JP5461762B2 - Distance meter and distance measuring method - Google Patents

Distance meter and distance measuring method Download PDF

Info

Publication number
JP5461762B2
JP5461762B2 JP2006323183A JP2006323183A JP5461762B2 JP 5461762 B2 JP5461762 B2 JP 5461762B2 JP 2006323183 A JP2006323183 A JP 2006323183A JP 2006323183 A JP2006323183 A JP 2006323183A JP 5461762 B2 JP5461762 B2 JP 5461762B2
Authority
JP
Japan
Prior art keywords
frequency
oscillation
period
waveform
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006323183A
Other languages
Japanese (ja)
Other versions
JP2008139059A (en
Inventor
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006323183A priority Critical patent/JP5461762B2/en
Publication of JP2008139059A publication Critical patent/JP2008139059A/en
Application granted granted Critical
Publication of JP5461762B2 publication Critical patent/JP5461762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光の干渉を利用して測定対象との距離を計測する干渉型の距離計および距離計測方法に関するものである。   The present invention relates to an interference type distance meter and a distance measurement method for measuring a distance from a measurement object using light interference.

レーザによる光の干渉を利用した距離計測は、非接触測定のため測定対象を乱すことなく、高精度の測定方法として古くから用いられている。最近では、半導体レーザは装置の小型化のため、光計測用光源として利用されようとしている。その代表的な例として、FMヘテロダイン干渉計を利用したものがある。これは、比較的長距離測定が可能で精度もよいが、半導体レーザの外部に干渉計を用いているため、光学系が複雑になるという欠点を有する。   Distance measurement using light interference by a laser has long been used as a highly accurate measurement method without disturbing the measurement object for non-contact measurement. Recently, a semiconductor laser is being used as a light source for optical measurement in order to reduce the size of the apparatus. A typical example is one using an FM heterodyne interferometer. This is capable of relatively long distance measurement and good accuracy, but has the disadvantage that the optical system becomes complicated because an interferometer is used outside the semiconductor laser.

これに対して、レーザの出力光と測定対象からの戻り光との半導体レーザ内部での干渉(自己結合効果)を利用した計測器が提案されている(例えば、非特許文献1、非特許文献2、非特許文献3参照)。このような自己結合型のレーザ計測器によれば、フォトダイオード内蔵の半導体レーザが発光、干渉、受光の各機能を兼ねているため、外部干渉光学系を大幅に簡略化することができる。したがって、センサ部が半導体レーザとレンズのみとなり、従来のものに比べて小型となる。また、三角測量法より距離測定範囲が広いという特徴を有する。   On the other hand, a measuring instrument using interference (self-coupling effect) in the semiconductor laser between the laser output light and the return light from the measurement object has been proposed (for example, Non-Patent Document 1, Non-Patent Document). 2, see Non-Patent Document 3). According to such a self-coupled laser measuring instrument, the semiconductor laser with a built-in photodiode serves as the functions of light emission, interference, and light reception, so that the external interference optical system can be greatly simplified. Therefore, the sensor unit is only a semiconductor laser and a lens, and is smaller than the conventional one. In addition, the distance measurement range is wider than the triangulation method.

FP型(ファブリペロー型)半導体レーザの複合共振器モデルを図13に示す。図13において、101は半導体レーザ、102は半導体結晶の壁開面、103はフォトダイオード、104は測定対象である。測定対象104からの反射光の一部が発振領域内に戻り易い。戻って来たわずかな光は、共振器101内のレーザ光と結合し、動作が不安定となり雑音(複合共振器ノイズまたは戻り光ノイズ)を生じる。戻り光による半導体レーザの特性の変化は、出力光に対する相対的な戻り光量が、極めてわずかであっても顕著に現れる。このような現象は、ファブリペロー型(以下、FP型)半導体レーザに限らず、Vertical Cavity Surface Emitting Laser型(以下、VCSEL型)、Distributed FeedBack laser型(以下、DFBレーザ型)など、他の種類の半導体レーザにおいても同様に現れる。   FIG. 13 shows a composite resonator model of an FP type (Fabry-Perot type) semiconductor laser. In FIG. 13, 101 is a semiconductor laser, 102 is a wall opening of a semiconductor crystal, 103 is a photodiode, and 104 is an object to be measured. Part of the reflected light from the measurement object 104 easily returns to the oscillation region. The small amount of light that has returned returns to the laser beam in the resonator 101, and the operation becomes unstable, causing noise (composite resonator noise or return light noise). The change in the characteristics of the semiconductor laser due to the return light appears remarkably even if the amount of return light relative to the output light is very small. Such a phenomenon is not limited to a Fabry-Perot type (hereinafter referred to as FP type) semiconductor laser, but also other types such as a vertical cavity surface emitting laser type (hereinafter referred to as a VCSEL type) and a distributed fed back laser type (hereinafter referred to as a DFB laser type). This also appears in the same semiconductor laser.

レーザの発振波長をλ、測定対象104に近い方の壁開面102から測定対象104までの距離をLとすると、以下の共振条件を満足するとき、戻り光と共振器101内のレーザ光は強め合い、レーザ出力がわずかに増加する。
L=nλ/2 ・・・(1)
式(1)において、nは整数である。この現象は、測定対象104からの散乱光が極めて微弱であっても、半導体レーザの共振器101内の見かけの反射率が増加することにより、増幅作用が生じ、十分観測できる。
If the oscillation wavelength of the laser is λ and the distance from the wall open surface 102 closer to the measurement target 104 to the measurement target 104 is L, the return light and the laser light in the resonator 101 are as follows when the following resonance condition is satisfied. Strengthen and slightly increase the laser power.
L = nλ / 2 (1)
In formula (1), n is an integer. This phenomenon can be sufficiently observed even if the scattered light from the measurement object 104 is very weak, because the apparent reflectance in the resonator 101 of the semiconductor laser increases, causing an amplification effect.

半導体レーザは、注入電流の大きさに応じて周波数の異なるレーザ光を放射するので、発振周波数を変調する際に、外部変調器を必要とせず、注入電流によって直接変調が可能である。図14は、半導体レーザの発振波長をある一定の割合で変化させたときの発振波長とフォトダイオード103の出力波形との関係を示す図である。式(1)に示したL=nλ/2を満足したときに、戻り光と共振器101内のレーザ光の位相差が0°(同位相)になって、戻り光と共振器101内のレーザ光とが最も強め合い、L=nλ/2+λ/4のときに、位相差が180°(逆位相)になって、戻り光と共振器101内のレーザ光とが最も弱め合う。そのため、半導体レーザの発振波長を変化させていくと、レーザ出力が強くなるところと弱くなるところとが交互に繰り返し現れ、このときのレーザ出力を共振器101に設けられたフォトダイオード103で検出すると、図14に示すように一定周期の階段状の波形が得られる。このような波形は一般的には干渉縞と呼ばれる。   Since the semiconductor laser emits laser beams having different frequencies according to the magnitude of the injection current, an external modulator is not required when modulating the oscillation frequency, and direct modulation is possible by the injection current. FIG. 14 is a diagram showing the relationship between the oscillation wavelength and the output waveform of the photodiode 103 when the oscillation wavelength of the semiconductor laser is changed at a certain rate. When L = nλ / 2 shown in Expression (1) is satisfied, the phase difference between the return light and the laser light in the resonator 101 becomes 0 ° (same phase), and the return light and the resonator 101 When L = nλ / 2 + λ / 4, the phase difference is 180 ° (opposite phase), and the return light and the laser light in the resonator 101 are the weakest. Therefore, when the oscillation wavelength of the semiconductor laser is changed, a place where the laser output becomes strong and a place where the laser output becomes weak appear alternately, and the laser output at this time is detected by the photodiode 103 provided in the resonator 101. As shown in FIG. 14, a stepped waveform having a constant period is obtained. Such a waveform is generally called an interference fringe.

この階段状の波形、すなわち干渉縞の1つ1つをモードポップパルス(以下、MHP)と呼ぶ。MHPは後述のモードホッピング現象とは異なる現象である。例えば、測定対象104までの距離がL1のとき、MHPの数が10個であったとすれば、半分の距離L2では、MHPの数は5個になる。すなわち、ある一定時間において半導体レーザの発振波長を変化させた場合、測定距離に比例してMHPの数は変わる。したがって、MHPをフォトダイオード103で検出し、MHPの周波数を測定すれば、容易に距離計測が可能となる。なお、FP型半導体レーザに特有のモードホッピング現象は、図15に示すように、注入電流の連続的な増減に応じて発振波長に不連続な箇所が生じる現象である。注入電流の増加時と減少時とにおいて僅かにヒステリシスを有する。   Each stepped waveform, that is, each interference fringe is called a mode pop pulse (hereinafter referred to as MHP). MHP is a phenomenon different from the mode hopping phenomenon described later. For example, if the number of MHPs is 10 when the distance to the measurement object 104 is L1, the number of MHPs is 5 at half the distance L2. That is, when the oscillation wavelength of the semiconductor laser is changed for a certain time, the number of MHPs changes in proportion to the measurement distance. Therefore, if the MHP is detected by the photodiode 103 and the frequency of the MHP is measured, the distance can be easily measured. Note that the mode hopping phenomenon peculiar to the FP type semiconductor laser is a phenomenon in which a discontinuous portion occurs in the oscillation wavelength in accordance with the continuous increase / decrease of the injection current, as shown in FIG. There is a slight hysteresis when the injection current increases and decreases.

上田正,山田諄,紫藤進,「半導体レーザの自己結合効果を利用した距離計」,1994年度電気関係学会東海支部連合大会講演論文集,1994年Tadashi Ueda, Satoshi Yamada, Susumu Shito, “Distance Meter Using Self-Coupling Effect of Semiconductor Laser”, Proceedings of the 1994 Tokai Branch Joint Conference of Electrical Engineering Society, 1994 山田諄,紫藤進,津田紀生,上田正,「半導体レーザの自己結合効果を利用した小型距離計に関する研究」,愛知工業大学研究報告,第31号B,p.35−42,1996年Satoshi Yamada, Susumu Shito, Norio Tsuda, Tadashi Ueda, “Study on a small rangefinder using the self-coupling effect of a semiconductor laser”, Aichi Institute of Technology research report, No. 31 B, p. 35-42, 1996 Guido Giuliani,Michele Norgia,Silvano Donati and Thierry Bosch,「Laser diode self-mixing technique for sensing applications」,JOURNAL OF OPTICS A:PURE AND APPLIED OPTICS,p.283−294,2002年Guido Giuliani, Michele Norgia, Silvano Donati and Thierry Bosch, “Laser diode self-mixing technique for sensing applications”, JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS, p. 283-294, 2002

以上のように、光の干渉を利用すれば、測定対象との距離を計測することができる。しかしながら、自己結合型を含む従来の干渉型の距離計では、測定期間中のMHPの周波数を抽出するため、外乱光の周波数が測定すべきMHPの周波数と同程度である場合、外乱光を取り除くことができず、測定に誤りが生じるという問題点があった。   As described above, the distance to the measurement target can be measured by using the interference of light. However, in the conventional interference type distance meter including the self-coupling type, since the frequency of the MHP during the measurement period is extracted, the disturbance light is removed when the frequency of the disturbance light is approximately the same as the frequency of the MHP to be measured. There is a problem that measurement cannot be performed and an error occurs.

本発明は、上記課題を解決するためになされたもので、外乱光の影響を除去しつつ、測定対象との距離を計測することができる距離計および距離計測方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a distance meter and a distance measurement method capable of measuring a distance from a measurement object while removing the influence of ambient light. .

本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の周波数を測定する周波数測定手段と、前記干渉波形の周波数を前記発振波形の周波数が基準周波数のときの値に換算する換算手段と、前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有し、前記換算手段は、前記発振波形の基準周波数をfとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の周波数をα×fとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とすることを特徴とするものである。
また、本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の周波数を測定する周波数測定手段と、前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手段と、前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有するものである。
また、本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、この受光器の出力に含まれる信号数を数える計数手段と、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の数を、複数の周期にわたる前記計数手段の計数結果に基づいて算出する算出手段と、前記干渉波形の数から前記測定対象との距離を求める演算手段とを有するものである。
The distance meter of the present invention includes at least a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. The semiconductor includes the second oscillation period including at least two periods alternately, and the frequency of the oscillation waveform having the first oscillation period and the second oscillation period as one period changes for each period. A laser driver that modulates the oscillation wavelength of the laser; a light receiver that converts the laser light emitted from the semiconductor laser and the return light from the measurement object into an electrical signal; and an output signal of the light receiver over a plurality of cycles Removing means for removing a frequency component whose frequency does not change; and laser light emitted from the semiconductor laser included in the output signal of the light receiver after removing the frequency component Frequency measuring means for measuring the frequency of the interference waveform caused by the return light from the measurement object, conversion means for converting the frequency of the interference waveform to a value when the frequency of the oscillation waveform is a reference frequency, from the frequency of the interference waveform and calculating means for calculating a distance between the measurement object possess, the conversion means, the reference frequency of the oscillation waveform is f, the oscillation when the frequency measuring means to measure the frequency of the interference waveform When the frequency of the waveform is α × f, a value obtained by multiplying the frequency of the interference waveform measured by the frequency measuring means by 1 / α is used as the frequency of the converted interference waveform .
The distance meter of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. And the second oscillation period including at least two periods alternately exist, and the amplitude of the oscillation waveform having the first oscillation period and the second oscillation period as one period changes for each period. A laser driver that modulates the oscillation wavelength of the semiconductor laser; a light receiver that converts laser light emitted from the semiconductor laser and return light from the measurement object into an electrical signal; and a plurality of output signals from the light receiver. Removal means for removing frequency components whose frequency does not change over a period, and laser light emitted from the semiconductor laser included in the output signal of the light receiver after removing the frequency components Frequency measuring means for measuring the frequency of the interference waveform caused by the return light from the measurement object, conversion means for converting the frequency of the interference waveform to a value when the amplitude of the oscillation waveform is a reference amplitude, and after the conversion And calculating means for obtaining the distance to the measurement object from the frequency of the interference waveform.
The distance meter of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. And at least one of the frequency and the amplitude of the oscillation waveform having one cycle of the first oscillation period and the second oscillation period. A laser driver that modulates the oscillation wavelength of the semiconductor laser, a light receiver that converts laser light emitted from the semiconductor laser and return light from the measurement object into an electrical signal, and the light receiver The number of interference waveforms generated by the counting means for counting the number of signals included in the output of the laser, the laser light emitted from the semiconductor laser and the return light from the measurement object are set to a plurality of periods. Calculation means for calculating, based on the counting result of the barrel the counting means, in which the number of the interference wave and a calculating means for calculating a distance between the measurement object.

また、本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザの光出力を電気信号に変換する受光器と、この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手段と、前記干渉波形の周波数を前記発振波形の周波数が基準周波数のときの値に換算する換算手段と、前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有し、前記換算手段は、前記発振波形の基準周波数をfとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の周波数をα×fとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とすることを特徴とするものである。
また、本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザの光出力を電気信号に変換する受光器と、この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手段と、前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手段と、前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有するものである。
また、本発明の距離計は、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、前記半導体レーザの光出力を電気信号に変換する受光器と、この受光器の出力に含まれる信号数を数える計数手段と、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の数を、複数の周期にわたる前記計数手段の計数結果に基づいて算出する算出手段と、前記干渉波形の数から前記測定対象との距離を求める演算手段とを有するものである。
The distance meter of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. And at least two periods alternately including at least two oscillation periods, and the frequency of the oscillation waveform having the first oscillation period and the second oscillation period as one period changes for each period. A laser driver that modulates the oscillation wavelength of the semiconductor laser, a light receiver that converts the optical output of the semiconductor laser into an electrical signal, and a removal that removes a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver. And a self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, which is included in the output signal of the light receiver after removing the frequency component. Frequency measurement means for measuring the frequency of the interference waveform caused by the above, conversion means for converting the frequency of the interference waveform to a value when the frequency of the oscillation waveform is a reference frequency, and the measurement from the frequency of the interference waveform after conversion have a calculating means for determining the distance to the target, the conversion means, the oscillation of the reference frequency is f waveform, said frequency measuring means frequency alpha × f of the oscillation waveform when measuring the frequency of the interference waveform Then, a value obtained by multiplying the frequency of the interference waveform measured by the frequency measuring means by 1 / α is used as the frequency of the converted interference waveform .
The distance meter of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. And the second oscillation period including at least two periods alternately exist, and the amplitude of the oscillation waveform having the first oscillation period and the second oscillation period as one period changes for each period. A laser driver that modulates the oscillation wavelength of the semiconductor laser, a light receiver that converts the optical output of the semiconductor laser into an electrical signal, and a removal that removes a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver. And a self-coupling effect between the laser beam emitted from the semiconductor laser and the return beam from the measurement object, included in the output signal of the light receiver after removing the frequency component Frequency measurement means for measuring the frequency of the resulting interference waveform, conversion means for converting the frequency of the interference waveform to a value when the amplitude of the oscillation waveform is a reference amplitude, and the measurement from the frequency of the interference waveform after conversion It has a calculation means which calculates | requires the distance with object.
The distance meter of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period that includes at least a period in which the oscillation wavelength continuously increases monotonously, and a period in which the oscillation wavelength continuously decreases monotonously. And at least one of the frequency and the amplitude of the oscillation waveform having one cycle of the first oscillation period and the second oscillation period. A laser driver that modulates the oscillation wavelength of the semiconductor laser, a light receiver that converts the optical output of the semiconductor laser into an electrical signal, and a counting means that counts the number of signals included in the output of the light receiver. The number of interference waveforms generated by the self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object is counted by the counting means over a plurality of periods. Calculation means for calculating, based, in which the number of the interference wave and a calculating means for calculating a distance between the measurement object.

また、本発明の距離計の1構成例において、前記換算手段は、前記発振波形の基準振幅をAとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の振幅をα×Aとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とするものである。
また、本発明の距離計の1構成例において、前記算出手段は、外乱光の信号数をNn、1周期前の発振波形の周波数が基準周波数の1/x1倍で振幅が基準振幅のy1倍で、このとき前記計数手段で計測された信号数をNalloldとし、前記干渉波形の数を算出しようとする現在の発振波形の周波数が基準周波数の1/x2倍で振幅が基準振幅のy2倍で、このとき前記計数手段で計測された信号数をNallnewとしたとき、前記干渉波形の数Nを、N=(Nallold−Nn×x1)/y1=(Nallnew−Nn×x2)/y2により算出するものである。
Further , in one configuration example of the distance meter of the present invention, the conversion means sets the reference amplitude of the oscillation waveform as A, and the amplitude of the oscillation waveform when the frequency measurement means measures the frequency of the interference waveform as α × A Then, a value obtained by multiplying the frequency of the interference waveform measured by the frequency measuring means by 1 / α is used as the frequency of the converted interference waveform.
Further, in one structural example of the distance meter of the present invention, the calculating means sets the number of disturbance light signals to Nn, the frequency of the oscillation waveform before one cycle is 1 / x1 times the reference frequency, and the amplitude is y1 times the reference amplitude. At this time, the number of signals measured by the counting means is set to Nall old , the frequency of the current oscillation waveform to be calculated for the number of interference waveforms is 1 / x2 times the reference frequency, and the amplitude is y2 times the reference amplitude At this time, when the number of signals measured by the counting means is Nall new , the number N of the interference waveforms is N = (Nall old− Nn × x1) / y1 = (Nall new− Nn × x2) / It is calculated by y2.

また、本発明の距離計測方法は、周期毎に振幅が変化するように波長変調した波を測定対象に放射し、測定対象に反射して戻る波と前記放射した波との間で発生する干渉を検出し、検出した干渉の情報から複数の周期にわたって周波数が変化しない周波数成分を除去し、前記周波数成分を除去した後の干渉の情報を前記波長変調した波の振幅が基準振幅のときの値に換算し、換算後の干渉に関する情報に基づいて測定対象との距離を求めるようにしたものである。
また、本発明の距離計測方法は、周波数と振幅のうち少なくとも一方が周期毎に変化するように波長変調した波を測定対象に放射し、前記波を電気信号に変換する受光器の出力に含まれる信号数を計数し、測定対象に反射して戻る波と前記放射した波との間で発生する干渉波形の数を、複数の周期にわたる前記計数の結果に基づいて算出し、前記干渉波形の数に基づいて測定対象との距離を求めるようにしたものである。
Further , the distance measuring method of the present invention radiates a wave whose wavelength is modulated so that the amplitude changes every period to the measurement object, and generates interference between the wave reflected by the measurement object and returning to the measurement object. A frequency component whose frequency does not change over a plurality of periods from the detected interference information, and a value obtained when the amplitude of the wavelength-modulated wave is a reference amplitude after removing the frequency component. The distance to the measurement object is obtained based on the information on the interference after the conversion.
Further, the distance measuring method of the present invention includes a wave that is wavelength-modulated so that at least one of frequency and amplitude changes for each period, and is included in an output of a light receiver that converts the wave into an electric signal. And calculating the number of interference waveforms generated between the wave reflected back to the object to be measured and the radiated wave based on the result of the counting over a plurality of periods. The distance to the measurement object is obtained based on the number.

また、本発明の距離計測方法は、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調する発振手順と、前記半導体レーザの光出力を電気信号に変換する受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手順と、前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手順と、前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手順と、前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手順とを備えるものである。
また、本発明の距離計測方法は、発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調する発振手順と、前記半導体レーザの光出力を電気信号に変換する受光器の出力に含まれる信号数を数える計数手順と、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の数を、複数の周期にわたる前記計数手順の計数結果に基づいて算出する算出手順と、前記干渉波形の数から前記測定対象との距離を求める演算手順とを備えるものである。
In the distance measuring method of the present invention, the first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonically and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonically are alternated. And an oscillation procedure for modulating the oscillation wavelength of the semiconductor laser so that the amplitude of the oscillation waveform having at least two periods in the first oscillation period and the second oscillation period is changed every period. A removal procedure for removing a frequency component whose frequency does not change over a plurality of periods from an output signal of a light receiver that converts an optical output of the semiconductor laser into an electrical signal, and an output signal of the light receiver after removing the frequency component A frequency measurement procedure for measuring a frequency of an interference waveform generated by a self-coupling effect between a laser beam emitted from the semiconductor laser and a return beam from the measurement object, A conversion procedure for converting the frequency of the interference waveform into a value when the amplitude of the oscillation waveform is a reference amplitude, and a calculation procedure for obtaining a distance from the measurement object from the frequency of the interference waveform after conversion. .
In the distance measuring method of the present invention, the first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonically and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonically are alternated. And the oscillation of the semiconductor laser so that at least one of the frequency and the amplitude of the oscillation waveform having one period of the first oscillation period and the second oscillation period changes for each period. An oscillation procedure for modulating the wavelength, a counting procedure for counting the number of signals included in the output of the light receiver for converting the optical output of the semiconductor laser into an electrical signal, the laser light emitted from the semiconductor laser, and the measurement object A calculation procedure for calculating the number of interference waveforms caused by the self-coupling effect with the return light based on a counting result of the counting procedure over a plurality of periods, and the measurement from the number of the interference waveforms In which and a calculation procedure for obtaining the distance to the elephants.

本発明によれば、発振波形の周波数(又は振幅)が周期毎に変化するように半導体レーザの発振波長を変調し、受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を外乱光の周波数成分として除去し、周波数成分を除去した後の受光器の出力信号に含まれる干渉波形の周波数を発振波形の周波数(又は振幅)が基準周波数(又は基準振幅)のときの値に換算し、換算後の干渉波形の周波数から測定対象との距離を求めることにより、外乱光の周波数が干渉波形の周波数と同程度の場合であっても、外乱光の影響を除去することができる。   According to the present invention, the oscillation wavelength of the semiconductor laser is modulated so that the frequency (or amplitude) of the oscillation waveform changes with each period, and the frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver is disturbed. The frequency of the interference waveform contained in the output signal of the receiver after removing the frequency component is converted to the value when the frequency (or amplitude) of the oscillation waveform is the reference frequency (or reference amplitude). By obtaining the distance from the object to be measured from the frequency of the interference waveform after conversion, the influence of the disturbance light can be removed even when the frequency of the disturbance light is approximately the same as the frequency of the interference waveform.

また、本発明では、発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように半導体レーザの発振波長を変調し、受光器の出力に含まれる信号数を数え、干渉波形の数を、複数の周期にわたる計数結果に基づいて算出し、干渉波形の数から測定対象との距離を求めることにより、外乱光の周波数が干渉波形の周波数と同程度の場合であっても、外乱光の影響を除去することができる。   In the present invention, the oscillation wavelength of the semiconductor laser is modulated so that at least one of the frequency and amplitude of the oscillation waveform changes every period, the number of signals included in the output of the light receiver is counted, and the number of interference waveforms is calculated. By calculating based on the counting results over a plurality of cycles and obtaining the distance from the object to be measured from the number of interference waveforms, even if the disturbance light frequency is approximately the same as the interference waveform frequency, The influence can be removed.

[第1の実施の形態]
本発明は、波長変調を用いたセンシングにおいて出射した波と対象物で反射した波の干渉信号をもとに距離を計測する手法である。したがって、自己結合型以外の光学式の干渉計、光以外の干渉計にも適用できる。半導体レーザの自己結合を用いる場合について、より具体的に説明すると、半導体レーザから測定対象にレーザ光を照射しつつ、レーザの発振波長を変化させると、発振波長が最小発振波長から最大発振波長まで変化する間(あるいは最大発振波長から最小発振波長まで変化する間)における測定対象の変位は、MHPの数に反映される。したがって、発振波長を変化させたときのMHPの数を調べることで測定対象の状態を検出することができる。以上が、本発明の基本的な原理である。
[First Embodiment]
The present invention is a method for measuring a distance based on an interference signal between a wave emitted in sensing using wavelength modulation and a wave reflected by an object. Therefore, the present invention can also be applied to an optical interferometer other than the self-coupling type and an interferometer other than light. More specifically, the case where the self-coupling of the semiconductor laser is used will be described. When the laser oscillation wavelength is changed while irradiating the measurement target from the semiconductor laser, the oscillation wavelength changes from the minimum oscillation wavelength to the maximum oscillation wavelength. The displacement of the measurement object during the change (or during the change from the maximum oscillation wavelength to the minimum oscillation wavelength) is reflected in the number of MHPs. Therefore, the state of the measurement object can be detected by examining the number of MHPs when the oscillation wavelength is changed. The above is the basic principle of the present invention.

以下、本発明の第1の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態となる距離計の構成を示すブロック図である。図1の距離計は、測定対象にレーザ光を放射する半導体レーザ1と、半導体レーザ1の光出力を電気信号に変換するフォトダイオード2と、半導体レーザ1からの光を集光して測定対象12に照射すると共に、測定対象12からの戻り光を集光して半導体レーザ1に入射させるレンズ3と、発振波長が連続的に単調増加する第1の発振期間と発振波長が連続的に単調減少する第2の発振期間とが交互に少なくとも2期間存在し、かつ第1の発振期間と第2の発振期間を1周期とする発振波形の周波数が周期毎に変化するように、半導体レーザ1の発振波長を変調するレーザドライバ4と、フォトダイオード2の出力電流を電圧に変換して増幅する電流−電圧変換増幅器5と、電流−電圧変換増幅器5の出力電圧を2回微分する信号抽出回路11と、信号抽出回路11の出力電圧に含まれる外乱光の周波数成分を除去し、信号抽出回路11の出力電圧に含まれる干渉の情報を前記発振波形の周波数が基準周波数のときの値に換算する周波数計測装置8と、換算後の干渉波形の周波数から測定対象12との距離を算出する演算装置9と、演算装置9の算出結果を表示する表示装置10とを有する。電流−電圧変換増幅器5と信号抽出回路11と周波数計測装置8とは、除去手段と周波数測定手段と換算手段とを構成している。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a distance meter according to the first embodiment of the present invention. 1 includes a semiconductor laser 1 that emits laser light to a measurement target, a photodiode 2 that converts the optical output of the semiconductor laser 1 into an electrical signal, and a light that is collected from the semiconductor laser 1 to be measured. 12, the lens 3 that collects the return light from the measurement target 12 and makes it incident on the semiconductor laser 1, the first oscillation period in which the oscillation wavelength continuously increases monotonically, and the oscillation wavelength continuously monotonously. The semiconductor laser 1 is arranged such that there are at least two alternating second oscillation periods that decrease, and the frequency of the oscillation waveform in which the first oscillation period and the second oscillation period are one period changes for each period. A laser driver 4 that modulates the oscillation wavelength of the laser, a current-voltage conversion amplifier 5 that converts and amplifies the output current of the photodiode 2 into a voltage, and a signal extraction circuit that differentiates the output voltage of the current-voltage conversion amplifier 5 twice. 1 Then, the disturbance light frequency component included in the output voltage of the signal extraction circuit 11 is removed, and the interference information included in the output voltage of the signal extraction circuit 11 is converted to a value when the frequency of the oscillation waveform is the reference frequency. It has the frequency measuring device 8, the calculating device 9 which calculates the distance with the measuring object 12 from the frequency of the interference waveform after conversion, and the display device 10 which displays the calculation result of the calculating device 9. The current-voltage conversion amplifier 5, the signal extraction circuit 11, and the frequency measuring device 8 constitute a removing means, a frequency measuring means, and a converting means.

以下、説明容易にするために、半導体レーザ1には、前述のモードホッピング現象を持たない型(VCSEL型、DFBレーザ型)のものが用いられているものと想定する。そして、モードホッピング現象を持つ型(FP型)の半導体レーザ1を用いた場合については、その旨を特記する。   Hereinafter, for ease of explanation, it is assumed that a semiconductor laser 1 of a type that does not have the above-described mode hopping phenomenon (VCSEL type, DFB laser type) is used. In the case of using a type (FP type) semiconductor laser 1 having a mode hopping phenomenon, this fact is noted.

例えば、レーザドライバ4は、時間に関して一定の変化率で増減を繰り返し、かつその周波数が周期毎に変化する三角波駆動電流を、注入電流として半導体レーザ1に供給する。これにより、半導体レーザ1は、注入電流の大きさに比例して発振波長が連続的に増加する第1の発振期間と発振波長が連続的に減少する第2の発振期間とを交互に繰り返し、かつ第1の発振期間と第2の発振期間を1周期とする三角波の周波数が周期毎に変化するように駆動される。   For example, the laser driver 4 supplies the semiconductor laser 1 with a triangular wave drive current that repeatedly increases and decreases at a constant change rate with respect to time and whose frequency changes every period as an injection current. Thus, the semiconductor laser 1 alternately repeats the first oscillation period in which the oscillation wavelength continuously increases in proportion to the magnitude of the injection current and the second oscillation period in which the oscillation wavelength continuously decreases, And it drives so that the frequency of the triangular wave which makes 1st oscillation period and 2nd oscillation period 1 period changes for every period.

図2は、半導体レーザ1の発振波長の時間変化を示す図である。図2において、t−1はt−1番目の発振期間、tはt番目の発振期間、t+1はt+1番目の発振期間、t+2はt+2番目の発振期間、t+3はt+3番目の発振期間、t+4はt+4番目の発振期間、λaは各期間における発振波長の最小値、λbは各期間における発振波長の最大値である。本実施の形態では、発振波長の最大値λb及び発振波長の最小値λaはそれぞれ常に一定になされており、それらの差λb−λaも常に一定になされている。図2から明らかなように、三角波の周波数は一定でなく、周期T毎に変化している。図2の例では、t−1とtの期間における三角波の周波数をfHzとすると、t+1とt+2の期間における周波数は2×fHz、t+3とt+4の期間における周波数はfHzである。つまり、三角波の周波数は、f,2×f,f,2×f・・・・というように変化している。   FIG. 2 is a diagram showing the change over time of the oscillation wavelength of the semiconductor laser 1. In FIG. 2, t-1 is the t-1th oscillation period, t is the tth oscillation period, t + 1 is the t + 1th oscillation period, t + 2 is the t + 2nd oscillation period, t + 3 is the t + 3rd oscillation period, and t + 4 is The t + 4th oscillation period, λa is the minimum value of the oscillation wavelength in each period, and λb is the maximum value of the oscillation wavelength in each period. In the present embodiment, the maximum value λb of the oscillation wavelength and the minimum value λa of the oscillation wavelength are always constant, and the difference λb−λa is also always constant. As is clear from FIG. 2, the frequency of the triangular wave is not constant and changes every period T. In the example of FIG. 2, assuming that the frequency of the triangular wave in the period t−1 and t is fHz, the frequency in the period t + 1 and t + 2 is 2 × fHz, and the frequency in the period t + 3 and t + 4 is fHz. That is, the frequency of the triangular wave changes as f, 2 × f, f, 2 × f,.

なお、駆動電流が、第1の発振期間と第2の発振期間とが交互に少なくとも3期間連続する波形を持つ駆動電流であって、第1の発振期間においては発振波長が連続的に単調増加する期間を少なくとも含み、第2の発振期間においては発振波長が連続的に単調減少する期間を少なくとも含む波形を持つ駆動電流であれば、例示した三角波以外の波形(例えば正弦波)を有するものを用いることができる。例えば、消費電流を抑制するために、2山毎(すなわち4期間毎)に休止期間を置いた間歇的な波形の駆動電流を用いることができる(図3)。   The drive current is a drive current having a waveform in which the first oscillation period and the second oscillation period are alternately continued for at least three periods, and the oscillation wavelength continuously monotonously increases in the first oscillation period. If the drive current has a waveform including at least a period during which the oscillation wavelength continuously includes a period during which the oscillation wavelength continuously decreases monotonically, a drive current having a waveform other than the triangular wave illustrated (for example, a sine wave) Can be used. For example, in order to suppress current consumption, a driving current having an intermittent waveform with a pause period every two peaks (that is, every four periods) can be used (FIG. 3).

半導体レーザ1から出射したレーザ光は、レンズ3によって集光され、測定対象12に入射する。測定対象12で反射された光は、レンズ3によって集光され、半導体レーザ1に入射する。ただし、レンズ3による集光は必須ではない。フォトダイオード2は、半導体レーザ1の光出力を電流に変換する。電流−電圧変換増幅器5は、フォトダイオード2の出力電流を電圧に変換して増幅する。信号抽出回路11は、変調波から重畳信号を抽出する機能を有するものであり、例えば二つの微分回路6,7が用いられる。微分回路6は、電流−電圧変換増幅器5の出力電圧を微分し、微分回路7は、微分回路6の出力電圧を微分する。図4(A)は電流−電圧変換増幅器5の出力電圧波形を模式的に示す図、図4(B)は微分回路6の出力電圧波形を模式的に示す図、図4(C)は微分回路7の出力電圧波形を模式的に示す図である。これらは、フォトダイオード2の出力である図4(A)の波形(変調波)から、図2の半導体レーザ1の発振波形(搬送波)を除去して、図4(C)のMHP波形(重畳波)を抽出する過程を表している。   Laser light emitted from the semiconductor laser 1 is collected by the lens 3 and enters the measurement object 12. The light reflected by the measurement object 12 is collected by the lens 3 and enters the semiconductor laser 1. However, condensing by the lens 3 is not essential. The photodiode 2 converts the light output of the semiconductor laser 1 into a current. The current-voltage conversion amplifier 5 converts the output current of the photodiode 2 into a voltage and amplifies it. The signal extraction circuit 11 has a function of extracting a superimposed signal from a modulated wave. For example, two differentiation circuits 6 and 7 are used. The differentiation circuit 6 differentiates the output voltage of the current-voltage conversion amplifier 5, and the differentiation circuit 7 differentiates the output voltage of the differentiation circuit 6. 4A schematically shows the output voltage waveform of the current-voltage conversion amplifier 5, FIG. 4B schematically shows the output voltage waveform of the differentiation circuit 6, and FIG. 4C shows the differentiation. 6 is a diagram schematically showing an output voltage waveform of a circuit 7. FIG. These are obtained by removing the oscillation waveform (carrier wave) of the semiconductor laser 1 of FIG. 2 from the waveform (modulated wave) of FIG. 4A, which is the output of the photodiode 2, and the MHP waveform (superimposition) of FIG. (Wave) is extracted.

半導体レーザ1から放射されたレーザ光と測定対象12からの戻り光とによって生じるMHPの周波数は、上記三角波の周波数及び振幅に比例するという性質がある。一方、外乱光の周波数は、三角波の周波数及び振幅に依存しない。したがって、このような性質を利用することで、MHPと外乱光を区別して、外乱光の影響を除去することができる。   The frequency of the MHP generated by the laser light emitted from the semiconductor laser 1 and the return light from the measurement object 12 has a property of being proportional to the frequency and amplitude of the triangular wave. On the other hand, the frequency of disturbance light does not depend on the frequency and amplitude of the triangular wave. Therefore, by using such a property, it is possible to distinguish between MHP and disturbance light and remove the influence of disturbance light.

図5は周波数計測装置8の構成の1例を示すブロック図である。周波数計測装置8は、Fast Fourier Transform(以下、FFT)を利用して信号抽出回路11の出力(図4(C))の周波数特性を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に測定するFFT部81と、FFT部81の測定結果を記憶する記憶部82と、信号抽出回路11の出力の周波数特性から外乱光の周波数を除去して、MHPの周波数を測定する判定部83と、判定部83で測定されたMHPの周波数を三角波の周波数が基準周波数のときの値に換算する換算部84とから構成される。   FIG. 5 is a block diagram showing an example of the configuration of the frequency measuring device 8. The frequency measurement device 8 uses the Fast Fourier Transform (hereinafter referred to as FFT) to change the frequency characteristics of the output of the signal extraction circuit 11 (FIG. 4C) for each of the first oscillation periods t−1, t + 1, t + 3 and the first. The frequency of disturbance light is removed from the frequency characteristics of the output of the FFT unit 81 that measures every two oscillation periods t, t + 2, and t + 4, the storage unit 82 that stores the measurement result of the FFT unit 81, and the signal extraction circuit 11. The determination unit 83 that measures the frequency of the MHP and the conversion unit 84 that converts the frequency of the MHP measured by the determination unit 83 into a value when the frequency of the triangular wave is the reference frequency.

まず、周波数計測装置8のFFT部81は、信号抽出回路11の出力の周波数特性を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に測定する。
記憶部82は、FFT部81の測定結果を記憶する。判定部83は、FFT部81の測定結果と記憶部82に記憶された1周期前の測定結果とを比較して、信号抽出回路11の出力の周波数特性から外乱光の周波数を除去する。
First, the FFT unit 81 of the frequency measuring device 8 measures the frequency characteristics of the output of the signal extraction circuit 11 every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4. .
The storage unit 82 stores the measurement result of the FFT unit 81. The determination unit 83 compares the measurement result of the FFT unit 81 with the measurement result of the previous cycle stored in the storage unit 82 and removes the frequency of disturbance light from the frequency characteristic of the output of the signal extraction circuit 11.

図6はMHPと外乱光の三角波周波数依存性を示す図であり、図6(A)は信号抽出回路11の出力におけるMHPの波形を模式的に示し、図6(B)は信号抽出回路11の出力における外乱光の波形を模式的に示している。また、図7(A)は三角波の周波数がfHzのときの信号抽出回路11の出力の周波数スペクトルを示し、図7(B)は三角波の周波数が2×fHzのときの信号抽出回路11の出力の周波数スペクトルを示している。   FIG. 6 is a diagram showing the triangular wave frequency dependence of MHP and disturbance light. FIG. 6 (A) schematically shows the waveform of MHP at the output of the signal extraction circuit 11, and FIG. 6 (B) is the signal extraction circuit 11. The waveform of the disturbance light in the output of is schematically shown. 7A shows the frequency spectrum of the output of the signal extraction circuit 11 when the frequency of the triangular wave is fHz, and FIG. 7B shows the output of the signal extraction circuit 11 when the frequency of the triangular wave is 2 × fHz. The frequency spectrum of is shown.

三角波の周波数を周期T毎に変化させると、MHPの周波数は図6(A)に示すように三角波の周波数に比例して変化する。つまり、周波数スペクトルで観測すると、三角波の周波数がfHzであったときに図7(A)のようにfsHzであったMHPの周波数は、三角波の周波数が2×fHzになると、図7(B)に示すように2×fsHzとなる。一方、外乱光の周波数は、図6(B)、図7(A)、図7(B)に示すように三角波の周波数が変化しても一定である。   When the frequency of the triangular wave is changed every period T, the frequency of the MHP changes in proportion to the frequency of the triangular wave as shown in FIG. That is, when observed in the frequency spectrum, when the frequency of the triangular wave is fHz, the frequency of the MHP that was fsHz as shown in FIG. 7A becomes 2 × fHz as shown in FIG. 7B. 2 × fsHz as shown in FIG. On the other hand, the frequency of disturbance light is constant even if the frequency of the triangular wave changes as shown in FIGS. 6B, 7A, and 7B.

そこで、判定部83は、FFT部81の測定結果と記憶部82に記憶された1周期前の測定結果との信号強度差を周波数毎に求め、FFT部81の測定結果と1周期前の測定結果で周波数に変化がない信号、すなわち信号強度差が所定の強度差しきい値以下の信号を外乱光の影響による信号と判定して、この信号をFFT部81の測定結果から除去する。そして、判定部83は、外乱光の信号を除去した後のFFT部81の測定結果において強度が最大の信号をMHPの信号と判定して、MHPの周波数を測定する。   Therefore, the determination unit 83 obtains a signal strength difference between the measurement result of the FFT unit 81 and the measurement result of the previous cycle stored in the storage unit 82 for each frequency, and the measurement result of the FFT unit 81 and the measurement of the previous cycle are measured. A signal whose frequency does not change as a result, that is, a signal whose signal intensity difference is equal to or smaller than a predetermined intensity difference threshold is determined as a signal due to the influence of disturbance light, and this signal is removed from the measurement result of the FFT unit 81. Then, the determination unit 83 determines the signal having the maximum intensity as the MHP signal in the measurement result of the FFT unit 81 after removing the disturbance light signal, and measures the MHP frequency.

次に、換算部84は、判定部83で測定されたMHPの周波数に対して、このMHPの周波数が測定されたときの三角波の周波数に応じた係数を乗算する。三角波の基準周波数をfHzとし、MHPの周波数が測定されたときの三角波の周波数をα×fHzとすると、このMHPの周波数に乗算する係数は1/αとなる。例えばMHPの周波数が測定されたときの三角波の周波数を2×fHzとすると、MHPの周波数は三角波の周波数がfHzのときの2倍となっているので、このMHPの周波数に係数1/α=1/2を乗算することにより、MHPの周波数を、三角波が基準周波数fHzで一定のときの値に換算することができる。なお、三角波の周波数はレーザドライバ4から通知されるようになっている。換算部84は、レーザドライバ4から通知される三角波の周波数に応じて係数の値を決定する。   Next, the conversion unit 84 multiplies the MHP frequency measured by the determination unit 83 by a coefficient corresponding to the frequency of the triangular wave when the MHP frequency is measured. If the reference frequency of the triangular wave is fHz and the frequency of the triangular wave when the MHP frequency is measured is α × fHz, the coefficient by which the MHP frequency is multiplied is 1 / α. For example, when the frequency of the triangular wave when the MHP frequency is measured is 2 × fHz, the frequency of the MHP is twice that when the frequency of the triangular wave is fHz. Therefore, the coefficient 1 / α = By multiplying by 1/2, the frequency of MHP can be converted to a value when the triangular wave is constant at the reference frequency fHz. The frequency of the triangular wave is notified from the laser driver 4. The conversion unit 84 determines the coefficient value according to the frequency of the triangular wave notified from the laser driver 4.

こうして、信号抽出回路11の出力電圧から外乱光の影響を除去して、MHPの周波数を計測することができる。周波数計測装置8は、以上のような処理を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に行う。   In this way, the influence of disturbance light can be removed from the output voltage of the signal extraction circuit 11, and the frequency of the MHP can be measured. The frequency measuring device 8 performs the above-described processing every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4.

次に、演算装置9は、周波数計測装置8によって計測されたMHPの周波数に基づいて測定対象12との距離を求める。前述のとおりMHPの周波数は測定距離に比例するので、MHPの周波数と距離とは図8に示すように直線的な関係にある。そこで、三角波が基準周波数fHzで一定のときのMHPの周波数と距離との関係を予め求めて演算装置9のデータベース(不図示)に登録しておけば、演算装置9は、周波数計測装置8によって計測されたMHPの周波数に対応する距離の値をデータベースから取得することにより、測定対象12との距離を求めることができる。   Next, the arithmetic unit 9 obtains the distance from the measuring object 12 based on the frequency of the MHP measured by the frequency measuring device 8. As described above, since the frequency of MHP is proportional to the measurement distance, the frequency and distance of MHP have a linear relationship as shown in FIG. Therefore, if the relationship between the frequency of the MHP and the distance when the triangular wave is constant at the reference frequency fHz is obtained in advance and registered in a database (not shown) of the arithmetic device 9, the arithmetic device 9 is used by the frequency measuring device 8. By obtaining a distance value corresponding to the measured frequency of the MHP from the database, the distance to the measurement object 12 can be obtained.

あるいは、MHPの周波数と距離との関係を示す数式を予め求めて設定しておけば、演算装置9は、周波数計測装置8によって計測されたMHPの周波数を数式に代入することにより、測定対象12との距離を算出することができる。演算装置9は、以上のような処理を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に行う。
表示装置10は、演算装置9によって算出された測定対象12との距離(変位)をリアルタイムで表示する。
Or if the numerical formula which shows the relationship between the frequency of MHP and distance is calculated | required beforehand and it sets, the arithmetic unit 9 will substitute the measurement object 12 by substituting the frequency of MHP measured by the frequency measuring device 8 to a numerical formula. Can be calculated. The arithmetic unit 9 performs the above processing every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4.
The display device 10 displays the distance (displacement) from the measurement object 12 calculated by the arithmetic device 9 in real time.

以上のように、本実施の形態では、三角波の周波数が周期毎に変化するように半導体レーザ1の発振波長を変調し、フォトダイオード2(受光器)の出力信号から複数の周期にわたって周波数が変化しない周波数成分を外乱光の周波数成分として除去し、周波数成分を除去した後の受光器の出力信号に含まれる干渉波形の周波数を三角波の周波数が基準周波数のときの値に換算し、換算後の干渉波形の周波数から測定対象との距離を求めることにより、外乱光の影響を除去することができる。   As described above, in the present embodiment, the oscillation wavelength of the semiconductor laser 1 is modulated so that the frequency of the triangular wave changes every period, and the frequency changes over a plurality of periods from the output signal of the photodiode 2 (light receiver). The frequency component of the interference wave included in the output signal of the receiver after removing the frequency component is converted to the value when the triangular wave frequency is the reference frequency. By obtaining the distance to the measurement object from the frequency of the interference waveform, the influence of disturbance light can be removed.

[第2の実施の形態]
第1の実施の形態では、三角波の周波数を周期T毎に変化させたが、MHPの周波数は三角波の振幅にも比例するので、レーザドライバ4によって、図9に示すように三角波の振幅を周期T毎に変化させてもよい。図9の例では、t−1とtの期間における三角波の振幅をAとすると、t+1とt+2の期間における振幅は2×Aとなっている。
[Second Embodiment]
In the first embodiment, the frequency of the triangular wave is changed every period T. However, since the frequency of the MHP is also proportional to the amplitude of the triangular wave, the laser driver 4 changes the amplitude of the triangular wave as shown in FIG. It may be changed every T. In the example of FIG. 9, when the amplitude of the triangular wave in the period t−1 and t is A, the amplitude in the period t + 1 and t + 2 is 2 × A.

本実施の形態では、三角波の振幅はレーザドライバ4から通知される。三角波の基準振幅をAとし、MHPの周波数が測定されたときの三角波の振幅をα×Aとすると、このMHPの周波数に乗算する係数は1/αとなる。したがって、換算部84は、判定部83で測定されたMHPの周波数に対して、このMHPの周波数が測定されたときの三角波の振幅に応じた係数1/αを乗算すればよい。距離計のその他の構成及び処理は第1の実施の形態と同じである。こうして、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。   In the present embodiment, the amplitude of the triangular wave is notified from the laser driver 4. Assuming that the reference amplitude of the triangular wave is A and the amplitude of the triangular wave when the MHP frequency is measured is α × A, the coefficient by which the MHP frequency is multiplied is 1 / α. Therefore, the conversion unit 84 may multiply the MHP frequency measured by the determination unit 83 by a coefficient 1 / α corresponding to the amplitude of the triangular wave when the MHP frequency is measured. Other configurations and processes of the distance meter are the same as those in the first embodiment. Thus, also in this embodiment, the same effect as that of the first embodiment can be obtained.

[第3の実施の形態]
第1、第2の実施の形態では、MHPの周波数から測定対象との距離を求めていたが、一定期間のMHPの数から距離を求めることも可能である。図10は本発明の第3の実施の形態となる距離計の構成を示すブロック図であり、図1と同一の構成には同一の符号を付してある。本実施の形態は、第1、第2の実施の形態の周波数計測装置8の代わりに、計数装置13を設けたものである。計数装置13は、計数手段と算出手段とを構成している。
[Third Embodiment]
In the first and second embodiments, the distance to the measurement object is obtained from the MHP frequency, but the distance can also be obtained from the number of MHPs in a certain period. FIG. 10 is a block diagram showing the configuration of a distance meter according to the third embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals. In the present embodiment, a counting device 13 is provided instead of the frequency measuring device 8 of the first and second embodiments. The counting device 13 constitutes counting means and calculation means.

図11は計数装置13の構成の1例を示すブロック図である。計数装置13は、信号抽出回路11の出力の信号数を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に数えるカウンタ86と、カウンタ86の計数結果を記憶する記憶部87と、カウンタ86の計数結果と記憶部87に記憶された過去の計数結果とからMHPの数を算出する算出部88とから構成される。   FIG. 11 is a block diagram showing an example of the configuration of the counting device 13. The counting device 13 counts the number of signals output from the signal extraction circuit 11 every first oscillation period t−1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4. The storage unit 87 stores the result, and the calculation unit 88 calculates the number of MHPs from the count result of the counter 86 and the past count result stored in the storage unit 87.

まず、計数装置13のカウンタ86は、信号抽出回路11の出力の信号数を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に数える。記憶部87は、カウンタ86の計数結果を記憶する。
図12はMHPと外乱光の三角波振幅依存性を示す図であり、図12(A)は信号抽出回路11の出力におけるMHPの波形を模式的に示し、図12(B)は信号抽出回路11の出力における外乱光の波形を模式的に示している。
First, the counter 86 of the counting device 13 counts the number of signals output from the signal extraction circuit 11 every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4. The storage unit 87 stores the count result of the counter 86.
FIG. 12 is a diagram showing the triangular wave amplitude dependence of MHP and disturbance light. FIG. 12 (A) schematically shows the waveform of MHP at the output of the signal extraction circuit 11, and FIG. 12 (B) is the signal extraction circuit 11. The waveform of the disturbance light in the output of is schematically shown.

MHPの数Nは、図6(A)に示すように三角波の周波数には依存しないが、図12(A)から明らかなように三角波の振幅をy倍することでy倍の数にすることができる。これに対し、外乱光の信号数Nnは、図6(B)に示すように三角波の周波数に反比例するが、図12(B)から明らかなように三角波の振幅には依存しない。
そこで、三角波の振幅や周波数を周期T毎に変化させることによって、MHPの数Nおよび外乱光の信号数Nnを周期T毎に変化させることができ、MHPと外乱光を区別して、外乱光の影響を除去することができる。
The number N of MHPs does not depend on the frequency of the triangular wave as shown in FIG. 6 (A), but as shown in FIG. 12 (A), the amplitude of the triangular wave is multiplied by y to increase the number to y times. Can do. In contrast, the number of disturbance light signals Nn is inversely proportional to the frequency of the triangular wave as shown in FIG. 6B, but does not depend on the amplitude of the triangular wave as apparent from FIG.
Therefore, by changing the amplitude and frequency of the triangular wave for each period T, the number N of MHPs and the number of disturbance light signals Nn can be changed for each period T. The influence can be removed.

三角波の周波数を1/x倍、振幅をy倍したときのMHPと外乱光を合わせた信号数Nallは以下のように表現できる。
Nall=N×y+Nn×x ・・・(8)
この信号数Nallがカウンタ86で観測される値である。式(8)より、MHPの数Nは、次式のように求めることができる。
N=(Nall−Nn×x)/y ・・・(9)
The number of signals Nall combining MHP and disturbance light when the triangular wave frequency is 1 / x times and the amplitude is y times can be expressed as follows.
Nall = N × y + Nn × x (8)
This number of signals Nall is a value observed by the counter 86. From Expression (8), the number N of MHPs can be obtained as the following expression.
N = (Nall−Nn × x) / y (9)

ここで、1周期前の三角波が基準周波数で基準振幅であったとし、このときカウンタ86で計測されて記憶部87に記憶された信号数をNalloldとし、1周期後の現在の三角波の周波数が基準周波数の1/x倍で振幅が基準振幅のy倍で、このときカウンタ86によって計測された信号数をNallnewとすると、次式の連立方程式が得られる。
N=(Nallold−Nn×1)/1=(Nallnew−Nn×x)/y
・・・(10)
Here, it is assumed that the triangular wave before one cycle is the reference frequency and the reference amplitude, and at this time, the number of signals measured by the counter 86 and stored in the storage unit 87 is Nall old, and the frequency of the current triangular wave after one cycle is set. Is 1 / x times the reference frequency and the amplitude is y times the reference amplitude, and the number of signals measured by the counter 86 at this time is Nall new , the following simultaneous equations are obtained.
N = (Nall old− Nn × 1) / 1 = (Nall new− Nn × x) / y
(10)

算出部88は、式(10)の連立方程式を解くことにより、MHPの数Nを求めることができる。こうして、信号抽出回路11の出力電圧から外乱光の影響を除去して、MHPの数を取得することができる。計数装置13は、以上のような処理を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に行う。   The calculation unit 88 can obtain the number N of MHPs by solving the simultaneous equations of Expression (10). Thus, the number of MHPs can be acquired by removing the influence of disturbance light from the output voltage of the signal extraction circuit 11. The counting device 13 performs the above processing every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4.

次に、本実施の形態の演算装置9aの動作について説明する。演算装置9aは、計数装置13によって計測されたMHPの数に基づいて測定対象12との距離を求める。一定期間におけるMHPの数は測定距離に比例する。そこで、三角波が基準周波数fHzで一定のときの一定期間(本実施の形態では第1の発振期間又は第2の発振期間)におけるMHPの数と距離との関係を予め求めて演算装置9aのデータベース(不図示)に登録しておけば、演算装置9aは、計数装置13によって計測されたMHPの数に対応する距離の値をデータベースから取得することにより、測定対象12との距離を求めることができる。   Next, the operation of the arithmetic device 9a of the present embodiment will be described. The arithmetic device 9a obtains the distance from the measuring object 12 based on the number of MHPs measured by the counting device 13. The number of MHPs in a certain period is proportional to the measurement distance. Therefore, the database of the arithmetic unit 9a is obtained by obtaining in advance the relationship between the number of MHPs and the distance during a certain period (in this embodiment, the first oscillation period or the second oscillation period) when the triangular wave is constant at the reference frequency fHz. If registered in (not shown), the computing device 9a obtains the distance to the measurement object 12 by acquiring the distance value corresponding to the number of MHPs measured by the counting device 13 from the database. it can.

あるいは、一定期間におけるMHPの数と距離との関係を示す数式を予め求めて設定しておけば、演算装置9aは、計数装置13によって計測されたMHPの数を数式に代入することにより、測定対象12との距離を算出することができる。演算装置9aは、以上のような処理を第1の発振期間t−1,t+1,t+3毎及び第2の発振期間t,t+2,t+4毎に行う。
距離計のその他の構成及び処理は第1の実施の形態と同じである。こうして、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。本実施の形態では、三角波の周波数と振幅のうち少なくとも一方を周期毎に変化させればよい。
Alternatively, if a mathematical expression indicating the relationship between the number of MHPs and the distance in a certain period is obtained and set in advance, the arithmetic unit 9a performs measurement by substituting the number of MHPs measured by the counting device 13 into the mathematical expression. The distance to the object 12 can be calculated. The arithmetic unit 9a performs the above processing every first oscillation period t-1, t + 1, t + 3 and every second oscillation period t, t + 2, t + 4.
Other configurations and processes of the distance meter are the same as those in the first embodiment. Thus, also in this embodiment, the same effect as that of the first embodiment can be obtained. In the present embodiment, at least one of the frequency and amplitude of the triangular wave may be changed for each period.

なお、第1〜第3の実施の形態では、三角波の周波数又は振幅を1倍、2倍、1倍、2倍・・・・というように変化させているが、周波数又は振幅の変化量は2倍に限らないことは言うまでもない。
また、外乱光の出現頻度が周期的に変化する場合、三角波の変調の周期と一致すると、外乱光の除去が困難になるため、三角波の周波数又は振幅を1倍、2倍、1倍、2倍・・・・といった一定の規則でなく、ランダムに変化させることが好ましい。
In the first to third embodiments, the frequency or amplitude of the triangular wave is changed to 1 time, 2 times, 1 time, 2 times,... It goes without saying that it is not limited to twice.
In addition, when the appearance frequency of disturbance light periodically changes, it becomes difficult to remove disturbance light when it coincides with the modulation period of the triangular wave. Therefore, the frequency or amplitude of the triangular wave is increased by one, two, one, two, or two. It is preferable to change at random instead of a fixed rule such as double.

また、MHPの信号は正弦波でないため、奇数倍の高調波を一般的には含む。そのため、外乱光の周波数とMHPの周波数が一致しているときに、三角波の周波数又は振幅を奇数倍に変化させると、外乱光の高調波とMHPとが同一の周波数になるため、外乱光を除去することが困難になる。したがって、三角波の周期毎の周波数(又は振幅)の変化量は、基準周波数(又は基準振幅)に対して偶数倍であることが好ましい。   In addition, since the MHP signal is not a sine wave, it generally includes odd harmonics. Therefore, if the frequency or amplitude of the triangular wave is changed to an odd multiple when the frequency of the disturbance light and the frequency of the MHP match, the disturbance light harmonic and the MHP become the same frequency. It becomes difficult to remove. Therefore, the amount of change in the frequency (or amplitude) for each period of the triangular wave is preferably an even multiple of the reference frequency (or reference amplitude).

また、第1〜第3の実施の形態における周波数計測装置8と演算装置9,9aと計数装置13は、例えばCPU、記憶装置およびインタフェースを備えたコンピュータとこれらのハードウェア資源を制御するプログラムによって実現することができる。このようなコンピュータを動作させるためのプログラムは、フレキシブルディスク、CD−ROM、DVD−ROM、メモリカードなどの記録媒体に記録された状態で提供される。CPUは、読み込んだプログラムを記憶装置に書き込み、このプログラムに従って第1〜第3の実施の形態で説明した処理を実行する。   Moreover, the frequency measuring device 8, the arithmetic devices 9, 9a, and the counting device 13 in the first to third embodiments are, for example, a computer having a CPU, a storage device, and an interface, and a program that controls these hardware resources. Can be realized. A program for operating such a computer is provided in a state of being recorded on a recording medium such as a flexible disk, a CD-ROM, a DVD-ROM, or a memory card. The CPU writes the read program into the storage device, and executes the processing described in the first to third embodiments according to this program.

本発明は、測定対象との距離を計測する技術に適用することができる。   The present invention can be applied to a technique for measuring a distance from a measurement object.

本発明の第1の実施の形態となる距離計の構成を示すブロック図である。It is a block diagram which shows the structure of the distance meter used as the 1st Embodiment of this invention. 本発明の第1の実施の形態における半導体レーザの発振波長の時間変化の1例を示す図である。It is a figure which shows one example of the time change of the oscillation wavelength of the semiconductor laser in the 1st Embodiment of this invention. 本発明の第1の実施の形態における半導体レーザの発振波長の時間変化の他の例を示す図である。It is a figure which shows the other example of the time change of the oscillation wavelength of the semiconductor laser in the 1st Embodiment of this invention. 本発明の第1の実施の形態における電流−電圧変換増幅器の出力電圧波形及び微分回路の出力電圧波形を模式的に示す図である。It is a figure which shows typically the output voltage waveform of the current-voltage conversion amplifier in the 1st Embodiment of this invention, and the output voltage waveform of a differentiation circuit. 本発明の第1の実施の形態における周波数計測装置の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the frequency measuring device in the 1st Embodiment of this invention. モードポップパルスと外乱光の三角波周波数依存性を示す図である。It is a figure which shows the triangular wave frequency dependence of a mode pop pulse and disturbance light. 三角波周波数が変化したときのモードポップパルスと外乱光の周波数変化を示す周波数スペクトル図である。It is a frequency spectrum figure which shows the frequency change of the mode pop pulse and disturbance light when a triangular wave frequency changes. モードポップパルスの周波数と距離との関係を示す図である。It is a figure which shows the relationship between the frequency of a mode pop pulse, and distance. 本発明の第2の実施の形態における半導体レーザの発振波長の時間変化の1例を示す図である。It is a figure which shows one example of the time change of the oscillation wavelength of the semiconductor laser in the 2nd Embodiment of this invention. 本発明の第3の実施の形態となる距離計の構成を示すブロック図である。It is a block diagram which shows the structure of the distance meter used as the 3rd Embodiment of this invention. 本発明の第3の実施の形態における計数装置の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the counting device in the 3rd Embodiment of this invention. モードポップパルスと外乱光の三角波振幅依存性を示す図である。It is a figure which shows the triangular wave amplitude dependence of a mode pop pulse and disturbance light. 従来のレーザ計測器における半導体レーザの複合共振器モデルを示す図である。It is a figure which shows the compound resonator model of the semiconductor laser in the conventional laser measuring device. 半導体レーザの発振波長と内蔵フォトダイオードの出力波形との関係を示す図である。It is a figure which shows the relationship between the oscillation wavelength of a semiconductor laser, and the output waveform of a built-in photodiode. モードホッピング現象によって不連続となった周波数の幅の大きさを示す図である。It is a figure which shows the magnitude | size of the width of the frequency which became discontinuous by the mode hopping phenomenon.

符号の説明Explanation of symbols

1…半導体レーザ、2…フォトダイオード、3…レンズ、4…レーザドライバ、5…電流−電圧変換増幅器、6、7…微分回路、8…周波数計測装置、9,9a…演算装置、10…表示装置、11…信号抽出回路、12…測定対象、13…計数装置、81…FFT部、82…記憶部、83…判定部、84…換算部、86…カウンタ、87…記憶部、88…算出部。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... Photodiode, 3 ... Lens, 4 ... Laser driver, 5 ... Current-voltage conversion amplifier, 6, 7 ... Differentiation circuit, 8 ... Frequency measuring device, 9, 9a ... Arithmetic unit, 10 ... Display 11 ... Signal extraction circuit, 12 ... Measurement target, 13 ... Counter, 81 ... FFT unit, 82 ... Storage unit, 83 ... Determination unit, 84 ... Conversion unit, 86 ... Counter, 87 ... Storage unit, 88 ... Calculation Department.

Claims (12)

測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、
この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、
前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の周波数を測定する周波数測定手段と、
前記干渉波形の周波数を前記発振波形の周波数が基準周波数のときの値に換算する換算手段と、
前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有し、
前記換算手段は、前記発振波形の基準周波数をfとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の周波数をα×fとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とすることを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates the oscillation wavelength of the semiconductor laser such that the frequency of an oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver that converts laser light emitted from the semiconductor laser and return light from the measurement object into an electrical signal;
Removing means for removing a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver;
A frequency measuring means for measuring a frequency of an interference waveform generated by the laser light emitted from the semiconductor laser and the return light from the measurement object, included in the output signal of the light receiver after removing the frequency component;
Conversion means for converting the frequency of the interference waveform into a value when the frequency of the oscillation waveform is a reference frequency;
Have a calculating means for determining the distance between the measurement object from the frequency of the interference waveform after the conversion,
The conversion means has an interference waveform measured by the frequency measurement means when the reference frequency of the oscillation waveform is f and the frequency of the oscillation waveform when the frequency measurement means measures the frequency of the interference waveform is α × f. A distance meter obtained by multiplying a frequency obtained by multiplying 1 / α by a frequency of the converted interference waveform .
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、
この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、
前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の周波数を測定する周波数測定手段と、
前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手段と、
前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有することを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates an oscillation wavelength of the semiconductor laser so that an amplitude of an oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver that converts laser light emitted from the semiconductor laser and return light from the measurement object into an electrical signal;
Removing means for removing a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver;
A frequency measuring means for measuring a frequency of an interference waveform generated by the laser light emitted from the semiconductor laser and the return light from the measurement object, included in the output signal of the light receiver after removing the frequency component;
Conversion means for converting the frequency of the interference waveform into a value when the amplitude of the oscillation waveform is a reference amplitude;
A distance meter comprising: a calculation unit that obtains a distance from the measurement object based on the frequency of the converted interference waveform.
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とを電気信号に変換する受光器と、
この受光器の出力に含まれる信号数を数える計数手段と、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光とによって生じる干渉波形の数を、複数の周期にわたる前記計数手段の計数結果に基づいて算出する算出手段と、
前記干渉波形の数から前記測定対象との距離を求める演算手段とを有することを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates the oscillation wavelength of the semiconductor laser so that at least one of the frequency and the amplitude of the oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver that converts laser light emitted from the semiconductor laser and return light from the measurement object into an electrical signal;
Counting means for counting the number of signals included in the output of the light receiver;
Calculating means for calculating the number of interference waveforms generated by the laser light emitted from the semiconductor laser and the return light from the measurement object based on the counting result of the counting means over a plurality of periods;
A distance meter comprising: calculating means for obtaining a distance to the measurement object from the number of the interference waveforms.
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザの光出力を電気信号に変換する受光器と、
この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、
前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手段と、
前記干渉波形の周波数を前記発振波形の周波数が基準周波数のときの値に換算する換算手段と、
前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有し、
前記換算手段は、前記発振波形の基準周波数をfとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の周波数をα×fとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とすることを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates the oscillation wavelength of the semiconductor laser such that the frequency of an oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver for converting the optical output of the semiconductor laser into an electrical signal;
Removing means for removing a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver;
Frequency measurement for measuring the frequency of the interference waveform generated by the self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, which is included in the output signal of the light receiver after removing the frequency component Means,
Conversion means for converting the frequency of the interference waveform into a value when the frequency of the oscillation waveform is a reference frequency;
Have a calculating means for determining the distance between the measurement object from the frequency of the interference waveform after the conversion,
The conversion means has an interference waveform measured by the frequency measurement means when the reference frequency of the oscillation waveform is f and the frequency of the oscillation waveform when the frequency measurement means measures the frequency of the interference waveform is α × f. A distance meter obtained by multiplying a frequency obtained by multiplying 1 / α by a frequency of the converted interference waveform .
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザの光出力を電気信号に変換する受光器と、
この受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手段と、
前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手段と、
前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手段と、
前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手段とを有することを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates an oscillation wavelength of the semiconductor laser so that an amplitude of an oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver for converting the optical output of the semiconductor laser into an electrical signal;
Removing means for removing a frequency component whose frequency does not change over a plurality of periods from the output signal of the light receiver;
Frequency measurement for measuring the frequency of the interference waveform generated by the self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, which is included in the output signal of the light receiver after removing the frequency component Means,
Conversion means for converting the frequency of the interference waveform into a value when the amplitude of the oscillation waveform is a reference amplitude;
A distance meter comprising: a calculation unit that obtains a distance from the measurement object based on the frequency of the converted interference waveform.
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調するレーザドライバと、
前記半導体レーザの光出力を電気信号に変換する受光器と、
この受光器の出力に含まれる信号数を数える計数手段と、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の数を、複数の周期にわたる前記計数手段の計数結果に基づいて算出する算出手段と、
前記干渉波形の数から前記測定対象との距離を求める演算手段とを有することを特徴とする距離計。
A semiconductor laser that emits laser light to the object to be measured;
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and A laser driver that modulates the oscillation wavelength of the semiconductor laser so that at least one of the frequency and the amplitude of the oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A light receiver for converting the optical output of the semiconductor laser into an electrical signal;
Counting means for counting the number of signals included in the output of the light receiver;
A calculation means for calculating the number of interference waveforms caused by a self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, based on the counting result of the counting means over a plurality of periods;
A distance meter comprising: calculating means for obtaining a distance to the measurement object from the number of the interference waveforms.
請求項2又は5記載の距離計において、
前記換算手段は、前記発振波形の基準振幅をAとし、前記周波数測定手段が干渉波形の周波数を測定したときの発振波形の振幅をα×Aとしたとき、前記周波数測定手段が測定した干渉波形の周波数に1/αを乗算した値を前記換算後の干渉波形の周波数とすることを特徴とする距離計。
The distance meter according to claim 2 or 5,
The conversion means has an interference waveform measured by the frequency measurement means when the reference amplitude of the oscillation waveform is A and the amplitude of the oscillation waveform when the frequency measurement means measures the frequency of the interference waveform is α × A. A distance meter obtained by multiplying a frequency obtained by multiplying 1 / α by a frequency of the converted interference waveform.
請求項3又は6記載の距離計において、
前記算出手段は、外乱光の信号数をNn、1周期前の発振波形の周波数が基準周波数の1/x1倍で振幅が基準振幅のy1倍で、このとき前記計数手段で計測された信号数をNalloldとし、前記干渉波形の数を算出しようとする現在の発振波形の周波数が基準周波数の1/x2倍で振幅が基準振幅のy2倍で、このとき前記計数手段で計測された信号数をNallnewとしたとき、前記干渉波形の数Nを、N=(Nallold−Nn×x1)/y1=(Nallnew−Nn×x2)/y2により算出することを特徴とする距離計。
The distance meter according to claim 3 or 6,
The calculation means sets the number of disturbance light signals to Nn, the frequency of the oscillation waveform one cycle before is 1 / x1 times the reference frequency and the amplitude is y1 times the reference amplitude, and the number of signals measured by the counting means at this time was a Nall old, with y2 times the current reference amplitude amplitude at 1 / x2 times the frequency of the reference frequency of the oscillation waveform to be calculated the number of the interference waveform, the number of signals measured by the counting means at this time Is a new distance meter, wherein the number N of the interference waveforms is calculated by N = (Nall old− Nn × x1) / y1 = (Nall new− Nn × x2) / y2.
周期毎に振幅が変化するように波長変調した波を測定対象に放射し、測定対象に反射して戻る波と前記放射した波との間で発生する干渉を検出し、検出した干渉の情報から複数の周期にわたって周波数が変化しない周波数成分を除去し、前記周波数成分を除去した後の干渉の情報を前記波長変調した波の振幅が基準振幅のときの値に換算し、換算後の干渉に関する情報に基づいて測定対象との距離を求めることを特徴とする距離計測方法。   Waves that have been wavelength-modulated so that the amplitude changes every period are radiated to the measurement object, and interference generated between the wave reflected back to the measurement object and the radiated wave is detected, and the detected interference information is used. Removes frequency components whose frequency does not change over a plurality of periods, converts the interference information after removing the frequency components into a value when the amplitude of the wavelength-modulated wave is a reference amplitude, and information about interference after conversion A distance measurement method characterized in that a distance to a measurement object is obtained based on the method. 周波数と振幅のうち少なくとも一方が周期毎に変化するように波長変調した波を測定対象に放射し、前記波を電気信号に変換する受光器の出力に含まれる信号数を計数し、測定対象に反射して戻る波と前記放射した波との間で発生する干渉波形の数を、複数の周期にわたる前記計数の結果に基づいて算出し、前記干渉波形の数に基づいて測定対象との距離を求めることを特徴とする距離計測方法。   A wave that has been wavelength-modulated so that at least one of frequency and amplitude changes every period is radiated to the measurement object, and the number of signals included in the output of the light receiver that converts the wave into an electrical signal is counted. The number of interference waveforms generated between the reflected wave and the radiated wave is calculated based on the result of the counting over a plurality of periods, and the distance to the measurement object is calculated based on the number of the interference waveforms. A distance measuring method characterized by obtaining. 半導体レーザを用いて測定対象にレーザ光を放射する距離計測方法において、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の振幅が周期毎に変化するように、前記半導体レーザの発振波長を変調する発振手順と、
前記半導体レーザの光出力を電気信号に変換する受光器の出力信号から複数の周期にわたって周波数が変化しない周波数成分を除去する除去手順と、
前記周波数成分を除去した後の受光器の出力信号に含まれる、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の周波数を測定する周波数測定手順と、
前記干渉波形の周波数を前記発振波形の振幅が基準振幅のときの値に換算する換算手順と、
前記換算後の干渉波形の周波数から前記測定対象との距離を求める演算手順とを備えることを特徴とする距離計測方法。
In a distance measurement method for emitting laser light to a measurement object using a semiconductor laser,
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and An oscillation procedure for modulating the oscillation wavelength of the semiconductor laser so that the amplitude of an oscillation waveform with one oscillation period and the second oscillation period as one period changes for each period;
A removal procedure for removing a frequency component whose frequency does not change over a plurality of cycles from an output signal of a light receiver that converts an optical output of the semiconductor laser into an electrical signal;
Frequency measurement for measuring the frequency of the interference waveform generated by the self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, which is included in the output signal of the light receiver after removing the frequency component Procedure and
A conversion procedure for converting the frequency of the interference waveform into a value when the amplitude of the oscillation waveform is a reference amplitude,
A distance measurement method comprising: a calculation procedure for obtaining a distance to the measurement object from the frequency of the converted interference waveform.
半導体レーザを用いて測定対象にレーザ光を放射する距離計測方法において、
発振波長が連続的に単調増加する期間を少なくとも含む第1の発振期間と発振波長が連続的に単調減少する期間を少なくとも含む第2の発振期間とが交互に少なくとも2期間存在し、かつ前記第1の発振期間と前記第2の発振期間を1周期とする発振波形の周波数と振幅のうち少なくとも一方が周期毎に変化するように、前記半導体レーザの発振波長を変調する発振手順と、
前記半導体レーザの光出力を電気信号に変換する受光器の出力に含まれる信号数を数える計数手順と、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形の数を、複数の周期にわたる前記計数手順の計数結果に基づいて算出する算出手順と、
前記干渉波形の数から前記測定対象との距離を求める演算手順とを備えることを特徴とする距離計測方法。
In a distance measurement method for emitting laser light to a measurement object using a semiconductor laser,
The first oscillation period including at least a period in which the oscillation wavelength continuously increases monotonously and the second oscillation period including at least a period in which the oscillation wavelength continuously decreases monotonously exist alternately for at least two periods, and An oscillation procedure for modulating the oscillation wavelength of the semiconductor laser so that at least one of the frequency and the amplitude of the oscillation waveform having one oscillation period and the second oscillation period as one period changes for each period;
A counting procedure for counting the number of signals contained in the output of a light receiver that converts the optical output of the semiconductor laser into an electrical signal;
A calculation procedure for calculating the number of interference waveforms caused by the self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object based on the counting result of the counting procedure over a plurality of periods;
A distance measuring method comprising: a calculation procedure for obtaining a distance to the measurement object from the number of the interference waveforms.
JP2006323183A 2006-11-30 2006-11-30 Distance meter and distance measuring method Expired - Fee Related JP5461762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006323183A JP5461762B2 (en) 2006-11-30 2006-11-30 Distance meter and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006323183A JP5461762B2 (en) 2006-11-30 2006-11-30 Distance meter and distance measuring method

Publications (2)

Publication Number Publication Date
JP2008139059A JP2008139059A (en) 2008-06-19
JP5461762B2 true JP5461762B2 (en) 2014-04-02

Family

ID=39600698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323183A Expired - Fee Related JP5461762B2 (en) 2006-11-30 2006-11-30 Distance meter and distance measuring method

Country Status (1)

Country Link
JP (1) JP5461762B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600554B2 (en) * 2008-09-18 2010-12-15 富士ゼロックス株式会社 Measuring device
JP4600555B2 (en) * 2008-09-18 2010-12-15 富士ゼロックス株式会社 Measuring device
JP5639922B2 (en) * 2011-02-23 2014-12-10 アズビル株式会社 Velocity measuring apparatus and method
GB2492848A (en) * 2011-07-15 2013-01-16 Softkinetic Sensors Nv Optical distance measurement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114506A (en) * 1984-06-29 1986-01-22 Matsushita Electric Ind Co Ltd Optical sensor
JPS6129778A (en) * 1984-07-20 1986-02-10 Matsushita Electric Ind Co Ltd Separating circuit for disturbing lighet noise
JP2885807B2 (en) * 1988-10-21 1999-04-26 東京航空計器株式会社 Distance detection device
JP3356321B2 (en) * 1993-04-14 2002-12-16 科学技術振興事業団 Object shape measuring device
JPH085733A (en) * 1994-06-22 1996-01-12 Hitachi Ltd Radar equipment
JPH11287859A (en) * 1998-03-31 1999-10-19 Suzuki Motor Corp Laser range finder
JP3934545B2 (en) * 2002-12-26 2007-06-20 アロカ株式会社 Ultrasonic Doppler diagnostic device
JP2006162464A (en) * 2004-12-08 2006-06-22 Fujitsu Ltd Method and instrument for measuring coherent crosstalk light
JP5172077B2 (en) * 2005-05-06 2013-03-27 アズビル株式会社 Distance / speed meter and distance / speed measurement method

Also Published As

Publication number Publication date
JP2008139059A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5545915B2 (en) Counting device, distance meter, counting method, and distance measuring method
KR100945209B1 (en) Counting Device, Distance Meter, Counting Method, And Distance Measuring Method
JP5172077B2 (en) Distance / speed meter and distance / speed measurement method
JP5545916B2 (en) Physical quantity sensor and physical quantity measuring method
US20100321668A1 (en) Distance/speed meter and distance/speed measuring method
JP5545914B2 (en) Physical quantity sensor and physical quantity measuring method
JP5461762B2 (en) Distance meter and distance measuring method
JP5461761B2 (en) Distance / speed meter and distance / speed measurement method
JP5184785B2 (en) Distance meter and distance measuring method
JP5596915B2 (en) Physical quantity sensor and physical quantity measuring method
JP5421568B2 (en) Physical quantity sensor and physical quantity measuring method
JP5612240B2 (en) Distance meter and distance measuring method
JP5545913B2 (en) Counting device, distance meter, counting method, and distance measuring method
JP5096123B2 (en) Distance / speed meter and distance / speed measurement method
JP2008175547A (en) Range finder and distance measuring method
JP5484660B2 (en) Distance / vibrometer and distance / speed measurement method
WO2011111180A1 (en) Physical quantity sensor and physical quantity measuring method
JP5484661B2 (en) Physical quantity sensor and physical quantity measuring method
JP5503842B2 (en) Physical quantity sensor and physical quantity measuring method
TW200914799A (en) Counting device, distance meter, counting method, and distance measuring method
JP2011117861A (en) Vibration amplitude measuring instrument and method of measuring vibration amplitude
JP2009222674A (en) Reflection-type photoelectric switch and object detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5461762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees