるときには、低コヒーレンス光検出器20で検出される像は面内で干渉縞が発生しているため、対物レンズ14の位置を移動せずに干渉縞解析によって表面形状を算出することできる。   The light beam is transmitted through the beam splitter 16, irradiated to the measurement object 2, reflected by the measurement object 2, returned to the beam splitter 16, reflected by the beam splitter 16, and irradiated to the reference mirror 17. When the optical path length of the reference light 4 reflected by the reference mirror 17 and returning to the beam splitter 16 becomes substantially equal, the object light 3 is focused on the measurement object 2 and the reference light 4 is focused on the reference mirror 17. A splitter 16 and a reference mirror 17 are arranged. When the optical path length of the object light 3 and the optical path length of the reference light 4 substantially coincide with each other, white light interference fringes are locally generated. When the height difference of the surface of the measuring object 2 is within the coherence length of white light, the image detected by the low coherence light detector 20 has interference fringes in the plane, and therefore the position of the objective lens 14 is moved. The surface shape can be calculated by interference fringe analysis.

対物レンズ14は光軸方向(Z方向)に移動可能に構成される。本実施例ではXYステージ10を固定し、対物レンズ14を移動するものとする。例えば図示しないステッピングモータ、ピエゾアクチュエータ又はこれらの組み合わせによりZ方向に移動できる。ピエゾアクチュエータを用いると、移動量を測定する静電容量センサを対物レンズ14の近傍に設置できるため、精度が高い移動量測定が可能になるので好適である。これにより、測定対象表面の高低差が白色光のコヒーレンス長以上であるときには、対物レンズ14の位置を移動(走査しても良い)させながら低コヒーレンス光検出器20で検出される干渉縞の画像を撮像・収集し、これらの干渉縞に基づいて、画像の各画素における検出強度のZ方向位置依存性を解析することで、測定対象2の三次元形状を精密に測定できる。   The objective lens 14 is configured to be movable in the optical axis direction (Z direction). In this embodiment, the XY stage 10 is fixed and the objective lens 14 is moved. For example, it can be moved in the Z direction by a stepping motor, a piezoelectric actuator (not shown), or a combination thereof. The use of a piezo actuator is preferable because a capacitance sensor for measuring the amount of movement can be installed in the vicinity of the objective lens 14 and the amount of movement can be measured with high accuracy. Thereby, when the height difference of the measurement target surface is equal to or greater than the coherence length of the white light, the interference fringe image detected by the low coherence photodetector 20 while moving the position of the objective lens 14 (may be scanned). The three-dimensional shape of the measuring object 2 can be accurately measured by analyzing and analyzing the Z-direction position dependency of the detection intensity at each pixel of the image based on these interference fringes.

検出光学系において、ビームスプリッタ16から出力される低コヒーレンス干渉光の光軸上に対物レンズ14、ビームスプリッタ13、結像レンズ18及び低コヒーレンス光検出器20がこの順序で配置されている。ビームスプリッタ16から出力された低コヒーレンス干渉光は対物レンズ14を通って略平行光束となり、ビームスプリッタ13に入射される。ビームスプリッタ13を透過した白色光は結像レンズ18を通って低コヒーレンス光検出器20に入射される。低コヒーレンス光検出器20は低コヒーレンス干渉光を検出するもので、例えばCCDカメラを使用できる。一般的なCCDカメラ20は近赤外から可視光にかけて感度を有するが、低コヒーレンス干渉光(干渉縞を生じる部分)から離れた波長の光を波長帯域フィルタにより遮断しても良い。CCDカメラ20は低コヒーレンス干渉光による干渉縞画像を撮像する。CCDカメラ20は得られた干渉縞画像は解析装置22における白色光干渉解析部24で解析することにより、測定対象2の三次元形状を高精度に測定することができる。解析装置22として例えばパーソナルコンピュータ(PC)を使用できる。   In the detection optical system, the objective lens 14, the beam splitter 13, the imaging lens 18, and the low coherence light detector 20 are arranged in this order on the optical axis of the low coherence interference light output from the beam splitter 16. The low coherence interference light output from the beam splitter 16 passes through the objective lens 14 to become a substantially parallel light beam and enters the beam splitter 13. The white light transmitted through the beam splitter 13 passes through the imaging lens 18 and enters the low coherence photodetector 20. The low coherence light detector 20 detects low coherence interference light, and for example, a CCD camera can be used. The general CCD camera 20 has sensitivity from near infrared to visible light, but light having a wavelength away from low coherence interference light (portion where interference fringes are generated) may be blocked by a wavelength band filter. The CCD camera 20 captures an interference fringe image using low coherence interference light. The CCD camera 20 can measure the three-dimensional shape of the measurement object 2 with high accuracy by analyzing the obtained interference fringe image by the white light interference analysis unit 24 in the analysis device 22. For example, a personal computer (PC) can be used as the analysis device 22.

移動量測定器30は対物レンズ14の光軸方向の移動量を測定する。移動量測定器30はレーザ光源31、レーザ光干渉光学系33、レーザ光検出器21、移動量演算部23を有して構成される。また、レーザ光干渉光学系33はレーザ光の干渉に係る部分であり、ビームスプリッタ35〜38(37は反射鏡でも良い)、ビームスプリッタ34、ビームスプリッタ13及び反射体としての反射膜32を有して構成される。レーザ光源31はレーザ光を射出する。反射膜32はレーザ光を反射する。   The movement amount measuring device 30 measures the movement amount of the objective lens 14 in the optical axis direction. The movement amount measuring device 30 includes a laser light source 31, a laser light interference optical system 33, a laser light detector 21, and a movement amount calculation unit 23. The laser beam interference optical system 33 is a part related to laser beam interference, and includes a beam splitter 35 to 38 (37 may be a reflecting mirror), a beam splitter 34, the beam splitter 13, and a reflection film 32 as a reflector. Configured. The laser light source 31 emits laser light. The reflective film 32 reflects the laser light.

図3に、反射膜32の模式図を示す。反射膜32は対物レンズ14に形成される。例えば、対物レンズ14の測定対象2と反対側の面に形成される。反射膜32には一般的な誘電体多層膜(例えばダイクロイックミラーに用いられる)などを使用して、反射光の波長を選択することが好適である。例えば、対物レンズ14の表面に透明で屈折率の異なる2層が交互に積層された多層膜からなる反射膜32が形成される。多層膜は例えば蒸着により高屈折率層P1と低屈折率層P2を交互に積層して形成する。2層の膜厚を光路長がレーザ光の波長に適合するように調整することによりレーザ光が効率よく反射される。このように反射膜32は対物レンズ14に密着してその光軸上を含んで、すなわち光軸と交差するように形成されている。レーザ光は反射膜32の光軸上に局所的に照射され、アッベの原理を満たしている。したがって、外乱(例えば温度変化や振動)が測定精度に与える影響を受けにくい。また、反射膜32からの反射光を測定することにより、対物レンズ14それ自体の移動量を測定している。また、レーザ光で測定することにより、測定レンジに依存しない高精度の測定が可能である。また、対物レンズ14に形成した反射膜32からの反射光を用いて対物レンズ14の移動量を測定するので、測定対象2表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けない。   FIG. 3 shows a schematic diagram of the reflective film 32. The reflective film 32 is formed on the objective lens 14. For example, the objective lens 14 is formed on the surface opposite to the measurement target 2. It is preferable to select a wavelength of the reflected light by using a general dielectric multilayer film (for example, used for a dichroic mirror) for the reflection film 32. For example, the reflective film 32 made of a multilayer film in which two layers having different refractive indexes are laminated alternately on the surface of the objective lens 14 is formed. The multilayer film is formed by alternately stacking the high refractive index layers P1 and the low refractive index layers P2 by vapor deposition, for example. The laser light is efficiently reflected by adjusting the film thicknesses of the two layers so that the optical path length matches the wavelength of the laser light. Thus, the reflection film 32 is formed in close contact with the objective lens 14 so as to include the optical axis thereof, that is, to intersect the optical axis. The laser beam is locally irradiated on the optical axis of the reflective film 32 and satisfies Abbe's principle. Therefore, disturbance (for example, temperature change and vibration) is not easily affected by the measurement accuracy. Further, the amount of movement of the objective lens 14 itself is measured by measuring the reflected light from the reflective film 32. In addition, by measuring with a laser beam, high-precision measurement independent of the measurement range is possible. Further, since the amount of movement of the objective lens 14 is measured using the reflected light from the reflective film 32 formed on the objective lens 14, it is influenced by the surface state (surface roughness, slope, absorption, etc.) of the surface of the measuring object 2. Absent.

図1に戻り、レーザ光源31として例えばHe−Neレーザを使用できる。He−Neレーザ31から射出されたレーザ光(波長632.8nm)は、レーザ光干渉光学系33に入射される。He−Neレーザの代わりに各波長の半導体レーザやNd−YAGレーザ(波長1064nm)などを使用しても良い。レーザ光の波長が低コヒーレンス光の波長(干渉範囲の波長)または波長帯域を制限するフィルタの波長帯域から離れていれば、レーザ光は白色光の干渉縞に影響を及ぼさないので好適である。レーザ光干渉光学系33は、レーザ光源31から射出されたレーザ光を入射し、ビームスプリッタ35で測定レーザ光5と参照レーザ光6に分波する。参照レーザ光6はビームスプリッタ35からビームスプリッタ38に至る。測定レーザ光5はビームスプリッタ36で反射されてビームスプリッタ34で低コヒーレンス光学系に入射され、その後低コヒーレンス光と同様に(本実施例では測定レーザ光5の光軸と低コヒーレンス光の光軸は一致する)、ビームスプリッタ13で反射され、対物レンズ14に形成された反射膜32で反射され、ビームスプリッタ13、ビームスプリッタ34で反射された後に、低コヒーレンス光学系から分かれて、ビームスプリッタ36を透過後にビームスプリッタ37(反射鏡でも良い)で反射されてビームスプリッタ38に入射する。ビームスプリッタ38は測定レーザ光5と参照レーザ光6を合波して干渉レーザ光を出力する。   Returning to FIG. 1, for example, a He—Ne laser can be used as the laser light source 31. Laser light (wavelength 632.8 nm) emitted from the He—Ne laser 31 is incident on the laser light interference optical system 33. Instead of the He-Ne laser, a semiconductor laser of each wavelength, an Nd-YAG laser (wavelength 1064 nm), or the like may be used. If the wavelength of the laser light is far from the wavelength of the low-coherence light (the wavelength in the interference range) or the wavelength band of the filter that limits the wavelength band, it is preferable because the laser light does not affect the interference fringes of the white light. The laser beam interference optical system 33 receives the laser beam emitted from the laser light source 31 and demultiplexes it into the measurement laser beam 5 and the reference laser beam 6 by the beam splitter 35. The reference laser beam 6 reaches the beam splitter 38 from the beam splitter 35. The measurement laser beam 5 is reflected by the beam splitter 36 and is incident on the low coherence optical system by the beam splitter 34, and thereafter, similarly to the low coherence beam (in this embodiment, the optical axis of the measurement laser beam 5 and the optical axis of the low coherence beam). Are reflected by the beam splitter 13, reflected by the reflecting film 32 formed on the objective lens 14, reflected by the beam splitter 13 and the beam splitter 34, and then separated from the low-coherence optical system. Is reflected by a beam splitter 37 (or a reflecting mirror) and then enters a beam splitter 38. The beam splitter 38 combines the measurement laser beam 5 and the reference laser beam 6 and outputs an interference laser beam.

干渉レーザ光はレーザ光検出器21に入射され、検出される。レーザ光検出器21は例えば光電センサを使用できる。光電センサ21での検出信号を解析装置22に送信し、解析装置22では移動量演算部23にてレーザ光の干渉縞を解析することにより、高精度で対物レンズ14の移動量を測定できる。解析装置22にはパーソナルコンピュータ(PC)を使用できる。これら、ビームスプリッタ34〜38及びビームスプリッタ13、反射膜32はレーザ光干渉光学系33を構成する。レーザ光干渉光学系33における測定レーザ光5の光路長と参照レーザ光6の光路長の差を変化させたとき、干渉レーザ光強度が周期的に変化する。これら2つの光路長が一致すると又は2つの光路長の差異がレーザ光の半波長の整数倍であるとき干渉レーザ光の強度が最大になる。また、レーザ光は反射膜32の局所に照射され、反射されれば良いが、本実施例ではビームスプリッタ13の中心に照射され、対物レンズ14の中心に向かって、光軸上を進み、光軸上で反射膜32から反射される。レーザ光を光軸上に照射する(すなわち光軸上の反射膜32で反射させる)とアッベの原理を満たすので好適であるが、厳密な光軸上でなくても光軸の近傍であればアッベの原理を近似的に満たすので、外乱(例えば温度変化や振動)が測定精度への影響を抑制できる。   The interference laser light enters the laser light detector 21 and is detected. For example, a photoelectric sensor can be used as the laser light detector 21. The detection signal from the photoelectric sensor 21 is transmitted to the analysis device 22, and the analysis device 22 analyzes the interference fringes of the laser light by the movement amount calculation unit 23, whereby the movement amount of the objective lens 14 can be measured with high accuracy. The analysis device 22 can be a personal computer (PC). These beam splitters 34 to 38, the beam splitter 13, and the reflection film 32 constitute a laser beam interference optical system 33. When the difference between the optical path length of the measurement laser beam 5 and the optical path length of the reference laser beam 6 in the laser beam interference optical system 33 is changed, the interference laser beam intensity periodically changes. When these two optical path lengths match or when the difference between the two optical path lengths is an integral multiple of a half wavelength of the laser light, the intensity of the interference laser light is maximized. In addition, the laser beam may be irradiated and reflected locally on the reflection film 32. In this embodiment, the laser beam is irradiated on the center of the beam splitter 13 and travels on the optical axis toward the center of the objective lens 14 to generate light. Reflected from the reflective film 32 on the axis. It is preferable to irradiate the laser beam on the optical axis (that is, reflect it by the reflection film 32 on the optical axis) because the Abbe's principle is satisfied. Since Abbe's principle is approximately satisfied, disturbance (for example, temperature change and vibration) can suppress the influence on measurement accuracy.

図4はレーザ光による干渉を説明するための図である。横軸にZ方向移動量を、縦軸に検出光強度を示す。干渉縞の波長は、レーザ光の波長の1/2になる。このように移動量に対して干渉縞が繰り返されるので、対物レンズ14の移動量は干渉縞の数と位相差により測定できる。すなわち、移動量測定器30は、レーザ光検出器21で検出された干渉レーザ光の検出光強度を移動量演算部23に送信し、移動量演算部23は、レーザ光検出器21で検出された干渉レーザ光の強度の対物レンズ14の移動による変化に基づいて対物レンズ14の移動量を算出する。干渉レーザ光の強度は測定レーザ光5と参照レーザ光6の光路長差に対して周期的に変化し、対物レンズ14の移動量に対しても周期的に変化するので、これを干渉波の波形とすると、干渉波の波数(サイクル数)と位相差の変化から移動量を算出できる。   FIG. 4 is a diagram for explaining interference due to laser light. The horizontal axis indicates the amount of movement in the Z direction, and the vertical axis indicates the detected light intensity. The wavelength of the interference fringes is ½ of the wavelength of the laser light. Thus, since the interference fringes are repeated with respect to the movement amount, the movement amount of the objective lens 14 can be measured by the number of the interference fringes and the phase difference. That is, the movement amount measuring device 30 transmits the detected light intensity of the interference laser light detected by the laser light detector 21 to the movement amount calculating unit 23, and the movement amount calculating unit 23 is detected by the laser light detector 21. The amount of movement of the objective lens 14 is calculated based on the change in the intensity of the interference laser beam due to the movement of the objective lens 14. The intensity of the interference laser light changes periodically with respect to the optical path length difference between the measurement laser light 5 and the reference laser light 6 and periodically changes with the amount of movement of the objective lens 14. If it is a waveform, the amount of movement can be calculated from the wave number (cycle number) of the interference wave and the change in phase difference.

以上より、本実施例によれば、測定対象の三次元形状測定又は膜厚測定において、光軸上に形成された反射膜からの反射光を用いて測定するので、外乱(例えば温度変化や振動)による測定精度に与える影響を抑制し、また、測定に用いるレーザ光のコヒーレンス長は長いので、測定レンジに依存しない高精度の測定ができる。また、対物レンズに形成した反射膜からの反射光を用いて対物レンズの移動量を測定するので、測定対象表面の表面状態(表面粗さ、斜面、吸収など)による影響を受けない。   As described above, according to the present embodiment, in the three-dimensional shape measurement or the film thickness measurement of the measurement object, the measurement is performed using the reflected light from the reflection film formed on the optical axis. ) Is suppressed, and the coherence length of the laser beam used for the measurement is long, so that highly accurate measurement independent of the measurement range can be performed. Further, since the amount of movement of the objective lens is measured using the reflected light from the reflective film formed on the objective lens, it is not affected by the surface state (surface roughness, slope, absorption, etc.) of the measurement target surface.

図5は実施例2における反射膜32の形成を説明するための図である。実施例1では対物レンズ14が1つとして説明したが、実施例2では複数のレンズで構成された対物レンズを用い、その1つの対物レンズ14Aに反射膜32を形成する例を説明する。実施例1との差異点を主に説明する。対物レンズ14の測定対象2と反対側のレンズ14Aの測定対象2と反対側の面に反射膜32を形成する。レンズ14Aの表面に透明で屈折率の異なる2層が交互に積層された多層膜からなる反射膜32が形成される。レンズ14Aは筐体40Bに保持され、筐体40Bはレボルバ40Aにより低コヒーレンス干渉計に取り付けられる。その他の構成は実施例1と同様であり、実施例1と同様の効果を奏する。   FIG. 5 is a diagram for explaining the formation of the reflective film 32 in the second embodiment. In the first embodiment, the objective lens 14 is described as one, but in the second embodiment, an example in which an objective lens composed of a plurality of lenses is used and the reflective film 32 is formed on one objective lens 14A will be described. Differences from the first embodiment will be mainly described. A reflective film 32 is formed on the surface of the objective lens 14 opposite to the measurement target 2 on the side opposite to the measurement target 2 of the lens 14A. A reflective film 32 is formed on the surface of the lens 14A. The reflective film 32 is formed of a multilayer film in which two layers having different refractive indexes are laminated alternately. The lens 14A is held by the housing 40B, and the housing 40B is attached to the low coherence interferometer by a revolver 40A. Other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment are obtained.

図6は実施例3における反射膜の形成を説明するための図である。実施例1では対物レンズ14にレーザ光を反射する反射膜32を形成する例を説明したが、本実施例では反射体として透明基板42に形成された多層膜32Bを用いる例を説明する。実施例1との差異点を主に説明する。例えばガラス基板などの透明基板上に屈折率の異なる2層が交互に積層された多層膜を蒸着して多層膜フィルタ42を形成する。例えば対物レンズ14を装着した筐体40Bの測定対象2と反対側にレボルバ40Aを取り付け、筐体40Bとレボルバ40Aの間に多層膜フィルタ42を挟む。これにより、多層膜フィルタ42に照射されたレーザ光は多層膜からなる反射膜32Bにより反射される。白色干渉縞近傍の波長の光は多層膜フィルタ42を透過する。透明基板に多層膜32Bを形成するので、対物レンズ14に直接形成するよりも、簡易に形成、取り扱いができる。その他の構成は実施例1と同様であり、実施例1と同様の効果を奏する。   FIG. 6 is a diagram for explaining the formation of a reflective film in Example 3. In the first embodiment, an example in which the reflection film 32 that reflects the laser light is formed on the objective lens 14 has been described. In this embodiment, an example in which the multilayer film 32B formed on the transparent substrate 42 is used as a reflector will be described. Differences from the first embodiment will be mainly described. For example, the multilayer film 42 is formed by vapor-depositing a multilayer film in which two layers having different refractive indexes are alternately laminated on a transparent substrate such as a glass substrate. For example, the revolver 40A is attached to the opposite side of the measurement object 2 of the housing 40B equipped with the objective lens 14, and the multilayer filter 42 is sandwiched between the housing 40B and the revolver 40A. Thereby, the laser light irradiated to the multilayer filter 42 is reflected by the reflective film 32B made of the multilayer film. Light having a wavelength in the vicinity of the white interference fringes passes through the multilayer filter 42. Since the multilayer film 32B is formed on the transparent substrate, the multilayer film 32B can be formed and handled more easily than directly forming on the objective lens. Other configurations are the same as those of the first embodiment, and the same effects as those of the first embodiment are obtained.

実施例1では対物レンズ14にレーザ光を反射する反射膜32を形成する例を説明したが、本実施例では対物レンズ取り付け部材40(40A又は40B)に反射鏡43を形成する例を説明する。したがって、実施例1では反射膜32が対物レンズ14の表面に配置されるが、本実施例では反射鏡43が対物レンズ14と一体的に移動する対物レンズ取り付け部材40に配置される。   In the first embodiment, the example in which the reflecting film 32 that reflects the laser light is formed on the objective lens 14 has been described. In this embodiment, an example in which the reflecting mirror 43 is formed on the objective lens mounting member 40 (40A or 40B) will be described. . Therefore, although the reflective film 32 is disposed on the surface of the objective lens 14 in the first embodiment, the reflective mirror 43 is disposed on the objective lens mounting member 40 that moves integrally with the objective lens 14 in the present embodiment.

図7に実施例4における低コヒーレンス干渉計1Aの構成例を示す。図7(a)に低コヒーレンス干渉計1Aの構成例を、図7(b)に反射鏡43の設置部分の例を示す。実施例1との差異を主に説明する。対物レンズ取り付け部材40は、対物レンズ14を低コヒーレンス干渉計1Aに取り付けるための部材であり、対物レンズ14を保持する筐体40B及び筐体40Bを低コヒーレンス干渉計1Aに取り付けるためのレボルバ40Aを含む。対物レンズ14は筐体40Bに保持され、筐体40Bは低コヒーレンス干渉計1Aに取り付られている。例えば反射鏡43はレボルバ40Aの測定対象2と反対側の面上に配置され、対物レンズ14と一体的に移動し、レーザ反射光を用いて対物レンズ14の移動量を測定するので、測定レンジに依存せず、かつ測定対象表面の表面状態による影響を受けずに、移動量を精密に測定できる。また、レボルバ40Aは物体光3の対物レンズ14への入射を妨げない位置にあるので、白色干渉縞の観察に影響を与えない。反射鏡43は対物レンズ14の光軸に対して垂直に設置され、反射鏡43に入射されたレーザ光の反射光は入射光の光路を戻る。反射鏡43は対物レンズ14の近傍に配置されるので、厳密にはアッベの原理を満たさないが、アッベの原理を近似的に満たすものといえる。したがって、外乱(例えば温度変化や振動)が測定精度への影響を抑制できる。また、反射膜32の対物レンズ14への形成に比して、レボルバ40Aへの反射鏡43の取り付けは、貼り付ければ良いので容易である。   FIG. 7 shows a configuration example of the low coherence interferometer 1A in the fourth embodiment. FIG. 7A shows an example of the configuration of the low coherence interferometer 1A, and FIG. 7B shows an example of the installation part of the reflecting mirror 43. Differences from the first embodiment will be mainly described. The objective lens attachment member 40 is a member for attaching the objective lens 14 to the low coherence interferometer 1A, and includes a housing 40B for holding the objective lens 14 and a revolver 40A for attaching the housing 40B to the low coherence interferometer 1A. Including. The objective lens 14 is held by the housing 40B, and the housing 40B is attached to the low coherence interferometer 1A. For example, the reflecting mirror 43 is disposed on the surface of the revolver 40A opposite to the measurement target 2, moves integrally with the objective lens 14, and measures the movement amount of the objective lens 14 using laser reflected light. It is possible to accurately measure the amount of movement without depending on the condition and without being affected by the surface condition of the surface to be measured. Further, since the revolver 40A is in a position that does not prevent the object light 3 from entering the objective lens 14, it does not affect the observation of white interference fringes. The reflecting mirror 43 is installed perpendicular to the optical axis of the objective lens 14, and the reflected light of the laser light incident on the reflecting mirror 43 returns the optical path of the incident light. Since the reflecting mirror 43 is disposed in the vicinity of the objective lens 14, it can be said that although it does not strictly satisfy the Abbe principle, it approximately satisfies the Abbe principle. Therefore, disturbance (for example, temperature change and vibration) can suppress the influence on measurement accuracy. Further, as compared with the formation of the reflection film 32 on the objective lens 14, the reflection mirror 43 can be easily attached to the revolver 40A because it only has to be attached.

また、実施例1の光学系からビームスプリッタ34(図1参照)が除かれ、ビームスプリッタ13が白色光及びレーザ光を対物レンズ14の方向に向けて反射する。レーザ光はビームスプリッタ13の端の方の局所に照射され、反射鏡43に向かって反射される。このためレーザ光は対物レンズ14には入射されず、低コヒーレンス光の干渉には影響を与えない。また、反射鏡43からの反射光はビームスプリッタ13で反射されてビームスプリッタ36に向かい、対物レンズ14から出力される低コヒーレンス干渉光はビームスプリッタ13を透過して結像レンズ18に向かう。   Further, the beam splitter 34 (see FIG. 1) is removed from the optical system of the first embodiment, and the beam splitter 13 reflects white light and laser light toward the objective lens 14. The laser light is irradiated to the local area toward the end of the beam splitter 13 and reflected toward the reflecting mirror 43. Therefore, the laser light is not incident on the objective lens 14 and does not affect the interference of the low coherence light. Reflected light from the reflecting mirror 43 is reflected by the beam splitter 13 and travels toward the beam splitter 36, and low-coherence interference light output from the objective lens 14 passes through the beam splitter 13 and travels toward the imaging lens 18.

He−Neレーザ31から射出されたレーザ光(波長632.8nm)は、レーザ光干渉光学系33Aに入射される。He−Neレーザの代わりに各波長の半導体レーザやNd−YAGレーザ(波長1064nm)などを使用しても良い。レーザ光干渉光学系33Aは、レーザ光源31から射出されたレーザ光を入射し、ビームスプリッタ35で測定レーザ光5と参照レーザ光6に分波する。参照レーザ光6はビームスプリッタ35からビームスプリッタ38に至る。測定レーザ光5はビームスプリッタ36を透過してビームスプリッタ13で低コヒーレンス光学系に入射され、その後低コヒーレンス光の光路に沿って進む。ただし、本実施例では測定レーザ光5はビームスプリッタ13の端に近い部分に局所的に入射され、測定レーザ光5の光軸と低コヒーレンス光の光軸は平行であるが、一致しない。ビームスプリッタ13で反射された測定レーザ光5は、レボルバ40Aの測定対象2と反対側の面に設置された反射鏡43で反射された後に、ビームスプリッタ13で反射され、低コヒーレンス光学系から分かれてビームスプリッタ36及びビームスプリッタ37(反射鏡でも良い)で反射され、ビームスプリッタ38に入射する。ビームスプリッタ38は測定レーザ光5と参照レーザ光6を合波して干渉レーザ光を出力する。干渉レーザ光はレーザ光検出器21に入射され、検出される。   Laser light (wavelength 632.8 nm) emitted from the He-Ne laser 31 is incident on the laser light interference optical system 33A. Instead of the He-Ne laser, a semiconductor laser of each wavelength, an Nd-YAG laser (wavelength 1064 nm), or the like may be used. The laser beam interference optical system 33 </ b> A receives the laser beam emitted from the laser light source 31 and demultiplexes the laser beam into the measurement laser beam 5 and the reference laser beam 6 by the beam splitter 35. The reference laser beam 6 reaches the beam splitter 38 from the beam splitter 35. The measurement laser light 5 passes through the beam splitter 36 and is incident on the low coherence optical system by the beam splitter 13 and then travels along the optical path of the low coherence light. However, in this embodiment, the measurement laser light 5 is locally incident on a portion near the end of the beam splitter 13, and the optical axis of the measurement laser light 5 and the optical axis of the low coherence light are parallel, but do not coincide. The measurement laser beam 5 reflected by the beam splitter 13 is reflected by the reflecting mirror 43 provided on the surface opposite to the measuring object 2 of the revolver 40A, then reflected by the beam splitter 13, and separated from the low coherence optical system. Are reflected by the beam splitter 36 and the beam splitter 37 (which may be a reflecting mirror) and enter the beam splitter 38. The beam splitter 38 combines the measurement laser beam 5 and the reference laser beam 6 and outputs an interference laser beam. The interference laser light enters the laser light detector 21 and is detected.

移動量測定器30はレーザ光源31、レーザ光干渉光学系33、レーザ光検出器21、移動量演算部23を有して構成される。また、レーザ光干渉光学系33はレーザ光の干渉に係る部分であり、ビームスプリッタ35〜38、ビームスプリッタ13及び反射体としての反射鏡43を有して構成される。   The movement amount measuring device 30 includes a laser light source 31, a laser light interference optical system 33, a laser light detector 21, and a movement amount calculation unit 23. The laser beam interference optical system 33 is a part related to laser beam interference, and includes a beam splitter 35 to 38, the beam splitter 13, and a reflecting mirror 43 as a reflector.

その他の構成は実施例1と同様であり、白色光の干渉縞が局所的に発生し、また、対物レンズ14の移動量をレボルバ40Aに配置された反射鏡43からのレーザ光の反射を測定することにより、対物レンズ14の移動量を測定できる。反射鏡43は対物レンズ14の近傍に設けられ対物レンズ14と一体的に移動する。したがって、測定対象の三次元形状測定又は膜厚測定において、外乱(例えば温度変化や振動)が測定精度に与える影響を抑制でき、また、測定レンジに依存しない高精度の測定ができる。   The other configuration is the same as that of the first embodiment, and white light interference fringes are locally generated, and the amount of movement of the objective lens 14 is measured by measuring the reflection of the laser beam from the reflecting mirror 43 disposed in the revolver 40A. By doing so, the movement amount of the objective lens 14 can be measured. The reflecting mirror 43 is provided in the vicinity of the objective lens 14 and moves integrally with the objective lens 14. Therefore, in the three-dimensional shape measurement or film thickness measurement of the measurement object, the influence of disturbance (for example, temperature change or vibration) on the measurement accuracy can be suppressed, and high-precision measurement independent of the measurement range can be performed.

図8は実施例5における反射鏡43の設置を説明するための図である。実施例4では反射鏡43がレボルバ40Aに設置される例を説明したが、本実施例では反射鏡43が対物レンズ14の筐体40Bに設置される例を説明する。すなわち、反射鏡43が対物レンズ14の筐体40Bに密着した位置に固定され、レボルバ40Aに穴あけ加工がされ、ビームスプリッタ13で反射されたレーザ光は穴44を通って反射鏡43に照射され、反射鏡43から反射され、ビームスプリッタ13に戻る。なお、反射鏡43の位置を対物レンズ14と同じ高さ(Z座標)とすると、外乱(例えば温度変化や振動)が測定精度に与える影響をさらに抑制できる。その他の構成は実施例4と同様であり、実施例4と同様の効果を奏する。   FIG. 8 is a diagram for explaining the installation of the reflecting mirror 43 in the fifth embodiment. In the fourth embodiment, an example in which the reflecting mirror 43 is installed in the revolver 40A has been described. In this embodiment, an example in which the reflecting mirror 43 is installed in the housing 40B of the objective lens 14 will be described. That is, the reflecting mirror 43 is fixed at a position in close contact with the housing 40B of the objective lens 14, the revolver 40A is drilled, and the laser beam reflected by the beam splitter 13 is irradiated to the reflecting mirror 43 through the hole 44. , Reflected from the reflecting mirror 43 and returned to the beam splitter 13. If the position of the reflecting mirror 43 is the same height (Z coordinate) as the objective lens 14, the influence of disturbance (for example, temperature change and vibration) on the measurement accuracy can be further suppressed. Other configurations are the same as those of the fourth embodiment, and the same effects as those of the fourth embodiment are obtained.

図9は実施例6における反射鏡43の設置を説明するための図である。図9(a)は対物レンズ14とレボルバ40Aを側面から見た図、図9(b)はこれらを上面から見た図である。実施例4では反射鏡43がレボルバ40Aに設置される例を説明したが、本実施例では反射鏡43が対物レンズ14の筐体40Bとレボルバ40Aに挟まれて設置される例を説明する。すなわち、反射鏡43が対物レンズ14の筐体40Bに密着した位置に筐体40Bとレボルバ40Aに挟まれて設置され、レボルバ40Aに穴あけ加工がされ、ビームスプリッタ13で反射された低コヒーレンス光は穴44を通って反射鏡43に照射され、反射鏡43から反射され、ビームスプリッタ13に入射される。その他の構成は実施例4と同様であり、実施例4と同様の効果を奏する。   FIG. 9 is a diagram for explaining the installation of the reflecting mirror 43 in the sixth embodiment. FIG. 9A is a view of the objective lens 14 and the revolver 40A as viewed from the side, and FIG. 9B is a view of these as viewed from the top. In the fourth embodiment, an example in which the reflecting mirror 43 is installed on the revolver 40A has been described. In the present embodiment, an example in which the reflecting mirror 43 is installed between the housing 40B of the objective lens 14 and the revolver 40A will be described. That is, the low-coherence light reflected by the beam splitter 13 is installed in a position where the reflecting mirror 43 is in close contact with the housing 40B of the objective lens 14 and sandwiched between the housing 40B and the revolver 40A. The light is irradiated to the reflecting mirror 43 through the hole 44, reflected from the reflecting mirror 43, and incident on the beam splitter 13. Other configurations are the same as those of the fourth embodiment, and the same effects as those of the fourth embodiment are obtained.

また、本発明のレーザ光干渉光学系を共焦点顕微鏡に組み込むことができる。かかる共焦点顕微鏡は、本発明のコヒーレンス干渉計を備えるので、測定対象の三次元形状測定又は膜厚測定に用いる場合に、外乱(例えば温度変化や振動)による測定精度への影響を抑制でき、測定レンジに依存しない、かつ測定対象の表面状態に影響を受けない高精度の測定が可能になる。   Further, the laser beam interference optical system of the present invention can be incorporated into a confocal microscope. Since such a confocal microscope includes the coherence interferometer of the present invention, when used for measuring a three-dimensional shape or a film thickness of a measurement target, it is possible to suppress the influence on the measurement accuracy due to disturbance (for example, temperature change and vibration), High-accuracy measurement that does not depend on the measurement range and is not affected by the surface condition of the measurement object becomes possible.

以上、本発明の実施の形態について説明したが、本発明は上記の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で実施例に種々変更を加えられることは明白である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is obvious that various modifications can be made to the embodiments without departing from the spirit of the present invention. .

例えば、以上の実施例における低コヒーレンス干渉計を構成している光学部品の位置関係や構成順序を変更可能である。例えば、実施例1または実施例4では低コヒーレンス干渉計をマイケルソン型干渉計で構成する例を説明したが、光分波合波器と対物レンズの位置の上下関係を逆にしても良い。また、低コヒーレンス干渉計を光分波合波器と対物レンズの位置の上下関係を逆にして物体光の対物レンズと参照光の対物レンズの2つの対物レンズを有するリニク型干渉計で構成することも可能であり、また、光分波合波器を対物レンズ筐体内部に形成しているミラウ型干渉計で構成することも可能である。また、実施例4では反射鏡をレボルバの上面に配置する例を説明したが、レボルバの上面から開けた穴の底に配置しても良い。この場合、穴底の位置、すなわち反射鏡43の位置を対物レンズ14と同じ高さ(Z座標)とすると、外乱(例えば温度変化や振動)による測定精度への影響を抑制できる。また、実施例1の反射膜32に代えて、対物レンズ14の光軸上で、反射鏡を対物レンズ14の表面に局所的に設置しても良い。この場合、低コヒーレンス光及び低コヒーレンス干渉光の一部が対物レンズ14の透過を妨げられるが、局所的なので、白色光の干渉縞への影響は小である。また、反射膜や反射鏡の構成や配置、その他の低コヒーレンス干渉計を構成する各部品の選択、配置などを適宜変更可能である。   For example, the positional relationship and the configuration order of the optical components constituting the low coherence interferometer in the above embodiments can be changed. For example, in the first or fourth embodiment, the example in which the low coherence interferometer is configured by a Michelson interferometer has been described. However, the vertical relationship between the positions of the optical demultiplexing multiplexer and the objective lens may be reversed. In addition, the low coherence interferometer is composed of a linic interferometer having two objective lenses, an object lens objective lens and a reference beam objective lens, with the vertical relationship between the position of the optical demultiplexer / multiplexer and the objective lens reversed. It is also possible to configure the optical demultiplexing / multiplexing device with a Mirau type interferometer in which the objective lens housing is formed. In the fourth embodiment, the example in which the reflecting mirror is disposed on the upper surface of the revolver has been described. However, the reflecting mirror may be disposed on the bottom of the hole opened from the upper surface of the revolver. In this case, if the position of the hole bottom, that is, the position of the reflecting mirror 43 is set to the same height (Z coordinate) as that of the objective lens 14, the influence on the measurement accuracy due to disturbance (for example, temperature change or vibration) can be suppressed. Further, instead of the reflective film 32 of the first embodiment, a reflecting mirror may be locally provided on the surface of the objective lens 14 on the optical axis of the objective lens 14. In this case, a part of the low-coherence light and the low-coherence interference light is prevented from passing through the objective lens 14, but since it is local, the influence of white light on the interference fringes is small. In addition, the configuration and arrangement of the reflecting film and the reflecting mirror, and the selection and arrangement of other components constituting the other low-coherence interferometer can be appropriately changed.

本発明は、三次元形状や膜厚の測定機器及び光学顕微鏡に利用される。   The present invention is used in a three-dimensional shape and film thickness measuring instrument and an optical microscope.

1,1A 低コヒーレンス干渉計
2 測定対象
3 物体光
4 参照光
5 測定レーザ光
6 参照レーザ光
10 XYステージ
11 低コヒーレンス光源(ハロゲンランプ)
12 コリメータレンズ
13 ビームスプリッタ
14、14A 対物レンズ
15 干渉対物レンズ
16 光分波合波器(ビームスプリッタ)
17 参照鏡
18 結像レンズ
20 低コヒーレンス光検出器(CCDカメラ)
21 レーザ光検出器
22 解析装置
23 移動量演算部
24 白色光干渉解析部
30 移動量測定器
31 レーザ光源(He−Neレーザ)
32,32A,32B 反射体(反射膜)
33,33A レーザ光干渉光学系
34 ビームスプリッタ
35〜38 ビームスプリッタ
40 対物レンズ取り付け部材
40A レボルバ
40B 筐体
42 多層膜フィルタ
43 反射体(反射鏡)
44 穴
P1 高屈折率層
P2 低屈折率層
1,1A Low coherence interferometer 2 Measurement object 3 Object light 4 Reference light 5 Measurement laser light 6 Reference laser light 10 XY stage 11 Low coherence light source (halogen lamp)
12 Collimator lens 13 Beam splitter 14, 14A Objective lens 15 Interference objective lens 16 Optical demultiplexer / multiplexer (beam splitter)
17 Reference mirror 18 Imaging lens 20 Low coherence photodetector (CCD camera)
21 Laser Light Detector 22 Analyzing Device 23 Movement Amount Calculation Unit 24 White Light Interference Analysis Unit 30 Movement Amount Measuring Device 31 Laser Light Source (He-Ne Laser)
32, 32A, 32B Reflector (reflective film)
33, 33A Laser beam interference optical system 34 Beam splitter 35-38 Beam splitter 40 Objective lens mounting member 40A Revolver 40B Housing 42 Multilayer filter 43 Reflector (reflecting mirror)
44 hole P1 high refractive index layer P2 low refractive index layer

Claims (8)

測定対象の三次元形状測定又は膜厚測定に供される低コヒーレンス干渉計であって;
コヒーレンス長が短い低コヒーレンス光を射出する低コヒーレンス光源と;
前記低コヒーレンス光を測定対象に集光させ、光軸方向に移動可能な対物レンズと;
前記対物レンズの通過前又は通過後の前記低コヒーレンス光を前記測定対象に照射する物体光と参照鏡に照射する参照光とに分波し、かつ前記測定対象で反射された物体光と前記参照鏡で反射された参照光を合波して低コヒーレンス干渉光を出力させる光分波合波器と;
前記光分波合波器から出力された低コヒーレンス干渉光を検出する低コヒーレンス光検出器と;
前記対物レンズの前記光軸方向の移動量を測定するための移動量測定器を備え;
前記移動量測定器は、レーザ光を射出するレーザ光源と、前記光軸上又は前記光軸の近傍に形成され前記レーザ光を反射する反射体を有する;
低コヒーレンス干渉計。
A low coherence interferometer used for measuring a three-dimensional shape or a film thickness of a measurement object;
A low coherence light source that emits low coherence light with a short coherence length;
An objective lens that focuses the low-coherence light on a measurement object and is movable in the optical axis direction;
The object light and the reference, which are demultiplexed into the object light that irradiates the measurement object and the reference light that irradiates the reference mirror, and reflected by the measurement object before or after passing through the objective lens An optical demultiplexer that combines the reference light reflected by the mirror and outputs low coherence interference light;
A low coherence photodetector that detects low coherence interference light output from the optical demultiplexer;
A moving amount measuring device for measuring the moving amount of the objective lens in the optical axis direction;
The movement amount measuring device includes a laser light source that emits laser light, and a reflector that is formed on or near the optical axis and reflects the laser light;
Low coherence interferometer.
前記反射体は、前記光軸上で前記対物レンズに形成された反射膜である;
請求項1に記載の低コヒーレンス干渉計。
The reflector is a reflective film formed on the objective lens on the optical axis;
The low coherence interferometer according to claim 1.
測定対象の三次元形状測定又は膜厚測定に供される低コヒーレンス干渉計であって;
コヒーレンス長が短い低コヒーレンス光を射出する低コヒーレンス光源と;
前記低コヒーレンス光を測定対象に集光させ、光軸方向に移動可能な対物レンズと;
前記対物レンズの通過前又は通過後の前記低コヒーレンス光を前記測定対象に照射する物体光と参照鏡に照射する参照光とに分波し、かつ前記測定対象で反射された物体光と前記参照鏡で反射された参照光を合波して低コヒーレンス干渉光を出力させる光分波合波器と;
前記光分波合波器から出力された低コヒーレンス干渉光を検出する低コヒーレンス光検出器と;
前記対物レンズの前記光軸方向の移動量を測定するための移動量測定器を備え;
前記移動量測定器は、レーザ光を射出するレーザ光源と、前記対物レンズの近傍に設けられ前記対物レンズと一体的に移動する前記レーザ光を反射する反射体を有する;
低コヒーレンス干渉計。
A low coherence interferometer used for measuring a three-dimensional shape or a film thickness of a measurement object;
A low coherence light source that emits low coherence light with a short coherence length;
An objective lens that focuses the low-coherence light on a measurement object and is movable in the optical axis direction;
The low-coherence light before or after passing through the objective lens is demultiplexed into object light for irradiating the measurement target and reference light for irradiating a reference mirror, and the object light reflected by the measurement target and the reference An optical demultiplexer that combines the reference light reflected by the mirror and outputs low coherence interference light;
A low coherence photodetector that detects low coherence interference light output from the optical demultiplexer;
A moving amount measuring device for measuring the moving amount of the objective lens in the optical axis direction;
The movement amount measuring device includes a laser light source that emits laser light, and a reflector that is provided near the objective lens and reflects the laser light that moves integrally with the objective lens;
Low coherence interferometer.
前記反射体は、前記対物レンズを当該低コヒーレンス干渉計に取り付けるための対物レンズ取り付け部材に形成された反射鏡である;
請求項3に記載の低コヒーレンス干渉計。
The reflector is a reflector formed on an objective lens mounting member for mounting the objective lens to the low coherence interferometer;
The low coherence interferometer according to claim 3.
前記移動量測定器は、
前記レーザ光源から射出されたレーザ光を測定レーザ光と参照レーザ光に分波し、前記測定レーザ光を前記反射体に照射させ、前記反射体で反射された測定レーザ光を前記参照レーザ光と合波し干渉させて干渉レーザ光を出力させるレーザ光干渉光学系と;
前記レーザ光干渉光学系から出力された干渉レーザ光を検出するレーザ光検出器と;
前記レーザ光検出器で検出された干渉レーザ光の強度の前記対物レンズの移動による変化に基づいて前記対物レンズの移動量を算出する移動量演算部を有する;
請求項1ないし請求項4のいずれか1項に記載の低コヒーレンス干渉計。
The moving amount measuring device is
The laser light emitted from the laser light source is demultiplexed into measurement laser light and reference laser light, the measurement laser light is irradiated to the reflector, and the measurement laser light reflected by the reflector is used as the reference laser light. A laser beam interference optical system that outputs the interference laser beam by combining and interfering;
A laser light detector for detecting the interference laser light output from the laser light interference optical system;
A movement amount calculating unit that calculates a movement amount of the objective lens based on a change in the intensity of the interference laser light detected by the laser light detector due to the movement of the objective lens;
The low coherence interferometer according to any one of claims 1 to 4.
請求項1ないし請求項5のいずれか1項に記載の低コヒーレンス干渉計を備える;
共焦点顕微鏡。
A low coherence interferometer according to any one of claims 1 to 5;
Confocal microscope.
対物レンズの光軸方向の移動量を測定するための移動量測定器を備え;
前記移動量測定器は、レーザ光を射出するレーザ光源と、前記光軸上又は前記光軸の近傍に形成され前記レーザ光を反射する反射体を有する;
光学顕微鏡。
A moving amount measuring device for measuring the moving amount of the objective lens in the optical axis direction;
The movement amount measuring device includes a laser light source that emits laser light, and a reflector that is formed on or near the optical axis and reflects the laser light;
Optical microscope.
対物レンズの光軸方向の移動量を測定するための移動量測定器を備え;
前記移動量測定器は、レーザ光を射出するレーザ光源と、前記対物レンズの近傍に設けられ前記対物レンズと一体的に移動する前記レーザ光を反射する反射体を有する;
光学顕微鏡。
A moving amount measuring device for measuring the moving amount of the objective lens in the optical axis direction;
The movement amount measuring device includes a laser light source that emits laser light, and a reflector that is provided near the objective lens and reflects the laser light that moves integrally with the objective lens;
Optical microscope.
JP2009088480A 2009-03-31 2009-03-31 Low coherence interferometer and optical microscope Pending JP2010237183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088480A JP2010237183A (en) 2009-03-31 2009-03-31 Low coherence interferometer and optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088480A JP2010237183A (en) 2009-03-31 2009-03-31 Low coherence interferometer and optical microscope

Publications (1)

Publication Number Publication Date
JP2010237183A true JP2010237183A (en) 2010-10-21

Family

ID=43091613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088480A Pending JP2010237183A (en) 2009-03-31 2009-03-31 Low coherence interferometer and optical microscope

Country Status (1)

Country Link
JP (1) JP2010237183A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679895A (en) * 2012-06-11 2012-09-19 北京理工大学 Method for measuring center thickness of reflective confocal lens
WO2013084557A1 (en) 2011-12-07 2013-06-13 コニカミノルタ株式会社 Shape-measuring device
CN105674914A (en) * 2016-03-03 2016-06-15 浙江大学 Automatic-tracking-based profile measurement system and method for free-form-surface optical element
CN106595515A (en) * 2016-11-25 2017-04-26 天津大学 White light interference and laser scanning-based morphology measurement device
CN107716687A (en) * 2017-08-16 2018-02-23 江苏大学 A kind of accurate control device and method of laser indirect impact microsecond delay
JP2018146497A (en) * 2017-03-08 2018-09-20 株式会社東京精密 Surface shape measurement method and surface shape measurement device
KR102019326B1 (en) * 2018-06-25 2019-09-06 케이맥(주) Vibration tolerant white light scanning interferometer and its vibration effect removal method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334309A (en) * 1995-06-08 1996-12-17 Olympus Optical Co Ltd Optical displacement-detecting apparatus
JPH095018A (en) * 1995-06-26 1997-01-10 Olympus Optical Co Ltd Device for measuring moving quantity
JP2000147383A (en) * 1998-11-17 2000-05-26 Nikon Corp Microscope device
JP2007108122A (en) * 2005-10-17 2007-04-26 Yamatake Corp Laser measuring method, laser condition detection equipment, and laser condition detection system
JP2008292240A (en) * 2007-05-23 2008-12-04 Olympus Corp Three-dimensional shape observation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334309A (en) * 1995-06-08 1996-12-17 Olympus Optical Co Ltd Optical displacement-detecting apparatus
JPH095018A (en) * 1995-06-26 1997-01-10 Olympus Optical Co Ltd Device for measuring moving quantity
JP2000147383A (en) * 1998-11-17 2000-05-26 Nikon Corp Microscope device
JP2007108122A (en) * 2005-10-17 2007-04-26 Yamatake Corp Laser measuring method, laser condition detection equipment, and laser condition detection system
JP2008292240A (en) * 2007-05-23 2008-12-04 Olympus Corp Three-dimensional shape observation device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084557A1 (en) 2011-12-07 2013-06-13 コニカミノルタ株式会社 Shape-measuring device
CN102679895A (en) * 2012-06-11 2012-09-19 北京理工大学 Method for measuring center thickness of reflective confocal lens
CN105674914A (en) * 2016-03-03 2016-06-15 浙江大学 Automatic-tracking-based profile measurement system and method for free-form-surface optical element
CN106595515B (en) * 2016-11-25 2019-01-22 天津大学 The topography measurement device that a kind of white light interference and laser scanning combine
CN106595515A (en) * 2016-11-25 2017-04-26 天津大学 White light interference and laser scanning-based morphology measurement device
JP2018146497A (en) * 2017-03-08 2018-09-20 株式会社東京精密 Surface shape measurement method and surface shape measurement device
JP2021113832A (en) * 2017-03-08 2021-08-05 株式会社東京精密 Surface shape measurement method
JP7093915B2 (en) 2017-03-08 2022-07-01 株式会社東京精密 Surface shape measurement method
CN107716687A (en) * 2017-08-16 2018-02-23 江苏大学 A kind of accurate control device and method of laser indirect impact microsecond delay
KR102019326B1 (en) * 2018-06-25 2019-09-06 케이맥(주) Vibration tolerant white light scanning interferometer and its vibration effect removal method
WO2020004838A1 (en) * 2018-06-25 2020-01-02 케이맥(주) Vibration-resistant white light interference microscope and method for removing vibration effect thereof
CN110869696A (en) * 2018-06-25 2020-03-06 科美仪器公司 Vibration-resistant white light interference microscope and vibration influence removing method thereof
CN110869696B (en) * 2018-06-25 2021-12-28 恒邦解决方案有限公司 Vibration-resistant white light interference microscope and vibration influence removing method thereof

Similar Documents

Publication Publication Date Title
CN102893121B (en) For checking optical device and the method for structured object
KR101232204B1 (en) Equal-path interferometer
JP5168168B2 (en) Refractive index measuring device
KR102699399B1 (en) Systems and methods for optimizing focus for imaging-based overlay metrology
WO2013084557A1 (en) Shape-measuring device
JP2010237183A (en) Low coherence interferometer and optical microscope
US7466427B2 (en) Vibration-resistant interferometer apparatus
JP2009162539A (en) Light wave interferometer apparatus
JP2011089804A (en) Interferometer
US20200408505A1 (en) Arrangement and Method for Robust Single-Shot Interferometry
US20130057872A1 (en) Device for Determining Distance Interferometrically
JP4780330B2 (en) Low coherence optical interferometer and low coherence optical interference method using the same
JP2012242389A (en) Position measuring instrument
JP2015105850A (en) Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
US20120307255A1 (en) Optical interferometer system with damped vibration and noise effect property
JP2004294155A (en) Apparatus and method for measuring refractive index and thickness
JP4810693B2 (en) Lightwave interference measurement device
JP2010008328A (en) Optical inteterferometer and film thickness measuring method using it
JP2000186912A (en) Method and device for measuring minute displacements
JP2006242853A (en) Interference device and measuring technique of planar shape
JP5233643B2 (en) Shape measuring device
JP5574226B2 (en) Interference objective lens and microscope apparatus having the same
JP2010014536A (en) Measuring method and measuring apparatus for object under measurement mounted on processing apparatus
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
JP2009115475A (en) Low coherence optical interferometer, and film thickness measuring method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903