JP2007108122A - Laser measuring method, laser condition detection equipment, and laser condition detection system - Google Patents

Laser measuring method, laser condition detection equipment, and laser condition detection system Download PDF

Info

Publication number
JP2007108122A
JP2007108122A JP2005301727A JP2005301727A JP2007108122A JP 2007108122 A JP2007108122 A JP 2007108122A JP 2005301727 A JP2005301727 A JP 2005301727A JP 2005301727 A JP2005301727 A JP 2005301727A JP 2007108122 A JP2007108122 A JP 2007108122A
Authority
JP
Japan
Prior art keywords
light
laser
measurement object
reflected
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005301727A
Other languages
Japanese (ja)
Other versions
JP4432084B2 (en
Inventor
Yuichi Nakajima
裕一 中島
Tatsuya Ueno
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005301727A priority Critical patent/JP4432084B2/en
Publication of JP2007108122A publication Critical patent/JP2007108122A/en
Application granted granted Critical
Publication of JP4432084B2 publication Critical patent/JP4432084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide laser condition detection equipment capable of detecting highly reliably a condition using a self-coupling effect of a semiconductor laser element. <P>SOLUTION: This laser condition detection equipment for analyzing an irradiation beam superposed with an interference signal generated by the self-coupling effect in the semiconductor laser element to detect a condition up to a measuring object, using the semiconductor laser element for emitting a wavelength-modulated laser beam toward the measuring object, and for introducing the laser beam reflected by the measuring object, is provided, in particular, with a condition detecting photoreceiver provided to receive only the irradiation beam emitted from the laser element, and an object detecting photoreceiver provided to receive only the reflected beam by the object. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザ素子における自己結合効果(自己混合効果ともいう)を利用して計測対象物の状態を計測および検知するに好適なレーザ計測方法、レーザ状態検知機器およびレーザ状態検知システムに関する。   The present invention relates to a laser measurement method, a laser state detection device, and a laser state detection system suitable for measuring and detecting the state of a measurement object using a self-coupling effect (also referred to as a self-mixing effect) in a laser element.

光学的な状態検知技術の1つにレーザ光の自己結合効果[Self mixing Effect]を利用したものがある(例えば特許文献1,2を参照)。この手法は、例えば図5に示すように所定の変調信号を用いて駆動したレーザ素子(以下、LD)1から計測対象物2にレーザ光を照射すると共に、計測対象物2により反射されて前記レーザ素子1に戻った反射光と前記照射光との自己結合効果により生じた干渉信号が重畳した照射光を受光器(以下、PD)3にて受光し、その出力を周波数分析する等して前記計測対象物2の状態を検知するものである。   One of optical state detection techniques uses a self-coupling effect of laser light (see, for example, Patent Documents 1 and 2). In this method, for example, as shown in FIG. 5, a laser element (hereinafter referred to as LD) 1 driven using a predetermined modulation signal is irradiated with a laser beam to a measurement object 2 and reflected by the measurement object 2 to be reflected by the above-described method. Irradiation light in which an interference signal generated by the self-coupling effect between the reflected light returning to the laser element 1 and the irradiation light is superimposed is received by a light receiver (hereinafter referred to as PD) 3 and the output thereof is subjected to frequency analysis. The state of the measurement object 2 is detected.

即ち、レーザ素子1から出力光の発振波長を連続的に変化させると、検出対象物2により反射した戻り光と上記レーザ素子1の出力光とが干渉を生じ、共振条件を満たす波長においてはレーザ素子1の増幅効率が僅かに上がり、また減衰条件を満たす波長においては増幅効率が僅かに下がり、この結果、受光器3の出力が増減を繰り返す。例えば付与した電流値に応じてレーザ光の発振波長が変化するタイプの半導体レーザ素子を、例えば図6に示すような時間経過に伴って電流値が変化する三角波αを用いて波長変調すれば、電流値の連続的な増加に伴ってレーザ光の波長が連続的に増加し、また電流値がピークに達した後の上記電流値の連続的な減少に伴って上記レーザ光の波長が連続的に減少する。   That is, when the oscillation wavelength of the output light from the laser element 1 is continuously changed, the return light reflected by the detection target 2 and the output light of the laser element 1 interfere with each other, and the laser is used at a wavelength that satisfies the resonance condition. The amplification efficiency of the element 1 is slightly increased, and the amplification efficiency is slightly decreased at a wavelength satisfying the attenuation condition. As a result, the output of the light receiver 3 repeatedly increases and decreases. For example, if a semiconductor laser element of the type in which the oscillation wavelength of the laser light changes according to the applied current value is modulated using a triangular wave α whose current value changes over time as shown in FIG. The wavelength of the laser beam continuously increases with the continuous increase of the current value, and the wavelength of the laser beam continuously with the continuous decrease of the current value after the current value reaches the peak. To decrease.

このようにしてレーザ光の波長が連続的に増減する中で、上記照射光とその戻り光(反射光)との間の共振条件と減衰条件が何度も満たされる。この結果、前記受光器3からは上記三角波αに微小な干渉成分が重畳したビート波形(変調光)βが得られる。この干渉成分は、レーザ素子1と検出対象物2との距離L等の情報を含んでいる。従ってこのビート波形βを解析すれば、上記共振成分の周波数から対象物2までの距離や速度、振動等の状態を検知することが可能となる。例えば図5に示すように上記ビート波形βを微分して三角波αに重畳した信号成分を抽出し、この信号成分を計数することによって測定対象物の状態を検知することが可能となる。
特開平10−246782号公報 特開平11−287859号公報
In this way, while the wavelength of the laser light continuously increases and decreases, the resonance condition and the attenuation condition between the irradiation light and the return light (reflected light) are satisfied many times. As a result, a beat waveform (modulated light) β in which a minute interference component is superimposed on the triangular wave α is obtained from the light receiver 3. This interference component includes information such as the distance L between the laser element 1 and the detection target 2. Therefore, if this beat waveform β is analyzed, it is possible to detect the distance, speed, vibration, and the like from the frequency of the resonance component to the object 2. For example, as shown in FIG. 5, it is possible to detect the state of the measurement object by differentiating the beat waveform β and extracting the signal component superimposed on the triangular wave α and counting the signal component.
JP 10-246782 A JP-A-11-287859

ところで上述した三角波αに重畳した干渉成分は微小な信号成分である。この為、前記受光器3の出力から前述した干渉成分を検出することができないとき、その原因が干渉成分が微弱過ぎるのか、或いは干渉自体が生じていないのかを判断することができないと言う問題がある。換言すればレーザ素子における自己結合効果により生じた干渉成分が微弱なためにこれを検出することができないのか、或いは計測対象物が存在しないので戻り光(反射光)がなく、この結果、自己結合効果(共振/減衰)が生じていないのかを識別することができないと言う問題がある。   By the way, the interference component superimposed on the triangular wave α described above is a minute signal component. For this reason, when the above-described interference component cannot be detected from the output of the light receiver 3, there is a problem that it cannot be determined whether the cause is that the interference component is too weak or no interference itself occurs. is there. In other words, the interference component generated by the self-coupling effect in the laser element cannot be detected because it is weak, or there is no return light (reflected light) because there is no measurement object. There is a problem that it cannot be identified whether an effect (resonance / damping) has not occurred.

本発明はこのような事情を考慮してなされたもので、その目的は、レーザ素子の自己結合効果を利用した状態検知を信頼性良く実行することのできるレーザ計測方法およびレーザ状態検知機器を提供することにある。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a laser measurement method and a laser state detection device capable of reliably performing state detection using the self-coupling effect of a laser element. There is to do.

上述した目的を達成するべく本発明に係るレーザ計測方法は、計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を検出して前記計測対象物の状態を検知するに際して、上記照射光とは独立に前記計測対象物による反射光を受光して前記計測対象物の有無を検出することを特徴としている(請求項1)。   In order to achieve the above-described object, a laser measurement method according to the present invention irradiates a measurement target with wavelength-modulated laser light and introduces the laser beam reflected by the measurement target. When detecting the irradiation light on which the interference signal generated by the self-coupling effect in the laser element is superimposed to detect the state of the measurement object, the reflected light from the measurement object is used independently of the irradiation light. It is characterized by detecting the presence or absence of the measurement object by receiving light (claim 1).

ちなみに前記照射光とは独立に検出する前記計測対象物による反射光として、前記レーザ素子から前記計測対象物に向けて照射されたレーザ光の反射光成分を検出する場合には、前記計測対象物による反射光を遮断して前記光だけを検出し、且つ前記計測対象物による反射光については前記光を遮断して検出することが好ましい(請求項2)。また前記照射光とは独立に検出する前記計測対象物による反射光として、前記レーザ素子とは異なる光源から前記計測対象物に向けて発せられた補助光の反射光成分を検出する場合には、前記照射光を遮断することで上記反射光だけを検出することが望ましい(請求項3)。   Incidentally, in the case of detecting a reflected light component of laser light emitted from the laser element toward the measurement object as reflected light by the measurement object that is detected independently of the irradiation light, the measurement object It is preferable that only the light is detected by blocking the reflected light by, and the light reflected by the measurement object is detected by blocking the light. Further, when detecting the reflected light component of the auxiliary light emitted from the light source different from the laser element toward the measurement object as reflected light by the measurement object to be detected independently of the irradiation light, It is desirable to detect only the reflected light by blocking the irradiation light.

また本発明に係るレーザ状態検知機器は、計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を解析して前記計測対象物の状態を検知するものであって、
特に前記レーザ素子からの照射光だけを受光可能に設けた状態検知用受光器と、前記対象物による反射光だけを受光可能に設けた対象物検出用受光器とを備えたことを特徴としている(請求項4)。
In addition, a laser state detection device according to the present invention uses a semiconductor laser element that irradiates a measurement target with wavelength-modulated laser light and introduces the laser light reflected by the measurement target. Analyzing the irradiation light superimposed with the interference signal generated by the self-coupling effect in the element to detect the state of the measurement object,
In particular, it is provided with a state detection light receiver provided so as to be able to receive only the irradiation light from the laser element, and an object detection light receiver provided so as to be able to receive only the reflected light from the object. (Claim 4).

好ましくは請求項5に記載するように前記レーザ素子が対物レンズを介して計測対象物にレーザ光を射出するものであるとき、
<a> 前記レーザ素子の照射光を直接受光または上記対物レンズにより反射された前記照射光の一部を受光可能で、且つ前記計測対象物による反射光が前記対物レンズを介して到達することのない位置に前記状態検知用受光器を設けると共に、
<b> 前記計測対象物による反射光が前記対物レンズを介して到達し、且つ前記レーザ素子の照射光および上記対物レンズにより反射された前記照射光が到達することのない位置に前記対象物検出用受光器を設けることを特徴としている。
Preferably, when the laser element emits a laser beam to an object to be measured through an objective lens as described in claim 5,
<a> The irradiation light of the laser element can be directly received or a part of the irradiation light reflected by the objective lens can be received, and the reflected light from the measurement object can reach through the objective lens. While providing the above-mentioned state detection light receiver at a position,
<b> Detection of the object at a position where the reflected light from the measurement object reaches through the objective lens and the irradiation light of the laser element and the irradiation light reflected by the objective lens do not reach An optical receiver is provided.

また本発明に係るレーザ状態検知装置は、請求項6に記載するように、前記レーザ素子の照射光だけを受光可能に設けた状態検知用受光器と、前記計測対象物に向けて補助光を照射する光源と、前記レーザ素子からの照射光を遮断して上記補助光の前記対象物による反射光だけを受光可能に設けた対象物検出用受光器とを備えたものとして構成することも可能である。   According to the laser state detection apparatus of the present invention, as described in claim 6, a state detection light receiver provided so as to be able to receive only the irradiation light of the laser element, and auxiliary light toward the measurement object. It is also possible to configure as a light source for irradiating and a light receiving device for detecting an object provided so as to be able to receive only the reflected light of the auxiliary light reflected from the object by blocking the irradiation light from the laser element. It is.

より好ましくは請求項7に記載するように前記対象物検出用受光器を、前記対象物に向けてレーザ光を照射するレーザ素子の背面側であって、前記対物レンズの焦点位置に設けるようにすれば良い。尚、前記対物レンズについては、例えば請求項8に記載するように前記レーザ素子から出力されたレーザ光を略平行光束として計測対象物に照射するコリメートレンズとして実現することが好ましい。   More preferably, as described in claim 7, the object detection light receiver is provided on a back side of a laser element that irradiates a laser beam toward the object, and at a focal position of the objective lens. Just do it. The objective lens is preferably realized as a collimating lens that irradiates a measurement object with a laser beam output from the laser element as a substantially parallel light beam, as described in claim 8, for example.

また本発明は、上述したレーザ状態検知機器に加えて、前記計測対象物に向けて光を照射する投光素子、上記計測対象物からの反射光を受光する受光素子、およびこの受光素子の受光量から上記計測対象物の有無を識別する識別手段を有する光電スイッチと、この光電スイッチの識別結果から前記レーザ状態検知機器の検知状態を判定する判定手段と備えてレーザ状態検知システムを構築することを特徴としている。   In addition to the laser state detection device described above, the present invention provides a light projecting element that irradiates light toward the measurement object, a light receiving element that receives reflected light from the measurement object, and light reception by the light receiving element. Constructing a laser state detection system comprising a photoelectric switch having an identification means for identifying the presence / absence of the measurement object from a quantity, and a determination means for determining the detection state of the laser state detection device from the identification result of the photoelectric switch It is characterized by.

本発明に係るレーザ計測方法によれば、レーザ素子から出力されるレーザ光とは独立に前記計測対象物による反射光を受光することで反射光の有無を判定し、この判定結果から前記レーザ素子においてレーザ光の自己結合効果による変調レーザ光が生じているか否かを判定することができる。従って自己結合効果により生じた干渉成分を検出することができない場合であっても、その原因が干渉成分が微弱であるのか、計測対象物が存在していないかを容易に判定して、その計測信頼性を高めることが可能となる。   According to the laser measurement method of the present invention, the presence or absence of reflected light is determined by receiving reflected light from the measurement object independently of the laser light output from the laser element, and the laser element is determined based on the determination result. It can be determined whether or not modulated laser light is generated by the self-coupling effect of the laser light. Therefore, even when the interference component caused by the self-coupling effect cannot be detected, it is easy to determine whether the cause of the interference component is weak or the measurement object does not exist, and the measurement Reliability can be increased.

また上記構成のレーザ状態検知機器によれば、状態検知用受光器にはレーザ素子から出力されたレーザ光、つまり計測対象物により反射されてレーザ素子に導入された戻り光により自己結合効果が生じて干渉信号が重畳した照射光だけが入射し、一方、対象物検出用受光器には計測対象物により反射された戻り光だけが導入されるので、上記対象物検出用受光器の出力をモニタすることで戻り光が存在するか否かを、ひいては計測対象物が存在するか否かを確実に検出することができる。また状態検知用受光器に戻り光が入り込むことがないので、レーザ素子における自己結合効果により生じた干渉成分を高感度に(S/N良く)検出することができる。   Further, according to the laser state detection device having the above configuration, the self-coupling effect is generated in the state detection light receiver by the laser light output from the laser element, that is, the return light reflected by the measurement object and introduced into the laser element. Only the irradiation light on which the interference signal is superimposed is incident. On the other hand, only the return light reflected by the measurement object is introduced into the object detection light receiver, so the output of the object detection light receiver is monitored. By doing so, it is possible to reliably detect whether or not there is return light and, in turn, whether or not the measurement object exists. Further, since no return light enters the state detection light receiver, the interference component generated by the self-coupling effect in the laser element can be detected with high sensitivity (good S / N).

特にレーザ素子の前面(レーザ光射出面)に設けた対物レンズに対して前記状態検知用受光器および対象物検出用受光器を前述した位置関係にそれぞれ配置すれば、これらの2つの受光器を光学的に分離してコンパクトに位置付けることができるので、その全体構造のコンパクト化を容易に図ることが可能となる。また対象物検出用受光器をレーザ素子の裏面側であって対物レンズの焦点位置に配置すれば、戻り光の上記対象物検出用受光器による受光効率、ひいてはその受光強度を高めることができるので、その検出感度を十分に確保することが可能となる。   In particular, if the state detection light receiver and the object detection light receiver are arranged in the above-described positional relationship with respect to the objective lens provided on the front surface (laser light emission surface) of the laser element, these two light receivers are arranged. Since it can be optically separated and positioned compactly, the overall structure can be easily made compact. In addition, if the light receiving device for detecting an object is arranged on the back surface side of the laser element and at the focal position of the objective lens, the light receiving efficiency of the returning light by the light receiving device for detecting the object can be increased, and the light receiving intensity can be increased. Thus, it is possible to sufficiently secure the detection sensitivity.

以下、図面を参照して本発明の一実施形態に係るレーザ計測方法と、このレーザ計測方法を適用して実現されるレーザ状態検知機器について説明する。
レーザ状態検知機器は、基本的には波長変調したレーザ光を出力して計測対象物2に照射すると共に、計測対象物2により反射された上記レーザ光の戻り光(反射レーザ光)が導入されて上記照射レーザ光との自己結合効果により共振する半導体レーザ素子1を備える。更にこのレーザ状態検知機器は、自己結合効果により共振した上記レーザ素子1の出力(レーザ光)を受光して、その受光強度を検出する状態検知用受光器3とを備えると共に、前記計測対象物2による反射光(戻り光)の有無を検出する対象物検出用受光器5を備えて構成される。ちなみに半導体レーザ素子1はVCSEL型のレーザダイオード(LD)からなる。また状態検知用受光器3および対象物検出用受光器5は、それぞれフォトダイオード(PD)からなる。
Hereinafter, a laser measurement method according to an embodiment of the present invention and a laser state detection device realized by applying the laser measurement method will be described with reference to the drawings.
The laser state detection device basically outputs a wavelength-modulated laser beam to irradiate the measurement object 2, and the return light (reflected laser light) of the laser beam reflected by the measurement object 2 is introduced. The semiconductor laser device 1 resonates due to the self-coupling effect with the irradiation laser beam. The laser state detection device further includes a state detection light receiver 3 that receives the output (laser light) of the laser element 1 resonated by the self-coupling effect and detects the light reception intensity, and the measurement object. 2 is provided with an object detection light receiver 5 that detects the presence or absence of reflected light (returned light) 2. Incidentally, the semiconductor laser element 1 comprises a VCSEL type laser diode (LD). Each of the state detection light receiver 3 and the object detection light receiver 5 includes a photodiode (PD).

尚、ここではレーザ素子1から出力されて計測対象物2にて反射したレーザ光の戻り光(反射レーザ光)を前記対象物検出用受光器5にて検出するものとして説明するが、レーザ素子1と並べて設けた別の光源、例えば発光ダイオード(LED)1aから計測対象物2に向けて前記レーザ光とは波長の異なる補助光を照射し、この補助光の計測対象物2による反射光を前記対象物検出用受光器5にて検出するようにしても良い。   Here, it is assumed that the laser beam return light (reflected laser beam) output from the laser element 1 and reflected by the measurement object 2 is detected by the object detection light receiver 5. 1 illuminates auxiliary light having a wavelength different from that of the laser beam toward a measurement object 2 from another light source, for example, a light emitting diode (LED) 1a, and reflects the reflected light from the measurement object 2 of the auxiliary light. You may make it detect with the said light receiver 5 for a target object detection.

例えば上記の別光源と対象物検出用受光器5とを、いわゆる反射形光電スイッチによって構成しても良い。市販されている代表的な反射形光電スイッチは、1つの筐体に投光素子(発光ダイオード)と受光素子(フォトダイオード)とを備えており、投光素子から対象空間へ向けて光を放射し、対象空間に対象物が存在する場合にその対象物によって反射した光を受光素子にて受光し、この受光量から対象物の有無を判定する機能を有するものとなっている。そこで反射形光電スイッチの投光素子を前述した「別の光源」と看做し、反射形光電スイッチの受光素子を対象物検出用受光器5と看做して、前述したレーザ素子1および状態検出用受光器3と共に用いるようにすれば本発明を実施することが可能となる。   For example, you may comprise said another light source and the light receiver 5 for a target object by what is called a reflection type photoelectric switch. A typical reflective photoelectric switch on the market is equipped with a light projecting element (light emitting diode) and a light receiving element (photodiode) in one housing, and emits light from the light projecting element toward the target space. When there is an object in the object space, the light reflected by the object is received by the light receiving element, and the presence or absence of the object is determined from the amount of light received. Therefore, the light projecting element of the reflective photoelectric switch is regarded as the above-mentioned “another light source”, the light receiving element of the reflective photoelectric switch is regarded as the object detection light receiver 5, and the laser element 1 and the state described above are regarded. If it is used together with the light receiver 3 for detection, the present invention can be implemented.

この場合、補助光をパルス状に照射し、この補助光の照射タイミングに同期させて前記レーザ素子1から出力するレーザ光を波長変調することも有用である。即ち、補助光の立ち上がりと立ち下がりとを、レーザ素子1を波長変調するためのトリガとして利用する。このようにすれば非同期に入力する光に起因するノイズを抑えて、そのSN比を向上させることが可能となる。換言すればレーザ光と補助光との不本意な干渉を抑えることが可能となる。   In this case, it is also useful to irradiate the auxiliary light in a pulse shape and to modulate the wavelength of the laser light output from the laser element 1 in synchronization with the irradiation timing of the auxiliary light. That is, the rise and fall of the auxiliary light are used as a trigger for wavelength modulation of the laser element 1. In this way, it is possible to suppress noise caused by light that is input asynchronously and improve the SN ratio. In other words, it is possible to suppress unintended interference between the laser light and the auxiliary light.

さてこのレーザ状態検知機器(レーザ測定方法)が特徴とするところは、図1にその光学的な概念を示すように、上記状態検知用受光器3を、前記レーザ素子1から射出するレーザ光を受光し、且つ計測対象物2による反射光(戻り光)を受光することがないように、つまり上記レーザ素子1から出力されるレーザ光だけを受光するように設けて構成される。また対象物検出用受光器5を、前記計測対象物2による反射光(戻り光)を受光し、且つレーザ素子1から射出されるレーザ光を受光することがないように、つまり上記反射光だけを受光するように設けて構成される。   Now, this laser state detection device (laser measurement method) is characterized by the fact that the state detection light receiver 3 emits laser light emitted from the laser element 1 as shown in FIG. It is configured so as to receive light and not receive reflected light (return light) from the measurement object 2, that is, to receive only the laser light output from the laser element 1. The object detection light receiver 5 receives reflected light (return light) from the measurement object 2 and does not receive laser light emitted from the laser element 1, that is, only the reflected light. Is configured to receive light.

具体的には、例えば図2に示すように前記レーザ素子1は、そのレーザ放射面を対物レンズ4に向けて配置されている。ちなみにこの対物レンズ4は非球面レンズであり、光軸近傍では焦点距離が短く、外周に近付くにつれて徐々に焦点距離が長くなるように形成されている。そしてレーザ放射面から円錐状または楕円錐状に放射されるレーザ光を対物レンズ4を介してほぼ平行光路として計測対象物2に照射し、計測対象物2により反射されたレーザ光(戻り光)を前記対物レンズ4を介して受光するように構成される。   Specifically, for example, as shown in FIG. 2, the laser element 1 is arranged with its laser emission surface facing the objective lens 4. Incidentally, the objective lens 4 is an aspherical lens, and is formed such that the focal length is short near the optical axis and gradually increases as it approaches the outer periphery. Then, laser light emitted in a conical or elliptical cone shape from the laser radiation surface is irradiated onto the measurement object 2 through the objective lens 4 as a substantially parallel optical path, and the laser light (return light) reflected by the measurement object 2 is irradiated. Is received through the objective lens 4.

尚、対物レンズ4として球面レンズを用いることも可能である。この場合、対物レンズ4の焦点位置にレーザ素子1を配置し、焦点位置よりも遠くに受光素子5を配置することが望ましい。また図2においてはレーザ光の光軸と対物レンズ4の光軸とは同軸に設けているが、非同軸に設けることもできる。更に図2においてはレーザ光の光軸と対物レンズ4の光軸とを互いに平行に設けているが、互いに角度を持たせて設けることもできる。   A spherical lens can also be used as the objective lens 4. In this case, it is desirable that the laser element 1 is disposed at the focal position of the objective lens 4 and the light receiving element 5 is disposed farther than the focal position. In FIG. 2, the optical axis of the laser beam and the optical axis of the objective lens 4 are provided coaxially, but may be provided non-coaxially. Further, in FIG. 2, the optical axis of the laser beam and the optical axis of the objective lens 4 are provided in parallel to each other, but can also be provided with an angle to each other.

このような状態検知光学系を備えた反射形レーザ状態検知機器において前記状態検知用受光器3は、前記レーザ素子1の側方であり、該レーザ素子1から出力された照射光を直接受光または前記対物レンズ4により反射したレーザ光の一部が到達する領域であって、且つ前記計測対象物2にて反射された戻り光が前記対物レンズ4を介して集光される領域を避けた位置に設けられる。   In the reflection type laser state detection device having such a state detection optical system, the state detection light receiver 3 is located on the side of the laser element 1 and directly receives the irradiation light output from the laser element 1 or A position where a part of the laser beam reflected by the objective lens 4 reaches and avoids a region where the return light reflected by the measurement object 2 is condensed via the objective lens 4 Is provided.

尚、上記対物レンズ4による反射については、対物レンズ4のレーザ素子1側の表面で生じる反射を用いても、或いは対物レンズ4の計測対象物2側の表面で生じる反射を用いても良い。また対物レンズ4の表面での反射率を向上させるべく、例えば対物レンズ4の表面の一部に金属反射膜や反射鏡等の反射手段を設けても良い。更には対物レンズ4の計測対象物2側の表面で生じる全反射を用いれば、特段の反射手段を設けずとも大きな反射率を得ることができる。   In addition, about the reflection by the said objective lens 4, the reflection which arises on the surface by the side of the laser element 1 of the objective lens 4 may be used, or the reflection which arises on the surface by the side of the measuring object 2 of the objective lens 4 may be used. In order to improve the reflectance on the surface of the objective lens 4, for example, a reflecting means such as a metal reflecting film or a reflecting mirror may be provided on a part of the surface of the objective lens 4. Furthermore, if the total reflection generated on the surface of the objective lens 4 on the measurement object 2 side is used, a large reflectance can be obtained without providing special reflecting means.

また対象物検出用受光器5は、前記レーザ素子1から出力された照射光を直接受光または前記対物レンズ4により反射したレーザ光の一部が到達することのない領域であって、且つ前記計測対象物2にて反射された戻り光が前記対物レンズ4を介して集光される領域内に設けられる。
即ち、対象物検出用受光器5(フォトダイオード)としては、その受光面積がレーザ素子1(レーザダイオード)の外形よりも大きいものが用いられる。そして上記対象物検出用受光器5は、前記レーザ素子1から出力された照射光を直接受光しない領域、または前記対物レンズ4により反射したレーザ光の一部が到達することのない領域であって、且つ前記計測対象物2にて反射された戻り光が前記対物レンズ4を介して集光される領域内に設けられる。具体的には前記対象物検出用受光器5は、レーザ素子1の裏面側(レーザ放射面の反対側)であって、特に前記計測対象物2にて反射されて対物レンズ4を介して集光される反射光(戻り光)が収束する位置、換言すれば前記非球面対物レンズ4の外周部分による焦点位置近傍に設けられる。この際、レーザ素子1から放射された光軸近傍の光は、対物レンズ4の表面で反射して反射光としてレーザ素子1の方向へ戻る。しかし対象物検出用受光器5はレーザ素子1の陰に入っているので、上記反射光を受光することはない。
The object detection light receiver 5 is an area where the irradiation light output from the laser element 1 is directly received or a part of the laser light reflected by the objective lens 4 does not reach, and the measurement is performed. The return light reflected by the object 2 is provided in a region where it is condensed via the objective lens 4.
That is, as the object detecting light receiver 5 (photodiode), one having a light receiving area larger than the outer shape of the laser element 1 (laser diode) is used. The object detection light receiver 5 is a region where the irradiation light output from the laser element 1 is not directly received, or a region where a part of the laser light reflected by the objective lens 4 does not reach. The return light reflected by the measurement object 2 is provided in a region where the return light is collected via the objective lens 4. Specifically, the light receiving device 5 for detecting the object is on the back side of the laser element 1 (on the opposite side of the laser emission surface), and is reflected by the measurement object 2 and collected via the objective lens 4 in particular. It is provided at a position where reflected reflected light (return light) converges, in other words, in the vicinity of the focal position by the outer peripheral portion of the aspheric objective lens 4. At this time, the light in the vicinity of the optical axis emitted from the laser element 1 is reflected by the surface of the objective lens 4 and returns to the laser element 1 as reflected light. However, since the object detection light receiver 5 is behind the laser element 1, it does not receive the reflected light.

このようにして状態検知用受光器3および対象物検出用受光器5をそれぞれ設けて、レーザ素子1における自己結合効果により干渉信号が重畳した照射光、および計測対象物2による反射レーザ光をそれぞれ検出するように構成された反射形レーザ状態検知機器によれば、状態検知用受光器3の出力からその干渉成分を検出することができない事態が生じても、対象物検出用受光器5の出力を調べることによって計測対象物2による反射レーザ光が存在するか否か、つまり計測対象物2が存在するか否かを判定することができる。従ってレーザ素子1における自己結合効果による共振成分を検出することができない原因が、例えばレーザ素子1の駆動条件が不適切でその干渉成分か微弱であるのか、或いは計測対象物2自体が存在しないことに起因するのかを容易に、しかも確実に判定することができる。   In this way, the state detection light receiver 3 and the object detection light receiver 5 are provided, respectively, and the irradiation light on which the interference signal is superimposed by the self-coupling effect in the laser element 1 and the reflected laser light from the measurement object 2 are respectively provided. According to the reflection type laser state detection device configured to detect, even if a situation in which the interference component cannot be detected from the output of the state detection light receiver 3, the output of the object detection light receiver 5 is detected. It is possible to determine whether or not the reflected laser beam from the measurement object 2 exists, that is, whether or not the measurement object 2 exists. Accordingly, the reason why the resonance component due to the self-coupling effect in the laser element 1 cannot be detected is, for example, that the driving condition of the laser element 1 is inappropriate and the interference component is weak, or the measurement object 2 itself does not exist. It is possible to easily and reliably determine whether it is caused by the above.

特に上述した構成によれば、対物レンズ4の焦点位置に対象物検出用受光器5を設けているので、計測対象物2からの戻り光(反射レーザ光)が微弱であっても、その微弱な光を効果的に収束させて対象物検出用受光器5に導くことができるので、戻り光に対する受光効率を効果的に高めることができ、高感度な戻り光検出を行うことが可能となる。特にレーザ素子1の裏面側に対象物検出用受光器5を配置しているので、対物レンズ4を介して集光される戻り光が前記レーザ素子1の周囲を経て該レーザ素子1の裏面側に集光されるので、その戻り光を確実に検出することができる。しかも対象物検出用受光器5には、レーザ素子1からの出力レーザ光、および対物レンズ4にて反射したレーザ光が入り込むことがないので上述した戻り光の検出をS/N良く実行することができる。   In particular, according to the above-described configuration, since the object detection light receiver 5 is provided at the focal position of the objective lens 4, even if the return light (reflected laser light) from the measurement object 2 is weak, the weak light is weak. Effective light can be effectively converged and guided to the object detection light receiver 5, so that the light receiving efficiency with respect to the return light can be effectively increased, and highly sensitive return light detection can be performed. . In particular, since the object detection light receiver 5 is arranged on the back side of the laser element 1, the return light condensed through the objective lens 4 passes through the periphery of the laser element 1 and is on the back side of the laser element 1. Therefore, the return light can be reliably detected. In addition, since the output laser beam from the laser element 1 and the laser beam reflected by the objective lens 4 do not enter the object detection light receiver 5, the detection of the return light described above is performed with good S / N. Can do.

一方、前記状態検知用受光器3には計測対象物2にて反射した戻り光が到達することがないので、該状態検知用受光器3においてはレーザ素子1から出力されたレーザ光(自己結合効果が生じている場合には、その干渉信号が重畳した照射光)だけを正確に検出することができる。従ってレーザ素子1での自己結合効果により生じた共振成分が微弱であっても、その干渉成分が外乱光成分等に埋もれることがないので上記干渉成分に対する検出精度を容易に高めることが可能となる。   On the other hand, since the return light reflected by the measurement object 2 does not reach the state detection light receiver 3, the state detection light receiver 3 has a laser beam (self-coupled) output from the laser element 1. When the effect is generated, only the irradiation light on which the interference signal is superimposed can be accurately detected. Therefore, even if the resonance component generated by the self-coupling effect in the laser element 1 is weak, the interference component is not buried in the disturbance light component or the like, so that the detection accuracy for the interference component can be easily increased. .

また構造的にはレーザ素子1の裏面側に対象物検出用受光器5を配置し、上記レーザ素子1の側部に状態検知用受光器3を配置すれば良いので全体的にコンパクトな配置構造とすることができ、容易にその小型化を図ることが可能となる。従って、例えば図3に示すように有底筒状のメタルカン11の先端開口部に対物レンズ4を装着すると共に、この対物レンズ4の裏面側凹部にレーザ素子1を埋め込んで配置し、更に上記メタルカン11の裏面側開口部(基部)に状態検知用受光器3および対象物検出用受光器5を搭載した回路基板12を装着すれば、反射形レーザ状態検知機器の、いわゆるTOパッケージ型のセンシングユニットを容易に構築することが可能となる。尚、図3においては、レーザ素子1の光軸を中心に2個の状態検知用受光器3を対称に設けた例を示している。またこの例では、レーザ素子1から出力されたレーザ光は、対物レンズ4の内面にて反射して状態検知用受光器3に導かれることになる。   In terms of structure, the object detection light receiver 5 may be disposed on the back side of the laser element 1 and the state detection light receiver 3 may be disposed on the side of the laser element 1, so that the overall structure is compact. Therefore, it is possible to easily reduce the size. Therefore, for example, as shown in FIG. 3, the objective lens 4 is attached to the front end opening of the bottomed cylindrical metal can 11, and the laser element 1 is buried in the concave portion on the back side of the objective lens 4 and further disposed. If the circuit board 12 on which the state detection light receiver 3 and the object detection light receiver 5 are mounted is attached to the rear surface side opening (base) of the sensor 11, a so-called TO package type sensing unit of the reflection type laser state detection device. Can be easily constructed. FIG. 3 shows an example in which two state detection light receivers 3 are provided symmetrically around the optical axis of the laser element 1. In this example, the laser light output from the laser element 1 is reflected by the inner surface of the objective lens 4 and guided to the state detection light receiver 3.

また或いは、例えば図4に示すように構成すれば良い。即ち、金属製のケース100は有底の円筒形状に形成されており、傾きαを呈する底部101に円形の開口102を有している。そして開口102のケース100の内部側にガラス製の平凸のレンズ4が、その凸面を開口102に対峙させて斜めに設けられ、該レンズ4の外周全周を囲むように低融点ガラス103を溶融固化することでレンズ4がケース100に固定されている。尚、ケース100、レンズ4、および低融点ガラス103の材質としては、熱膨張率が互いに近似すると共に密着性に優れた材質がそれぞれ選択されており、レンズ4と開口102との間の密封状態が保たれる。   Alternatively, for example, it may be configured as shown in FIG. That is, the metal case 100 is formed in a cylindrical shape with a bottom, and has a circular opening 102 in the bottom 101 exhibiting an inclination α. A glass-made plano-convex lens 4 is provided obliquely on the inner side of the case 100 of the opening 102 with its convex surface facing the opening 102, and the low melting point glass 103 is placed so as to surround the entire outer periphery of the lens 4. The lens 4 is fixed to the case 100 by melting and solidifying. As materials for the case 100, the lens 4, and the low melting point glass 103, materials having similar thermal expansion coefficients and excellent adhesion are respectively selected, and the sealed state between the lens 4 and the opening 102 is selected. Is preserved.

一方、ケース100の端部は金属製の円板状の基板110で塞がれている。即ち、ケース100の端部外周に形成されたフランジ形状の部分と基板110の外周に形成されたフランジ形状の部分とが密着して全周で溶接されて密封されている。基板110に形成された複数の貫通孔には、それぞれに金属製のピン111が挿入されている。それらの間は低融点ガラス112が溶融・固化されており、ピン111を基板110に固定している。基板110、ピン111、および低融点ガラス112の材質としては、熱膨張率が互いに近似すると共に密着性に優れた材質がそれぞれ選択されており、基板110とピン111との間の密封状態が保たれると共に、電気的絶縁性が保たれている。   On the other hand, the end of the case 100 is closed with a metal disk-shaped substrate 110. That is, the flange-shaped portion formed on the outer periphery of the end portion of the case 100 and the flange-shaped portion formed on the outer periphery of the substrate 110 are in close contact and are welded and sealed all around. Metal pins 111 are respectively inserted into the plurality of through holes formed in the substrate 110. Between them, the low melting point glass 112 is melted and solidified, and the pin 111 is fixed to the substrate 110. As the materials of the substrate 110, the pins 111, and the low melting point glass 112, materials having similar thermal expansion coefficients and excellent adhesion are respectively selected, and the sealed state between the substrate 110 and the pins 111 is maintained. As it sags, electrical insulation is maintained.

また基板110の内側には、金属製の支柱113が固定されており、その先端部にはレーザ出射面11をレンズ4へ向けて、レーザ素子1が接着固定されている。また基板110にはその受光面をレンズ4側に向けて受光素子3,5が接着固定されており、特に受光素子5は前記レーザ素子1の裏面側であって、該レーザ素子1から照射されてレンズ4にて反射されたレーザ光が到達することのない位置に設けられている。また受光素子3は、計測対象物2により反射されたレーザ光(戻り光)がレンズ4を介して集光されることのない位置、具体的には基板110の縁部側に設けられる。   Further, a metal support 113 is fixed inside the substrate 110, and the laser element 1 is bonded and fixed to the tip thereof with the laser emission surface 11 facing the lens 4. Light receiving elements 3 and 5 are bonded and fixed to the substrate 110 with the light receiving surface facing the lens 4 side. In particular, the light receiving element 5 is on the back side of the laser element 1 and is irradiated from the laser element 1. The laser beam reflected by the lens 4 is provided at a position where it does not reach. The light receiving element 3 is provided at a position where the laser light (returned light) reflected by the measurement object 2 is not collected via the lens 4, specifically, at the edge side of the substrate 110.

そしてこれらのレーザ素子1および受光素子3,5のそれぞれの端子とピン111との間は導電性を持つワイヤ(図示せず)で電気的に接続されており、外部からの給電および外部への信号取り出しが可能となっている。尚、基板110には接地ピン115が設けられており、この接地ピン115は基板110および支柱113に電気的に導通している。そして、レーザ素子1はその裏面で基板110に接地され、受光素子3はその裏面で支柱113に接地されている。   The terminals of the laser element 1 and the light receiving elements 3 and 5 and the pins 111 are electrically connected by a conductive wire (not shown), so that power is supplied from the outside and connected to the outside. Signal extraction is possible. A ground pin 115 is provided on the substrate 110, and the ground pin 115 is electrically connected to the substrate 110 and the support column 113. The laser element 1 is grounded to the substrate 110 on its back surface, and the light receiving element 3 is grounded to the support column 113 on its back surface.

レーザ素子1とレンズ4と受光素子3,5については、図2に示した位置関係が採用されている。即ち、レーザ素子1の光軸はレンズ4の主点を通らずにやや変位して設けられており、レーザ素子1の光軸とレンズ4の光軸とは傾きαを成している。レーザ素子1のレーザ出射面11から円錐状に放射されるレーザ光の外縁部分120は、レンズ4の表面44で反射されてレンズ4の側方へ出射し、受光素子3により受光される。尚、レーザ光120がレンズ4に入射するとき、その一部121はレンズ4の内側の表面43で反射されるが、それが受光素子3に受光されないように、各部の位置関係が予め考慮されている。この際、カン・パッケージの内部空間に不活性ガスを充填しておけば、レーザ素子1の劣化を防いで長寿命化することができる。尚、平凸レンズ4の平面側をパッケージの外側へ向けて配置し、その平面側で生じる全反射を利用するようにしても良い。この場合、レンズ4の傾きαを小さくすることができる。また前述したようにレンズ4の凸面側をパッケージの外側へ向けて配置したときには、その凸面側で生じる全反射を利用するようにしても良い。   The positional relationship shown in FIG. 2 is adopted for the laser element 1, the lens 4, and the light receiving elements 3 and 5. That is, the optical axis of the laser element 1 is slightly displaced without passing through the principal point of the lens 4, and the optical axis of the laser element 1 and the optical axis of the lens 4 form an inclination α. The outer edge portion 120 of the laser light emitted conically from the laser emitting surface 11 of the laser element 1 is reflected by the surface 44 of the lens 4 and emitted to the side of the lens 4 and is received by the light receiving element 3. When the laser beam 120 is incident on the lens 4, a part 121 thereof is reflected by the inner surface 43 of the lens 4, but the positional relationship of each part is considered in advance so that it is not received by the light receiving element 3. ing. At this time, if the inner space of the can package is filled with an inert gas, the laser element 1 can be prevented from deteriorating and the life can be extended. Note that the plane side of the plano-convex lens 4 may be arranged toward the outside of the package, and total reflection generated on the plane side may be used. In this case, the inclination α of the lens 4 can be reduced. Further, as described above, when the convex surface side of the lens 4 is arranged toward the outside of the package, total reflection generated on the convex surface side may be used.

かくして上述した如く構成された反射形レーザ状態検知機器によれば、レーザ素子1における自己結合効果を利用して計測対象物2の状態を検知するに際し、計測対象物2による反射光だけを検出する対象物検出用受光器5を備え、状態検知用受光器3においてはレーザ素子10から出力されるレーザ光だけを検出するように構成されるので、計測対象物2による反射光(戻り光)の有無、ひいては計測対象物2の存在を容易に確認しながら該計測対象物2の状態を正確に検出することができる。しかも対象物検出用受光器5をレーザ素子1の背面側に配置することで、レーザ素子1および受光器3,5のレイアウトのコンパクト化を図ることができ、特にこれらを一体にパッケージ化する場合には、容易にその小型化を図ることができる等の実用上多大なる効果が奏せられる。   Thus, according to the reflection type laser state detection apparatus configured as described above, only the reflected light from the measurement object 2 is detected when the state of the measurement object 2 is detected using the self-coupling effect in the laser element 1. Since the object detection light receiver 5 is provided, and the state detection light receiver 3 is configured to detect only the laser light output from the laser element 10, the reflected light (return light) of the measurement object 2 is detected. The state of the measurement object 2 can be accurately detected while easily confirming the presence / absence, and hence the presence of the measurement object 2. In addition, the layout of the laser element 1 and the light receivers 3 and 5 can be made compact by arranging the object detection light receiver 5 on the back side of the laser element 1, particularly when these are packaged integrally. Has a great practical effect, such as being able to easily reduce its size.

尚、本発明は上述した実施形態に限定されるものではない。実施形態においては対物レンズ4をレーザ素子1から射出されるレーザ光の光軸に対して直交させて配置したが、対物レンズ4を上記光軸に対して傾けて配置し、状態検知用受光器3に対するレーザ光の反射方向を更に外側に向けるようにしても良い。このようにして対物レンズ4を傾けても、該対物レンズ4を介して集光される戻り光の光路に殆ど変化が生じることがないので、対象物検出用受光器5については前述した実施形態と同様にレーザ素子1の背面側に配置すれば十分である。またレーザ素子1から出力された光の反射角を大きくすることができるので、状態検知用受光器3への戻り光の入射を確実に阻止することが可能となる。また対物レンズ4としては、例示した片面凸レンズに変えて両面凸レンズを用いることも勿論可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. In the embodiment, the objective lens 4 is arranged so as to be orthogonal to the optical axis of the laser light emitted from the laser element 1, but the objective lens 4 is arranged so as to be inclined with respect to the optical axis, and a state detection light receiver. The reflection direction of the laser beam with respect to 3 may be further directed outward. Even if the objective lens 4 is tilted in this way, the optical path of the return light collected through the objective lens 4 hardly changes. It is sufficient to arrange it on the back side of the laser element 1 in the same manner as in FIG. Further, since the reflection angle of the light output from the laser element 1 can be increased, it is possible to reliably prevent the return light from entering the state detection light receiver 3. As the objective lens 4, it is of course possible to use a double-sided convex lens instead of the exemplified single-sided convex lens. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係るレーザ計測方法を実施する上での概略的な光学系を示す図。The figure which shows the schematic optical system in enforcing the laser measuring method which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ状態検知機器の概略構成を示す図。The figure which shows schematic structure of the laser state detection apparatus which concerns on one Embodiment of this invention. レーザ状態検知機器の具体的な構成例を示す図。The figure which shows the specific structural example of a laser state detection apparatus. レーザ状態検知機器のより具体的な構成例を示す断面図。Sectional drawing which shows the more specific structural example of a laser state detection apparatus. 自己結合効果を利用したレーザ状態検知機器の基本的な構成を示す図。The figure which shows the basic composition of the laser state detection apparatus using a self-coupling effect. レーザ光の自己結合効果により生じる変調レーザ光の概念を示す図。The figure which shows the concept of the modulation | alteration laser beam produced by the self-coupling effect of a laser beam.

符号の説明Explanation of symbols

1 レーザ素子
1a 光源
2 計測対象物
3 状態検知用受光器
4 対物レンズ
5 対象物検出用受光器
DESCRIPTION OF SYMBOLS 1 Laser element 1a Light source 2 Object to be measured 3 Light receiver for state detection 4 Objective lens 5 Light receiver for object detection

Claims (9)

計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を検出して前記計測対象物の状態を検知するに際して、
上記照射光とは独立に前記計測対象物による反射光を受光して前記計測対象物の有無を検出することを特徴とするレーザ計測方法。
A semiconductor laser element that irradiates the measurement target with wavelength-modulated laser light and introduces the laser light reflected by the measurement target is used, and an interference signal generated by a self-coupling effect in the laser element is generated. When detecting the superimposed irradiation light and detecting the state of the measurement object,
A laser measurement method, wherein the presence or absence of the measurement object is detected by receiving reflected light from the measurement object independently of the irradiation light.
前記照射光とは独立に検出される前記計測対象物による反射光は、前記レーザ素子から前記計測対象物に向けて照射されたレーザ光の反射光成分であって、前記照射光は前記計測対象物による反射光を遮断して検出され、且つ前記計測対象物による反射光は前記照射光を遮断して検出されるものである請求項1に記載のレーザ計測方法。   The reflected light from the measurement object that is detected independently of the irradiation light is a reflected light component of laser light emitted from the laser element toward the measurement object, and the irradiation light is the measurement object. The laser measurement method according to claim 1, wherein the reflected light from the object is detected by blocking and the reflected light from the measurement object is detected by blocking the irradiation light. 前記照射光とは独立に検出される前記計測対象物による反射光は、前記レーザ素子とは異なる光源から前記計測対象物に向けて発せられた補助光の反射光成分であって、前記計測対象物による反射光は前記照射光を遮断して検出されるものである請求項1に記載のレーザ計測方法。   The reflected light by the measurement object detected independently of the irradiation light is a reflected light component of auxiliary light emitted from a light source different from the laser element toward the measurement object, and the measurement object The laser measurement method according to claim 1, wherein reflected light from an object is detected by blocking the irradiation light. 計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を解析して前記計測対象物の状態を検知するレーザ状態検知機器であって、
前記レーザ素子の照射光だけを受光可能に設けた状態検知用受光器と、前記対象物による反射光だけを受光可能に設けた対象物検出用受光器とを備えたことを特徴とするレーザ状態検知機器。
A semiconductor laser element that irradiates the measurement target with wavelength-modulated laser light and introduces the laser light reflected by the measurement target is used, and an interference signal generated by a self-coupling effect in the laser element is generated. A laser state detection device that analyzes the superimposed irradiation light and detects the state of the measurement object,
A laser state comprising: a state detection light receiver provided so as to be able to receive only the irradiation light of the laser element; and a target detection light receiver provided so as to be able to receive only reflected light from the object Detection equipment.
前記状態検知用受光器は、前記レーザ素子からの照射光を受光可能で、且つ前記計測対象物による反射光が到達することのない位置に設けられ、
前記対象物検出用受光器は、前記計測対象物による反射光が到達し、且つ前記レーザ素子からの照射光が到達することのない位置に設けられるものである請求項4に記載のレーザ状態検知機器。
The state detection light receiver is capable of receiving the irradiation light from the laser element, and is provided at a position where the reflected light from the measurement object does not reach,
5. The laser state detection according to claim 4, wherein the light receiving device for detecting an object is provided at a position where reflected light from the measurement object arrives and irradiation light from the laser element does not reach. machine.
計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を解析して前記計測対象物の状態を検知するレーザ状態検知機器であって、
前記レーザ素子の照射光だけを受光可能に設けた状態検知用受光器と、
前記計測対象物に向けて補助光を照射する光源と、
前記レーザ素子からの照射光を遮断して上記補助光の前記対象物による反射光だけを受光可能に設けた対象物検出用受光器と
を備えたことを特徴とするレーザ状態検知機器。
A semiconductor laser element that irradiates the measurement target with wavelength-modulated laser light and introduces the laser light reflected by the measurement target is used, and an interference signal generated by a self-coupling effect in the laser element is generated. A laser state detection device that analyzes the superimposed irradiation light and detects the state of the measurement object,
A state detection light receiver provided to receive only the irradiation light of the laser element;
A light source that emits auxiliary light toward the measurement object;
An apparatus for detecting a laser state, comprising: an object detection light receiver provided so as to be able to receive only the reflected light of the auxiliary light reflected by the object by blocking the irradiation light from the laser element.
前記レーザ素子は、対物レンズを介して計測対象物にレーザ光を照射するものであって、
前記対象物検出用受光器は、前記対象物に向けてレーザ光を照射するレーザ素子の背面側であって、前記対物レンズの焦点位置に設けられるものである請求項5または6に記載のレーザ状態検知機器。
The laser element irradiates a measurement object with laser light through an objective lens,
7. The laser according to claim 5, wherein the light receiving device for detecting an object is provided on a back surface side of a laser element that irradiates laser light toward the object, and is provided at a focal position of the objective lens. Condition detection device.
前記対物レンズは、前記レーザ素子から出力されたレーザ光を略平行光束として計測対象物に照射するものである請求項5または6に記載のレーザ状態検知機器。   The laser condition detection device according to claim 5 or 6, wherein the objective lens irradiates a measurement object with a laser beam output from the laser element as a substantially parallel light beam. 計測対象物に向けて波長変調したレーザ光を照射すると共に、上記計測対象物にて反射した上記レーザ光が導入される半導体レーザ素子を用い、このレーザ素子における自己結合効果により生じた干渉信号が重畳した照射光を解析して前記計測対象物の状態を検知する請求項4〜8のいずれかに記載のレーザ状態検知機器と、
上記計測対象物に向けて光を照射する投光素子、上記計測対象物からの反射光を受光する受光素子、およびこの受光素子の受光量から上記計測対象物の有無を識別する識別手段を有する光電スイッチと、
この光電スイッチの識別結果から前記レーザ状態検知機器の検知状態を判定する判定手段と
を具備したことを特徴とするレーザ状態検知システム。
A semiconductor laser element that irradiates the measurement target with wavelength-modulated laser light and introduces the laser light reflected by the measurement target is used, and an interference signal generated by a self-coupling effect in the laser element is generated. The laser state detection device according to any one of claims 4 to 8, which detects the state of the measurement object by analyzing the superimposed irradiation light;
A light projecting element that emits light toward the measurement object; a light receiving element that receives reflected light from the measurement object; and an identification unit that identifies the presence or absence of the measurement object from the amount of light received by the light receiving element. A photoelectric switch;
A laser state detection system comprising: a determination unit that determines a detection state of the laser state detection device from a result of identification of the photoelectric switch.
JP2005301727A 2005-10-17 2005-10-17 Laser measurement method, laser state detection device, and laser state detection system Expired - Fee Related JP4432084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301727A JP4432084B2 (en) 2005-10-17 2005-10-17 Laser measurement method, laser state detection device, and laser state detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301727A JP4432084B2 (en) 2005-10-17 2005-10-17 Laser measurement method, laser state detection device, and laser state detection system

Publications (2)

Publication Number Publication Date
JP2007108122A true JP2007108122A (en) 2007-04-26
JP4432084B2 JP4432084B2 (en) 2010-03-17

Family

ID=38034079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301727A Expired - Fee Related JP4432084B2 (en) 2005-10-17 2005-10-17 Laser measurement method, laser state detection device, and laser state detection system

Country Status (1)

Country Link
JP (1) JP4432084B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009222674A (en) * 2008-03-18 2009-10-01 Yamatake Corp Reflection-type photoelectric switch and object detection method
JP2009229381A (en) * 2008-03-25 2009-10-08 Yamatake Corp Reflection type photoelectric switch and object detecting method
JP2009244218A (en) * 2008-03-31 2009-10-22 Yamatake Corp Reflector type photoelectric switch and method for detecting body
JP2010071926A (en) * 2008-09-22 2010-04-02 Yamatake Corp Reflective photoelectric sensor and object detecting method
JP2010078561A (en) * 2008-09-29 2010-04-08 Yamatake Corp Reflective photoelectric switch and object detection method
JP2010526315A (en) * 2007-05-07 2010-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laser sensor for self-mixing interferometer with wide detection range
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
EP2251707A1 (en) * 2009-05-08 2010-11-17 Yamatake Corporation Reflective photoelectric switch and object detection method
EP2251708A1 (en) * 2009-05-08 2010-11-17 Yamatake Corporation Reflective photoelectric switch and object detection method
JP2012122950A (en) * 2010-12-10 2012-06-28 Chiba Univ Led lidar apparatus
JP5938479B2 (en) * 2012-10-05 2016-06-22 パイオニア株式会社 SEMICONDUCTOR DEVICE, PROXIMITY SENSOR HAVING THE SAME, AND METHOD FOR PRODUCING SEMICONDUCTOR DEVICE
CN108089195A (en) * 2017-12-30 2018-05-29 浙江维思无线网络技术有限公司 A kind of object position estimation method and device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526315A (en) * 2007-05-07 2010-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Laser sensor for self-mixing interferometer with wide detection range
JP2009222674A (en) * 2008-03-18 2009-10-01 Yamatake Corp Reflection-type photoelectric switch and object detection method
JP2009229381A (en) * 2008-03-25 2009-10-08 Yamatake Corp Reflection type photoelectric switch and object detecting method
JP2009244218A (en) * 2008-03-31 2009-10-22 Yamatake Corp Reflector type photoelectric switch and method for detecting body
JP2010071926A (en) * 2008-09-22 2010-04-02 Yamatake Corp Reflective photoelectric sensor and object detecting method
JP2010078561A (en) * 2008-09-29 2010-04-08 Yamatake Corp Reflective photoelectric switch and object detection method
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
EP2251707A1 (en) * 2009-05-08 2010-11-17 Yamatake Corporation Reflective photoelectric switch and object detection method
EP2251708A1 (en) * 2009-05-08 2010-11-17 Yamatake Corporation Reflective photoelectric switch and object detection method
JP2012122950A (en) * 2010-12-10 2012-06-28 Chiba Univ Led lidar apparatus
JP5938479B2 (en) * 2012-10-05 2016-06-22 パイオニア株式会社 SEMICONDUCTOR DEVICE, PROXIMITY SENSOR HAVING THE SAME, AND METHOD FOR PRODUCING SEMICONDUCTOR DEVICE
CN108089195A (en) * 2017-12-30 2018-05-29 浙江维思无线网络技术有限公司 A kind of object position estimation method and device

Also Published As

Publication number Publication date
JP4432084B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
RU2442107C2 (en) Device for optical distance measurement
JP4432084B2 (en) Laser measurement method, laser state detection device, and laser state detection system
JP5856173B2 (en) Smoke detection circuit, smoke detector comprising this smoke detection circuit, and alarm device comprising both this circuit and the detector
US20060109450A1 (en) Laser distance measuring device
US7336368B2 (en) Optical detecting module and optical detector thereof
US7880888B2 (en) Photoelectric sensor for sensing a target
JP5583120B2 (en) Photoelectric switch and method for detecting objects
US10641695B2 (en) Method of determining operation conditions of a laser-based particle detector
US20190146065A1 (en) Compact laser sensor
KR20190128068A (en) Laser sensor module for particle detection with offset beam
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
FR2970095A1 (en) DEVICE FOR DETECTING AN ANGULAR DIRECTION IN WHICH IS AN OBJECT
US6225621B1 (en) Laser photoelectric sensor
JP4491277B2 (en) Sample analyzer
JP2008070314A (en) Gas detection apparatus
CN100403347C (en) Interference photoelectric smoke and fire detecting method and its device
JP2006322916A (en) Laser length measuring device
KR20160114445A (en) Lidar system
JP5497973B2 (en) Condition detection device
JP4742166B2 (en) Sample analyzer
JP7033777B2 (en) Optical sensor chip and optical gas sensor
CN113646661A (en) System and method for real-time LIDAR distance calibration
TWI749740B (en) Lidar system
JP2009063311A (en) Gas detection device
CN114114214A (en) Light reaches system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4432084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees