JP2009222674A - Reflection-type photoelectric switch and object detection method - Google Patents

Reflection-type photoelectric switch and object detection method Download PDF

Info

Publication number
JP2009222674A
JP2009222674A JP2008069980A JP2008069980A JP2009222674A JP 2009222674 A JP2009222674 A JP 2009222674A JP 2008069980 A JP2008069980 A JP 2008069980A JP 2008069980 A JP2008069980 A JP 2008069980A JP 2009222674 A JP2009222674 A JP 2009222674A
Authority
JP
Japan
Prior art keywords
period
interference
distance
half cycle
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008069980A
Other languages
Japanese (ja)
Other versions
JP5663130B2 (en
Inventor
Tatsuya Ueno
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2008069980A priority Critical patent/JP5663130B2/en
Publication of JP2009222674A publication Critical patent/JP2009222674A/en
Application granted granted Critical
Publication of JP5663130B2 publication Critical patent/JP5663130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-accuracy reflection-type photoelectric switch, utilizing a simple and low-cost constitution, by utilizing self-adopted type laser measuring instrument. <P>SOLUTION: This reflection-type photoelectric switch includes a semiconductor laser 1, detecting means (photodiode 2, current-voltage conversion amplifier 5) for detecting electric signal which includes interferential waveform, caused by self-combined effect between laser beam radiated from the semiconductor laser 1 and return light from an object 10; and distance determination processing means (filter part 6, digital part 7, determination part 8) for determining as to whether the distance to the object 10 is farther from or nearer to than reference range, based on information of the interferential waveform. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射型光電スイッチに係り、特に物体までの距離が所定の基準距離より遠いか近いかを検出する反射型光電スイッチおよび物体検出方法に関するものである。   The present invention relates to a reflection type photoelectric switch, and more particularly to a reflection type photoelectric switch and an object detection method for detecting whether the distance to an object is far or close to a predetermined reference distance.

従来より、反射型光電スイッチの1つとして、光電スイッチから物体までの距離が所定の基準距離より遠いか近いかを検知する距離設定反射型(Background Suppression、以下、BGSと略する)光電スイッチが知られている(例えば、特許文献1、特許文献2参照)。このようなBGS光電スイッチによれば、背景を検出せずに物体のみを検出することができる。   Conventionally, as one of the reflection type photoelectric switches, a distance setting reflection type (Background Suppression, hereinafter abbreviated as BGS) photoelectric switch for detecting whether the distance from the photoelectric switch to an object is greater than or close to a predetermined reference distance has been proposed. Known (for example, refer to Patent Document 1 and Patent Document 2). According to such a BGS photoelectric switch, only an object can be detected without detecting the background.

一方、レーザによる光の干渉を利用した距離計として、レーザの出力光と測定対象からの戻り光との半導体レーザ内部での干渉(自己結合効果)を利用したレーザ計測器が提案されている(例えば、非特許文献1、非特許文献2、非特許文献3参照)。FP型(ファブリペロー型)半導体レーザの複合共振器モデルを図14に示す。図14において、101は半導体レーザ、102は半導体結晶の壁開面、103はフォトダイオード、104は測定対象である。   On the other hand, a laser measuring instrument using interference (self-coupling effect) in the semiconductor laser between the output light of the laser and the return light from the measurement object has been proposed as a distance meter using the interference of light by the laser ( For example, refer nonpatent literature 1, nonpatent literature 2, and nonpatent literature 3). FIG. 14 shows a composite resonator model of an FP type (Fabry-Perot type) semiconductor laser. In FIG. 14, 101 is a semiconductor laser, 102 is a wall opening of a semiconductor crystal, 103 is a photodiode, and 104 is an object to be measured.

レーザの発振波長をλ、測定対象104に近い方の壁開面102から測定対象104までの距離をLとすると、以下の共振条件を満足するとき、測定対象104からの戻り光と共振器101内のレーザ光は強め合い、レーザ出力がわずかに増加する。
L=qλ/2 ・・・(1)
式(1)において、qは整数である。この現象は、測定対象104からの散乱光が極めて微弱であっても、半導体レーザの共振器101内の見かけの反射率が増加することにより、増幅作用が生じ、十分観測できる。
When the oscillation wavelength of the laser is λ and the distance from the wall open surface 102 closer to the measurement target 104 to the measurement target 104 is L, the return light from the measurement target 104 and the resonator 101 are satisfied when the following resonance condition is satisfied. The inner laser beams strengthen each other, and the laser output increases slightly.
L = qλ / 2 (1)
In Formula (1), q is an integer. This phenomenon can be sufficiently observed even if the scattered light from the measurement object 104 is very weak, because the apparent reflectance in the resonator 101 of the semiconductor laser increases, causing an amplification effect.

半導体レーザは、注入電流の大きさに応じて周波数の異なるレーザ光を放射するので、発振周波数を変調する際に、外部変調器を必要とせず、注入電流によって直接変調が可能である。図15は、半導体レーザの発振波長をある一定の割合で変化させたときの発振波長とフォトダイオード103の出力波形との関係を示す図である。式(1)に示したL=qλ/2を満足したときに、戻り光と共振器101内のレーザ光の位相差が0°(同位相)になって、戻り光と共振器101内のレーザ光とが最も強め合い、L=qλ/2+λ/4のときに、位相差が180°(逆位相)になって、戻り光と共振器101内のレーザ光とが最も弱め合う。そのため、半導体レーザの発振波長を変化させていくと、レーザ出力が強くなるところと弱くなるところとが交互に繰り返し現れ、このときのレーザ出力を共振器101に設けられたフォトダイオード103で検出すると、図15に示すように一定周期の階段状の波形が得られる。このような波形は一般的には干渉縞と呼ばれる。   Since the semiconductor laser emits laser beams having different frequencies according to the magnitude of the injection current, an external modulator is not required when modulating the oscillation frequency, and direct modulation is possible by the injection current. FIG. 15 is a diagram showing the relationship between the oscillation wavelength and the output waveform of the photodiode 103 when the oscillation wavelength of the semiconductor laser is changed at a certain rate. When L = qλ / 2 shown in Expression (1) is satisfied, the phase difference between the return light and the laser light in the resonator 101 becomes 0 ° (the same phase), and the return light and the resonator 101 When L = qλ / 2 + λ / 4, the phase difference becomes 180 ° (opposite phase), and the return light and the laser light in the resonator 101 are the weakest. Therefore, when the oscillation wavelength of the semiconductor laser is changed, a place where the laser output becomes strong and a place where the laser output becomes weak appear alternately, and the laser output at this time is detected by the photodiode 103 provided in the resonator 101. As shown in FIG. 15, a step-like waveform having a constant period is obtained. Such a waveform is generally called an interference fringe.

この階段状の波形、すなわち干渉縞の1つ1つをモードポップパルス(以下、MHP)と呼ぶ。MHPはモードホッピング現象とは異なる現象である。例えば、測定対象104までの距離がL1のとき、MHPの数が10個であったとすれば、半分の距離L2では、MHPの数は5個になる。すなわち、ある一定時間において半導体レーザの発振波長を変化させた場合、測定距離に比例してMHPの数は変わる。したがって、MHPをフォトダイオード103で検出し、MHPの周波数を測定すれば、容易に距離計測が可能となる。   Each stepped waveform, that is, each interference fringe is called a mode pop pulse (hereinafter referred to as MHP). MHP is a phenomenon different from the mode hopping phenomenon. For example, if the number of MHPs is 10 when the distance to the measurement object 104 is L1, the number of MHPs is 5 at half the distance L2. That is, when the oscillation wavelength of the semiconductor laser is changed for a certain time, the number of MHPs changes in proportion to the measurement distance. Therefore, if the MHP is detected by the photodiode 103 and the frequency of the MHP is measured, the distance can be easily measured.

以上のような自己結合型のレーザ計測器を利用すれば、BGS光電スイッチを実現することができる。BGS光電スイッチは、所定の基準距離と比較して物体が近距離にあるか遠距離にあるかでオン/オフ判定すればよい。そこで、自己結合型のレーザ計測器をBGS光電スイッチとして用いる場合には、物体が基準距離の位置にあるときのMHPの既知の基準周期に対して、測定したMHPの平均周期が長いか短いかを判断すればよい。物体が基準距離の位置にあるときのMHPの既知の周期に対して、測定したMHPの平均周期が長い場合には、物体が基準距離よりも近距離に存在するとしてオン判定とし、また測定したMHPの周期が短い場合には、物体が基準距離よりも遠距離に存在するとしてオフ判定とする。   A BGS photoelectric switch can be realized by using the self-coupled laser measuring instrument as described above. The BGS photoelectric switch may be turned on / off based on whether the object is at a short distance or a long distance compared to a predetermined reference distance. Therefore, when a self-coupled laser measuring instrument is used as a BGS photoelectric switch, whether the average period of the measured MHP is longer or shorter than the known reference period of the MHP when the object is at the reference distance. Can be determined. When the average period of the measured MHP is longer than the known period of the MHP when the object is at the position of the reference distance, it is determined that the object exists at a shorter distance than the reference distance, and the measurement is performed. When the MHP cycle is short, it is determined to be off because the object is located farther than the reference distance.

特開昭63−102135号公報JP 63-102135 A 特開昭63−187237号公報Japanese Unexamined Patent Publication No. 63-187237 上田正,山田諄,紫藤進,「半導体レーザの自己結合効果を利用した距離計」,1994年度電気関係学会東海支部連合大会講演論文集,1994年Tadashi Ueda, Satoshi Yamada, Susumu Shito, “Distance Meter Using Self-Coupling Effect of Semiconductor Laser”, Proceedings of the 1994 Tokai Branch Joint Conference of Electrical Engineering Society, 1994 山田諄,紫藤進,津田紀生,上田正,「半導体レーザの自己結合効果を利用した小型距離計に関する研究」,愛知工業大学研究報告,第31号B,p.35−42,1996年Satoshi Yamada, Susumu Shito, Norio Tsuda, Tadashi Ueda, “Study on a small rangefinder using the self-coupling effect of a semiconductor laser”, Aichi Institute of Technology research report, No. 31 B, p. 35-42, 1996 Guido Giuliani,Michele Norgia,Silvano Donati and Thierry Bosch,「Laser diode self-mixing technique for sensing applications」,JOURNAL OF OPTICS A:PURE AND APPLIED OPTICS,p.283−294,2002年Guido Giuliani, Michele Norgia, Silvano Donati and Thierry Bosch, “Laser diode self-mixing technique for sensing applications”, JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS, p. 283-294, 2002

以上のように、自己結合型のレーザ計測器を利用すれば、BGS光電スイッチを実現することができる。ただし、MHPの平均周期を単純に求めて基準周期と比較するだけでは判定精度が悪くなる。そこで、発明者が特願2007−015020号で提案した手法を用い、MHPの周期の度数分布を求めて、中央値または最頻値等の分布の代表値を求め、この周期の分布の代表値と周期の度数分布に基づいて物体までの距離を算出し、この算出した距離を基準距離と比較すれば、判定精度を向上させることができる。しかしながら、このような方法では、メモリおよびコンピュータが必要になり、BGS光電スイッチのコストが上昇するという問題点があった。   As described above, a BGS photoelectric switch can be realized by using a self-coupled laser measuring instrument. However, simply determining the average period of MHP and comparing it with the reference period results in poor determination accuracy. Therefore, using the method proposed by the inventor in Japanese Patent Application No. 2007-015020, the frequency distribution of the MHP period is obtained, the representative value of the distribution such as the median or the mode is obtained, and the representative value of the distribution of this period If the distance to the object is calculated based on the frequency distribution of the period and the calculated distance is compared with the reference distance, the determination accuracy can be improved. However, such a method requires a memory and a computer, and there is a problem that the cost of the BGS photoelectric switch increases.

本発明は、上記課題を解決するためになされたもので、自己結合型のレーザ計測器を利用して、簡単かつ安価な構成で精度の良い反射型光電スイッチを実現することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to realize a highly accurate reflective photoelectric switch with a simple and inexpensive configuration using a self-coupled laser measuring instrument.

本発明の反射型光電スイッチは、レーザ光を放射する半導体レーザと、この半導体レーザから放射されたレーザ光と前記半導体レーザの前方に存在する物体からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手段と、この検出手段の出力信号に含まれる前記干渉波形の情報から、前記物体までの距離が所定の基準距離より遠いか近いかを判定する距離判定処理手段とを備えることを特徴とするものである。
また、本発明の反射型光電スイッチの1構成例において、前記距離判定処理手段は、前記物体が前記基準距離の位置にあるときの前記干渉波形の周期を基準周期としたときに、前記検出手段の出力信号に含まれる前記干渉波形の数を、前記基準周期よりも周期が長い干渉波形の数と前記基準周期よりも周期が短い干渉波形の数に分けて数える計数手段と、前記周期が長い干渉波形の数が前記周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記周期が短い干渉波形の数が前記周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手段とからなることを特徴とするものである。
また、本発明の反射型光電スイッチの1構成例において、前記距離判定処理手段は、前記物体が前記基準距離の位置にあるときの前記干渉波形の半周期を基準半周期としたときに、前記検出手段の出力信号に含まれる前記干渉波形の数を、前記基準半周期よりも半周期が長い干渉波形の数と前記基準半周期よりも半周期が短い干渉波形の数に分けて数える計数手段と、前記半周期が長い干渉波形の数が前記半周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記半周期が短い干渉波形の数が前記半周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手段とからなることを特徴とするものである。
The reflection type photoelectric switch according to the present invention includes an interference waveform generated by a self-coupling effect of a semiconductor laser that emits laser light, and the laser light emitted from the semiconductor laser and return light from an object existing in front of the semiconductor laser. Detecting means for detecting an electrical signal including: a distance determination processing means for determining whether the distance to the object is far from or close to a predetermined reference distance from information on the interference waveform included in the output signal of the detecting means; It is characterized by providing.
Further, in one configuration example of the reflective photoelectric switch of the present invention, the distance determination processing unit is configured to detect the interference unit when the period of the interference waveform when the object is at the reference distance is a reference period. Counting means for counting the number of the interference waveforms included in the output signal by dividing the number into the number of interference waveforms having a period longer than the reference period and the number of interference waveforms having a period shorter than the reference period; When the number of interference waveforms is larger than the number of interference waveforms having a short period, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short period is an interference waveform having a long period. And determining means for determining that the object is located at a distance farther than the reference distance when the number of objects is greater than the number.
Further, in one configuration example of the reflective photoelectric switch of the present invention, the distance determination processing unit is configured such that when a half cycle of the interference waveform when the object is at the reference distance is a reference half cycle, Counting means for counting the number of the interference waveforms included in the output signal of the detection means by dividing into the number of interference waveforms having a half cycle longer than the reference half cycle and the number of interference waveforms having a half cycle shorter than the reference half cycle. When the number of interference waveforms having a long half cycle is greater than the number of interference waveforms having a short half cycle, it is determined that the object is present at a shorter distance than the reference distance, and the interference waveform having a short half cycle is And a determination means for determining that the object exists at a distance farther than the reference distance when the number of interference waveforms is larger than the number of interference waveforms having a long half cycle.

また、本発明の反射型光電スイッチの1構成例において、前記計数手段は、前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、前記干渉波形の立ち上がりから次の立ち上がりまでの時間を測定する時間測定手段と、前記干渉波形の立ち上がりから次の立ち上がりまでの時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記干渉波形の立ち上がりから次の立ち上がりまでの時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とするものである。
また、本発明の反射型光電スイッチの1構成例において、前記計数手段は、前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、前記干渉波形の立ち下がりから次の立ち下がりまでの時間を測定する時間測定手段と、前記干渉波形の立ち下がりから次の立ち下がりまでの時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記干渉波形の立ち下がりから次の立ち下がりまでの時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とするものである。
Further, in one configuration example of the reflective photoelectric switch of the present invention, the counting means includes a rising edge detecting means for detecting the rising edge of the interference waveform, and a time measurement for measuring a time from the rising edge of the interference waveform to the next rising edge. And when the time from the rising edge of the interference waveform to the next rising edge is longer than the reference period, the number of interference waveforms having a longer period than the reference period is increased, and from the rising edge of the interference waveform to the next rising edge. When the time is shorter than the reference period, the comparison means is configured to increase the number of interference waveforms having a period shorter than the reference period.
Further, in one configuration example of the reflective photoelectric switch of the present invention, the counting means includes a fall detection means for detecting a fall of the interference waveform, and a time from the fall of the interference waveform to the next fall. When the time measurement means for measuring and the time from the fall of the interference waveform to the next fall are longer than the reference period, the number of interference waveforms having a period longer than the reference period is increased, and the interference waveform When the time from the fall to the next fall is shorter than the reference period, the comparison means is configured to increase the number of interference waveforms having a period shorter than the reference period.

また、本発明の反射型光電スイッチの1構成例において、前記計数手段は、前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、前記干渉波形の立ち上がりから次の立ち上がりまでの第1の時間を測定する第1の時間測定手段と、前記干渉波形の立ち下がりから次の立ち下がりまでの第2の時間を測定する第2の時間測定手段と、前記第1の時間が前記基準周期よりも長い場合または前記第2の時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記第1の時間が前記基準周期よりも短い場合または前記第2の時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とするものである。
また、本発明の反射型光電スイッチの1構成例において、前記計数手段は、前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、前記干渉波形の立ち上がりから次の立ち下がりまでの第1の時間を測定する第1の時間測定手段と、前記干渉波形の立ち下がりから次の立ち上がりまでの第2の時間を測定する第2の時間測定手段と、前記第1の時間が前記基準半周期よりも長い場合または前記第2の時間が前記基準半周期よりも長い場合は、前記基準半周期よりも半周期が長い干渉波形の数を増やし、前記第1の時間が前記基準半周期よりも短い場合または前記第2の時間が前記基準半周期よりも短い場合は、前記基準半周期よりも半周期が短い干渉波形の数を増やす比較手段とからなることを特徴とするものである。
Further, in one configuration example of the reflective photoelectric switch of the present invention, the counting means includes a rising edge detecting means for detecting a rising edge of the interference waveform, a falling edge detecting means for detecting a falling edge of the interference waveform, and the interference. First time measuring means for measuring a first time from the rising edge of the waveform to the next rising edge, and second time measuring means for measuring a second time from the falling edge of the interference waveform to the next falling edge If the first time is longer than the reference period or the second time is longer than the reference period, the number of interference waveforms having a period longer than the reference period is increased, When the time is shorter than the reference period, or when the second time is shorter than the reference period, the comparison means increases the number of interference waveforms whose period is shorter than the reference period. The one in which the features.
Further, in one configuration example of the reflective photoelectric switch of the present invention, the counting means includes a rising edge detecting means for detecting a rising edge of the interference waveform, a falling edge detecting means for detecting a falling edge of the interference waveform, and the interference. A first time measuring means for measuring a first time from the rising edge of the waveform to the next falling edge; and a second time measuring means for measuring a second time from the falling edge of the interference waveform to the next rising edge. And when the first time is longer than the reference half cycle or the second time is longer than the reference half cycle, the number of interference waveforms having a half cycle longer than the reference half cycle is increased, When the first time is shorter than the reference half cycle or when the second time is shorter than the reference half cycle, the comparison increases the number of interference waveforms whose half cycle is shorter than the reference half cycle. And it is characterized in that comprising the stages.

また、本発明の物体検出方法は、駆動電流を半導体レーザに供給して前記半導体レーザを動作させる発振手順と、前記半導体レーザから放射されたレーザ光と前記半導体レーザの前方に存在する物体からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手順と、この検出手順で得られた出力信号に含まれる前記干渉波形の情報から、前記物体までの距離が所定の基準距離より遠いか近いかを判定する距離判定処理手順とを備えることを特徴とするものである。
また、本発明の物体検出方法の1構成例において、前記距離判定処理手順は、前記物体が前記基準距離の位置にあるときの前記干渉波形の周期を基準周期としたときに、前記検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記基準周期よりも周期が長い干渉波形の数と前記基準周期よりも周期が短い干渉波形の数に分けて数える計数手順と、前記周期が長い干渉波形の数が前記周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記周期が短い干渉波形の数が前記周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手順とからなることを特徴とするものである。
また、本発明の物体検出方法の1構成例において、前記距離判定処理手順は、前記物体が前記基準距離の位置にあるときの前記干渉波形の半周期を基準半周期としたときに、前記検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記基準半周期よりも半周期が長い干渉波形の数と前記基準半周期よりも半周期が短い干渉波形の数に分けて数える計数手順と、前記半周期が長い干渉波形の数が前記半周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記半周期が短い干渉波形の数が前記半周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手順とからなることを特徴とするものである。
The object detection method of the present invention includes an oscillation procedure for operating a semiconductor laser by supplying a drive current to the semiconductor laser, a laser beam emitted from the semiconductor laser, and an object existing in front of the semiconductor laser. Based on a detection procedure for detecting an electrical signal including an interference waveform caused by a self-coupling effect with return light, and information on the interference waveform included in the output signal obtained by this detection procedure, the distance to the object is a predetermined reference. A distance determination processing procedure for determining whether the distance is farther or closer than the distance.
Further, in one configuration example of the object detection method of the present invention, the distance determination processing procedure is performed when the period of the interference waveform when the object is at the position of the reference distance is a reference period. A counting procedure for counting the number of interference waveforms included in the obtained output signal by dividing the number into a number of interference waveforms having a period longer than the reference period and a number of interference waveforms having a period shorter than the reference period; When the number of long interference waveforms is larger than the number of interference waveforms having a short period, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short period is the long period. It is characterized by comprising a determination procedure for determining that the object exists at a distance farther than the reference distance when the number is larger than the number of interference waveforms.
Further, in one configuration example of the object detection method of the present invention, the distance determination processing procedure is performed when the half cycle of the interference waveform when the object is at the reference distance is set as a reference half cycle. The number of the interference waveforms included in the output signal obtained in the procedure is divided into the number of interference waveforms whose half cycle is longer than the reference half cycle and the number of interference waveforms whose half cycle is shorter than the reference half cycle. When the number of interference waveforms having a long half cycle is greater than the number of interference waveforms having a short half cycle, it is determined that the object is present at a shorter distance than the reference distance, and the half cycle is short. When the number of interference waveforms is larger than the number of interference waveforms having a long half cycle, the determination procedure is such that the object is determined to exist at a distance farther than the reference distance.

本発明によれば、自己結合型のレーザ計測器を利用して、簡単かつ安価な構成で精度の良い反射型光電スイッチを実現することができる。   According to the present invention, it is possible to realize an accurate reflective photoelectric switch with a simple and inexpensive configuration using a self-coupled laser measuring instrument.

また、本発明では、計数手段を、干渉波形の立ち上がりを検出する立ち上がり検出手段と、干渉波形の立ち上がりから次の立ち上がりまでの時間を測定する時間測定手段と、干渉波形の立ち上がりから次の立ち上がりまでの時間が基準周期よりも長い場合は、基準周期よりも周期が長い干渉波形の数を増やし、干渉波形の立ち上がりから次の立ち上がりまでの時間が基準周期よりも短い場合は、基準周期よりも周期が短い干渉波形の数を増やす比較手段とから構成することにより、干渉波形の立ち上がりの検出と周期の長さの比較だけで済むので、計数手段を簡単な構成で実現することができる。   In the present invention, the counting means includes a rising edge detecting means for detecting the rising edge of the interference waveform, a time measuring means for measuring the time from the rising edge of the interference waveform to the next rising edge, and from the rising edge of the interference waveform to the next rising edge. If the time is longer than the reference period, increase the number of interference waveforms with a longer period than the reference period, and if the time from the rise of the interference waveform to the next rise is shorter than the reference period, the period is longer than the reference period. By using the comparison means for increasing the number of short interference waveforms, it is only necessary to detect the rise of the interference waveform and compare the lengths of the periods, so that the counting means can be realized with a simple structure.

また、本発明では、計数手段を、干渉波形の立ち下がりを検出する立ち下がり検出手段と、干渉波形の立ち下がりから次の立ち下がりまでの時間を測定する時間測定手段と、干渉波形の立ち下がりから次の立ち下がりまでの時間が基準周期よりも長い場合は、基準周期よりも周期が長い干渉波形の数を増やし、干渉波形の立ち下がりから次の立ち下がりまでの時間が基準周期よりも短い場合は、基準周期よりも周期が短い干渉波形の数を増やす比較手段とから構成することにより、干渉波形の立ち下がりの検出と周期の長さの比較だけで済むので、計数手段を簡単な構成で実現することができる。   In the present invention, the counting means includes a falling detection means for detecting the falling edge of the interference waveform, a time measuring means for measuring the time from the falling edge of the interference waveform to the next falling edge, and the falling edge of the interference waveform. If the time from one to the next fall is longer than the reference period, increase the number of interference waveforms with a longer period than the reference period, and the time from the fall of the interference waveform to the next fall is shorter than the reference period In this case, the counting means can be configured simply by detecting the falling edge of the interference waveform and comparing the length of the period by configuring the comparing means to increase the number of interference waveforms whose period is shorter than the reference period. Can be realized.

また、本発明では、計数手段を、干渉波形の立ち上がりを検出する立ち上がり検出手段と、干渉波形の立ち下がりを検出する立ち下がり検出手段と、干渉波形の立ち上がりから次の立ち上がりまでの第1の時間を測定する第1の時間測定手段と、干渉波形の立ち下がりから次の立ち下がりまでの第2の時間を測定する第2の時間測定手段と、第1の時間が基準周期よりも長い場合または第2の時間が基準周期よりも長い場合は、基準周期よりも周期が長い干渉波形の数を増やし、第1の時間が基準周期よりも短い場合または第2の時間が基準周期よりも短い場合は、基準周期よりも周期が短い干渉波形の数を増やす比較手段とから構成することにより、計数手段を簡単な構成で実現することができる。また、本発明では、計数精度を向上させることができ、物体の距離の判定精度を向上させることができる。また、本発明では、計数結果に与える半導体レーザの発振波形の過渡応答の影響を小さくすることができ、さらに干渉波形のDCバイアスの影響をなくすことができる。   In the present invention, the counting means includes a rise detection means for detecting the rise of the interference waveform, a fall detection means for detecting the fall of the interference waveform, and a first time from the rise of the interference waveform to the next rise. A first time measuring means for measuring the time, a second time measuring means for measuring a second time from the fall of the interference waveform to the next fall, and the first time being longer than the reference period, or When the second time is longer than the reference period, the number of interference waveforms having a longer period than the reference period is increased, and when the first time is shorter than the reference period or when the second time is shorter than the reference period The counter means can be realized with a simple structure by comprising the comparing means for increasing the number of interference waveforms having a shorter period than the reference period. In the present invention, the counting accuracy can be improved, and the accuracy of determining the distance of the object can be improved. In the present invention, the influence of the transient response of the oscillation waveform of the semiconductor laser on the counting result can be reduced, and the influence of the DC bias of the interference waveform can be eliminated.

また、本発明では、計数手段を、干渉波形の立ち上がりを検出する立ち上がり検出手段と、干渉波形の立ち下がりを検出する立ち下がり検出手段と、干渉波形の立ち上がりから次の立ち下がりまでの第1の時間を測定する第1の時間測定手段と、干渉波形の立ち下がりから次の立ち上がりまでの第2の時間を測定する第2の時間測定手段と、第1の時間が基準半周期よりも長い場合または第2の時間が基準半周期よりも長い場合は、基準半周期よりも半周期が長い干渉波形の数を増やし、第1の時間が基準半周期よりも短い場合または第2の時間が基準半周期よりも短い場合は、基準半周期よりも半周期が短い干渉波形の数を増やす比較手段とから構成することにより、計数手段を簡単な構成で実現することができる。また、本発明では、計数精度を向上させることができ、物体の距離の判定精度を向上させることができる。   In the present invention, the counting means includes a rising edge detecting means for detecting the rising edge of the interference waveform, a falling edge detecting means for detecting the falling edge of the interference waveform, and a first time from the rising edge of the interference waveform to the next falling edge. A first time measuring means for measuring time, a second time measuring means for measuring a second time from the fall of the interference waveform to the next rise, and the first time being longer than a reference half cycle Alternatively, when the second time is longer than the reference half cycle, the number of interference waveforms having a half cycle longer than the reference half cycle is increased, and when the first time is shorter than the reference half cycle or the second time is set as the reference When the period is shorter than the half cycle, the counting unit can be realized with a simple configuration by including the comparison unit that increases the number of interference waveforms whose half cycle is shorter than the reference half cycle. In the present invention, the counting accuracy can be improved, and the accuracy of determining the distance of the object can be improved.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係るBGS光電スイッチの構成を示すブロック図である。
図1のBGS光電スイッチは、レーザ光を放射する半導体レーザ1と、半導体レーザ1の光出力を電気信号に変換するフォトダイオード2と、半導体レーザ1からの光を集光して放射すると共に、物体10からの戻り光を集光して半導体レーザ1に入射させるレンズ3と、半導体レーザ1を駆動するレーザドライバ4と、フォトダイオード2の出力電流を電圧に変換して増幅する電流−電圧変換増幅部5と、電流−電圧変換増幅部5の出力電圧から搬送波を除去するフィルタ部6と、フィルタ部6の出力電圧に含まれるMHPの数を数える計数部7と、計数部7の計数結果から物体10が所定の基準距離よりも近距離にあるか遠距離にあるかを判定する判定部8と、判定部8の判定結果を表示する表示部9とを有する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a BGS photoelectric switch according to a first embodiment of the present invention.
The BGS photoelectric switch in FIG. 1 collects and emits a semiconductor laser 1 that emits laser light, a photodiode 2 that converts the optical output of the semiconductor laser 1 into an electrical signal, and the light from the semiconductor laser 1. A lens 3 that collects the return light from the object 10 and makes it incident on the semiconductor laser 1, a laser driver 4 that drives the semiconductor laser 1, and a current-voltage conversion that converts the output current of the photodiode 2 into a voltage and amplifies it. The amplifying unit 5, the filter unit 6 that removes the carrier wave from the output voltage of the current-voltage conversion amplifying unit 5, the counting unit 7 that counts the number of MHPs included in the output voltage of the filter unit 6, and the counting result of the counting unit 7 Determination unit 8 that determines whether the object 10 is closer or far than a predetermined reference distance, and a display unit 9 that displays the determination result of the determination unit 8.

フォトダイオード2と電流−電圧変換増幅部5とは、検出手段を構成し、フィルタ部6と計数部7と判定部8とは、距離判定処理手段を構成している。
以下、説明容易にするために、半導体レーザ1には、モードホッピング現象を持たない型(VCSEL型、DFBレーザ型)のものが用いられているものと想定する。
The photodiode 2 and the current-voltage conversion amplification unit 5 constitute a detection unit, and the filter unit 6, the counting unit 7, and the determination unit 8 constitute a distance determination processing unit.
Hereinafter, for ease of explanation, it is assumed that a semiconductor laser 1 of a type that does not have a mode hopping phenomenon (VCSEL type, DFB laser type) is used.

レーザドライバ4は、時間に関して一定の変化率で増減を繰り返す三角波駆動電流を注入電流として半導体レーザ1に供給する。これにより、半導体レーザ1は、注入電流の大きさに比例して発振波長が一定の変化率で連続的に増加する第1の発振期間と発振波長が一定の変化率で連続的に減少する第2の発振期間とを交互に繰り返すように駆動される。図2は、半導体レーザ1の発振波長の時間変化を示す図である。図2において、P1は第1の発振期間、P2は第2の発振期間、λaは各期間における発振波長の最小値、λbは各期間における発振波長の最大値、Ttは三角波の周期である。本実施の形態では、発振波長の最大値λbおよび発振波長の最小値λaはそれぞれ常に一定になされており、それらの差λb−λaも常に一定になされている。   The laser driver 4 supplies a triangular wave drive current that repeatedly increases and decreases at a constant change rate with respect to time to the semiconductor laser 1 as an injection current. As a result, the semiconductor laser 1 has a first oscillation period in which the oscillation wavelength continuously increases at a constant change rate in proportion to the magnitude of the injection current, and a first oscillation period in which the oscillation wavelength continuously decreases at a constant change rate. It is driven to alternately repeat the two oscillation periods. FIG. 2 is a diagram showing the change over time of the oscillation wavelength of the semiconductor laser 1. In FIG. 2, P1 is the first oscillation period, P2 is the second oscillation period, λa is the minimum value of the oscillation wavelength in each period, λb is the maximum value of the oscillation wavelength in each period, and Tt is the period of the triangular wave. In the present embodiment, the maximum value λb of the oscillation wavelength and the minimum value λa of the oscillation wavelength are always constant, and the difference λb−λa is also always constant.

半導体レーザ1から出射したレーザ光は、レンズ3によって集光され、物体10に入射する。物体10で反射された光は、レンズ3によって集光され、半導体レーザ1に入射する。ただし、レンズ3による集光は必須ではない。フォトダイオード2は、半導体レーザ1の内部又はその近傍に配置され、半導体レーザ1の光出力を電流に変換する。電流−電圧変換増幅部5は、フォトダイオード2の出力電流を電圧に変換して増幅する。   Laser light emitted from the semiconductor laser 1 is collected by the lens 3 and enters the object 10. The light reflected by the object 10 is collected by the lens 3 and enters the semiconductor laser 1. However, condensing by the lens 3 is not essential. The photodiode 2 is disposed in the semiconductor laser 1 or in the vicinity thereof, and converts the optical output of the semiconductor laser 1 into a current. The current-voltage conversion amplification unit 5 converts the output current of the photodiode 2 into a voltage and amplifies it.

フィルタ部6は、変調波から重畳信号を抽出する機能を有するものである。図3(A)は電流−電圧変換増幅部5の出力電圧波形を模式的に示す図、図3(B)はフィルタ部6の出力電圧波形を模式的に示す図である。これらの図は、フォトダイオード2の出力に相当する図3(A)の波形(変調波)から、図2の半導体レーザ1の発振波形(搬送波)を除去して、図3(B)のMHP波形(干渉波形)を抽出する過程を表している。   The filter unit 6 has a function of extracting a superimposed signal from the modulated wave. FIG. 3A is a diagram schematically illustrating an output voltage waveform of the current-voltage conversion amplification unit 5, and FIG. 3B is a diagram schematically illustrating an output voltage waveform of the filter unit 6. In these figures, the oscillation waveform (carrier wave) of the semiconductor laser 1 in FIG. 2 is removed from the waveform (modulation wave) in FIG. 3A corresponding to the output of the photodiode 2, and the MHP in FIG. A process of extracting a waveform (interference waveform) is shown.

計数部7は、フィルタ部6の出力電圧に含まれるMHPの数、特に物体10が所定の基準距離の位置にあるときのMHPの既知の周期(以下、基準周期Thと呼ぶ)よりも周期が長いMHPの数Nlongおよび基準周期Thよりも周期が短いMHPの数Nshortを、第1の発振期間P1と第2の発振期間P2の各々について数える。   The counting unit 7 has a period longer than the number of MHPs included in the output voltage of the filter unit 6, in particular, a known period of the MHP when the object 10 is at a predetermined reference distance (hereinafter referred to as a reference period Th). The number of long MHPs Nlong and the number of MHPs Nshort having a shorter period than the reference period Th are counted for each of the first oscillation period P1 and the second oscillation period P2.

MHP1つあたりの距離が0.5mm、基準距離が200mm、三角波の周波数が1kHzの場合、測定されるMHPの数は、物体10との距離[mm]/0.5[mm]となる。したがって、物体10がBGS光電スイッチから基準距離だけ離れた位置にある場合、MHPの数は、200[mm]/0.5[mm]=400[個]となる。このとき、MHPの基準周期Thは、1/(1000×2)/400=1.25[μ秒]となる。物体10までの距離が基準距離よりも長いと、MHPの周期は基準周期Th=1.25[μ秒]よりも短くなり、物体10までの距離が基準距離よりも短いと、MHPの周期は基準周期Th=1.25[μ秒]よりも長くなる。   When the distance per MHP is 0.5 mm, the reference distance is 200 mm, and the frequency of the triangular wave is 1 kHz, the number of MHPs to be measured is the distance [mm] /0.5 [mm] from the object 10. Therefore, when the object 10 is at a position away from the BGS photoelectric switch by the reference distance, the number of MHPs is 200 [mm] /0.5 [mm] = 400 [pieces]. At this time, the reference period Th of MHP is 1 / (1000 × 2) /400=1.25 [μ seconds]. When the distance to the object 10 is longer than the reference distance, the MHP cycle is shorter than the reference cycle Th = 1.25 [μsec], and when the distance to the object 10 is shorter than the reference distance, the MHP cycle is It becomes longer than the reference cycle Th = 1.25 [μ seconds].

基準距離よりも近いところに物体10が存在する場合、MHPの周期の分布は図4の分布40のように、基準周期Thよりも長い方にシフトする。反対に、基準距離よりも遠いところに物体10が存在する場合、MHPの周期の分布は図4の分布41のように、基準周期Thよりも短い方にシフトする。   When the object 10 is present at a position closer than the reference distance, the distribution of the MHP cycle shifts to a longer side than the reference cycle Th as shown by a distribution 40 in FIG. On the other hand, when the object 10 exists at a position farther than the reference distance, the distribution of the MHP cycle shifts to a shorter one than the reference cycle Th as shown by a distribution 41 in FIG.

判定部8は、計数部7の計数結果から物体10が基準距離よりも近距離にあるか遠距離にあるかを判定する。すなわち、判定部8は、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortとを比較し、Nlong>Nshortが成立する場合、物体10が基準距離よりも近距離に存在すると判定し、Nlong<Nshortが成立する場合、物体10が基準距離よりも遠距離に存在すると判定する。   The determination unit 8 determines whether the object 10 is closer or farther than the reference distance from the counting result of the counting unit 7. That is, the determination unit 8 compares the number Nlong of MHPs having a longer period than the reference period Th with the number Nshort of MHPs having a shorter period than the reference period Th, and if Nlong> Nshort is satisfied, the object 10 has the reference distance. If Nlong <Nshort is satisfied, it is determined that the object 10 exists at a distance farther than the reference distance.

判定部8は、以上のような判定を、計数部7がMHPの数を数える計数期間(本実施の形態では第1の発振期間P1と第2の発振期間P2の各々)ごとに行う。
表示部9は、判定部8の判定結果を表示する。
The determination unit 8 performs the determination as described above for each counting period (each of the first oscillation period P1 and the second oscillation period P2 in the present embodiment) in which the counting unit 7 counts the number of MHPs.
The display unit 9 displays the determination result of the determination unit 8.

以上のように、本実施の形態では、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortとを比較することにより、BGS光電スイッチから物体10までの距離(より正確には半導体レーザ1から物体10までの距離)が基準距離より遠いか近いかを判定することができるので、簡単かつ安価な構成で精度の良いBGS光電スイッチを実現することができる。   As described above, in the present embodiment, by comparing the number Nlong of MHP having a longer period than the reference period Th with the number Nshort of MHP having a shorter period than the reference period Th, the BGS photoelectric switch to the object 10 is compared. Can be determined whether or not the distance (more precisely, the distance from the semiconductor laser 1 to the object 10) is far from or close to the reference distance, so that a highly accurate BGS photoelectric switch can be realized with a simple and inexpensive configuration. it can.

なお、計数部7と判定部8とを、CPU、記憶装置およびインタフェースを備えたコンピュータと、記憶装置に格納されたプログラムとによって実現してもよいし、ハードウェアで実現してもよい。
また、本実施の形態では、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortとを比較しているが、基準周期の半周期Th/2(以下、基準半周期Th/2とする)よりも半周期が長いMHPの数と基準半周期Th/2よりも半周期が短いMHPの数とを比較してもよい。基準半周期Th/2を用いる場合については後述する。
Note that the counting unit 7 and the determination unit 8 may be realized by a computer including a CPU, a storage device and an interface, and a program stored in the storage device, or may be realized by hardware.
In the present embodiment, the number Nlong of MHPs having a longer period than the reference period Th is compared with the number Nshort of MHPs having a shorter period than the reference period Th, but the half period Th / 2 of the reference period ( Hereinafter, the number of MHPs whose half cycle is longer than the reference half cycle Th / 2 may be compared with the number of MHPs whose half cycle is shorter than the reference half cycle Th / 2. The case of using the reference half cycle Th / 2 will be described later.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態は、第1の実施の形態の計数部7をより具体的に説明するものである。図5は本発明の第2の実施の形態に係るBGS光電スイッチの計数部の構成を示すブロック図である。
本実施の形態の計数部7は、立ち上がり検出部70と、立ち下がり検出部71と、時間測定部72,73と、比較部74とから構成される。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the present embodiment, the counting unit 7 of the first embodiment will be described more specifically. FIG. 5 is a block diagram showing the configuration of the counting unit of the BGS photoelectric switch according to the second embodiment of the present invention.
The counting unit 7 of the present embodiment includes a rising detection unit 70, a falling detection unit 71, time measurement units 72 and 73, and a comparison unit 74.

図6は本実施の形態の計数部7の動作を説明するための図であり、フィルタ部6の出力電圧波形、すなわちMHPの波形を模式的に示す図である。図6において、H1はMHPの立ち上がりを検出するためのしきい値、H2はMHPの立ち下がりを検出するためのしきい値である。
立ち上がり検出部70は、フィルタ部6の出力電圧をしきい値H1と比較することにより、MHPの立ち上がりを検出する。時間測定部72は、立ち上がり検出部70の検出結果に基づいて、MHPの立ち上がりから次の立ち上がりまでの時間tuuを測定する。時間測定部72は、このような測定をMHPの立ち上がりが検出される度に行う。
FIG. 6 is a diagram for explaining the operation of the counting unit 7 of the present embodiment, and is a diagram schematically showing the output voltage waveform of the filter unit 6, that is, the MHP waveform. In FIG. 6, H1 is a threshold value for detecting the rising edge of MHP, and H2 is a threshold value for detecting the falling edge of MHP.
The rise detection unit 70 detects the rise of the MHP by comparing the output voltage of the filter unit 6 with the threshold value H1. The time measuring unit 72 measures the time tu from the rise of the MHP to the next rise based on the detection result of the rise detection unit 70. The time measurement unit 72 performs such measurement every time the rising edge of MHP is detected.

一方、立ち下がり検出部71は、フィルタ部6の出力電圧をしきい値H2と比較することにより、MHPの立ち下がりを検出する。時間測定部73は、立ち下がり検出部71の検出結果に基づいて、MHPの立ち下がりから次の立ち下がりまでの時間tddを測定する。時間測定部73は、このような測定をMHPの立ち下がりが検出される度に行う。   On the other hand, the fall detection unit 71 detects the fall of MHP by comparing the output voltage of the filter unit 6 with the threshold value H2. The time measuring unit 73 measures the time tdd from the falling edge of MHP to the next falling edge based on the detection result of the falling edge detecting unit 71. The time measurement unit 73 performs such measurement every time a falling edge of MHP is detected.

比較部74は、MHPの立ち上がりから次の立ち上がりまでの時間tuuを上記の基準周期Thと比較し、時間tuuが基準周期Thよりも長い場合は、基準周期Thよりも周期が長いMHPの数Nlongを1増やし、時間tuuが基準周期Thよりも短い場合は、基準周期Thよりも周期が短いMHPの数Nshortを1増やす。比較部74は、このような計数を時間tuuが測定される度に行う。   The comparison unit 74 compares the time tu from the rising edge of MHP to the next rising edge with the reference period Th described above. If the time tuu is longer than the reference period Th, the number Nlong of MHPs having a longer period than the reference period Th. When the time tuu is shorter than the reference period Th, the number Nshort of MHPs whose period is shorter than the reference period Th is increased by one. The comparison unit 74 performs such counting every time the time tuu is measured.

あるいは、比較部74は、MHPの立ち下がりから次の立ち下がりまでの時間tddを用いて、以下のように測定を行ってもよい。すなわち、比較部74は、MHPの立ち下がりから次の立ち下がりまでの時間tddを基準周期Thと比較し、時間tddが基準周期Thよりも長い場合は、基準周期Thよりも周期が長いMHPの数Nlongを1増やし、時間tddが基準周期Thよりも短い場合は、基準周期Thよりも周期が短いMHPの数Nshortを1増やす。比較部74は、このような計数を時間tddが測定される度に行う。   Or the comparison part 74 may measure as follows using time tdd from the fall of MHP to the next fall. That is, the comparison unit 74 compares the time tdd from the falling edge of MHP to the next falling edge with the reference period Th, and when the time tdd is longer than the reference period Th, the MHP whose period is longer than the reference period Th. When the number Nlong is increased by 1 and the time tdd is shorter than the reference period Th, the number Nshort of MHPs having a period shorter than the reference period Th is increased by 1. The comparison unit 74 performs such counting every time the time tdd is measured.

以上のようにして、本実施の形態の計数部7は、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortを数えることができる。第1の実施の形態で説明したとおり、計数部7は、計数期間(第1の発振期間P1と第2の発振期間P2の各々)ごとにMHPを数える。   As described above, the counting unit 7 of the present embodiment can count the number Nlong of MHPs having a period longer than the reference period Th and the number Nshort of MHPs having a period shorter than the reference period Th. As described in the first embodiment, the counting unit 7 counts MHP for each counting period (each of the first oscillation period P1 and the second oscillation period P2).

なお、比較部74が時間tuuを用いる場合、立ち下がり検出部71と時間測定部73は必須の構成ではない。また、比較部74が時間tddを用いる場合、立ち上がり検出部70と時間測定部72は必須の構成ではない。
BGS光電スイッチのその他の構成は、第1の実施の形態で説明したとおりである。
When the comparison unit 74 uses the time tuu, the falling detection unit 71 and the time measurement unit 73 are not essential components. Further, when the comparison unit 74 uses the time tdd, the rising detection unit 70 and the time measurement unit 72 are not essential components.
Other configurations of the BGS photoelectric switch are as described in the first embodiment.

本実施の形態では、MHPの立ち上がり(または立ち下がり)の検出と周期の長さの比較だけで済むので、計数部7を簡単な構成で実現することができる。
ただし、本実施の形態では、以下のような問題がある。その問題とは、BGS光電スイッチとして用いる自己結合型のレーザ計測器の場合、半導体レーザ1の発振波長を三角波状に変化させているため、三角波の頂点の過渡応答の影響を完全に除くことはできず、MHPの周期が実際よりも長めもしくは短めに計測される可能性があるので、計数結果に誤差が生じ、結果として物体10の遠近の判定に誤りが生じる可能性があることである。
In the present embodiment, it is only necessary to detect the rising edge (or falling edge) of MHP and compare the lengths of the periods, so that the counting unit 7 can be realized with a simple configuration.
However, this embodiment has the following problems. The problem is that in the case of a self-coupled laser measuring instrument used as a BGS photoelectric switch, the oscillation wavelength of the semiconductor laser 1 is changed into a triangular wave shape, and therefore the influence of the transient response at the apex of the triangular wave cannot be completely eliminated. This is not possible, and the MHP cycle may be measured to be longer or shorter than actual, so that an error occurs in the counting result, and as a result, an error may occur in the determination of the perspective of the object 10.

つまり、フィルタ部6は、電流−電圧変換増幅部5の出力電圧波形(変調波)から半導体レーザ1の発振波形(搬送波)を除去して、図3(B)のようなMHP波形を抽出するが、このとき、フィルタ部6の出力には、三角波の頂点のタイミングでスパイク状の過渡応答波形が現れる。この過渡応答波形のためにMHPの周期の計測に誤差が生じる。   That is, the filter unit 6 removes the oscillation waveform (carrier wave) of the semiconductor laser 1 from the output voltage waveform (modulated wave) of the current-voltage conversion amplification unit 5 and extracts the MHP waveform as shown in FIG. However, at this time, a spike-like transient response waveform appears at the apex of the triangular wave in the output of the filter unit 6. This transient response waveform causes an error in the measurement of the MHP cycle.

図7を用いてこの問題を説明する。図7の例では、点PEが三角波の極大値のタイミングを示している。図3(B)に示したとおり、三角波の極大値のタイミングでは、フィルタ部6の出力に下向きのスパイクノイズが発生するので、図7に示すようにMHPは電圧の低い方へ引きずられた波形となる。このため、MHPの立ち上がりから次の立ち上がりまでの時間tuuは本来の値よりも短くなり、MHPの立ち下がりから次の立ち下がりまでの時間tddは本来の値よりも長くなる。このような問題は、計数部7と判定部8の動作を三角波の1周期分で行うようにすれば改善できるが、MHPにDCバイアスが存在する場合、三角波の極大値のタイミングの過渡応答と三角波の極小値のタイミングの過渡応答とで異なる応答になるために影響は残る。   This problem will be described with reference to FIG. In the example of FIG. 7, the point PE indicates the timing of the maximum value of the triangular wave. As shown in FIG. 3B, at the timing of the maximum value of the triangular wave, downward spike noise is generated at the output of the filter unit 6, so that the waveform of MHP is dragged toward the lower voltage as shown in FIG. It becomes. Therefore, the time tu from the rise of the MHP to the next rise is shorter than the original value, and the time tdd from the fall of the MHP to the next fall is longer than the original value. Such a problem can be improved by performing the operation of the counting unit 7 and the determining unit 8 for one period of the triangular wave. However, when the DC bias exists in the MHP, the transient response of the timing of the maximum value of the triangular wave is obtained. The effect remains because the response is different from the transient response of the minimum value of the triangular wave.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。本実施の形態は、第1の実施の形態のBGS光電スイッチにおいて基準半周期Th/2を用いる場合を説明するものである。図8は本発明の第3の実施の形態に係るBGS光電スイッチの計数部の構成を示すブロック図である。
本実施の形態の計数部7は、立ち上がり検出部70と、立ち下がり検出部71と、時間測定部75,76と、比較部77とから構成される。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In the present embodiment, the case where the reference half cycle Th / 2 is used in the BGS photoelectric switch of the first embodiment will be described. FIG. 8 is a block diagram showing the configuration of the counting unit of the BGS photoelectric switch according to the third embodiment of the present invention.
The counting unit 7 according to the present embodiment includes a rising detection unit 70, a falling detection unit 71, time measurement units 75 and 76, and a comparison unit 77.

図9は本実施の形態の計数部7の動作を説明するための図であり、フィルタ部6の出力電圧波形、すなわちMHPの波形を模式的に示す図である。
立ち上がり検出部70と立ち下がり検出部71の動作は、第2の実施の形態と同じである。
FIG. 9 is a diagram for explaining the operation of the counting unit 7 of the present embodiment, and schematically shows the output voltage waveform of the filter unit 6, that is, the MHP waveform.
The operations of the rise detection unit 70 and the fall detection unit 71 are the same as those in the second embodiment.

時間測定部75は、立ち上がり検出部70と立ち下がり検出部71の検出結果に基づいて、MHPの立ち上がりから次の立ち下がりまでの時間tudを測定する。時間測定部75は、このような測定をMHPの立ち上がりと立ち下がりが検出される度に行う。
一方、時間測定部76は、立ち上がり検出部70と立ち下がり検出部71の検出結果に基づいて、MHPの立ち下がりから次の立ち上がりまでの時間tduを測定する。時間測定部76は、このような測定をMHPの立ち下がりと立ち上がりが検出される度に行う。
The time measuring unit 75 measures a time tud from the rising edge of the MHP to the next falling edge based on the detection results of the rising edge detecting section 70 and the falling edge detecting section 71. The time measuring unit 75 performs such measurement every time the rising and falling edges of MHP are detected.
On the other hand, the time measurement unit 76 measures the time tdu from the fall of MHP to the next rise based on the detection results of the rise detection unit 70 and the fall detection unit 71. The time measuring unit 76 performs such measurement every time the falling and rising edges of MHP are detected.

比較部77は、MHPの立ち上がりから次の立ち下がりまでの時間tudおよびMHPの立ち下がりから次の立ち上がりまでの時間tduを基準半周期Th/2と比較し、時間tudが基準半周期Th/2よりも長い場合あるいは時間tduが基準半周期Th/2よりも長い場合は、基準半周期Th/2よりも半周期が長いMHPの数Nlongを1増やし、時間tudが基準半周期Th/2よりも短い場合あるいは時間tduが基準半周期Th/2よりも短い場合は、基準半周期Th/2よりも半周期が短いMHPの数Nshortを1増やす。比較部77は、このような計数を時間tudまたはtduのどちらかが測定される度に行う。   The comparison unit 77 compares the time tud from the rise of the MHP to the next fall and the time tdu from the fall of the MHP to the next rise with the reference half cycle Th / 2, and the time tud is the reference half cycle Th / 2. Or longer than the reference half cycle Th / 2, the number Nlong of MHPs having a longer half cycle than the reference half cycle Th / 2 is increased by 1, and the time tud is greater than the reference half cycle Th / 2. If the time tdu is shorter than the reference half cycle Th / 2, the number Nshort of MHPs whose half cycle is shorter than the reference half cycle Th / 2 is increased by one. The comparison unit 77 performs such a count every time either the time tud or tdu is measured.

以上のようにして、本実施の形態の計数部7は、基準半周期Th/2よりも半周期が長いMHPの数Nlongと基準半周期Th/2よりも半周期が短いMHPの数Nshortを数えることができる。第1の実施の形態で説明したとおり、計数部7は、計数期間(第1の発振期間P1と第2の発振期間P2の各々)ごとにMHPを数える。   As described above, the counting unit 7 of the present embodiment calculates the number Nlong of MHPs having a half cycle longer than the reference half cycle Th / 2 and the number Nshort of MHPs having a half cycle shorter than the reference half cycle Th / 2. Can count. As described in the first embodiment, the counting unit 7 counts MHP for each counting period (each of the first oscillation period P1 and the second oscillation period P2).

本実施の形態の場合、判定部8は、基準半周期Th/2よりも半周期が長いMHPの数Nlongと基準半周期Th/2よりも半周期が短いMHPの数Nshortとを比較し、Nlong>Nshortが成立する場合、物体10が基準距離よりも近距離に存在すると判定し、Nlong<Nshortが成立する場合、物体10が基準距離よりも遠距離に存在すると判定すればよい。
BGS光電スイッチのその他の構成は、第1の実施の形態で説明したとおりである。
In the case of the present embodiment, the determination unit 8 compares the number Nlong of MHPs whose half cycle is longer than the reference half cycle Th / 2 with the number Nshort of MHPs whose half cycle is shorter than the reference half cycle Th / 2. When Nlong> Nshort is satisfied, it is determined that the object 10 is present at a shorter distance than the reference distance. When Nlong <Nshort is satisfied, it is determined that the object 10 is present at a distance longer than the reference distance.
Other configurations of the BGS photoelectric switch are as described in the first embodiment.

本実施の形態では、第2の実施の形態の効果に加えて、計数値が2倍になるので、計数精度を向上させることができ、結果として物体10の距離の判定精度を向上させることができる。
ただし、本実施の形態では、以下のような問題がある。その問題とは、MHPにDCバイアスが存在する場合、物体10の遠近の判定が困難になることである。
In this embodiment, in addition to the effect of the second embodiment, the count value is doubled, so that the counting accuracy can be improved, and as a result, the accuracy of determining the distance of the object 10 can be improved. it can.
However, this embodiment has the following problems. The problem is that it becomes difficult to determine the distance of the object 10 when a DC bias exists in the MHP.

図10、図11を用いてこの問題を説明する。図10の例は、DCバイアスのために、MHPの平均電圧が本来想定される値よりも高くなっている例を示している。図10のように、MHPにDCバイアスが存在すると、立ち上がりと立ち下がりでMHPが正しく1/2に分割されないため、MHPの立ち上がりから次の立ち下がりまでの時間tudは本来の値よりも長くなり、MHPの立ち下がりから次の立ち上がりまでの時間tduは本来の値よりも長くなる。   This problem will be described with reference to FIGS. The example of FIG. 10 shows an example in which the average voltage of MHP is higher than the originally assumed value due to the DC bias. As shown in FIG. 10, when a DC bias exists in MHP, MHP is not correctly divided into ½ at the rise and fall, so the time tud from the rise of MHP to the next fall becomes longer than the original value. The time tdu from the fall of MHP to the next rise is longer than the original value.

このため、MHPの半周期の分布は、図11に示すように基準半周期Th/2に対して線対称な2つの正規分布の重ね合わせになる。すなわち、基準半周期Th/2よりも半周期が長いMHPの数Nlongと基準半周期Th/2よりも半周期が短いMHPの数Nshortがほぼ同じになる。したがって、MHPの計数結果に誤差が生じるので、Nlong>Nshortと誤判定したり、場合によってはNlong<Nshortと誤判定したりして、物体10の遠近を正しく判定することが困難になる。   For this reason, the distribution of the half-cycle of MHP is a superposition of two normal distributions that are line-symmetric with respect to the reference half-cycle Th / 2 as shown in FIG. That is, the number Nlong of MHPs whose half cycle is longer than the reference half cycle Th / 2 and the number Nshort of MHPs whose half cycle is shorter than the reference half cycle Th / 2 are substantially the same. Therefore, an error occurs in the MHP counting result, and it is difficult to correctly determine the perspective of the object 10 by erroneously determining that Nlong> Nshort, or in some cases, erroneously determining that Nlong <Nshort.

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。本実施の形態は、第1の実施の形態の計数部7をより具体的に説明するものである。本実施の形態の計数部7の構成は、第2の実施の形態と同様であるので、図5の符号を用いて説明する。
立ち上がり検出部70と立ち下がり検出部71と時間測定部72,73の動作は、第2の実施の形態と同じである。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. In the present embodiment, the counting unit 7 of the first embodiment will be described more specifically. The configuration of the counting unit 7 of the present embodiment is the same as that of the second embodiment, and will be described using the reference numerals in FIG.
The operations of the rise detection unit 70, the fall detection unit 71, and the time measurement units 72 and 73 are the same as those in the second embodiment.

本実施の形態の比較部74は、MHPの立ち上がりから次の立ち上がりまでの時間tuuおよびMHPの立ち下がりから次の立ち下がりまでの時間tddを上記の基準周期Thと比較し、時間tuuが基準周期Thよりも長い場合あるいは時間tddが基準周期Thよりも長い場合は、基準周期Thよりも周期が長いMHPの数Nlongを1増やし、時間tuuが基準周期Thよりも短い場合あるいは時間tddが基準周期Thよりも短い場合は、基準周期Thよりも周期が短いMHPの数Nshortを1増やす。比較部74は、このような計数を時間tuu,tddのどちらかが測定される度に行う。   The comparison unit 74 of the present embodiment compares the time tu from the rising edge of MHP to the next rising edge and the time tdd from the falling edge of MHP to the next falling edge with the reference period Th, and the time tuu is the reference period. When longer than Th or when the time tdd is longer than the reference period Th, the number Nlong of MHPs having a longer period than the reference period Th is increased by 1, and when the time tuu is shorter than the reference period Th or when the time tdd is the reference period If it is shorter than Th, the number Nshort of MHPs whose cycle is shorter than the reference cycle Th is increased by one. The comparison unit 74 performs such counting every time one of the times tuu and tdd is measured.

以上のようにして、本実施の形態の計数部7は、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortを数えることができる。第1の実施の形態で説明したとおり、計数部7は、計数期間(第1の発振期間P1と第2の発振期間P2の各々)ごとにMHPを数える。
BGS光電スイッチのその他の構成は、第1の実施の形態で説明したとおりである。
As described above, the counting unit 7 of the present embodiment can count the number Nlong of MHPs having a period longer than the reference period Th and the number Nshort of MHPs having a period shorter than the reference period Th. As described in the first embodiment, the counting unit 7 counts MHP for each counting period (each of the first oscillation period P1 and the second oscillation period P2).
Other configurations of the BGS photoelectric switch are as described in the first embodiment.

本実施の形態では、第3の実施の形態の効果に加えて、計数結果に与える三角波の頂点の過渡応答の影響を小さくすることができ、第2の実施の形態で説明した問題を解消することができる。   In the present embodiment, in addition to the effects of the third embodiment, the influence of the transient response of the apex of the triangular wave on the counting result can be reduced, and the problem described in the second embodiment is solved. be able to.

図7で説明したとおり、三角波の頂点のタイミングでは、MHPは電圧の低い方へ引きずられた波形となるので、MHPの立ち上がりから次の立ち上がりまでの時間tuuは本来の値よりも短くなり、MHPの立ち下がりから次の立ち下がりまでの時間tddは本来の値よりも長くなる。   As described with reference to FIG. 7, at the timing of the apex of the triangular wave, MHP has a waveform that is dragged to a lower voltage, so the time tu from the rise of MHP to the next rise becomes shorter than the original value, and MHP The time tdd from the fall of one to the next fall becomes longer than the original value.

一方、図12の例では、点PEが三角波の極小値のタイミングを示している。図3(B)に示したとおり、三角波の極小値のタイミングでは、フィルタ部6の出力に上向きのスパイクノイズが発生するので、図12に示すようにMHPは電圧の高い方へ引きずられた波形となる。このため、MHPの立ち上がりから次の立ち上がりまでの時間tuuは本来の値よりも長くなり、MHPの立ち下がりから次の立ち下がりまでの時間tddは本来の値よりも短くなる。   On the other hand, in the example of FIG. 12, the point PE indicates the timing of the minimum value of the triangular wave. As shown in FIG. 3B, at the timing of the minimum value of the triangular wave, upward spike noise occurs at the output of the filter unit 6, so that the waveform of MHP is dragged to the higher voltage as shown in FIG. It becomes. Therefore, the time tu from the rise of the MHP to the next rise is longer than the original value, and the time tdd from the fall of the MHP to the next fall is shorter than the original value.

図7、図12のいずれの場合においても、過渡応答の影響で周期が本来の値よりも長い値となるMHPの数と周期が本来の値よりも短い値となるMHPの数とは等しい。したがって、基準周期Thよりも周期が長いMHPの数Nlongと基準周期Thよりも周期が短いMHPの数Nshortは、どちらも同じ数だけ増えたり、同じ数だけ減ったりするので、過渡応答による計数結果の変化を相殺することができ、計数結果に与える三角波の頂点の過渡応答の影響を小さくすることができる。   7 and 12, the number of MHPs whose period is longer than the original value due to the influence of the transient response is equal to the number of MHPs whose period is shorter than the original value. Therefore, the number Nlong of MHPs having a longer period than the reference period Th and the number Nshort of MHPs having a shorter period than the reference period Th both increase or decrease by the same number. And the influence of the transient response of the apex of the triangular wave on the counting result can be reduced.

また、本実施の形態の場合、MHPにDCバイアスが存在する場合でも、MHPの立ち上がりから次の立ち上がりまでの時間tuuおよびMHPの立ち下がりから次の立ち下がりまでの時間tddは変化しないので、MHPのDCバイアスの影響をなくすことができ、第3の実施の形態で説明した問題を解消することができる。   In the case of the present embodiment, even when a DC bias exists in the MHP, the time tu from the rise of the MHP to the next rise and the time tdd from the fall of the MHP to the next fall do not change. The influence of the DC bias can be eliminated, and the problem described in the third embodiment can be solved.

[第5の実施の形態]
第1〜第4の実施の形態では、受光器であるフォトダイオードの出力信号からMHP波形を抽出していたが、フォトダイオードを使用することなくMHP波形を抽出することも可能である。図13は本発明の第5の実施の形態に係るBGS光電スイッチの構成を示すブロック図であり、図1と同様の構成には同一の符号を付してある。本実施の形態のBGS光電スイッチは、第1〜第4の実施の形態のフォトダイオード2と電流−電圧変換増幅部5の代わりに、電圧検出部11を用いるものである。
[Fifth Embodiment]
In the first to fourth embodiments, the MHP waveform is extracted from the output signal of the photodiode that is the light receiver. However, it is also possible to extract the MHP waveform without using the photodiode. FIG. 13 is a block diagram showing a configuration of a BGS photoelectric switch according to the fifth embodiment of the present invention. The same reference numerals are given to the same configurations as those in FIG. The BGS photoelectric switch of this embodiment uses a voltage detection unit 11 instead of the photodiode 2 and the current-voltage conversion amplification unit 5 of the first to fourth embodiments.

電圧検出部11は、半導体レーザ1の端子間電圧、すなわちアノード−カソード間電圧を検出して増幅する。半導体レーザ1から放射されたレーザ光と物体10からの戻り光とによって干渉が生じるとき、半導体レーザ1の端子間電圧には、MHP波形が現れる。したがって、半導体レーザ1の端子間電圧からMHP波形を抽出することが可能である。   The voltage detector 11 detects and amplifies the voltage between the terminals of the semiconductor laser 1, that is, the anode-cathode voltage. When interference occurs between the laser light emitted from the semiconductor laser 1 and the return light from the object 10, an MHP waveform appears in the voltage between the terminals of the semiconductor laser 1. Therefore, it is possible to extract the MHP waveform from the voltage between the terminals of the semiconductor laser 1.

フィルタ部6は、第1〜第4の実施の形態と同様に、変調波から重畳信号を抽出する機能を有するものであり、電圧検出部11の出力電圧からMHP波形を抽出する。
半導体レーザ1、レーザドライバ4、計数部7、判定部8および表示部9の動作は、第1〜第4の実施の形態と同じである。
Similar to the first to fourth embodiments, the filter unit 6 has a function of extracting a superimposed signal from the modulated wave, and extracts an MHP waveform from the output voltage of the voltage detection unit 11.
The operations of the semiconductor laser 1, the laser driver 4, the counting unit 7, the determination unit 8, and the display unit 9 are the same as those in the first to fourth embodiments.

こうして、本実施の形態では、フォトダイオードを使用することなくMHP波形を抽出することができ、第1〜第4の実施の形態と比較してBGS光電スイッチの部品を削減することができ、BGS光電スイッチのコストを低減することができる。   Thus, in this embodiment, the MHP waveform can be extracted without using a photodiode, and the parts of the BGS photoelectric switch can be reduced as compared with the first to fourth embodiments. The cost of the photoelectric switch can be reduced.

本発明は、反射型光電スイッチに適用することができる。   The present invention can be applied to a reflective photoelectric switch.

本発明の第1の実施の形態に係るBGS光電スイッチの構成を示すブロック図である。It is a block diagram which shows the structure of the BGS photoelectric switch which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態における半導体レーザの発振波長の時間変化の1例を示す図である。It is a figure which shows one example of the time change of the oscillation wavelength of the semiconductor laser in the 1st Embodiment of this invention. 本発明の第1の実施の形態における電流−電圧変換増幅部の出力電圧波形およびフィルタ部の出力電圧波形を模式的に示す波形図である。It is a wave form diagram showing typically the output voltage waveform of the current-voltage conversion amplification part in the 1st embodiment of the present invention, and the output voltage waveform of a filter part. 本発明の第1の実施の形態において物体の距離とモードポップパルスの周期の度数分布との関係を示す図である。It is a figure which shows the relationship between the distance of an object and the frequency distribution of the period of a mode pop pulse in the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るBGS光電スイッチの計数部の構成を示すブロック図である。It is a block diagram which shows the structure of the counting part of the BGS photoelectric switch which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態におけるフィルタ部の出力電圧波形を模式的に示す波形図である。It is a waveform diagram which shows typically the output voltage waveform of the filter part in the 2nd Embodiment of this invention. 三角波の極大値のタイミングにおけるフィルタ部の出力電圧波形を模式的に示す波形図である。It is a wave form diagram which shows typically the output voltage waveform of the filter part in the timing of the maximum value of a triangular wave. 本発明の第3の実施の形態に係るBGS光電スイッチの計数部の構成を示すブロック図である。It is a block diagram which shows the structure of the counting part of the BGS photoelectric switch which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態におけるフィルタ部の出力電圧波形を模式的に示す波形図である。It is a waveform diagram which shows typically the output voltage waveform of the filter part in the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係るBGS光電スイッチの計数部の問題を説明するための波形図である。It is a wave form diagram for demonstrating the problem of the counting part of the BGS photoelectric switch which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態においてモードポップパルスにDCバイアスが存在する場合のモードポップパルスの半周期の度数分布の例を示す図である。It is a figure which shows the example of the frequency distribution of the half period of a mode pop pulse in case the DC bias exists in a mode pop pulse in the 3rd Embodiment of this invention. 三角波の極小値のタイミングにおけるフィルタ部の出力電圧波形を模式的に示す波形図である。It is a wave form diagram which shows typically the output voltage waveform of the filter part in the timing of the minimum value of a triangular wave. 本発明の第5の実施の形態に係るBGS光電スイッチの構成を示すブロック図である。It is a block diagram which shows the structure of the BGS photoelectric switch which concerns on the 5th Embodiment of this invention. 従来のレーザ計測器における半導体レーザの複合共振器モデルを示す図である。It is a figure which shows the compound resonator model of the semiconductor laser in the conventional laser measuring device. 半導体レーザの発振波長と内蔵フォトダイオードの出力波形との関係を示す図である。It is a figure which shows the relationship between the oscillation wavelength of a semiconductor laser, and the output waveform of a built-in photodiode.

符号の説明Explanation of symbols

1…半導体レーザ、2…フォトダイオード、3…レンズ、4…レーザドライバ、5…電流−電圧変換増幅部、6…フィルタ部、7…計数部、8…判定部、9…表示部、10…物体、11…電圧検出部、70…立ち上がり検出部、71…立ち下がり検出部、72,73,75,76…時間測定部、74,77…比較部。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... Photodiode, 3 ... Lens, 4 ... Laser driver, 5 ... Current-voltage conversion amplification part, 6 ... Filter part, 7 ... Counting part, 8 ... Determination part, 9 ... Display part, 10 ... Object 11... Voltage detector 70. Rising detector 71 71 Falling detector 72, 73, 75, 76 Time measuring unit 74, 77 Comparison unit.

Claims (10)

レーザ光を放射する半導体レーザと、
この半導体レーザから放射されたレーザ光と前記半導体レーザの前方に存在する物体からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手段と、
この検出手段の出力信号に含まれる前記干渉波形の情報から、前記物体までの距離が所定の基準距離より遠いか近いかを判定する距離判定処理手段とを備えることを特徴とする反射型光電スイッチ。
A semiconductor laser that emits laser light;
Detection means for detecting an electrical signal including an interference waveform caused by a self-coupling effect between laser light emitted from the semiconductor laser and return light from an object existing in front of the semiconductor laser;
A reflection type photoelectric switch comprising: distance determination processing means for determining whether the distance to the object is farther or closer than a predetermined reference distance from information on the interference waveform included in an output signal of the detection means; .
請求項1記載の反射型光電スイッチにおいて、
前記距離判定処理手段は、
前記物体が前記基準距離の位置にあるときの前記干渉波形の周期を基準周期としたときに、前記検出手段の出力信号に含まれる前記干渉波形の数を、前記基準周期よりも周期が長い干渉波形の数と前記基準周期よりも周期が短い干渉波形の数に分けて数える計数手段と、
前記周期が長い干渉波形の数が前記周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記周期が短い干渉波形の数が前記周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 1,
The distance determination processing means includes
When the period of the interference waveform when the object is at the reference distance is defined as a reference period, the number of the interference waveforms included in the output signal of the detection means is an interference whose period is longer than the reference period. Counting means for counting the number of waveforms and the number of interference waveforms having a period shorter than the reference period;
When the number of interference waveforms having a long period is greater than the number of interference waveforms having a short period, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short period is the period. The reflection type photoelectric switch comprising: a determination unit that determines that the object exists at a distance farther than the reference distance when the number of interference waveforms is larger than the number of long interference waveforms.
請求項1記載の反射型光電スイッチにおいて、
前記距離判定処理手段は、
前記物体が前記基準距離の位置にあるときの前記干渉波形の半周期を基準半周期としたときに、前記検出手段の出力信号に含まれる前記干渉波形の数を、前記基準半周期よりも半周期が長い干渉波形の数と前記基準半周期よりも半周期が短い干渉波形の数に分けて数える計数手段と、
前記半周期が長い干渉波形の数が前記半周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記半周期が短い干渉波形の数が前記半周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 1,
The distance determination processing means includes
When the half cycle of the interference waveform when the object is at the reference distance is defined as a reference half cycle, the number of the interference waveforms included in the output signal of the detection unit is set to be less than the reference half cycle. Counting means for counting the number of interference waveforms having a long period and the number of interference waveforms having a half period shorter than the reference half period;
When the number of interference waveforms having a long half cycle is greater than the number of interference waveforms having a short half cycle, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short half cycle is The reflection type photoelectric switch comprising: a determination unit that determines that the object exists at a distance farther than the reference distance when the half cycle is larger than the number of long interference waveforms.
請求項2記載の反射型光電スイッチにおいて、
前記計数手段は、
前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、
前記干渉波形の立ち上がりから次の立ち上がりまでの時間を測定する時間測定手段と、
前記干渉波形の立ち上がりから次の立ち上がりまでの時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記干渉波形の立ち上がりから次の立ち上がりまでの時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 2,
The counting means includes
Rising detection means for detecting the rising of the interference waveform;
Time measuring means for measuring the time from the rise of the interference waveform to the next rise;
When the time from the rise of the interference waveform to the next rise is longer than the reference period, the number of interference waveforms having a period longer than the reference period is increased, and the time from the rise of the interference waveform to the next rise is increased. A reflection type photoelectric switch comprising a comparison means for increasing the number of interference waveforms having a period shorter than the reference period when the period is shorter than the reference period.
請求項2記載の反射型光電スイッチにおいて、
前記計数手段は、
前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、
前記干渉波形の立ち下がりから次の立ち下がりまでの時間を測定する時間測定手段と、
前記干渉波形の立ち下がりから次の立ち下がりまでの時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記干渉波形の立ち下がりから次の立ち下がりまでの時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 2,
The counting means includes
A fall detection means for detecting a fall of the interference waveform;
Time measuring means for measuring the time from the fall of the interference waveform to the next fall;
When the time from the fall of the interference waveform to the next fall is longer than the reference period, the number of interference waveforms having a period longer than the reference period is increased, and the fall of the interference waveform is followed by the next fall. And a comparison means for increasing the number of interference waveforms having a shorter period than the reference period when the time until the reference period is shorter than the reference period.
請求項2記載の反射型光電スイッチにおいて、
前記計数手段は、
前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、
前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、
前記干渉波形の立ち上がりから次の立ち上がりまでの第1の時間を測定する第1の時間測定手段と、
前記干渉波形の立ち下がりから次の立ち下がりまでの第2の時間を測定する第2の時間測定手段と、
前記第1の時間が前記基準周期よりも長い場合または前記第2の時間が前記基準周期よりも長い場合は、前記基準周期よりも周期が長い干渉波形の数を増やし、前記第1の時間が前記基準周期よりも短い場合または前記第2の時間が前記基準周期よりも短い場合は、前記基準周期よりも周期が短い干渉波形の数を増やす比較手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 2,
The counting means includes
Rising detection means for detecting the rising of the interference waveform;
A fall detection means for detecting a fall of the interference waveform;
First time measuring means for measuring a first time from the rise of the interference waveform to the next rise;
Second time measuring means for measuring a second time from the fall of the interference waveform to the next fall;
When the first time is longer than the reference period or when the second time is longer than the reference period, the number of interference waveforms having a longer period than the reference period is increased, and the first time is increased. A reflection type photoelectric device comprising: a comparison unit configured to increase the number of interference waveforms having a shorter period than the reference period when the reference period is shorter or when the second time is shorter than the reference period. switch.
請求項3記載の反射型光電スイッチにおいて、
前記計数手段は、
前記干渉波形の立ち上がりを検出する立ち上がり検出手段と、
前記干渉波形の立ち下がりを検出する立ち下がり検出手段と、
前記干渉波形の立ち上がりから次の立ち下がりまでの第1の時間を測定する第1の時間測定手段と、
前記干渉波形の立ち下がりから次の立ち上がりまでの第2の時間を測定する第2の時間測定手段と、
前記第1の時間が前記基準半周期よりも長い場合または前記第2の時間が前記基準半周期よりも長い場合は、前記基準半周期よりも半周期が長い干渉波形の数を増やし、前記第1の時間が前記基準半周期よりも短い場合または前記第2の時間が前記基準半周期よりも短い場合は、前記基準半周期よりも半周期が短い干渉波形の数を増やす比較手段とからなることを特徴とする反射型光電スイッチ。
The reflective photoelectric switch according to claim 3, wherein
The counting means includes
Rising detection means for detecting the rising of the interference waveform;
A fall detection means for detecting a fall of the interference waveform;
First time measuring means for measuring a first time from the rise of the interference waveform to the next fall;
Second time measuring means for measuring a second time from the fall of the interference waveform to the next rise;
When the first time is longer than the reference half cycle or when the second time is longer than the reference half cycle, the number of interference waveforms having a half cycle longer than the reference half cycle is increased, When the time of 1 is shorter than the reference half cycle or when the second time is shorter than the reference half cycle, the comparison means increases the number of interference waveforms whose half cycle is shorter than the reference half cycle. A reflective photoelectric switch characterized by that.
物体までの距離が所定の基準距離より遠いか近いかを検出する物体検出方法において、
駆動電流を半導体レーザに供給して前記半導体レーザを動作させる発振手順と、
前記半導体レーザから放射されたレーザ光と前記半導体レーザの前方に存在する物体からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手順と、
この検出手順で得られた出力信号に含まれる前記干渉波形の情報から、前記物体までの距離が所定の基準距離より遠いか近いかを判定する距離判定処理手順とを備えることを特徴とする物体検出方法。
In the object detection method for detecting whether the distance to the object is longer or closer than a predetermined reference distance,
An oscillation procedure for operating the semiconductor laser by supplying a driving current to the semiconductor laser;
A detection procedure for detecting an electrical signal including an interference waveform caused by a self-coupling effect between a laser beam emitted from the semiconductor laser and a return beam from an object existing in front of the semiconductor laser;
A distance determination processing procedure for determining whether the distance to the object is farther or closer than a predetermined reference distance from information on the interference waveform included in the output signal obtained by the detection procedure Detection method.
請求項8記載の物体検出方法において、
前記距離判定処理手順は、
前記物体が前記基準距離の位置にあるときの前記干渉波形の周期を基準周期としたときに、前記検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記基準周期よりも周期が長い干渉波形の数と前記基準周期よりも周期が短い干渉波形の数に分けて数える計数手順と、
前記周期が長い干渉波形の数が前記周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記周期が短い干渉波形の数が前記周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手順とからなることを特徴とする物体検出方法。
The object detection method according to claim 8.
The distance determination processing procedure includes:
When the period of the interference waveform when the object is at the position of the reference distance is set as a reference period, the number of the interference waveforms included in the output signal obtained by the detection procedure is set to be longer than the reference period. Counting procedure divided into the number of interference waveforms having a long period and the number of interference waveforms having a period shorter than the reference period,
When the number of interference waveforms having a long period is greater than the number of interference waveforms having a short period, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short period is the period. And a determination procedure for determining that the object exists at a longer distance than the reference distance when the number of interference waveforms is larger than the number of long interference waveforms.
請求項8記載の物体検出方法において、
前記距離判定処理手順は、
前記物体が前記基準距離の位置にあるときの前記干渉波形の半周期を基準半周期としたときに、前記検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記基準半周期よりも半周期が長い干渉波形の数と前記基準半周期よりも半周期が短い干渉波形の数に分けて数える計数手順と、
前記半周期が長い干渉波形の数が前記半周期が短い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも近距離に存在すると判定し、前記半周期が短い干渉波形の数が前記半周期が長い干渉波形の数よりも多い場合に、前記物体が前記基準距離よりも遠距離に存在すると判定する判定手順とからなることを特徴とする物体検出方法。
The object detection method according to claim 8.
The distance determination processing procedure includes:
When the half cycle of the interference waveform when the object is at the position of the reference distance is defined as a reference half cycle, the number of the interference waveforms included in the output signal obtained by the detection procedure is determined as the reference half cycle. A counting procedure that divides into a number of interference waveforms having a longer half cycle and a number of interference waveforms having a shorter half cycle than the reference half cycle;
When the number of interference waveforms having a long half cycle is greater than the number of interference waveforms having a short half cycle, it is determined that the object is present at a shorter distance than the reference distance, and the number of interference waveforms having a short half cycle is The object detection method comprising: a determination procedure for determining that the object exists at a distance farther than the reference distance when the half cycle is greater than the number of interference waveforms having a long half cycle.
JP2008069980A 2008-03-18 2008-03-18 Reflective photoelectric switch and object detection method Expired - Fee Related JP5663130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069980A JP5663130B2 (en) 2008-03-18 2008-03-18 Reflective photoelectric switch and object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069980A JP5663130B2 (en) 2008-03-18 2008-03-18 Reflective photoelectric switch and object detection method

Publications (2)

Publication Number Publication Date
JP2009222674A true JP2009222674A (en) 2009-10-01
JP5663130B2 JP5663130B2 (en) 2015-02-04

Family

ID=41239602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069980A Expired - Fee Related JP5663130B2 (en) 2008-03-18 2008-03-18 Reflective photoelectric switch and object detection method

Country Status (1)

Country Link
JP (1) JP5663130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798668B2 (en) * 2014-05-19 2015-10-21 アズビル株式会社 Counting device, physical quantity sensor, counting method and physical quantity measuring method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233581A (en) * 1984-03-16 1985-11-20 デイジタル・シグナル・コ−ポレ−シヨン Device and method of measuring distance up to arbitrary target
JPS6227688A (en) * 1985-07-27 1987-02-05 Kiiensu:Kk Photoelectric switch for setting distance
JPH0566560U (en) * 1992-02-21 1993-09-03 住友電気工業株式会社 Pulse input processing circuit and wheel speed calculation device having this circuit
JPH07501618A (en) * 1991-11-27 1995-02-16 ユナイテッド テクノロジーズ コーポレイション Laser diode liquid level/distance measuring device
JPH10246782A (en) * 1997-02-28 1998-09-14 Suzuki Motor Corp Laser distance meter
JPH11201722A (en) * 1998-01-13 1999-07-30 Shigenobu Shinohara Displacement measuring device and displacement measuring method
JP2000035436A (en) * 1998-07-17 2000-02-02 Kansei Corp Period calculating method and measuring device for vehicle using it
JP2006226852A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric switch
JP2006313080A (en) * 2005-05-06 2006-11-16 Yamatake Corp Distance/speed meter and method for distance/speed measurement
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2007108122A (en) * 2005-10-17 2007-04-26 Yamatake Corp Laser measuring method, laser condition detection equipment, and laser condition detection system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233581A (en) * 1984-03-16 1985-11-20 デイジタル・シグナル・コ−ポレ−シヨン Device and method of measuring distance up to arbitrary target
JPS6227688A (en) * 1985-07-27 1987-02-05 Kiiensu:Kk Photoelectric switch for setting distance
JPH07501618A (en) * 1991-11-27 1995-02-16 ユナイテッド テクノロジーズ コーポレイション Laser diode liquid level/distance measuring device
JPH0566560U (en) * 1992-02-21 1993-09-03 住友電気工業株式会社 Pulse input processing circuit and wheel speed calculation device having this circuit
JPH10246782A (en) * 1997-02-28 1998-09-14 Suzuki Motor Corp Laser distance meter
JPH11201722A (en) * 1998-01-13 1999-07-30 Shigenobu Shinohara Displacement measuring device and displacement measuring method
JP2000035436A (en) * 1998-07-17 2000-02-02 Kansei Corp Period calculating method and measuring device for vehicle using it
JP2006226852A (en) * 2005-02-18 2006-08-31 Keyence Corp Distance setting type photoelectric switch
JP2006313080A (en) * 2005-05-06 2006-11-16 Yamatake Corp Distance/speed meter and method for distance/speed measurement
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2007108122A (en) * 2005-10-17 2007-04-26 Yamatake Corp Laser measuring method, laser condition detection equipment, and laser condition detection system

Also Published As

Publication number Publication date
JP5663130B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5545915B2 (en) Counting device, distance meter, counting method, and distance measuring method
US7684957B2 (en) Counting device, distance meter, counting method, and distance measuring method
JP5616009B2 (en) Reflective photoelectric sensor and object detection method
JP5545916B2 (en) Physical quantity sensor and physical quantity measuring method
JP5663148B2 (en) Counting device, physical quantity sensor, counting method and physical quantity measuring method
KR20070116993A (en) Range finder/velocimeter and range-finding/velocimetry method
JP5545914B2 (en) Physical quantity sensor and physical quantity measuring method
EP2251708A1 (en) Reflective photoelectric switch and object detection method
JP5667337B2 (en) Reflective photoelectric switch and object detection method
JP5651289B2 (en) Reflective photoelectric switch and object detection method
JP5663130B2 (en) Reflective photoelectric switch and object detection method
JP5461762B2 (en) Distance meter and distance measuring method
JP5184785B2 (en) Distance meter and distance measuring method
JP5421568B2 (en) Physical quantity sensor and physical quantity measuring method
JP5545913B2 (en) Counting device, distance meter, counting method, and distance measuring method
JP5612240B2 (en) Distance meter and distance measuring method
JP5545920B2 (en) Reflective photoelectric switch and object detection method
EP2251707A1 (en) Reflective photoelectric switch and object detection method
JP5426344B2 (en) Object detection sensor and object detection method
JP2008175547A (en) Range finder and distance measuring method
JP5484660B2 (en) Distance / vibrometer and distance / speed measurement method
WO2011111180A1 (en) Physical quantity sensor and physical quantity measuring method
JP5484661B2 (en) Physical quantity sensor and physical quantity measuring method
JP5848641B2 (en) Status detection apparatus and method
JP2013142654A (en) Physical quantity sensor and physical quantity measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees