JP5798668B2 - Counting device, physical quantity sensor, counting method and physical quantity measuring method - Google Patents

Counting device, physical quantity sensor, counting method and physical quantity measuring method Download PDF

Info

Publication number
JP5798668B2
JP5798668B2 JP2014103204A JP2014103204A JP5798668B2 JP 5798668 B2 JP5798668 B2 JP 5798668B2 JP 2014103204 A JP2014103204 A JP 2014103204A JP 2014103204 A JP2014103204 A JP 2014103204A JP 5798668 B2 JP5798668 B2 JP 5798668B2
Authority
JP
Japan
Prior art keywords
counting
signal
period
cycle
representative value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014103204A
Other languages
Japanese (ja)
Other versions
JP2014170010A (en
Inventor
達也 上野
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2014103204A priority Critical patent/JP5798668B2/en
Publication of JP2014170010A publication Critical patent/JP2014170010A/en
Application granted granted Critical
Publication of JP5798668B2 publication Critical patent/JP5798668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、信号の数を数える計数装置、および計数装置を用いて干渉波形の数を測定し測定対象の物理量を求める干渉型の物理量センサに関するものである。   The present invention relates to a counting device that counts the number of signals, and an interference-type physical quantity sensor that measures the number of interference waveforms by using the counting device to obtain a physical quantity to be measured.

従来より、半導体レーザの自己結合効果を用いた波長変調型のレーザ計測器が提案されている(特許文献1参照)。このレーザ計測器の構成を図32に示す。図32のレーザ計測器は、物体210にレーザ光を放射する半導体レーザ201と、半導体レーザ201の光出力を電気信号に変換するフォトダイオード202と、半導体レーザ201からの光を集光して物体210に照射すると共に、物体210からの戻り光を集光して半導体レーザ201に入射させるレンズ203と、半導体レーザ201に発振波長が連続的に増加する第1の発振期間と発振波長が連続的に減少する第2の発振期間とを交互に繰り返させるレーザドライバ204と、フォトダイオード202の出力電流を電圧に変換して増幅する電流−電圧変換増幅部205と、電流−電圧変換増幅部205の出力電圧を2回微分する信号抽出回路206と、信号抽出回路206の出力電圧に含まれるモードホップパルス(以下、MHPとする)の数を数える計数装置207と、物体210との距離および物体210の速度を算出する演算装置208と、演算装置208の算出結果を表示する表示装置209とを有する。   Conventionally, a wavelength modulation type laser measuring instrument using the self-coupling effect of a semiconductor laser has been proposed (see Patent Document 1). The structure of this laser measuring instrument is shown in FIG. 32 includes a semiconductor laser 201 that emits laser light to an object 210, a photodiode 202 that converts the light output of the semiconductor laser 201 into an electrical signal, and a light that is collected from the semiconductor laser 201. 210 irradiates the lens 210 and collects the return light from the object 210 and makes it incident on the semiconductor laser 201. The first oscillation period and the oscillation wavelength continuously increase in the semiconductor laser 201. Of the laser driver 204 that alternately repeats the second oscillation period that decreases to a current, a current-voltage conversion amplification unit 205 that converts and amplifies the output current of the photodiode 202 into a voltage, and a current-voltage conversion amplification unit 205 A signal extraction circuit 206 for differentiating the output voltage twice, and a mode hop pulse (hereinafter referred to as MHP) included in the output voltage of the signal extraction circuit 206 Having a counting device 207 which counts the number of which), an arithmetic unit 208 which calculates the speed of the distance and the object 210 with the object 210, and a display device 209 for displaying the calculation result of the arithmetic unit 208.

レーザドライバ204は、時間に関して一定の変化率で増減を繰り返す三角波駆動電流を注入電流として半導体レーザ201に供給する。これにより、半導体レーザ201は、発振波長が一定の変化率で連続的に増加する第1の発振期間と発振波長が一定の変化率で連続的に減少する第2の発振期間とを交互に繰り返すように駆動される。図33は、半導体レーザ201の発振波長の時間変化を示す図である。図33において、P1は第1の発振期間、P2は第2の発振期間、λaは各期間における発振波長の最小値、λbは各期間における発振波長の最大値、Ttは三角波の周期である。   The laser driver 204 supplies a triangular wave drive current that repeatedly increases and decreases at a constant change rate with respect to time to the semiconductor laser 201 as an injection current. Accordingly, the semiconductor laser 201 alternately repeats the first oscillation period in which the oscillation wavelength continuously increases at a constant change rate and the second oscillation period in which the oscillation wavelength continuously decreases at a constant change rate. To be driven. FIG. 33 is a diagram showing the change over time of the oscillation wavelength of the semiconductor laser 201. In FIG. 33, P1 is the first oscillation period, P2 is the second oscillation period, λa is the minimum value of the oscillation wavelength in each period, λb is the maximum value of the oscillation wavelength in each period, and Tt is the period of the triangular wave.

半導体レーザ201から出射したレーザ光は、レンズ203によって集光され、物体210に入射する。物体210で反射された光は、レンズ203によって集光され、半導体レーザ201に入射する。フォトダイオード202は、半導体レーザ201の光出力を電流に変換する。電流−電圧変換増幅部205は、フォトダイオード202の出力電流を電圧に変換して増幅し、信号抽出回路206は、電流−電圧変換増幅部205の出力電圧を2回微分する。計数装置207は、信号抽出回路206の出力電圧に含まれるMHPの数を第1の発振期間P1と第2の発振期間P2の各々について数える。演算装置208は、半導体レーザ1の最小発振波長λaと最大発振波長λbと第1の発振期間P1におけるMHPの数と第2の発振期間P2におけるMHPの数に基づいて、物体210との距離および物体210の速度を算出する。このような自己結合型のレーザ計測器の技術を利用して、MHPの数を測定すれば、このMHPの数から物体の振動周波数を算出することが可能である。   Laser light emitted from the semiconductor laser 201 is collected by the lens 203 and enters the object 210. The light reflected by the object 210 is collected by the lens 203 and enters the semiconductor laser 201. The photodiode 202 converts the optical output of the semiconductor laser 201 into a current. The current-voltage conversion amplification unit 205 converts and amplifies the output current of the photodiode 202 into a voltage, and the signal extraction circuit 206 differentiates the output voltage of the current-voltage conversion amplification unit 205 twice. The counting device 207 counts the number of MHPs included in the output voltage of the signal extraction circuit 206 for each of the first oscillation period P1 and the second oscillation period P2. Based on the minimum oscillation wavelength λa and the maximum oscillation wavelength λb of the semiconductor laser 1, the number of MHPs in the first oscillation period P1, and the number of MHPs in the second oscillation period P2, the arithmetic unit 208 The speed of the object 210 is calculated. If the number of MHPs is measured using such a self-coupled laser measuring device technique, the vibration frequency of the object can be calculated from the number of MHPs.

以上のようなレーザ計測器では、例えば外乱光などのノイズをMHPとして数えたり、信号の歯抜けのために数えられないMHPがあったりして、計数装置で数えるMHPの数に誤差が生じ、算出した距離や振動周波数等の物理量に誤差が生じるという問題点があった。
そこで、発明者は、計数期間中のMHPの周期を測定し、測定結果から計数期間中の周期の度数分布を作成し、度数分布からMHPの周期の代表値を算出し、度数分布から、代表値の第1の所定数倍以下である階級の度数の総和Nsと、代表値の第2の所定数倍以上である階級の度数の総和Nwとを求め、これらの度数NsとNwに基づいてMHPの計数結果を補正することにより、計数時の欠落や過剰な計数の影響を除去することができる計数装置を提案した(特許文献2参照)。
In the laser measuring instrument as described above, for example, noise such as ambient light is counted as MHP, or there is MHP that cannot be counted due to missing teeth of the signal, and an error occurs in the number of MHPs counted by the counting device, There is a problem that an error occurs in the physical quantity such as the calculated distance and vibration frequency.
Therefore, the inventor measures the period of MHP during the counting period, creates a frequency distribution of the period during the counting period from the measurement result, calculates a representative value of the period of MHP from the frequency distribution, and represents the representative value from the frequency distribution. A total sum Ns of class frequencies that is less than or equal to a first predetermined number of values and a total sum Nw of class frequencies that are greater than or equal to a second predetermined number of values of the representative value are obtained, and based on these frequencies Ns and Nw By correcting the counting result of MHP, a counting device has been proposed that can eliminate the influence of missing or excessive counting during counting (see Patent Document 2).

特開2006−313080号公報JP 2006-31080 A 特開2009−47676号公報JP 2009-47676 A

特許文献2に開示された計数装置によれば、SN(Signal to Noise ratio)が極端に低下しない限り、概ね良好な補正を行うことができる。
しかしながら、特許文献2に開示された計数装置では、短距離測定で信号強度がヒステリシス幅と比較して極端に強い場合、計数装置に入力される信号に2値化のしきい値付近でMHPよりも高周波のノイズによってチャタリングが生じ、短い周期の信号やMHPの本来の周期の半分程度の周期の信号が多発する場合がある。この場合、MHPの本来の周期よりも短い周期が周期の分布の代表値になってしまうので、MHPの計数結果を正しく補正することができず、MHPの計数結果が本来の値よりも例えば数倍大きくなってしまうという問題点があった。
According to the counting device disclosed in Patent Document 2, generally good correction can be performed as long as SN (Signal to Noise ratio) does not extremely decrease.
However, in the counting device disclosed in Patent Document 2, when the signal strength is extremely strong compared to the hysteresis width in short distance measurement, the signal input to the counting device is compared with the binarization threshold value by MHP. However, chattering occurs due to high-frequency noise, and a signal with a short period or a signal with a period of about half the original period of MHP may occur frequently. In this case, since a period shorter than the original period of the MHP becomes a representative value of the distribution of the period, the MHP count result cannot be corrected correctly, and the MHP count result is, for example, several There was a problem of becoming twice as large.

本発明は、上記課題を解決するためになされたもので、計数装置に入力される信号に高周波のノイズが連続して発生している場合であっても、計数誤差を補正することができる計数装置および計数方法、MHPの計数誤差を補正して物理量の測定精度を向上させることができる物理量センサおよび物理量計測方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and is capable of correcting the counting error even when high-frequency noise is continuously generated in the signal input to the counting device. It is an object of the present invention to provide a physical quantity sensor and a physical quantity measuring method that can improve the measurement accuracy of a physical quantity by correcting the counting error of the apparatus, the counting method, and MHP.

本発明は、特定の物理量と信号の数とが線形の関係を有し、前記特定の物理量が一定の場合は略単一周波数となる前記信号を数える計数装置において、一定の計数期間における入力信号の半周期の数を数える信号計数手段と、前記計数期間中の前記入力信号の半周期を信号の半周期分が入力される度に測定する信号半周期測定手段と、この信号半周期測定手段の測定結果から前記計数期間中の入力信号の半周期の度数分布を作成する度数分布作成手段と、前記度数分布から前記入力信号の半周期の分布の代表値を算出する代表値算出手段と、前記信号半周期測定手段の測定結果から、前記代表値の0.5倍未満である半周期の数の総和Nsと、前記代表値の2n倍以上(2n+2)倍未満(nは1以上の自然数)である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいて前記信号計数手段の計数結果を補正し前記入力信号の数を算出する補正値算出手段とを備えることを特徴とするものである。
また、本発明の計数装置の1構成例において、前記補正値算出手段は、前記信号計数手段の計数結果をN、前記代表値をT0、前記信号の半周期がとり得る最大値をTmaxとしたとき、補正後の計数結果N’を、

Figure 0005798668
により求めることを特徴とするものである。 The present invention provides a counting device that counts the signal having a substantially single frequency when the specific physical quantity and the number of signals have a linear relationship, and the specific physical quantity is constant. Signal counting means for counting the number of half cycles of the signal, signal half-cycle measuring means for measuring the half-cycle of the input signal during the counting period every time a half-cycle of the signal is input, and this signal half-cycle measuring means A frequency distribution creating means for creating a frequency distribution of the half cycle of the input signal during the counting period from the measurement result of, and a representative value calculating means for calculating a representative value of the half cycle distribution of the input signal from the frequency distribution; From the measurement result of the signal half-cycle measuring means, the sum Ns of the number of half-cycles that is less than 0.5 times the representative value and less than 2n times (2n + 2) times the representative value (n is a natural number of 1 or more) ) Total number of half cycles Nw seeking and n, it is characterized in further comprising a correction value calculating means for calculating the number of corrected said input signal cycles of the input signal counting means on the basis of the frequencies Ns and Nw n.
Further, in one configuration example of the counting device according to the present invention, the correction value calculating means is N as the counting result of the signal counting means, T0 as the representative value, and Tmax as the maximum value that the half cycle of the signal can take. When the corrected count result N ′ is
Figure 0005798668
It is characterized by calculating | requiring by.

また、本発明の計数装置の1構成例は、さらに、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期と、その前後に測定された半周期のうち少なくとも一方とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とする信号結合手段を備え、前記信号計数手段は、前記入力信号の数を数える代わりに、前記計数期間における前記信号結合手段の処理後の信号を数えることを特徴とするものである。
また、本発明の計数装置の1構成例において、前記信号結合手段は、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とすることを、結合後の半周期が前記代表値の0.5倍以上になるまで行うことを特徴とするものである。
また、本発明の計数装置の1構成例において、前記信号結合手段は、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期が前記代表値の0.5倍以上の長さのm番目の半周期Tmと前記代表値の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた信号波形をm番目の半周期分の波形とすることを特徴とするものである。
また、本発明の計数装置の1構成例において、前記代表値は、中央値、最頻値、平均値、階級値と度数との積が最大となる階級値のうちのいずれか1つである。
In addition, one configuration example of the counting device according to the present invention further includes a half cycle having a length less than 0.5 times the representative value and a half measured before and after the measurement result of the signal half cycle measuring unit. The signal counting means includes a signal combining means that sets a period that is combined with at least one of the periods as a half period after combining, and a signal waveform that combines the periods as a waveform corresponding to a half period of one signal. Instead of counting the number of signals, the signal after processing of the signal combining means in the counting period is counted.
Further, in one configuration example of the counting device according to the present invention, the signal combining means measures the measurement result of the signal half-cycle measuring means immediately after a half-cycle having a length less than 0.5 times the representative value. The combined cycle is defined as a combined half cycle, and the combined signal waveform is set to a waveform corresponding to a half cycle of one signal. The process is performed until it becomes five times or more.
Further, in one configuration example of the counting device according to the present invention, the signal combining unit is configured such that, for the measurement result of the signal half cycle measuring unit, a half cycle having a length less than 0.5 times the representative value is the representative value. When sandwiched between the m-th half cycle Tm having a length of 0.5 times or more and the p-th half cycle Tp (m and p are natural numbers) having a length of 0.5 times or more of the representative value, When (m + p) is an even number, the combined period from half period Tm to half period Tp is taken as the combined half period, and when (m + p) is an odd number, half period Tm to half period T p −1 are combined. The period is a half period after combining, and the signal waveform obtained by combining the periods is a waveform corresponding to the m-th half period.
Further, in one configuration example of the counting device of the present invention, the representative value is any one of a median value, a mode value, an average value, and a class value that maximizes the product of the class value and the frequency. .

また、本発明の物理量センサは、測定対象にレーザ光を放射する半導体レーザと、発振波長が連続的に単調増加する第1の発振期間と発振波長が連続的に単調減少する第2の発振期間のうち少なくとも一方が繰り返し存在するように前記半導体レーザを動作させる発振波長変調手段と、前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手段と、この検出手段の出力信号を入力とし、前記第1の発振期間と前記第2の発振期間の各々を計数期間として、前記干渉波形の数を数える計数装置と、この計数装置の計数結果から前記測定対象の物理量を求める演算手段とを備えることを特徴とするものである。   The physical quantity sensor of the present invention includes a semiconductor laser that emits laser light to a measurement target, a first oscillation period in which the oscillation wavelength continuously increases monotonously, and a second oscillation period in which the oscillation wavelength continuously decreases monotonously. Oscillation wavelength modulation means for operating the semiconductor laser so that at least one of them repeatedly exists, and an interference waveform generated by a self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object A detecting means for detecting an electrical signal; and a counting device for counting the number of the interference waveforms, with an output signal of the detecting means as an input, and each of the first oscillation period and the second oscillation period as a counting period; And a calculating means for obtaining the physical quantity of the measurement object from the counting result of the counting device.

また、本発明は、特定の物理量と信号の数とが線形の関係を有し、前記特定の物理量が一定の場合は略単一周波数となる前記信号を数える計数方法において、一定の計数期間における入力信号の半周期の数を数える信号計数手順と、前記計数期間中の前記入力信号の半周期を信号の半周期分が入力される度に測定する信号半周期測定手順と、この信号半周期測定手順の測定結果から前記計数期間中の入力信号の半周期の度数分布を作成する度数分布作成手順と、前記度数分布から前記入力信号の半周期の分布の代表値を算出する代表値算出手順と、前記信号半周期測定手順の測定結果から、前記代表値の0.5倍未満である半周期の数の総和Nsと、前記代表値の2n倍以上(2n+2)倍未満(nは1以上の自然数)である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいて前記信号計数手順の計数結果を補正し前記入力信号の数を算出する補正値算出手順とを備えることを特徴とするものである。
また、本発明の計数方法の1構成例において、前記補正値算出手順は、前記信号計数手順の計数結果をN、前記代表値をT0、前記信号の半周期がとり得る最大値をTmaxとしたとき、補正後の計数結果N’を、

Figure 0005798668
により求めることを特徴とするものである。 Further, the present invention provides a counting method in which the specific physical quantity has a linear relationship with the number of signals, and the signal has a substantially single frequency when the specific physical quantity is constant. A signal counting procedure for counting the number of half cycles of the input signal, a signal half cycle measuring procedure for measuring the half cycle of the input signal during the counting period every time a half cycle of the signal is input, and the signal half cycle A frequency distribution creating procedure for creating a frequency distribution of the half cycle of the input signal during the counting period from the measurement result of the measuring procedure, and a representative value calculating procedure for calculating a representative value of the half cycle distribution of the input signal from the frequency distribution From the measurement result of the signal half-cycle measurement procedure, the sum Ns of the number of half-cycles that is less than 0.5 times the representative value, and less than 2n times (2n + 2) times the representative value (n is 1 or more) The total number of half-cycles) Seeking and nw n, it is characterized in further comprising a correction value calculation procedure of calculating the number of the frequencies Ns and Nw n on the basis of correcting the counting result of the signal counting procedure the input signal.
Further, in one configuration example of the counting method of the present invention, the correction value calculation procedure includes N as the counting result of the signal counting procedure, T0 as the representative value, and Tmax as the maximum value that the half cycle of the signal can take. When the corrected count result N ′ is
Figure 0005798668
It is characterized by calculating | requiring by.

また、本発明の計数方法の1構成例は、さらに、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期と、その前後に測定された半周期のうち少なくとも一方とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とする信号結合手順を備え、前記信号計数手順は、前記入力信号の数を数える代わりに、前記計数期間における前記信号結合手順の処理後の信号を数えることを特徴とするものである。
また、本発明の計数方法の1構成例において、前記信号結合手順は、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とすることを、結合後の半周期が前記代表値の0.5倍以上になるまで行うことを特徴とするものである。
また、本発明の計数方法の1構成例において、前記信号結合手順は、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期が前記代表値の0.5倍以上の長さのm番目の半周期Tmと前記代表値の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた信号波形をm番目の半周期分の波形とすることを特徴とするものである。
また、本発明の計数方法の1構成例において、前記代表値は、中央値、最頻値、平均値、階級値と度数との積が最大となる階級値のうちのいずれか1つである。
In addition, one configuration example of the counting method according to the present invention further includes a half cycle having a length less than 0.5 times the representative value and a half measured before and after the measurement result of the signal half cycle measurement procedure. A signal combining procedure in which a cycle combined with at least one of the cycles is a half cycle after combining, and a signal waveform combining the cycles is a waveform corresponding to a half cycle of one signal, and the signal counting procedure includes the input Instead of counting the number of signals, the signals after the processing of the signal combining procedure in the counting period are counted.
Further, in one configuration example of the counting method of the present invention, the signal combining procedure may measure the measurement result of the signal half cycle measurement procedure at a half cycle having a length less than 0.5 times the representative value and immediately thereafter. The combined cycle is defined as a combined half cycle, and the combined signal waveform is set to a waveform corresponding to a half cycle of one signal. The process is performed until it becomes five times or more.
Further, in one configuration example of the counting method of the present invention, the signal combining procedure may be configured such that, for the measurement result of the signal half cycle measurement procedure, a half cycle having a length less than 0.5 times the representative value is the representative value. When sandwiched between the m-th half cycle Tm having a length of 0.5 times or more and the p-th half cycle Tp (m and p are natural numbers) having a length of 0.5 times or more of the representative value, When (m + p) is an even number, the combined period from half period Tm to half period Tp is taken as the combined half period, and when (m + p) is an odd number, half period Tm to half period T p −1 are combined. The period is a half period after combining, and the signal waveform obtained by combining the periods is a waveform corresponding to the m-th half period.
Moreover, in one configuration example of the counting method of the present invention, the representative value is any one of a median value, a mode value, an average value, and a class value that maximizes the product of the class value and the frequency. .

また、本発明の物理量計測方法は、発振波長が連続的に単調増加する第1の発振期間と発振波長が連続的に単調減少する第2の発振期間のうち少なくとも一方が繰り返し存在するように半導体レーザを動作させる発振手順と、前記半導体レーザから放射されたレーザ光と測定対象からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手順と、この検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記第1の発振期間と前記第2の発振期間の各々について数える信号抽出手順と、この信号抽出手順の計数結果から前記測定対象の物理量を求める演算手順とを備え、前記信号抽出手順は、前記検出手順で得られた出力信号を入力とし、前記第1の発振期間と前記第2の発振期間の各々を計数期間として、前記の計数方法を用いることを特徴とするものである。 Further, the physical quantity measuring method of the present invention is a semiconductor in which at least one of the first oscillation period in which the oscillation wavelength continuously increases monotonically and the second oscillation period in which the oscillation wavelength continuously decreases monotonously exists. An oscillation procedure for operating the laser, a detection procedure for detecting an electrical signal including an interference waveform caused by a self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object, and the detection procedure A signal extraction procedure for counting the number of the interference waveforms included in the output signal for each of the first oscillation period and the second oscillation period, and the physical quantity of the measurement target is obtained from the counting result of the signal extraction procedure. A calculation procedure, wherein the signal extraction procedure receives the output signal obtained by the detection procedure, and each of the first oscillation period and the second oscillation period is a counting period. , And it is characterized in the use of the counting method.

本発明によれば、計数期間中の入力信号の半周期の数を数え、計数期間中の入力信号の半周期を測定し、この測定結果から計数期間中の入力信号の半周期の度数分布を作成し、この度数分布から入力信号の半周期の分布の代表値を算出し、代表値の0.5倍未満である半周期の数の総和Nsと、代表値の2n倍以上(2n+2)倍未満である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいて信号計数手段の計数結果を補正することにより、計数装置に入力される信号に高周波のノイズが連続して発生している場合であっても、計数誤差を高精度に補正することができる。 According to the present invention, the number of half cycles of the input signal during the counting period is counted, the half cycle of the input signal during the counting period is measured, and the frequency distribution of the half cycle of the input signal during the counting period is determined from the measurement result. The representative value of the half-cycle distribution of the input signal is calculated from this frequency distribution, and the total number Ns of half-cycles that is less than 0.5 times the representative value and 2n times or more (2n + 2) times the representative value less than a is determined and the sum Nw n of the number of half cycles, by correcting the counting result of the signal counting means on the basis of the frequencies Ns and Nw n, high-frequency noise is continuous to a signal input to the counting device Even if this occurs, the counting error can be corrected with high accuracy.

また、本発明では、信号半周期測定手段の測定結果について、代表値の0.5倍未満の長さの半周期と、その前後に測定された半周期のうち少なくとも一方とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とする信号結合手段を設け、信号計数手段が、入力信号の数を数える代わりに、計数期間における信号結合手段の処理後の信号を数えることにより、計数誤差を更に少なくすることができる。   Further, in the present invention, the measurement result of the signal half-cycle measuring means is obtained by combining a half-cycle having a length less than 0.5 times the representative value and at least one of the half-cycles measured before and after the half-cycle. A signal coupling means is provided for making the half cycle after coupling, and combining the signal waveforms into the half cycle of one signal, and the signal counting means performs signal coupling in the counting period instead of counting the number of input signals. By counting the signal after the processing of the means, the counting error can be further reduced.

また、本発明では、信号結合手段が、信号半周期測定手段の測定結果について、代表値の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とすることを、結合後の半周期が代表値の0.5倍以上になるまで行うことにより、計数誤差を更に少なくすることができる。   Further, in the present invention, the signal combining means has a period obtained by combining a half period having a length less than 0.5 times the representative value and a half period measured immediately after the measurement result of the signal half period measuring means. Counting is performed by setting the half-cycle after combination and setting the signal waveform that combines the periods to be a waveform corresponding to a half cycle of one signal until the half-cycle after combination becomes 0.5 times or more of the representative value. The error can be further reduced.

また、本発明では、信号結合手段が、信号半周期測定手段の測定結果について、代表値の0.5倍未満の長さの半周期が代表値の0.5倍以上の長さのm番目の半周期Tmと代表値の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた信号波形をm番目の半周期分の波形とすることにより、計数装置に入力される信号に測定対象の信号の1/4周期以上のバーストノイズやポップコーンノイズが混入した場合でも、計数誤差を少なくすることができる。 Further, in the present invention, the signal combining means is the m-th of the measurement result of the signal half-cycle measuring means in which the half cycle having a length less than 0.5 times the representative value is 0.5 times or more the representative value. Between the half cycle Tm and the p-th half cycle Tp (m and p are natural numbers) having a length equal to or more than 0.5 times the representative value, when (m + p) is an even number, The combined period up to half period Tp is the combined half period, and if (m + p) is an odd number, the combined period from half period Tm to half period T p -1 is the combined half period. By making the signal waveform into the waveform for the m-th half cycle, even when burst noise or popcorn noise of 1/4 or more cycle of the signal to be measured is mixed in the signal input to the counting device, the counting error is reduced. Can be reduced.

また、本発明では、計数誤差を高精度に補正可能な計数装置を用いることにより、計数装置に入力される信号に干渉波形よりも高周波のノイズが連続して発生している場合であっても、測定対象の物理量を高精度に計測することができる。   Further, in the present invention, even when high-frequency noise is continuously generated in the signal input to the counting device by using the counting device capable of correcting the counting error with high accuracy, the signal input to the counting device. The physical quantity to be measured can be measured with high accuracy.

本発明の第1の実施の形態に係る振動周波数計測装置の構成を示すブロック図である。It is a block diagram which shows the structure of the vibration frequency measuring device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態における電流−電圧変換増幅部の出力電圧波形およびフィルタ部の出力電圧波形を模式的に示す波形図である。It is a wave form diagram showing typically the output voltage waveform of the current-voltage conversion amplification part in the 1st embodiment of the present invention, and the output voltage waveform of a filter part. モードホップパルスについて説明するための図である。It is a figure for demonstrating a mode hop pulse. 半導体レーザの発振波長とフォトダイオードの出力波形との関係を示す図である。It is a figure which shows the relationship between the oscillation wavelength of a semiconductor laser, and the output waveform of a photodiode. 本発明の第1の実施の形態における計数装置と演算装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the counting device and arithmetic unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の計数結果補正部の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the count result correction | amendment part of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置のカウンタの動作を説明するための図である。It is a figure for demonstrating operation | movement of the counter of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の半周期測定部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the half cycle measuring part of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の代表値算出部が代表値を算出する期間と補正対象の計数期間との関係を説明するための図である。It is a figure for demonstrating the relationship between the period which the representative value calculation part of the counting device in the 1st Embodiment of this invention calculates a representative value, and the count period of correction | amendment object. 本発明の第1の実施の形態における演算装置の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the arithmetic unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算装置の2値化部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the binarization part of the arithmetic unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算装置の周期測定部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the period measurement part of the arithmetic unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における計数装置の計数結果を2値化した2値化出力の周期の度数分布の1例を示す図である。It is a figure which shows an example of the frequency distribution of the period of the binarization output which binarized the count result of the counting device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算装置のカウンタの計数結果の補正に用いる度数を模式的に表す図である。It is a figure which represents typically the frequency used for correction | amendment of the count result of the counter of the arithmetic unit in the 1st Embodiment of this invention. 本発明の第1の実施の形態における演算装置のカウンタの計数結果の補正原理を説明するための図である。It is a figure for demonstrating the correction principle of the count result of the counter of the arithmetic unit in the 1st Embodiment of this invention. 従来の計数装置の問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional counting device. 計数装置に入力される信号に高周波のノイズが混入した場合のモードホップパルスの周期の度数分布の1例を示す図である。It is a figure which shows one example of the frequency distribution of the period of a mode hop pulse when the high frequency noise mixes in the signal input into a counting device. モードホップパルスの半周期の度数分布の1例を示す図である。It is a figure which shows one example of the frequency distribution of the half period of a mode hop pulse. 図18の2値化出力に応じて作成される周期の度数分布を示す図である。It is a figure which shows the frequency distribution of the period produced according to the binarization output of FIG. 物体の振動の最大速度と物体との距離の比が半導体レーザの波長変化率よりも大きい場合に、本発明の第1の実施の形態に係る振動周波数計測装置で得られる信号を説明するための図である。For explaining a signal obtained by the vibration frequency measuring apparatus according to the first embodiment of the present invention when the ratio of the maximum speed of vibration of the object and the distance between the object is larger than the wavelength change rate of the semiconductor laser. FIG. 本発明の第2の実施の形態における計数装置の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the counting device in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における計数装置の計数結果補正部の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the count result correction | amendment part of the counting device in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における計数装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the counting device in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における計数装置の信号結合部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the signal coupling | bond part of the counting device in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における計数装置の信号結合部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the signal coupling | bond part of the counting device in the 3rd Embodiment of this invention. 本発明の参考例における計数装置の構成の1例を示すブロック図である。It is a block diagram which shows an example of a structure of the counting device in the reference example of this invention. 本発明の参考例における計数装置の計数結果補正部の構成の1例を示すブロック図である。It is a block diagram which shows one example of a structure of the count result correction | amendment part of the counting device in the reference example of this invention. 本発明の参考例における計数装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the counting apparatus in the reference example of this invention. 本発明の参考例における計数装置の信号結合部の動作を説明するための図である。It is a figure for demonstrating operation | movement of the signal coupling | bond part of the counting device in the reference example of this invention. 従来のレーザ計測器の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional laser measuring device. 図32のレーザ計測器における半導体レーザの発振波長の時間変化の1例を示す図である。It is a figure which shows one example of the time change of the oscillation wavelength of a semiconductor laser in the laser measuring device of FIG.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る振動周波数計測装置の構成を示すブロック図である。
図1の振動周波数計測装置は、測定対象の物体10にレーザ光を放射する半導体レーザ1と、半導体レーザ1の光出力を電気信号に変換するフォトダイオード2と、半導体レーザ1からの光を集光して放射すると共に、物体10からの戻り光を集光して半導体レーザ1に入射させるレンズ3と、半導体レーザ1を駆動する発振波長変調手段となるレーザドライバ4と、フォトダイオード2の出力電流を電圧に変換して増幅する電流−電圧変換増幅部5と、電流−電圧変換増幅部5の出力電圧から搬送波を除去するフィルタ部6と、フィルタ部6の出力電圧に含まれる自己結合信号であるモードホップパルス(MHP)の数を数える計数装置7と、計数装置7の計数結果に基づいて物体10の振動周波数を求める演算装置8と、演算装置8の計測結果を表示する表示装置9とを有する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the vibration frequency measuring apparatus according to the first embodiment of the present invention.
The vibration frequency measuring apparatus of FIG. 1 collects light from a semiconductor laser 1 that emits laser light to an object 10 to be measured, a photodiode 2 that converts the light output of the semiconductor laser 1 into an electrical signal, and light from the semiconductor laser 1. A lens 3 that radiates and emits light, collects return light from the object 10 and makes it incident on the semiconductor laser 1, a laser driver 4 that serves as an oscillation wavelength modulation unit that drives the semiconductor laser 1, and an output of the photodiode 2 A current-voltage conversion amplification unit 5 that converts current into voltage and amplifies it; a filter unit 6 that removes a carrier wave from the output voltage of the current-voltage conversion amplification unit 5; and a self-coupled signal included in the output voltage of the filter unit 6 A counting device 7 that counts the number of mode hop pulses (MHP), a computing device 8 that determines the vibration frequency of the object 10 based on the counting result of the counting device 7, and a computing device 8 And a display device 9 for displaying the results.

フォトダイオード2と電流−電圧変換増幅部5とは、検出手段を構成している。以下、説明容易にするために、半導体レーザ1には、モードホッピング現象を持たない型(VCSEL型、DFBレーザ型)のものが用いられているものと想定する。   The photodiode 2 and the current-voltage conversion amplification unit 5 constitute detection means. Hereinafter, for ease of explanation, it is assumed that a semiconductor laser 1 of a type that does not have a mode hopping phenomenon (VCSEL type, DFB laser type) is used.

レーザドライバ4は、時間に関して一定の変化率で増減を繰り返す三角波駆動電流を注入電流として半導体レーザ1に供給する。これにより、半導体レーザ1は、注入電流の大きさに比例して発振波長が一定の変化率で連続的に増加する第1の発振期間P1と発振波長が一定の変化率で連続的に減少する第2の発振期間P2とを交互に繰り返すように駆動される。このときの半導体レーザ1の発振波長の時間変化は、図33に示したとおりである。本実施の形態では、発振波長の最大値λb及び発振波長の最小値λaはそれぞれ常に一定になされており、それらの差λb−λaも常に一定になされている。   The laser driver 4 supplies a triangular wave drive current that repeatedly increases and decreases at a constant change rate with respect to time to the semiconductor laser 1 as an injection current. As a result, the semiconductor laser 1 has a first oscillation period P1 in which the oscillation wavelength continuously increases at a constant change rate in proportion to the magnitude of the injection current, and the oscillation wavelength continuously decreases at a constant change rate. It is driven to alternately repeat the second oscillation period P2. The time variation of the oscillation wavelength of the semiconductor laser 1 at this time is as shown in FIG. In the present embodiment, the maximum value λb of the oscillation wavelength and the minimum value λa of the oscillation wavelength are always constant, and the difference λb−λa is also always constant.

半導体レーザ1から出射したレーザ光は、レンズ3によって集光され、物体10に入射する。物体10で反射された光は、レンズ3によって集光され、半導体レーザ1に入射する。ただし、レンズ3による集光は必須ではない。フォトダイオード2は、半導体レーザ1の内部又はその近傍に配置され、半導体レーザ1の光出力を電流に変換する。電流−電圧変換増幅部5は、フォトダイオード2の出力電流を電圧に変換して増幅する。   Laser light emitted from the semiconductor laser 1 is collected by the lens 3 and enters the object 10. The light reflected by the object 10 is collected by the lens 3 and enters the semiconductor laser 1. However, condensing by the lens 3 is not essential. The photodiode 2 is disposed in the semiconductor laser 1 or in the vicinity thereof, and converts the optical output of the semiconductor laser 1 into a current. The current-voltage conversion amplification unit 5 converts the output current of the photodiode 2 into a voltage and amplifies it.

フィルタ部6は、変調波から重畳信号を抽出する機能を有するものである。図2(A)は電流−電圧変換増幅部5の出力電圧波形を模式的に示す図、図2(B)はフィルタ部6の出力電圧波形を模式的に示す図である。これらの図は、フォトダイオード2の出力に相当する図2(A)の波形(変調波)から、図2の半導体レーザ1の発振波形(搬送波)を除去して、図2(B)のMHP波形(干渉波形)を抽出する過程を表している。   The filter unit 6 has a function of extracting a superimposed signal from the modulated wave. FIG. 2A is a diagram schematically showing the output voltage waveform of the current-voltage conversion amplification unit 5, and FIG. 2B is a diagram schematically showing the output voltage waveform of the filter unit 6. These figures are obtained by removing the oscillation waveform (carrier wave) of the semiconductor laser 1 of FIG. 2 from the waveform (modulated wave) of FIG. 2A corresponding to the output of the photodiode 2, and the MHP of FIG. A process of extracting a waveform (interference waveform) is shown.

ここで、自己結合信号であるMHPについて説明する。図3に示すように、ミラー層1013から物体10までの距離をL、レーザの発振波長をλとすると、以下の共振条件を満足するとき、物体10からの戻り光と半導体レーザ1の光共振器内のレーザ光は強め合い、レーザ出力がわずかに増加する。
L=qλ/2 ・・・(1)
式(1)において、qは整数である。この現象は、物体10からの散乱光が極めて微弱であっても、半導体レーザ1の共振器内の見かけの反射率が増加することにより、増幅作用が生じ、十分観測できる。
Here, the MHP that is a self-coupled signal will be described. As shown in FIG. 3, when the distance from the mirror layer 1013 to the object 10 is L and the oscillation wavelength of the laser is λ, the return light from the object 10 and the optical resonance of the semiconductor laser 1 are satisfied when the following resonance conditions are satisfied. The laser light in the chamber strengthens and the laser output increases slightly.
L = qλ / 2 (1)
In Formula (1), q is an integer. This phenomenon can be sufficiently observed even if the scattered light from the object 10 is extremely weak, because the apparent reflectance in the resonator of the semiconductor laser 1 increases, causing an amplification effect.

図4は、半導体レーザ1の発振波長をある一定の割合で変化させたときの発振波長とフォトダイオード2の出力波形との関係を示す図である。式(1)に示したL=qλ/2を満足したときに、戻り光と光共振器内のレーザ光の位相差が0°(同位相)になって、戻り光と光共振器内のレーザ光とが最も強め合い、L=qλ/2+λ/4のときに、位相差が180°(逆位相)になって、戻り光と光共振器内のレーザ光とが最も弱め合う。そのため、半導体レーザ1の発振波長を変化させていくと、レーザ出力が強くなるところと弱くなるところとが交互に繰り返し現れ、このときのレーザ出力をフォトダイオード2で検出すると、図4に示すように一定周期の階段状の波形が得られる。このような波形は一般的には干渉縞と呼ばれる。この階段状の波形、すなわち干渉縞の1つ1つがMHPである。ある一定時間において半導体レーザ1の発振波長を変化させた場合、測定距離に比例してMHPの数は変化する。   FIG. 4 is a diagram showing the relationship between the oscillation wavelength and the output waveform of the photodiode 2 when the oscillation wavelength of the semiconductor laser 1 is changed at a certain rate. When L = qλ / 2 shown in Expression (1) is satisfied, the phase difference between the return light and the laser light in the optical resonator becomes 0 ° (the same phase), and the return light and the optical resonator The laser beam is the most intense, and when L = qλ / 2 + λ / 4, the phase difference is 180 ° (reverse phase), and the return light and the laser beam in the optical resonator are most weakened. Therefore, when the oscillation wavelength of the semiconductor laser 1 is changed, a place where the laser output becomes stronger and a place where the laser output becomes weaker appear alternately. When the laser output at this time is detected by the photodiode 2, as shown in FIG. A stepped waveform with a constant period can be obtained. Such a waveform is generally called an interference fringe. Each stepped waveform, that is, each interference fringe is MHP. When the oscillation wavelength of the semiconductor laser 1 is changed for a certain period of time, the number of MHPs changes in proportion to the measurement distance.

次に、計数装置7と演算装置8の動作について説明する。図5は計数装置7と演算装置8の動作を示すフローチャートである。
計数装置7は、フィルタ部6の出力電圧に含まれるMHPの数を第1の発振期間P1と第2の発振期間P2の各々について数える(図5ステップS1)。図6は計数装置7の構成の1例を示すブロック図である。計数装置7は、2値化部71と、論理積演算部(AND)72と、カウンタ73と、計数結果補正部74と、記憶部75とから構成される。電流−電圧変換増幅部5とフィルタ部6と計数装置7の2値化部71とAND72とカウンタ73とは、信号計数手段を構成している。
Next, operations of the counting device 7 and the arithmetic device 8 will be described. FIG. 5 is a flowchart showing the operations of the counting device 7 and the arithmetic device 8.
The counting device 7 counts the number of MHPs included in the output voltage of the filter unit 6 for each of the first oscillation period P1 and the second oscillation period P2 (step S1 in FIG. 5). FIG. 6 is a block diagram showing an example of the configuration of the counting device 7. The counting device 7 includes a binarization unit 71, an AND operation unit (AND) 72, a counter 73, a counting result correction unit 74, and a storage unit 75. The current-voltage conversion amplification unit 5, the filter unit 6, the binarization unit 71 of the counting device 7, the AND 72, and the counter 73 constitute a signal counting unit.

図7は計数装置7の動作を示すフローチャート、図8は計数結果補正部74の構成の1例を示すブロック図である。計数結果補正部74は、半周期測定部740と、度数分布作成部741と、代表値算出部742と、補正値算出部743とから構成される。   FIG. 7 is a flowchart showing the operation of the counting device 7, and FIG. 8 is a block diagram showing an example of the configuration of the counting result correction unit 74. The counting result correction unit 74 includes a half-cycle measurement unit 740, a frequency distribution creation unit 741, a representative value calculation unit 742, and a correction value calculation unit 743.

図9(A)〜図9(D)はカウンタ73の動作を説明するための図であり、図9(A)はフィルタ部6の出力電圧の波形、すなわちMHPの波形を模式的に示す図、図9(B)は図9(A)に対応する2値化部71の出力を示す図、図9(C)は計数装置7に入力されるゲート信号GSを示す図、図9(D)は図9(B)に対応するカウンタ73の計数結果を示す図である。   9A to 9D are diagrams for explaining the operation of the counter 73, and FIG. 9A schematically shows the waveform of the output voltage of the filter unit 6, that is, the waveform of MHP. 9B is a diagram showing the output of the binarization unit 71 corresponding to FIG. 9A, FIG. 9C is a diagram showing the gate signal GS input to the counting device 7, and FIG. () Is a diagram showing a counting result of the counter 73 corresponding to FIG.

まず、計数装置7の2値化部71は、図9(A)に示すフィルタ部6の出力電圧がハイレベル(H)かローレベル(L)かを判定して、図9(B)のような判定結果を出力する。このとき、2値化部71は、フィルタ部6の出力電圧が上昇してしきい値TH1以上になったときにハイレベルと判定し、フィルタ部6の出力電圧が下降してしきい値TH2(TH2<TH1)以下になったときにローレベルと判定することにより、フィルタ部6の出力を2値化する。   First, the binarization unit 71 of the counting device 7 determines whether the output voltage of the filter unit 6 shown in FIG. 9A is a high level (H) or a low level (L), and the binarization unit 71 of FIG. Such a determination result is output. At this time, the binarization unit 71 determines that the output voltage of the filter unit 6 is high level when the output voltage of the filter unit 6 is higher than or equal to the threshold value TH1, and the output voltage of the filter unit 6 decreases and the threshold value TH2 By determining that the level is low when (TH2 <TH1) or less, the output of the filter unit 6 is binarized.

AND72は、2値化部71の出力と図9(C)のようなゲート信号GSとの論理積演算の結果を出力し、カウンタ73は、AND72の出力の立ち上がりと立ち下がりをカウントする(図9(D))。ここで、ゲート信号GSは、計数期間(本実施の形態では第1の発振期間P1または第2の発振期間P2)の先頭で立ち上がり、計数期間の終わりで立ち下がる信号である。したがって、カウンタ73は、計数期間中のAND72の出力の立ち上がりエッジの数と立ち下がりエッジの数(すなわち、MHPの半周期の数)を数えることになる(図7ステップS100)。   The AND 72 outputs a logical product operation result of the output of the binarizing unit 71 and the gate signal GS as shown in FIG. 9C, and the counter 73 counts the rise and fall of the output of the AND 72 (FIG. 9 (D)). Here, the gate signal GS is a signal that rises at the beginning of the counting period (in the present embodiment, the first oscillation period P1 or the second oscillation period P2) and falls at the end of the counting period. Therefore, the counter 73 counts the number of rising edges and the number of falling edges (that is, the number of half cycles of MHP) of the output of the AND 72 during the counting period (step S100 in FIG. 7).

図10は計数結果補正部74の半周期測定部740の動作を説明するための図である。半周期測定部740は、計数期間中のMHPの半周期を測定する(図7ステップS101)。すなわち、半周期測定部740は、計数期間中のAND72の出力をしきい値TH3と比較することにより、AND72の出力の立ち上がりを検出すると共に、AND72の出力をしきい値TH4と比較することにより、AND72の出力の立ち下がりを検出する。そして、半周期測定部740は、AND72の出力の立ち上がりから次の立ち下がりまでの時間tudを測定し、またAND72の出力の立ち下がりから次の立ち上がりまでの時間tduを測定することにより、計数期間中のAND72の出力の半周期(すなわち、MHPの半周期)を測定する。このように、MHPの半周期とは、時間tudまたはtduのことである。半周期測定部740は、以上のような測定をAND72の出力の立ち上がりまたは立ち下がりのどちらかが検出される度に行う。
記憶部75は、カウンタ73の計数結果と半周期測定部740の測定結果を記憶する。
FIG. 10 is a diagram for explaining the operation of the half cycle measuring unit 740 of the counting result correcting unit 74. The half cycle measurement unit 740 measures the half cycle of the MHP during the counting period (step S101 in FIG. 7). That is, the half-cycle measuring unit 740 detects the rising edge of the output of the AND72 by comparing the output of the AND72 during the counting period with the threshold value TH3, and compares the output of the AND72 with the threshold value TH4. , The falling edge of the output of AND72 is detected. The half-cycle measuring unit 740 measures a time tud from the rising edge of the output of the AND 72 to the next falling edge, and measures a time tdu from the falling edge of the output of the AND 72 to the next rising edge, thereby counting time period. Measure the half cycle of the output of AND 72 in the middle (ie, half cycle of MHP). Thus, the half cycle of MHP is time tud or tdu. The half-cycle measuring unit 740 performs the above measurement every time when either the rising edge or falling edge of the output of the AND 72 is detected.
The storage unit 75 stores the count result of the counter 73 and the measurement result of the half cycle measurement unit 740.

ゲート信号GSが立ち下がり、計数期間が終了した後、計数結果補正部74の度数分布作成部741は、記憶部75に記憶された半周期測定部740の測定結果から計数期間中のMHPの半周期の度数分布を作成する(図7ステップS102)。   After the gate signal GS falls and the counting period ends, the frequency distribution creating unit 741 of the counting result correcting unit 74 determines the half of the MHP during the counting period from the measurement result of the half cycle measuring unit 740 stored in the storage unit 75. A frequency distribution of periods is created (step S102 in FIG. 7).

続いて、計数結果補正部74の代表値算出部742は、度数分布作成部741が作成した度数分布から、MHPの半周期の代表値T0を算出する(図7ステップS103)。ここでは、MHPの半周期の最頻値や中央値、あるいは平均値を代表値T0とすればよい。また、代表値算出部742は、階級値と度数との積が最大となる階級値を代表値T0としてもよい。表1に、度数分布の数値例およびこの数値例における階級値と度数との積を示す。   Subsequently, the representative value calculation unit 742 of the counting result correction unit 74 calculates the representative value T0 of the MHP half cycle from the frequency distribution created by the frequency distribution creation unit 741 (step S103 in FIG. 7). Here, the mode value, median value, or average value of the half-cycle of MHP may be set as the representative value T0. Further, the representative value calculation unit 742 may set the class value that maximizes the product of the class value and the frequency as the representative value T0. Table 1 shows a numerical example of the frequency distribution and the product of the class value and the frequency in this numerical example.

Figure 0005798668
Figure 0005798668

表1の例では、度数が最大である最頻値(階級値)は1である。これに対して、階級値と度数との積が最大となる階級値は6であり、最頻値とは異なる値になっている。階級値と度数との積が最大となる階級値を代表値T0とする理由については後述する。代表値算出部742が算出した代表値T0は、記憶部75に格納される。代表値算出部742は、このような代表値T0の算出を、度数分布作成部741によって度数分布が作成される度に行う。   In the example of Table 1, the mode value (class value) having the maximum frequency is 1. On the other hand, the class value that maximizes the product of the class value and the frequency is 6, which is different from the mode value. The reason why the class value that maximizes the product of the class value and the frequency is set as the representative value T0 will be described later. The representative value T0 calculated by the representative value calculation unit 742 is stored in the storage unit 75. The representative value calculation unit 742 performs such calculation of the representative value T0 every time a frequency distribution is created by the frequency distribution creation unit 741.

計数結果補正部74の補正値算出部743は、半周期測定部740の測定結果から、代表値T0の0.5倍未満である半周期の数の総和Nsと、代表値T0の2n倍以上(2n+2)倍未満(nは1以上nmax以下の自然数)である半周期の数の総和Nwnとを求め、カウンタ73の計数結果を次式のように補正する(図7ステップS104)。 From the measurement result of the half cycle measurement unit 740, the correction value calculation unit 743 of the count result correction unit 74 calculates the total number Ns of half cycles that is less than 0.5 times the representative value T0 and 2n times or more of the representative value T0. (2n + 2) less times (n is a natural number not exceeding 1 or n max) determined the sum Nw n of the number of half cycles is to correct the counting result of the counter 73 as follows (Fig. 7 step S104).

Figure 0005798668
Figure 0005798668

式(2)において、Nはカウンタ73の計数結果であるMHPの半周期の数、N’は補正後に得られるMHPの数、TmaxはMHPの半周期がとり得る最大値である。このカウンタ73の計数結果の補正原理については後述する。
計数装置7は、以上のような処理を第1の発振期間P1と第2の発振期間P2の各々について行う。
In Equation (2), N is the number of half-cycles of MHP, which is the counting result of the counter 73, N ′ is the number of MHPs obtained after correction, and T max is the maximum value that can be taken by the half-cycle of MHP. The correction principle of the counting result of the counter 73 will be described later.
The counting device 7 performs the above processing for each of the first oscillation period P1 and the second oscillation period P2.

なお、補正値算出部743が用いる代表値T0は、補正対象の計数期間よりも搬送波(三角波)の1周期分前の計数期間における半周期測定部740の測定結果から算出された値を用いてもよいし、補正対象の計数期間における半周期測定部740の測定結果から算出された値を用いてもよい。図11は半導体レーザ1の発振波長の時間変化を示す図であり、代表値算出部742が代表値T0を算出する期間と補正対象の計数期間との関係を説明するための図である。   Note that the representative value T0 used by the correction value calculation unit 743 is a value calculated from the measurement result of the half cycle measurement unit 740 in the counting period one period before the carrier wave (triangular wave) before the counting period to be corrected. Alternatively, a value calculated from the measurement result of the half cycle measuring unit 740 in the counting period to be corrected may be used. FIG. 11 is a diagram illustrating a temporal change in the oscillation wavelength of the semiconductor laser 1, and is a diagram for explaining a relationship between a period during which the representative value calculation unit 742 calculates the representative value T0 and a counting period to be corrected.

補正対象の計数期間よりも搬送波の1周期分前の測定結果から算出された代表値T0を用いる場合、補正値算出部743は、例えば図11に示す第1の発振期間P1−1で算出された代表値T0を用いて第1の発振期間P1−2の計数結果を補正し、第2の発振期間P2−1で算出された代表値T0を用いて第2の発振期間P2−2の計数結果を補正することになる。また、補正対象の計数期間の測定結果から算出された代表値T0を用いる場合、補正値算出部743は、例えば図11に示す第1の発振期間P1−1で算出された代表値T0を用いて第1の発振期間P1−1の計数結果を補正し、第2の発振期間P2−1で算出された代表値T0を用いて第2の発振期間P2−1の計数結果を補正することになる。   In the case of using the representative value T0 calculated from the measurement result one cycle before the correction target counting period, the correction value calculation unit 743 is calculated, for example, in the first oscillation period P1-1 shown in FIG. The count result of the first oscillation period P1-2 is corrected using the representative value T0, and the count of the second oscillation period P2-2 is corrected using the representative value T0 calculated in the second oscillation period P2-1. The result will be corrected. Further, when using the representative value T0 calculated from the measurement result of the counting period to be corrected, the correction value calculation unit 743 uses, for example, the representative value T0 calculated in the first oscillation period P1-1 shown in FIG. To correct the counting result of the first oscillation period P1-1 and to correct the counting result of the second oscillation period P2-1 using the representative value T0 calculated in the second oscillation period P2-1. Become.

ただし、補正対象の計数期間よりも搬送波の1周期分前の測定結果から算出された代表値T0を用いる場合においても、最初の処理においては代表値T0の初期値が存在しないため、補正対象の計数期間における半周期測定部740の測定結果から代表値T0を求めて計数結果を補正することになる。   However, even when using the representative value T0 calculated from the measurement result of one cycle of the carrier wave before the counting period of the correction target, the initial value of the representative value T0 does not exist in the first process, so the correction target The representative value T0 is obtained from the measurement result of the half cycle measurement unit 740 in the counting period, and the counting result is corrected.

次に、演算装置8は、計数装置7が数えたMHPの数に基づいて物体10の振動周波数を算出する。図12は演算装置8の構成の1例を示すブロック図である。演算装置8は、計数装置7の計数結果等を記憶する記憶部80と、計数装置7の計数結果を2値化する2値化部81と、2値化部81から出力された2値化出力の周期を測定する周期測定部82と、2値化出力の周期の度数分布を作成する度数分布作成部83と、2値化出力の周期の分布の代表値である基準周期を算出する基準周期算出部84と、2値化出力のパルスの数を数える2値化出力計数手段となるカウンタ85と、カウンタ85の計数結果を補正する補正部86と、補正された計数結果に基づいて物体10の振動周波数を算出する周波数算出部87とから構成される。   Next, the computing device 8 calculates the vibration frequency of the object 10 based on the number of MHPs counted by the counting device 7. FIG. 12 is a block diagram showing an example of the configuration of the arithmetic unit 8. The arithmetic device 8 includes a storage unit 80 that stores the counting result of the counting device 7, a binarizing unit 81 that binarizes the counting result of the counting device 7, and the binarization output from the binarizing unit 81. A cycle measuring unit 82 that measures the cycle of the output, a frequency distribution creating unit 83 that creates a frequency distribution of the cycle of the binarized output, and a reference for calculating a reference cycle that is a representative value of the cycle distribution of the binarized output Period calculation unit 84, counter 85 serving as a binarized output counting means for counting the number of binarized output pulses, correction unit 86 for correcting the count result of counter 85, and object based on the corrected count result A frequency calculation unit 87 that calculates ten vibration frequencies.

計数装置7の計数結果は、演算装置8の記憶部80に格納される。演算装置8の2値化部81は、記憶部80に格納された、計数装置7の計数結果を2値化する(図5ステップS2)。図13は2値化部81の動作を説明するための図であり、図13(A)は半導体レーザ1の発振波長の時間変化を示す図、図13(B)は計数装置7の計数結果の時間変化を示す図、図13(C)は2値化部81の出力D(t)を示す図である。図13(B)において、N’uは第1の発振期間P1の計数結果、N’dは第2の発振期間P2の計数結果である。   The counting result of the counting device 7 is stored in the storage unit 80 of the arithmetic device 8. The binarizing unit 81 of the arithmetic device 8 binarizes the counting result of the counting device 7 stored in the storage unit 80 (step S2 in FIG. 5). 13A and 13B are diagrams for explaining the operation of the binarization unit 81. FIG. 13A is a diagram showing a change with time of the oscillation wavelength of the semiconductor laser 1, and FIG. 13B is a counting result of the counting device 7. FIG. 13C is a diagram showing the output D (t) of the binarization unit 81. FIG. In FIG. 13B, N'u is the counting result of the first oscillation period P1, and N'd is the counting result of the second oscillation period P2.

2値化部81は、時間的に隣接する2つの発振期間P1,P2の計数結果N’uとN’dの大小を比較して、これらの計数結果を2値化する。2値化部81は、具体的には以下の式を実行する。
If N’u(t)≧N’d(t−1) then D(t)=1 ・・・(3)
If N’u(t)<N’d(t−1) then D(t)=0 ・・・(4)
If N’d(t)≦N’u(t−1) then D(t)=1 ・・・(5)
If N’d(t)>N’u(t−1) then D(t)=0 ・・・(6)
The binarization unit 81 compares the count results N′u and N′d in two oscillation periods P1 and P2 that are temporally adjacent to each other, and binarizes these count results. Specifically, the binarizing unit 81 executes the following expression.
If N′u (t) ≧ N′d (t−1) then D (t) = 1 (3)
If N′u (t) <N′d (t−1) then D (t) = 0 (4)
If N′d (t) ≦ N′u (t−1) then D (t) = 1 (5)
If N′d (t)> N′u (t−1) then D (t) = 0 (6)

式(3)〜式(6)において、(t)は現時刻tにおいて計測されたMHPの数であることを表し、(t−1)は現時刻tの1回前に計測されたMHPの数であることを表している。式(3)、式(4)は、現時刻tの計数結果が第1の発振期間P1の計数結果N’uで、1回前の計数結果が第2の発振期間P2の計数結果N’dの場合である。この場合、2値化部81は、現時刻tの計数結果N’u(t)が1回前の計数結果N’d(t−1)以上であれば、現時刻tの出力D(t)を「1」(ハイレベル)とし、現時刻tの計数結果N’u(t)が1回前の計数結果N’d(t−1)より小さい場合は、現時刻tの出力D(t)を「0」(ローレベル)とする。   In Expressions (3) to (6), (t) represents the number of MHPs measured at the current time t, and (t−1) represents the MHP measured one time before the current time t. It represents a number. In Expressions (3) and (4), the count result at the current time t is the count result N′u in the first oscillation period P1, and the previous count result is the count result N ′ in the second oscillation period P2. This is the case of d. In this case, if the counting result N′u (t) at the current time t is greater than or equal to the previous counting result N′d (t−1), the binarizing unit 81 outputs the output D (t at the current time t. ) Is set to “1” (high level) and the count result N′u (t) at the current time t is smaller than the count result N′d (t−1) of the previous time, the output D ( t) is set to “0” (low level).

式(5)、式(6)は、現時刻tの計数結果が第2の発振期間P2の計数結果N’dで、1回前の計数結果が第1の発振期間P1の計数結果N’uの場合である。この場合、2値化部81は、現時刻tの計数結果N’d(t)が1回前の計数結果N’u(t−1)以下であれば、現時刻tの出力D(t)を「1」とし、現時刻tの計数結果N’d(t)が1回前の計数結果N’u(t−1)より大きい場合は、現時刻tの出力D(t)を「0」とする。   In Expressions (5) and (6), the counting result at the current time t is the counting result N′d of the second oscillation period P2, and the previous counting result is the counting result N ′ of the first oscillation period P1. This is the case for u. In this case, if the counting result N′d (t) at the current time t is equal to or less than the previous counting result N′u (t−1), the binarization unit 81 outputs the output D (t ) Is “1”, and the count result N′d (t) at the current time t is larger than the count result N′u (t−1) one time before, the output D (t) at the current time t is “ 0 ”.

こうして、計数装置7の計数結果は2値化される。2値化部81の出力D(t)は記憶部80に格納される。2値化部81は、以上のような2値化処理を、計数装置7によってMHPの数が測定される時刻毎(発振期間毎)に行う。   Thus, the counting result of the counting device 7 is binarized. The output D (t) of the binarization unit 81 is stored in the storage unit 80. The binarization unit 81 performs the binarization process as described above at every time (every oscillation period) when the counting device 7 measures the number of MHPs.

計数装置7の計数結果を2値化することは、物体10の変位の方向を判別することを意味する。つまり、半導体レーザ1の発振波長が増加しているときの計数結果N’uが、発振波長が減少しているときの計数結果N’d以上の場合(D(t)=1)、物体10の移動方向は半導体レーザ1に接近する方向であり、計数結果N’uが計数結果N’dより小さい場合(D(t)=0)、物体10の移動方向は半導体レーザ1から遠ざかる方向である。したがって、基本的には図13(C)に示した2値化出力の周期を求めることができれば、物体10の振動周波数を算出することができる。   Binarizing the counting result of the counting device 7 means determining the direction of displacement of the object 10. That is, when the count result N′u when the oscillation wavelength of the semiconductor laser 1 is increasing is equal to or greater than the count result N′d when the oscillation wavelength is decreasing (D (t) = 1), the object 10 Is the direction of approaching the semiconductor laser 1, and when the counting result N′u is smaller than the counting result N′d (D (t) = 0), the moving direction of the object 10 is a direction away from the semiconductor laser 1. is there. Therefore, basically, if the cycle of the binarized output shown in FIG. 13C can be obtained, the vibration frequency of the object 10 can be calculated.

周期測定部82は、記憶部80に格納された2値化出力D(t)の周期を測定する(図5ステップS3)。図14は周期測定部82の動作を説明するための図である。図14において、H1は2値化出力D(t)の立ち上がりを検出するためのしきい値、H2は2値化出力D(t)の立ち下がりを検出するためのしきい値である。   The period measuring unit 82 measures the period of the binarized output D (t) stored in the storage unit 80 (step S3 in FIG. 5). FIG. 14 is a diagram for explaining the operation of the period measurement unit 82. In FIG. 14, H1 is a threshold value for detecting the rising edge of the binarized output D (t), and H2 is a threshold value for detecting the falling edge of the binarized output D (t).

周期測定部82は、記憶部80に格納された2値化出力D(t)をしきい値H1と比較することにより、2値化出力D(t)の立ち上がりを検出し、2値化出力D(t)の立ち上がりから次の立ち上がりまでの時間tuuを測定することにより、2値化出力D(t)の周期を測定する。周期測定部82は、このような測定を2値化出力D(t)に立ち上がりエッジが発生する度に行う。   The period measuring unit 82 detects the rising of the binarized output D (t) by comparing the binarized output D (t) stored in the storage unit 80 with the threshold value H1, and binarized output The period of the binarized output D (t) is measured by measuring the time tu from the rise of D (t) to the next rise. The period measuring unit 82 performs such measurement every time a rising edge occurs in the binarized output D (t).

あるいは、周期測定部82は、記憶部80に格納された2値化出力D(t)をしきい値H2と比較することにより、2値化出力D(t)の立ち下がりを検出し、2値化出力D(t)の立ち下がりから次の立ち下がりまでの時間tddを測定することにより、2値化出力D(t)の周期を測定してもよい。周期測定部82は、このような測定を2値化出力D(t)に立ち下がりエッジが発生する度に行う。   Alternatively, the period measuring unit 82 detects the falling edge of the binarized output D (t) by comparing the binarized output D (t) stored in the storage unit 80 with the threshold value H2. The period of the binarized output D (t) may be measured by measuring the time tdd from the trailing edge of the digitized output D (t) to the next trailing edge. The period measuring unit 82 performs such measurement every time a falling edge occurs in the binarized output D (t).

周期測定部82の測定結果は記憶部80に格納される。次に、度数分布作成部83は、周期測定部82の測定結果から、一定時間T(T>Ttであり、例えば100×Tt、すなわち三角波100個分の時間)における周期の度数分布を作成する(図5ステップS4)。図15は度数分布の1例を示す図である。度数分布作成部83が作成した度数分布は、記憶部80に格納される。度数分布作成部83は、このような度数分布の作成をT時間毎に行う。   The measurement result of the period measurement unit 82 is stored in the storage unit 80. Next, the frequency distribution creating unit 83 creates a frequency distribution of periods in a certain time T (T> Tt, for example, 100 × Tt, that is, a time corresponding to 100 triangular waves) from the measurement result of the period measuring unit 82. (FIG. 5, step S4). FIG. 15 is a diagram showing an example of the frequency distribution. The frequency distribution created by the frequency distribution creating unit 83 is stored in the storage unit 80. The frequency distribution creating unit 83 creates such a frequency distribution every T hours.

続いて、基準周期算出部84は、度数分布作成部83が作成した度数分布から、2値化出力D(t)の周期の代表値である基準周期Trを算出する(図5ステップS5)。一般に、周期の代表値は最頻値や中央値であるが、本実施の形態においては、最頻値や中央値が周期の代表値として適していない。そこで、基準周期算出部84は、階級値と度数との積が最大となる階級値を基準周期Trとする。階級値と度数との積が最大となる階級値を基準周期Trとする理由については後述する。算出された基準周期Trの値は、記憶部80に格納される。基準周期算出部84は、このような基準周期Trの算出を、度数分布作成部83によって度数分布が作成される度に行う。   Subsequently, the reference cycle calculation unit 84 calculates a reference cycle Tr that is a representative value of the cycle of the binarized output D (t) from the frequency distribution created by the frequency distribution creation unit 83 (step S5 in FIG. 5). In general, the representative value of the cycle is the mode value or the median value. However, in the present embodiment, the mode value or the median value is not suitable as the representative value of the cycle. Therefore, the reference period calculation unit 84 sets the class value that maximizes the product of the class value and the frequency as the reference period Tr. The reason why the class value that maximizes the product of the class value and the frequency is used as the reference period Tr will be described later. The calculated value of the reference period Tr is stored in the storage unit 80. The reference period calculation unit 84 performs such calculation of the reference period Tr every time the frequency distribution is created by the frequency distribution creation unit 83.

一方、カウンタ85は、周期測定部82および度数分布作成部83と並行して動作し、度数分布作成部83が度数分布作成の対象とする期間と同じ一定時間Tの期間において、2値化出力D(t)の立ち上がりエッジの数Na(すなわち、2値化出力D(t)の「1」のパルスの数)を数える(図5ステップS6)。カウンタ85の計数結果Naは、記憶部80に格納される。カウンタ85は、このような2値化出力D(t)の計数をT時間毎に行う。   On the other hand, the counter 85 operates in parallel with the period measuring unit 82 and the frequency distribution creating unit 83, and binarized output in a period of the same fixed time T as the period for which the frequency distribution creating unit 83 is a target of frequency distribution creating. The number Na of rising edges of D (t) Na (that is, the number of “1” pulses of the binarized output D (t)) is counted (step S6 in FIG. 5). The counting result Na of the counter 85 is stored in the storage unit 80. The counter 85 counts such binarized output D (t) every T time.

補正部86は、度数分布作成部83が作成した度数分布から、基準周期Trの0.5倍以下である階級の度数の総和Nsaと、基準周期Trの1.5倍以上である階級の度数の総和Nwaとを求め、カウンタ85の計数結果Naを次式のように補正する(図5ステップS7)。
Na’=Na−Nsa+Nwa ・・・(7)
式(7)において、Na’は補正後の計数結果である。この補正後の計数結果Na’は、記憶部80に格納される。補正部86は、このような補正をT時間毎に行う。
From the frequency distribution created by the frequency distribution creating unit 83, the correcting unit 86 calculates the sum Nsa of the class frequencies that are 0.5 times or less of the reference period Tr and the frequency of the class that is 1.5 times or more of the reference period Tr. And the count result Na of the counter 85 is corrected as follows (step S7 in FIG. 5).
Na ′ = Na−Nsa + Nwa (7)
In equation (7), Na ′ is the corrected count result. The corrected count result Na ′ is stored in the storage unit 80. The correction unit 86 performs such correction every T time.

図16は度数の総和NsaとNwaを模式的に表す図である。図16において、Tsは基準周期Trの0.5倍の階級値、Twは基準周期Trの1.5倍の階級値である。図16における階級が、周期の代表値であることは言うまでもない。なお、図16では記載を簡略化するため、基準周期TrとTsとの間、及び基準周期TrとTwとの間の度数分布を省略している。   FIG. 16 is a diagram schematically showing the total frequency Nsa and Nwa. In FIG. 16, Ts is a class value 0.5 times the reference period Tr, and Tw is a class value 1.5 times the reference period Tr. It goes without saying that the class in FIG. 16 is a representative value of the period. In FIG. 16, the frequency distribution between the reference periods Tr and Ts and between the reference periods Tr and Tw is omitted in order to simplify the description.

図17はカウンタ85の計数結果の補正原理を説明するための図であり、図17(A)は2値化出力D(t)を示す図、図17(B)は図17(A)に対応するカウンタ85の計数結果を示す図である。
本来、2値化出力D(t)の周期は物体10の振動周波数によって異なるが、物体10の振動周波数が不変であれば、2値化出力D(t)のパルスは同じ周期で出現する。しかし、ノイズのために、MHPの波形には欠落が生じたり、信号として数えるべきでない波形が生じたりして、結果として2値化出力D(t)の波形にも欠落や信号として数えるべきでない波形が生じ、2値化出力D(t)のパルスの計数結果に誤差が生じる。
FIG. 17 is a diagram for explaining the correction principle of the counting result of the counter 85. FIG. 17 (A) shows the binarized output D (t), and FIG. 17 (B) shows FIG. 17 (A). It is a figure which shows the count result of the corresponding counter 85. FIG.
Originally, the cycle of the binarized output D (t) varies depending on the vibration frequency of the object 10, but if the vibration frequency of the object 10 is unchanged, the pulse of the binarized output D (t) appears in the same cycle. However, due to noise, the MHP waveform may be missing or a waveform that should not be counted as a signal. As a result, the waveform of the binarized output D (t) should not be counted as a missing or signal. A waveform is generated, and an error occurs in the result of counting the pulses of the binarized output D (t).

信号の欠落が生じると、欠落が生じた箇所での2値化出力D(t)の周期Twは、本来の周期のおよそ2倍になる。つまり、2値化出力D(t)の周期が基準周期Trのおよそ2倍以上の場合には、信号に欠落が生じていると判断できる。そこで、周期Tw以上の階級の度数の総和Nwaを信号が欠落した回数と見なし、このNwaをカウンタ85の計数結果Naに加算することで、信号の欠落を補正することができる。   When signal loss occurs, the cycle Tw of the binarized output D (t) at the location where the loss occurs is approximately twice the original cycle. That is, when the period of the binarized output D (t) is approximately twice or more than the reference period Tr, it can be determined that the signal is missing. Therefore, the sum of the frequencies Nwa of the class equal to or higher than the period Tw is regarded as the number of missing signals, and the missing signal can be corrected by adding this Nwa to the counting result Na of the counter 85.

また、スパイクノイズなどによって本来の信号が分割された箇所での2値化出力D(t)の周期Tsは、本来の周期と比較して0.5倍よりも短い信号と0.5倍よりも長い信号の2つになる。つまり、2値化出力D(t)の周期が基準周期Trのおよそ0.5倍以下の場合には、信号を過剰に数えていると判断できる。そこで、周期Ts以下の階級の度数の総和Nsaを信号を過剰に数えた回数と見なし、このNsaをカウンタ85の計数結果Naから減算することで、誤って数えたノイズを補正することができる。以上が、式(7)に示した計数結果の補正原理である。   Further, the cycle Ts of the binarized output D (t) at the portion where the original signal is divided by spike noise or the like is shorter than 0.5 times the signal shorter than the original cycle and 0.5 times. Becomes two of the long signals. That is, when the period of the binarized output D (t) is approximately 0.5 times or less of the reference period Tr, it can be determined that the signals are excessively counted. Therefore, it is possible to correct the noise that is erroneously counted by regarding the total sum Nsa of the frequencies of the classes equal to or less than the period Ts as the number of times the signal is excessively counted and subtracting this Nsa from the counting result Na of the counter 85. The above is the correction principle of the counting result shown in Expression (7).

周波数算出部87は、補正部86が計算した補正後の計数結果Na’に基づいて、物体10の振動周波数fsigを次式のように算出する(図5ステップS8)。
fsig=Na’/T ・・・(8)
表示装置9は、演算装置8が算出した振動周波数fsigの値を表示する。
Based on the corrected count result Na ′ calculated by the correction unit 86, the frequency calculation unit 87 calculates the vibration frequency fsig of the object 10 according to the following equation (step S8 in FIG. 5).
fsig = Na ′ / T (8)
The display device 9 displays the value of the vibration frequency fsig calculated by the arithmetic device 8.

ここで、計数装置7のカウンタ73の計数結果の補正原理を説明する。式(2)に示した計数結果の補正の基本原理は、特許文献2に開示された計数結果の補正原理や、式(7)に示した計数結果の補正原理と同じである。しかしながら、特許文献2に開示された補正原理によると、計数装置に入力される信号にMHPよりも高周波のバーストノイズが混入した場合、カウンタ73の計数結果を正しく補正できない場合がある。特に、振動周波数計測におけるサンプリング数は振動周波数の数倍程度の時間しか取れない場合があり、わずかな計数誤差は大きな周波数誤差になる可能性がある。以下に、振動周波数計測を例にして従来の問題を説明する。   Here, the correction principle of the counting result of the counter 73 of the counting device 7 will be described. The basic principle of the correction of the counting result shown in Expression (2) is the same as the correction principle of the counting result disclosed in Patent Document 2 and the correction principle of the counting result shown in Expression (7). However, according to the correction principle disclosed in Patent Document 2, if a burst noise having a frequency higher than that of MHP is mixed in a signal input to the counting device, the counting result of the counter 73 may not be corrected correctly. In particular, the number of samplings in vibration frequency measurement may take only about several times the vibration frequency, and a slight counting error may become a large frequency error. The conventional problem will be described below by taking vibration frequency measurement as an example.

図18(A)〜図18(D)は特許文献2に開示された従来の計数装置の問題点を説明するための図であり、図18(A)は物体10との距離の時間変化を示す図、図18(B)は物体10の速度の時間変化を示す図、図18(C)は計数装置の計数結果の時間変化を示す図、図18(D)は計数装置の計数結果を2値化した2値化出力D(t)を示す図である。図18(B)において,160は速度が小さい箇所を示し、161は物体10の移動方向が半導体レーザ1に接近する方向であることを示し、162は物体10の移動方向が半導体レーザ1から遠ざかる方向であることを示している。なお、図18(A)〜図18(D)は本実施の形態において物体10の振動の最大速度と物体10との距離の比が、半導体レーザ1の波長変化率よりも小さい場合を示しているが、従来の計数装置においても信号波形は同様であるので、図18(A)〜図18(D)を用いて従来の計数装置の問題点を説明する。   18 (A) to 18 (D) are diagrams for explaining the problems of the conventional counting device disclosed in Patent Document 2, and FIG. 18 (A) shows the time change of the distance to the object 10. FIG. 18 (B) is a diagram showing the time change of the speed of the object 10, FIG. 18 (C) is a diagram showing the time change of the counting result of the counting device, and FIG. 18 (D) is the counting result of the counting device. It is a figure which shows the binarized binarization output D (t). In FIG. 18B, 160 indicates a portion where the velocity is low, 161 indicates that the moving direction of the object 10 is a direction approaching the semiconductor laser 1, and 162 indicates that the moving direction of the object 10 is far from the semiconductor laser 1. Indicates that the direction. 18A to 18D show the case where the ratio of the maximum speed of vibration of the object 10 and the distance to the object 10 is smaller than the wavelength change rate of the semiconductor laser 1 in this embodiment. However, since the signal waveform is the same in the conventional counting device, the problems of the conventional counting device will be described with reference to FIGS. 18 (A) to 18 (D).

図18(C)に示すように物体10の速度が小さい箇所163において、MHPよりも高周波のノイズが加わると、計数結果N’uとN’dの大小関係が本来の関係と反転する場合がある。その結果、図18(D)に示すように、2値化出力D(t)の符号が切り替わる箇所164において、2値化出力D(t)の符号が本来の値と逆の値になることがある。   As shown in FIG. 18C, when a noise having a frequency higher than that of MHP is applied at a portion 163 where the speed of the object 10 is small, the magnitude relationship between the count results N′u and N′d may be reversed from the original relationship. is there. As a result, as shown in FIG. 18D, the sign of the binarized output D (t) becomes a value opposite to the original value at the location 164 where the sign of the binarized output D (t) switches. There is.

MHPをあるしきい値で2値化する場合、MHPがしきい値に近い値をとるところで高周波のノイズのために符号が反転しやすく、このように符号が反転し易い箇所はMHPの1/2周期毎に存在するため、MHPの周期の度数分布は、図19に示すように、MHPの本来の周期Taに度数の極大値を持つ分布170に加え、周期Taのおよそ半分の周期に度数の極大値を持つ分布171やノイズの短い周期172が現れる。そして、混入した高周波のノイズのためにこれらの度数の極大値はやや時間が短い方へとシフトする傾向にある。さらに、高周波のノイズは、連続で混入することがある。特許文献2に開示された従来の計数装置では、このような高周波の連続したノイズが混入すると、MHPの計数結果を十分に補正することができない。   When binarizing MHP with a certain threshold value, the sign is likely to be inverted due to high-frequency noise where MHP takes a value close to the threshold value. Since the frequency distribution of the MHP period exists every two periods, as shown in FIG. 19, in addition to the distribution 170 having the maximum value of the frequency in the original period Ta of the MHP, the frequency distribution is about half the period Ta. A distribution 171 having a local maximum value and a short period 172 of noise appear. Then, due to the mixed high frequency noise, the maximum values of these frequencies tend to shift to a shorter time. Furthermore, high frequency noise may be mixed continuously. In the conventional counting device disclosed in Patent Document 2, if such high-frequency continuous noise is mixed, the MHP counting result cannot be corrected sufficiently.

そこで、本実施の形態では、MHPの周期の代表値Taではなく、半周期の代表値T0を用いて計数結果を補正するようにした。MHPの半周期の度数分布の例を図20に示す。図20から明らかなように、MHPの半周期の度数分布を求めると、計数装置7に入力される信号に高周波のノイズが混入している場合であっても、0.5T0付近に度数の極大値が現れることがなくなる。つまり、代表値T0の0.5倍未満である半周期の数の総和Nsを求めるしきい値付近の度数の極大値が消えたことになるので、上記のNsを正しく求めることができ、補正の誤差を抑制することができる。以上が、式(2)に示した計数結果の補正原理である。なお、式(2)の右辺を1/2倍している理由は、MHPの半周期の数をMHPの数に変換するためである。   Therefore, in the present embodiment, the count result is corrected using the representative value T0 of the half cycle instead of the representative value Ta of the MHP cycle. An example of the frequency distribution of a half cycle of MHP is shown in FIG. As is clear from FIG. 20, when the frequency distribution of the half cycle of MHP is obtained, the frequency maximum is near 0.5T0 even when high-frequency noise is mixed in the signal input to the counting device 7. The value no longer appears. That is, since the local maximum value near the threshold value for obtaining the sum Ns of the numbers of half cycles that is less than 0.5 times the representative value T0 has disappeared, the above-described Ns can be correctly obtained and corrected. The error can be suppressed. The above is the correction principle of the counting result shown in Expression (2). The reason why the right side of Expression (2) is halved is to convert the number of half-cycles of MHP into the number of MHPs.

以上のように、本実施の形態では、計数期間中のMHPの半周期の数をカウンタ73で数え、計数期間中のMHPの半周期を測定し、この測定結果から計数期間中のMHPの半周期の度数分布を作成し、度数分布からMHPの半周期の代表値T0を算出し、代表値T0の0.5倍未満である半周期の数の総和Nsと、代表値T0の2n倍以上(2n+2)倍未満である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいてカウンタ73の計数結果を補正することにより、計数装置に入力される信号にMHPよりも高周波のノイズが連続して発生している場合であっても、MHPの計数誤差を高精度に補正することができるので、物体10の振動周波数の計測精度を向上させることができる。 As described above, in the present embodiment, the counter 73 counts the number of MHP half cycles during the counting period, and measures the MHP half cycle during the counting period. From this measurement result, the half of the MHP during the counting period is measured. A frequency distribution of periods is created, a representative value T0 of the MHP half period is calculated from the frequency distribution, the total number Ns of half periods that is less than 0.5 times the representative value T0, and 2n times or more of the representative value T0 (2n + 2) of the number of half cycles is less than doubled search of the sum Nw n, by correcting the counting result of the counter 73 based on the frequencies Ns and Nw n, from MHP to a signal input to the counting device Even when high-frequency noise is continuously generated, the counting error of the MHP can be corrected with high accuracy, so that the measurement accuracy of the vibration frequency of the object 10 can be improved.

さらに、本実施の形態では、時間的に隣接する第1、第2の発振期間P1,P2の計数結果の大小を比較してMHPの計数結果を2値化し、2値化出力D(t)の周期を測定して一定時間Tにおける周期の度数分布を作成し、周期の度数分布から2値化出力D(t)の周期の分布の代表値である基準周期Trを算出し、一定時間Tの期間において2値化出力D(t)のパルスの数を数え、度数分布から、基準周期Trの0.5倍以下である階級の度数の総和Nsaと基準周期Trの1.5倍以上である階級の度数の総和Nwaとを求め、これらの度数NsaとNwaに基づいて2値化出力D(t)のパルスの計数結果を補正することにより、2値化出力D(t)の計数誤差を補正することができるので、物体10の振動周波数の測定精度を向上させることができる。   Furthermore, in this embodiment, the count results of the first and second oscillation periods P1 and P2 that are temporally adjacent to each other are compared to binarize the MHP count result, and the binarized output D (t) A frequency distribution of periods at a certain time T is measured, a reference period Tr that is a representative value of the distribution of the binarized output D (t) is calculated from the frequency distribution of the periods, and the constant time T In this period, the number of pulses of the binarized output D (t) is counted, and from the frequency distribution, the total frequency Nsa of the class that is 0.5 times or less of the reference period Tr and 1.5 times or more of the reference period Tr By calculating the total sum Nwa of frequencies of a certain class and correcting the count result of the pulses of the binarized output D (t) based on these frequencies Nsa and Nwa, the counting error of the binarized output D (t) Therefore, the measurement accuracy of the vibration frequency of the object 10 can be improved. It can be.

次に、基準周期算出部84が、階級値と度数との積が最大となる階級値を基準周期Trとする理由について説明する。
波長変調(本実施の形態では三角波変調)を用いた自己結合型のレーザ計測装置においては、各計数期間におけるMHPの数は、物体10との距離に比例したMHPの数と計数期間における物体10の変位(速度)に比例したMHPの数との和もしくは差になる。物体10の振動の最大速度と物体10との距離の比と、半導体レーザ1の波長変化率の大小関係によって、計測装置で得られる信号の状況を以下の2通りに分けることができる。
Next, the reason why the reference period calculation unit 84 sets the class value that maximizes the product of the class value and the frequency as the reference period Tr will be described.
In a self-coupled laser measuring apparatus using wavelength modulation (triangular wave modulation in this embodiment), the number of MHPs in each counting period is the number of MHPs proportional to the distance from the object 10 and the object 10 in the counting period. The sum or difference with the number of MHPs proportional to the displacement (velocity). Depending on the magnitude relationship between the ratio of the maximum speed of vibration of the object 10 and the distance between the object 10 and the wavelength change rate of the semiconductor laser 1, the status of signals obtained by the measuring apparatus can be divided into the following two types.

まず、物体10の振動の最大速度と物体10との距離の比が、半導体レーザ1の波長変化率よりも小さい場合を図18(A)〜図18(D)を用いて説明する。物体10の振動の最大速度と物体10との距離の比が半導体レーザ1の波長変化率よりも小さい場合は、物体10との距離に比例したMHPの数が、計数期間における物体10の変位(速度)に比例したMHPの数よりも常に大きいため、半導体レーザ1の発振波長が増加しているときの計数結果N’uと発振波長が減少しているときの計数結果N’dとの差の絶対値が2つの計数期間(本実施の形態では発振期間P1とP2)における物体10の変位に常に比例することになる。この場合、N’u−N’dを時系列でプロットすると、半導体レーザ1への接近方向を正とした振動の速度を示す。そのため、N’u−N’dの符号が物体10の運動方向を示すことになり、この符号によって物体10の変位を2値化することができる。   First, a case where the ratio of the maximum speed of vibration of the object 10 and the distance between the object 10 is smaller than the wavelength change rate of the semiconductor laser 1 will be described with reference to FIGS. 18 (A) to 18 (D). When the ratio of the maximum speed of vibration of the object 10 and the distance to the object 10 is smaller than the wavelength change rate of the semiconductor laser 1, the number of MHPs proportional to the distance to the object 10 is the displacement of the object 10 during the counting period ( Since the number of MHPs proportional to the speed is always larger, the difference between the counting result N′u when the oscillation wavelength of the semiconductor laser 1 is increasing and the counting result N′d when the oscillation wavelength is decreasing. Is always proportional to the displacement of the object 10 in two counting periods (in this embodiment, the oscillation periods P1 and P2). In this case, when N′u−N′d is plotted in time series, the vibration speed with the approaching direction to the semiconductor laser 1 being positive is shown. Therefore, the sign of N′u−N′d indicates the movement direction of the object 10, and the displacement of the object 10 can be binarized by this sign.

このとき、度数分布作成部83によって作成される周期の度数分布は、図21のようになる。
図18(C)に示すように物体10の速度が小さい箇所163において、例えば外乱光などに起因するホワイトノイズが加わると、2値化出力D(t)の符号が切り替わる箇所164において、2値化出力D(t)の符号が本来の値と逆の値になることがある。また、例えば外乱光などに起因するスパイクノイズが加わると、図18(D)に示すように箇所165において2値化出力D(t)の符号が局所的に反転する。
At this time, the frequency distribution of the period created by the frequency distribution creating unit 83 is as shown in FIG.
As shown in FIG. 18C, when white noise due to, for example, ambient light is added at a location 163 where the speed of the object 10 is low, a binary signal is output at a location 164 where the sign of the binarized output D (t) changes. The sign of the digitized output D (t) may be a value opposite to the original value. Further, for example, when spike noise caused by disturbance light or the like is added, the sign of the binarized output D (t) is locally inverted at a location 165 as shown in FIG.

その結果、度数分布作成部83によって作成される周期の度数分布は、図21に示すように、基準周期Trを中心とした正規分布190と、スパイクノイズに起因する符号反転による度数191と、ホワイトノイズに起因する符号逆転による度数192との和になる。また、2値化を実施したときの信号の欠落の度数193は、大きな速度を持った低周波ノイズが混入しない限り生じないことが多い。   As a result, as shown in FIG. 21, the frequency distribution of the period created by the frequency distribution creating unit 83 includes a normal distribution 190 centered on the reference period Tr, a frequency 191 due to sign inversion caused by spike noise, It becomes the sum with the frequency 192 due to the sign inversion caused by noise. Further, the frequency 193 of signal loss when binarization is performed often does not occur unless low-frequency noise having a large speed is mixed.

次に、物体10の振動の最大速度と物体10との距離の比が、半導体レーザ1の波長変化率よりも大きい場合について説明する。図22は、この場合に本実施の形態の振動周波数計測装置で得られる信号を説明するための図であり、図22(A)は物体10との距離の時間変化を示す図、図22(B)は物体10の速度の時間変化を示す図、図22(C)は計数装置7の計数結果の時間変化を示す図、図22(D)は2値化部81による2値化出力D(t)を示す図である。図22(B)において,220は速度が小さい箇所を示し、221は物体10の移動方向が半導体レーザ1に接近する方向であることを示し、222は物体10の移動方向が半導体レーザ1から遠ざかる方向であることを示している。   Next, a case where the ratio of the maximum speed of vibration of the object 10 and the distance between the object 10 is larger than the wavelength change rate of the semiconductor laser 1 will be described. FIG. 22 is a diagram for explaining a signal obtained by the vibration frequency measurement device of the present embodiment in this case, and FIG. 22 (A) is a diagram showing a change with time of the distance to the object 10, and FIG. FIG. 22C is a diagram showing the time change of the counting result of the counting device 7, and FIG. 22D is the binarized output D by the binarizing unit 81. It is a figure which shows (t). In FIG. 22B, 220 indicates a portion where the speed is low, 221 indicates that the moving direction of the object 10 is a direction approaching the semiconductor laser 1, and 222 indicates that the moving direction of the object 10 is far from the semiconductor laser 1. Indicates that the direction.

物体10の振動の最大速度と物体10との距離の比が、半導体レーザ1の波長変化率よりも大きい場合は、物体10の最大速度付近で、物体10との距離に比例したMHPの数が、計数期間における物体10の変位(速度)に比例したMHPの数よりも小さくなるため、半導体レーザ1の発振波長が増加しているときの計数結果N’uと発振波長が減少しているときの計数結果N’dとの差が2つの計数期間(本実施の形態では発振期間P1とP2)における物体10の変位に比例する期間と、計数結果N’uと計数結果N’dとの和が2つの計数期間における物体10の変位に比例する期間とが存在する。   When the ratio of the maximum speed of vibration of the object 10 and the distance to the object 10 is larger than the wavelength change rate of the semiconductor laser 1, the number of MHPs proportional to the distance to the object 10 is near the maximum speed of the object 10. Since the number of MHPs proportional to the displacement (velocity) of the object 10 during the counting period is smaller, the counting result N′u when the oscillation wavelength of the semiconductor laser 1 is increasing and the oscillation wavelength are decreasing. Between the count result N′d and the count result N′d, a period in which the difference between the count result N′d and the count result N′d is proportional to the displacement of the object 10 in the two count periods (oscillation periods P1 and P2 in the present embodiment). There is a period in which the sum is proportional to the displacement of the object 10 in two counting periods.

この場合、物体10の振動の速度は、図22(B)のようにN’u−N’dとN’u+N’dを時系列でプロットしたグラフの合成で表現することができる。ただし、速度の方向は常にN’uとN’dとの大小関係と一致するため、N’u−N’dの符号が物体10の運動方向を示すことになり、この符号によって物体10の変位を2値化することができる。   In this case, the vibration speed of the object 10 can be expressed by combining graphs in which N′u−N′d and N′u + N′d are plotted in time series as shown in FIG. However, since the speed direction always matches the magnitude relationship between N′u and N′d, the sign of N′u−N′d indicates the movement direction of the object 10, and this sign indicates that the object 10 The displacement can be binarized.

物体10の振動の最大速度と物体10との距離の比が、半導体レーザ1の波長変化率よりも小さい場合と同様に、物体10の速度が小さい箇所223において、例えば外乱光などに起因するホワイトノイズが加わると、2値化出力D(t)の符号が切り替わる箇所224において、2値化出力D(t)の符号が本来の値と逆の値になることがある。また、例えば外乱光などに起因するスパイクノイズが加わると、図22(D)に示すように箇所225において2値化出力D(t)の符号が局所的に反転する。このとき、度数分布作成部83によって作成される周期の度数分布は、図21と同様である。   Similar to the case where the ratio of the maximum speed of vibration of the object 10 and the distance to the object 10 is smaller than the wavelength change rate of the semiconductor laser 1, white light caused by, for example, disturbance light at the portion 223 where the speed of the object 10 is small. When noise is added, the sign of the binarized output D (t) may be a value opposite to the original value at the location 224 where the sign of the binarized output D (t) switches. Further, for example, when spike noise caused by disturbance light or the like is added, the sign of the binarized output D (t) is locally inverted at a location 225 as shown in FIG. At this time, the frequency distribution of the period created by the frequency distribution creating unit 83 is the same as in FIG.

本実施の形態のように物体10の変位を2値化した2値化出力D(t)を補正する場合においては、高周波ノイズの補正が重要になる。高周波ノイズによる短い周期での符号の変化は物体10の本来の振動の周期の度数を上回ることがあり、周期の代表値として最頻値や中央値などを用いた場合、誤って振動周期よりも短いノイズの周期を基準として補正を掛けてしまう懸念がある。そのため、振動周波数を算出するための一定時間Tの期間において、ある階級の信号が占める割合、つまり階級値と度数との積が最も大きい階級値を基準周期Trとして、カウンタ85の計数結果の補正を実施する。以上が、階級値と度数との積が最大となる階級値を基準周期Trとする理由である。
代表値算出部742が、階級値と度数との積が最大となる階級値を代表値T0とする理由も同様である。つまり、代表値T0として最頻値や中央値を用いるよりも、計数期間において、ある階級の信号が占める割合が最も大きい階級値を代表値T0とした方が、高周波ノイズが存在する場合にはより好ましい。
In the case of correcting the binarized output D (t) obtained by binarizing the displacement of the object 10 as in the present embodiment, it is important to correct high frequency noise. The change of the sign in a short period due to the high frequency noise may exceed the frequency of the original vibration period of the object 10, and when the mode value or the median value is used as the representative value of the period, it is erroneously more than the vibration period. There is a concern that correction may be applied based on a short noise period. Therefore, correction of the count result of the counter 85 with the ratio of the signal of a certain class in the period of the fixed time T for calculating the vibration frequency, that is, the class value having the largest product of the class value and the frequency as the reference period Tr. To implement. The above is the reason for setting the class value that maximizes the product of the class value and the frequency as the reference period Tr.
The reason why the representative value calculation unit 742 sets the class value that maximizes the product of the class value and the frequency as the representative value T0 is also the same. That is, when the high frequency noise is present when the class value having the largest proportion of signals of a certain class in the counting period is set as the representative value T0, rather than using the mode value or the median value as the representative value T0. More preferred.

なお、本実施の形態の他の例として、カウンタ85の計数結果を補正する技術に、カウンタ73の計数結果を補正する技術を適用してもよい。   As another example of the present embodiment, a technique for correcting the count result of the counter 73 may be applied to a technique for correcting the count result of the counter 85.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図23は本実施の形態の計数装置の構成の1例を示す図である。本実施の形態は、第1の実施の形態の計数装置7の代わりに計数装置7aを用いるものである。計数装置7aは、2値化部71と、AND72と、カウンタ73aと、計数結果補正部74aと、記憶部75とから構成される。
図24は本実施の形態の計数結果補正部74aの構成の1例を示すブロック図である。計数結果補正部74aは、半周期測定部740と、度数分布作成部741aと、代表値算出部742aと、補正値算出部743aと、信号結合部744とから構成される。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 23 is a diagram showing an example of the configuration of the counting device according to the present embodiment. In the present embodiment, a counting device 7a is used instead of the counting device 7 of the first embodiment. The counting device 7a includes a binarizing unit 71, an AND 72, a counter 73a, a counting result correcting unit 74a, and a storage unit 75.
FIG. 24 is a block diagram showing an example of the configuration of the counting result correction unit 74a of the present embodiment. The counting result correcting unit 74a includes a half-cycle measuring unit 740, a frequency distribution creating unit 741a, a representative value calculating unit 742a, a correction value calculating unit 743a, and a signal combining unit 744.

図25は本実施の形態の計数装置7aの動作を示すフローチャートである。第1の実施の形態で説明したとおり、半周期測定部740は、計数期間中のMHPの半周期を測定する(図25ステップS101)。
第1の実施の形態と同様に、度数分布作成部741aは、記憶部75に記憶された半周期測定部740の測定結果から計数期間中のMHPの半周期の度数分布を作成する(図25ステップS102)。
FIG. 25 is a flowchart showing the operation of the counting device 7a of the present embodiment. As described in the first embodiment, the half cycle measuring unit 740 measures the half cycle of the MHP during the counting period (step S101 in FIG. 25).
Similarly to the first embodiment, the frequency distribution creating unit 741a creates a frequency distribution of the MHP half cycle during the counting period from the measurement result of the half cycle measuring unit 740 stored in the storage unit 75 (FIG. 25). Step S102).

第1の実施の形態と同様に、代表値算出部742aは、度数分布作成部741aがステップS102で作成した度数分布から、MHPの半周期の代表値T0を算出する(図25ステップS103)。第1の実施の形態と同様に、MHPの半周期の最頻値や中央値、あるいは平均値を代表値T0としてもよいし、階級値と度数との積が最大となる階級値を代表値T0としてもよい。代表値算出部742aが算出した代表値T0は、記憶部75に格納される。   Similar to the first embodiment, the representative value calculating unit 742a calculates the representative value T0 of the half cycle of the MHP from the frequency distribution created by the frequency distribution creating unit 741a in step S102 (step S103 in FIG. 25). As in the first embodiment, the mode value, median value, or average value of the half-cycle of MHP may be set as the representative value T0, and the class value that maximizes the product of the class value and the frequency is set as the representative value. It may be T0. The representative value T0 calculated by the representative value calculation unit 742a is stored in the storage unit 75.

次に、信号結合部744は、半周期測定部740の測定結果について、代表値T0の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた波形を1つのMHPの半周期分の波形とすることを、結合後の半周期が代表値T0の0.5倍以上になるまで行う(図25ステップS105)。図26(A)〜図26(C)は信号結合部744の動作を説明するための図であり、図26(A)はMHPの波形を模式的に示す図、図26(B)は半周期測定部740の測定結果を示す図、図26(C)は信号結合部744の処理結果を示す図である。   Next, the signal combining unit 744 combines the period obtained by combining the half cycle having a length less than 0.5 times the representative value T0 and the half cycle measured immediately after the measurement result of the half cycle measuring unit 740. The subsequent half cycle is set to a waveform corresponding to one MHP half cycle until the combined half cycle becomes 0.5 times or more of the representative value T0 (step S105 in FIG. 25). ). 26A to 26C are diagrams for explaining the operation of the signal coupling unit 744. FIG. 26A is a diagram schematically showing the waveform of MHP, and FIG. FIG. 26C is a diagram illustrating a measurement result of the period measurement unit 740, and FIG. 26C is a diagram illustrating a processing result of the signal coupling unit 744.

半周期測定部740が図26(A)に示すMHPの半周期を測定すると、図26(B)に示すように半周期T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16という測定結果が得られる。このうち、半周期T2,T3,T6〜T9,T11〜T14は高周波ノイズ等の原因により生じたものである。この場合、半周期T2,T3,T6〜T14は代表値T0の0.5倍未満の長さであるため、第1の実施の形態の計数装置7においてはT10がMHPの半周期として認識されず、計数結果に誤差が生じる。   When the half-cycle measuring unit 740 measures the half-cycle of the MHP shown in FIG. 26 (A), as shown in FIG. 26 (B), half-cycles T1, T2, T3, T4, T5, T6, T7, T8, T9, Measurement results of T10, T11, T12, T13, T14, T15, and T16 are obtained. Of these, the half periods T2, T3, T6 to T9, and T11 to T14 are caused by causes such as high frequency noise. In this case, since the half periods T2, T3, T6 to T14 are less than 0.5 times the representative value T0, T10 is recognized as the MHP half period in the counting device 7 of the first embodiment. Therefore, an error occurs in the counting result.

これに対して、本実施の形態では、信号結合部744が上記のような信号の結合処理を行うことにより、図26(C)に示すように半周期T1,T2,T3,T4,T5,T6という処理結果が得られる。例えば半周期T2〜T4を合わせた周期が結合後の半周期T2となり、T2〜T4の波形が1つのMHPの半周期分の波形として結合される。同様に、半周期T6〜T10を合わせた周期が結合後の半周期T4となり、T6〜T10の波形が1つのMHPの半周期分の波形として結合される。信号結合部744の処理結果は、記憶部75に格納される。   On the other hand, in this embodiment, the signal combining unit 744 performs the signal combining process as described above, so that the half periods T1, T2, T3, T4, T5, as shown in FIG. A processing result of T6 is obtained. For example, the combined period of the half periods T2 to T4 is the combined half period T2, and the waveforms of T2 to T4 are combined as a waveform corresponding to one MHP half period. Similarly, the combined period of the half periods T6 to T10 is the combined half period T4, and the waveforms of T6 to T10 are combined as a waveform for one MHP half period. The processing result of the signal combining unit 744 is stored in the storage unit 75.

次に、度数分布作成部741aは、記憶部75に記憶された信号結合部744の処理結果から計数期間中のMHPの半周期の度数分布を作成する(図25ステップS106)。
続いて、代表値算出部742aは、度数分布作成部741aがステップS106で作成した度数分布から、MHPの半周期の代表値T0を算出する(図25ステップS107)。これにより、記憶部75に格納されている代表値T0は、ステップS107で算出された最新の値に更新される。第1の実施の形態と同様に、MHPの半周期の最頻値や中央値、あるいは平均値を代表値T0としてもよいし、階級値と度数との積が最大となる階級値を代表値T0としてもよい。
Next, the frequency distribution creating unit 741a creates the frequency distribution of the half cycle of the MHP during the counting period from the processing result of the signal combining unit 744 stored in the storage unit 75 (step S106 in FIG. 25).
Subsequently, the representative value calculation unit 742a calculates the representative value T0 of the half cycle of the MHP from the frequency distribution created by the frequency distribution creation unit 741a in step S106 (step S107 in FIG. 25). As a result, the representative value T0 stored in the storage unit 75 is updated to the latest value calculated in step S107. As in the first embodiment, the mode value, median value, or average value of the half-cycle of MHP may be set as the representative value T0, and the class value that maximizes the product of the class value and the frequency is set as the representative value. It may be T0.

一方、カウンタ73aは、信号結合部744の処理後のMHPについて、MHPの半周期の数を数える(図25ステップS108)。
最後に、補正値算出部743aは、信号結合部744の処理結果から、代表値T0の0.5倍未満である半周期の数の総和Nsと、代表値T0の2n倍以上(2n+2)倍未満(nは1以上nmax以下の自然数)である半周期の数の総和Nwnとを求め、カウンタ73aの計数結果Nを式(2)のように補正する(図25ステップS109)。
計数装置7aは、以上のような処理を第1の発振期間P1と第2の発振期間P2の各々について行う。
On the other hand, the counter 73a counts the number of MHP half cycles for the MHP processed by the signal combining unit 744 (step S108 in FIG. 25).
Finally, the correction value calculation unit 743a determines, based on the processing result of the signal combination unit 744, the sum Ns of the number of half periods that is less than 0.5 times the representative value T0 and 2n times (2n + 2) times the representative value T0. less than (n is 1 or n max following a natural number) sought and a number of half-period sum Nw n, correcting the count result n of the counter 73a as shown in equation (2) (Fig. 25 step S109).
The counting device 7a performs the above processing for each of the first oscillation period P1 and the second oscillation period P2.

その他の構成は、第1の実施の形態と同じである。第1の実施の形態では、MHPの信号強度低下と計数装置7に入力される信号へのバーストノイズの混入とが同時に発生した場合、MHPが少なく計数されることがあるが、本実施の形態によれば、このような計数誤差を少なくすることができる。   Other configurations are the same as those of the first embodiment. In the first embodiment, when a decrease in the signal strength of MHP and mixing of burst noise into the signal input to the counting device 7 occur at the same time, the MHP may be counted low. According to this, such a counting error can be reduced.

なお、本実施の形態では、ステップS102において計数期間中のMHPの半周期の度数分布を作成し、ステップS103において度数分布からMHPの半周期の代表値T0を算出しているが、これに限るものではなく、ステップS102において度数分布を作成することなく、代表値算出部742aが、ステップS103において半周期測定部740の測定結果から計数期間中のMHPの半周期の平均値を代表値T0として算出してもよい。   In this embodiment, the frequency distribution of the half cycle of MHP during the counting period is created in step S102, and the representative value T0 of the half cycle of MHP is calculated from the frequency distribution in step S103. However, the present invention is not limited to this. Instead of creating a frequency distribution in step S102, the representative value calculation unit 742a uses the measurement result of the half cycle measurement unit 740 in step S103 as the average value of the MHP half cycles during the counting period as the representative value T0. It may be calculated.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。本実施の形態においても、計数装置の構成および処理の流れは第2の実施の形態と同様であるので、図23〜図25の符号を用いて本実施の形態について説明する。
図25のステップS101〜S103の処理は、第2の実施の形態と同じである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. Also in this embodiment, the configuration of the counting device and the flow of processing are the same as those in the second embodiment, and therefore this embodiment will be described using the reference numerals in FIGS.
The processes in steps S101 to S103 in FIG. 25 are the same as those in the second embodiment.

次に、本実施の形態の信号結合部744は、半周期測定部740の測定結果について、代表値T0の0.5倍未満の長さの半周期が代表値T0の0.5倍以上の長さのm番目の半周期Tmと代表値T0の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた波形をm番目の半周期分の波形とする(図25ステップS105)。 Next, the signal combining unit 744 of the present embodiment has a half cycle having a length less than 0.5 times the representative value T0 as the measurement result of the half cycle measuring unit 740 that is not less than 0.5 times the representative value T0. (M + p) is an even number when sandwiched between the m-th half cycle Tm of length and the p-th half cycle Tp (m and p are natural numbers) of 0.5 times or more the representative value T0. In this case, the combined period from the half period Tm to the half period Tp is defined as the combined half period. When (m + p) is an odd number, the combined period from the half period Tm to the half period T p −1 is defined as the combined half period. The period is set to a waveform corresponding to the m-th half cycle (step S105 in FIG. 25).

図27(A)〜図27(C)は本実施の形態の信号結合部744の動作を説明するための図であり、図27(A)はMHPの波形を模式的に示す図、図27(B)は半周期測定部740の測定結果を示す図、図27(C)は信号結合部744の処理結果を示す図である。
半周期測定部740が図27(A)に示すMHPの半周期を測定すると、図27(B)に示すように半周期T1〜T20という測定結果が得られる。この場合、半周期T2,T3,T6〜T14,T16〜T19は代表値T0の0.5倍未満の長さであるため、第1の実施の形態の計数装置7においてはT10がMHPの半周期として認識されず、計数結果に補正誤差が生じる。
27A to 27C are diagrams for explaining the operation of the signal coupling unit 744 of the present embodiment, and FIG. 27A is a diagram schematically illustrating the waveform of MHP. FIG. 27B is a diagram illustrating a measurement result of the half cycle measurement unit 740, and FIG. 27C is a diagram illustrating a processing result of the signal coupling unit 744.
When the half cycle measurement unit 740 measures the half cycle of the MHP shown in FIG. 27A, measurement results of half cycles T1 to T20 are obtained as shown in FIG. 27B. In this case, since the half periods T2, T3, T6 to T14, and T16 to T19 are less than 0.5 times the representative value T0, in the counting device 7 of the first embodiment, T10 is half of the MHP. It is not recognized as a period, and a correction error occurs in the counting result.

これに対して、本実施の形態では、信号結合部744が上記のような信号の結合処理を行うことにより、図27(C)に示すように半周期T1,T2,T3,T4という処理結果が得られる。例えば半周期T2,T3は代表値T0の0.5倍以上の長さの半周期T1とT4に挟まれており、m+pは1+4=5で奇数である。したがって、T1〜T3の波形が1つのMHPの半周期分の波形として結合され、半周期T1〜T3を合わせた周期が結合後の半周期T1となる。   On the other hand, in the present embodiment, when the signal combining unit 744 performs the signal combining process as described above, the processing results of half cycles T1, T2, T3, and T4 as shown in FIG. Is obtained. For example, the half periods T2 and T3 are sandwiched between half periods T1 and T4 having a length of 0.5 times or more of the representative value T0, and m + p is an odd number of 1 + 4 = 5. Therefore, the waveforms of T1 to T3 are combined as a waveform for one MHP half cycle, and the combined cycle of the half cycles T1 to T3 is the combined half cycle T1.

同様に、半周期T6〜T14は代表値T0の0.5倍以上の長さの半周期T5とT15に挟まれており、m+pは5+15=20で偶数である。したがって、T5〜T15の波形が1つのMHPの半周期分の波形として結合され、半周期T5〜T15を合わせた周期が結合後の半周期T3となる。さらに、半周期T16〜T19は結合後の半周期T3と代表値T0の0.5倍以上の長さの半周期T20に挟まれており、m+pは3+20=23で奇数である。したがって、半周期T3,T16〜T19の波形が1つのMHPの半周期分の波形として結合され、半周期T3,T16〜T19を合わせた周期が結合後の半周期T3となる。信号結合部744の処理結果は、記憶部75に格納される。   Similarly, the half periods T6 to T14 are sandwiched between half periods T5 and T15 having a length of 0.5 times or more of the representative value T0, and m + p is an even number of 5 + 15 = 20. Therefore, the waveforms of T5 to T15 are combined as a waveform corresponding to one MHP half cycle, and the combined period of the half cycles T5 to T15 is a combined half cycle T3. Further, the half periods T16 to T19 are sandwiched between the combined half period T3 and the half period T20 having a length of 0.5 times or more of the representative value T0, and m + p is an odd number of 3 + 20 = 23. Therefore, the waveforms of the half periods T3, T16 to T19 are combined as a waveform corresponding to one MHP half period, and the combined period of the half periods T3, T16 to T19 is the combined half period T3. The processing result of the signal combining unit 744 is stored in the storage unit 75.

図25のステップS106〜S109の処理は、第2の実施の形態と同じである。第2の実施の形態によれば、第1の実施の形態に比べて計数誤差を少なくすることができるが、計数装置7aに入力される信号にMHPの1/4周期以上のバーストノイズやポップコーンノイズが混入した場合、バーストノイズやポップコーンノイズが計数されてしまい、計数誤差が生じることがある。これに対して、本実施の形態では、このようなノイズの混入がある場合でも、計数誤差を少なくすることができる。   The processes in steps S106 to S109 in FIG. 25 are the same as those in the second embodiment. According to the second embodiment, the counting error can be reduced as compared with the first embodiment, but burst noise or popcorn having a period of 1/4 or more of MHP is included in the signal input to the counting device 7a. When noise is mixed, burst noise and popcorn noise are counted, and a counting error may occur. On the other hand, in this embodiment, even when such noise is mixed, the counting error can be reduced.

なお、第2の実施の形態と同様に、ステップS102において度数分布を作成することなく、代表値算出部742aが、ステップS103において半周期測定部740の測定結果から計数期間中のMHPの半周期の平均値を代表値T0として算出してもよい。   Similar to the second embodiment, the representative value calculation unit 742a does not create a frequency distribution in step S102, and the representative value calculation unit 742a determines the half cycle of the MHP during the counting period from the measurement result of the half cycle measurement unit 740 in step S103. May be calculated as the representative value T0.

また、第2の実施の形態、第3の実施の形態において、ステップS106,S107の処理は必須の構成要件ではない。その理由は、結合前の代表値は度数分布を用いて精度良く求められているため、必ずしも再度代表値を求める必要はないからである。ステップS106,S107の処理を実行しない場合、補正値算出部743aは、ステップS103で算出された代表値T0を使用すればよい。ただし、ステップS103で算出する代表値T0の精度が低いと考えられる場合には、ステップS106,S107の処理を実行するようにしてもよい。   In the second embodiment and the third embodiment, the processing in steps S106 and S107 is not an indispensable component. The reason is that the representative value before combining is obtained with high accuracy using the frequency distribution, and therefore it is not always necessary to obtain the representative value again. When the processes in steps S106 and S107 are not executed, the correction value calculation unit 743a may use the representative value T0 calculated in step S103. However, when it is considered that the accuracy of the representative value T0 calculated in step S103 is low, the processing in steps S106 and S107 may be executed.

参考例
次に、本発明の参考例について説明する。図28は本参考例の計数装置の構成の1例を示す図である。本参考例は、第1の実施の形態の計数装置7の代わりに計数装置7bを用いるものである。計数装置7bは、2値化部71と、AND72と、カウンタ73bと、計数結果補正部74bと、記憶部75とから構成される。
図29は本参考例の計数結果補正部74bの構成の1例を示すブロック図である。計数結果補正部74bは、周期測定部745と、度数分布作成部741bと、代表値算出部742bと、補正値算出部743bと、信号結合部744bとから構成される。
[ Reference example ]
Next, reference examples of the present invention will be described. FIG. 28 is a diagram showing an example of the configuration of the counting device of this reference example . In this reference example , a counting device 7b is used instead of the counting device 7 of the first embodiment. The counting device 7b includes a binarizing unit 71, an AND 72, a counter 73b, a counting result correcting unit 74b, and a storage unit 75.
FIG. 29 is a block diagram showing an example of the configuration of the counting result correction unit 74b of this reference example . The counting result correcting unit 74b includes a period measuring unit 745, a frequency distribution creating unit 741b, a representative value calculating unit 742b, a correction value calculating unit 743b, and a signal combining unit 744b.

図30は本参考例の計数装置7bの動作を示すフローチャートである。周期測定部745は、計数期間中のMHPの周期を測定する(図30ステップS201)。すなわち、周期測定部745は、AND72の出力の立ち上がりを検出すると共に、AND72の出力の立ち下がりを検出する。そして、周期測定部745は、AND72の出力の立ち上がりから次の立ち上がりまでの時間を測定することにより、計数期間中のAND72の出力の周期(すなわち、MHPの周期)を測定する。周期測定部745は、このような測定をAND72の出力に立ち上がりエッジが発生する度に行う。あるいは、周期測定部745は、AND72の出力の立ち下がりから次の立ち下がりまでの時間を測定することにより、MHPの周期を測定してもよい。記憶部75は、周期測定部745の測定結果を記憶する。 FIG. 30 is a flowchart showing the operation of the counting device 7b of this reference example . The period measurement unit 745 measures the MHP period during the counting period (step S201 in FIG. 30). That is, the period measurement unit 745 detects the rising edge of the output of the AND 72 and also detects the falling edge of the output of the AND 72. Then, the period measurement unit 745 measures the period of the output of the AND 72 during the counting period (that is, the period of the MHP) by measuring the time from the rise of the output of the AND 72 to the next rise. The period measurement unit 745 performs such measurement every time a rising edge occurs in the output of the AND 72. Alternatively, the period measurement unit 745 may measure the MHP period by measuring the time from the fall of the output of the AND 72 to the next fall. The storage unit 75 stores the measurement result of the period measurement unit 745.

ゲート信号GSが立ち下がり、計数期間が終了した後、度数分布作成部741bは、記憶部75に記憶された周期測定部745の測定結果から計数期間中のMHPの周期の度数分布を作成する(図30ステップS202)。   After the gate signal GS falls and the counting period ends, the frequency distribution creating unit 741b creates a frequency distribution of the MHP period during the counting period from the measurement result of the period measuring unit 745 stored in the storage unit 75 ( FIG. 30 step S202).

続いて、代表値算出部742bは、度数分布作成部741bが作成した度数分布から、MHPの周期の代表値T0を算出する(図30ステップS203)。ここでは、MHPの周期の最頻値や中央値、あるいは平均値を代表値T0とすればよい。また、代表値算出部742bは、階級値と度数との積が最大となる階級値を代表値T0としてもよい。   Subsequently, the representative value calculating unit 742b calculates the representative value T0 of the MHP cycle from the frequency distribution created by the frequency distribution creating unit 741b (step S203 in FIG. 30). Here, the mode value, median value, or average value of the MHP cycle may be set as the representative value T0. In addition, the representative value calculation unit 742b may set the class value that maximizes the product of the class value and the frequency as the representative value T0.

次に、信号結合部744bは、周期測定部745の測定結果について、代表値T0の0.5倍未満の長さの周期とその直後に測定された周期とを合わせた周期を結合後の周期とし、周期を合わせた波形を1つのMHPの1周期分の波形とすることを、結合後の周期が代表値T0の0.5倍以上になるまで行う(図30ステップS204)。図31(A)〜図31(C)は信号結合部744bの動作を説明するための図であり、図31(A)はMHPの波形を模式的に示す図、図31(B)は周期測定部745の測定結果を示す図、図31(C)は信号結合部744bの処理結果を示す図である。   Next, the signal combining unit 744b combines the period obtained by combining the period of less than 0.5 times the representative value T0 with the period measured immediately after the period of the measurement result of the period measuring unit 745. Then, the combined waveform is changed to a waveform for one cycle of one MHP until the combined cycle becomes 0.5 times or more of the representative value T0 (step S204 in FIG. 30). 31A to 31C are diagrams for explaining the operation of the signal coupling unit 744b. FIG. 31A is a diagram schematically showing a waveform of MHP, and FIG. The figure which shows the measurement result of the measurement part 745, FIG.31 (C) is a figure which shows the process result of the signal coupling | bond part 744b.

周期測定部745が図31(A)に示すMHPの周期を測定すると、図31(B)に示すように周期T1,T2,T3,T4,T5,T6,T7という測定結果が得られる。このうち、周期T1,T3,T4,T6,T7は高周波ノイズ等の原因により生じたものである。この場合、周期T1,T3〜T6は代表値T0の0.5倍未満の長さであるため、第1の実施の形態の計数装置7においてはT3〜T7の箇所で計数結果に誤差が生じる。   When the period measurement unit 745 measures the MHP period shown in FIG. 31A, measurement results of periods T1, T2, T3, T4, T5, T6, and T7 are obtained as shown in FIG. 31B. Among these, the periods T1, T3, T4, T6, and T7 are caused by high frequency noise and the like. In this case, since the periods T1, T3 to T6 are less than 0.5 times the representative value T0, in the counting device 7 of the first embodiment, an error occurs in the counting results at the positions T3 to T7. .

これに対して、本参考例では、信号結合部744bが上記のような信号の結合処理を行うことにより、図31(C)に示すように周期T1,T2という処理結果が得られる。例えば周期T1,T2を合わせた周期が結合後の周期T1となり、T1,T2の波形が1つのMHPの1周期分の波形として結合される。ここでは、結合後の周期が代表値T0の0.5倍以上になるように結合される。同様に、図31(B)の周期T3〜T7を合わせた周期が図31(C)に示すように結合後の周期T2となり、T3〜T7の波形が1つのMHPの1周期分の波形として結合される。信号結合部744bの処理結果は、記憶部75に格納される。 On the other hand, in the present reference example , when the signal combining unit 744b performs the signal combining process as described above, a processing result of cycles T1 and T2 is obtained as shown in FIG. For example, the combined period T1 and T2 is a combined period T1, and the waveforms of T1 and T2 are combined as one MHP waveform. Here, the coupling is performed so that the period after the coupling is 0.5 times or more of the representative value T0. Similarly, a period obtained by combining the periods T3 to T7 in FIG. 31B is a combined period T2 as shown in FIG. 31C, and the waveform from T3 to T7 is a waveform for one period of one MHP. Combined. The processing result of the signal combining unit 744b is stored in the storage unit 75.

次に、度数分布作成部741bは、記憶部75に記憶された信号結合部744bの処理結果から計数期間中のMHPの周期の度数分布を作成する(図30ステップS205)。
続いて、代表値算出部742bは、度数分布作成部741bがステップS205で作成した度数分布から、MHPの周期の代表値T0を算出する(図30ステップS206)。これにより、記憶部75に格納されている代表値T0は、ステップS206で算出された最新の値に更新される。ステップS203と同様に、MHPの周期の最頻値や中央値、あるいは平均値を代表値T0としてもよいし、階級値と度数との積が最大となる階級値を代表値T0としてもよい。
Next, the frequency distribution creating unit 741b creates a frequency distribution of the MHP period during the counting period from the processing result of the signal combining unit 744b stored in the storage unit 75 (step S205 in FIG. 30).
Subsequently, the representative value calculation unit 742b calculates a representative value T0 of the MHP cycle from the frequency distribution created by the frequency distribution creation unit 741b in step S205 (step S206 in FIG. 30). As a result, the representative value T0 stored in the storage unit 75 is updated to the latest value calculated in step S206. As in step S203, the mode value, median value, or average value of the MHP cycle may be used as the representative value T0, or the class value that maximizes the product of the class value and the frequency may be used as the representative value T0.

一方、カウンタ73bは、信号結合部744bの処理後のMHPについて、MHPの数を数える(図30ステップS207)。第1の実施の形態のカウンタ73は、MHPの立ち上がりと立ち下がりの両方を数えたが、カウンタ73bは、MHPの立ち上がりと立ち下がりのうちどちらか一方のみを数えればよい。   On the other hand, the counter 73b counts the number of MHPs for the MHPs processed by the signal combining unit 744b (step S207 in FIG. 30). Although the counter 73 of the first embodiment counts both rising and falling edges of the MHP, the counter 73b only needs to count only one of the rising edge and the falling edge of the MHP.

最後に、補正値算出部743bは、信号結合部744bの処理結果から、代表値T0の0.5倍未満である周期の数の総和Nsと、代表値T0の(n+0.5)倍以上(n+1.5)倍未満(nは1以上nmax以下の自然数)である周期の数の総和Nwnとを求め、カウンタ73bの計数結果を次式のように補正する(図30ステップS208)。 Finally, the correction value calculation unit 743b determines, based on the processing result of the signal combination unit 744b, the total number Ns of periods that is less than 0.5 times the representative value T0 and (n + 0.5) times or more of the representative value T0 ( n + 1.5) less times (n is calculated and the number of total Nw n of the cycle is a natural number less than or equal to) one or more n max, to correct the counting result of the counter 73b as in the following equation (Fig. 30 step S208).

Figure 0005798668
Figure 0005798668

式(9)において、Nはカウンタ73bの計数結果であるMHPの数、N’は補正後の計数結果、TmaxはMHPの周期がとり得る最大値である。
計数装置7bは、以上のような処理を第1の発振期間P1と第2の発振期間P2の各々について行う。
In Equation (9), N is the number of MHPs that are the counting result of the counter 73b, N ′ is the corrected counting result, and T max is the maximum value that the MHP cycle can take.
The counting device 7b performs the above processing for each of the first oscillation period P1 and the second oscillation period P2.

その他の構成は、第1の実施の形態と同じである。本参考例では、第1の実施の形態のように半周期の代表値を用いて計数結果を補正する効果を得ることはできないが、第2の実施の形態で説明したように、MHPの信号強度低下と計数装置7bに入力される信号へのバーストノイズの混入とが同時に発生した場合であっても、計数誤差を少なくすることができる。 Other configurations are the same as those of the first embodiment. In this reference example , it is not possible to obtain the effect of correcting the counting result using a half-cycle representative value as in the first embodiment, but as described in the second embodiment, the MHP signal Even when a decrease in intensity and mixing of burst noise into the signal input to the counting device 7b occur at the same time, the counting error can be reduced.

なお、本参考例では、ステップS202において計数期間中のMHPの周期の度数分布を作成し、ステップS203において度数分布からMHPの周期の代表値T0を算出しているが、これに限るものではなく、ステップS202において度数分布を作成することなく、代表値算出部742bが、ステップS203において周期測定部745の測定結果から計数期間中のMHPの周期の平均値を代表値T0として算出してもよい。 In this reference example , the frequency distribution of the MHP period during the counting period is created in step S202, and the representative value T0 of the MHP period is calculated from the frequency distribution in step S203. However, the present invention is not limited to this. In step S202, the representative value calculation unit 742b may calculate the average value of the MHP periods during the counting period as the representative value T0 from the measurement result of the period measurement unit 745 in step S203 without creating a frequency distribution. .

また、本参考例において、ステップS205,S206の処理は必須の構成要件ではない。その理由は、結合前の代表値は度数分布を用いて精度良く求められているため、必ずしも再度代表値を求める必要はないからである。ステップS205,S206の処理を実行しない場合、補正値算出部743bは、ステップS203で算出された代表値T0を使用すればよい。ただし、ステップS203で算出する代表値T0の精度が低いと考えられる場合には、ステップS205,S206の処理を実行するようにしてもよい。 Further, in the present reference example , the processing of steps S205 and S206 is not an essential constituent requirement. The reason is that the representative value before combining is obtained with high accuracy using the frequency distribution, and therefore it is not always necessary to obtain the representative value again. When the processes in steps S205 and S206 are not executed, the correction value calculation unit 743b may use the representative value T0 calculated in step S203. However, when it is considered that the accuracy of the representative value T0 calculated in step S203 is low, the processing in steps S205 and S206 may be executed.

なお、第1〜第3の実施の形態および参考例において少なくとも計数装置7,7a,7bと演算装置8とは、例えばCPU、記憶装置およびインタフェースを備えたコンピュータとこれらのハードウェア資源を制御するプログラムによって実現することができる。このようなコンピュータを動作させるためのプログラムは、フレキシブルディスク、CD−ROM、DVD−ROM、メモリカードなどの記録媒体に記録された状態で提供される。CPUは、読み込んだプログラムを記憶装置に書き込み、このプログラムに従って第1〜第3の実施の形態および参考例で説明した処理を実行する。 In the first to third embodiments and reference examples , at least the counting devices 7, 7a, 7b and the arithmetic device 8 control, for example, a computer having a CPU, a storage device, and an interface, and hardware resources thereof. It can be realized by a program. A program for operating such a computer is provided in a state of being recorded on a recording medium such as a flexible disk, a CD-ROM, a DVD-ROM, or a memory card. The CPU writes the read program into the storage device, and executes the processes described in the first to third embodiments and the reference example according to this program.

また、第1〜第3の実施の形態および参考例では、本発明の計数装置を振動周波数計測装置に適用した場合について説明したが、これに限るものではなく、本発明の計数装置は他の分野にも適用することができる。本発明の計数装置が有効な場合は、計数の対象となる信号の数が特定の物理量(第1〜第3の実施の形態および参考例の場合は半導体レーザ1と物体10との距離、および物体10の変位)と線形の関係を有し、特定の物理量が一定の場合は信号が略単一周波数となる場合である。
また、信号が単一周波数でなくても、特定の物理量が計数期間と比較して十分低い周波数で、例えば1/10以下の周波数で振動している対象物の速度のように周期分布の広がりが小さい場合も略単一周波数として本発明の計数装置は有効である。
In the first to third embodiments and reference examples , the case where the counting device of the present invention is applied to the vibration frequency measuring device has been described. However, the present invention is not limited to this, and the counting device of the present invention is not limited to this. It can also be applied to the field. When the counting device of the present invention is effective, the number of signals to be counted is a specific physical quantity (in the case of the first to third embodiments and the reference example , the distance between the semiconductor laser 1 and the object 10, and The displacement of the object 10 is linear, and the specific physical quantity is constant when the signal has a substantially single frequency.
Further, even if the signal is not a single frequency, the spread of the periodic distribution such as the speed of an object oscillating at a frequency where the specific physical quantity is sufficiently lower than the counting period, for example, 1/10 or less, is possible. Is small, the counting device of the present invention is effective as a substantially single frequency.

また、第1〜第3の実施の形態および参考例では、物理量センサの例として振動周波数計測装置を挙げて説明したが、これに限るものではなく、本発明を他の物理量センサに適用してもよい。すなわち、計数装置の計数結果から物体の張力を算出してもよいし、特許文献1に開示されているように、計数装置の計数結果から物体との距離および物体の速度を算出するようにしてもよい。物理量センサが算出する物理量が様々なことから明らかなように、上記の特定の物理量と、物理量センサが算出する物理量とは同じ場合もあるが、異なる場合もある。 In the first to third embodiments and reference examples , the vibration frequency measuring device is described as an example of the physical quantity sensor. However, the present invention is not limited to this, and the present invention is applied to other physical quantity sensors. Also good. That is, the tension of the object may be calculated from the counting result of the counting device, or the distance from the object and the speed of the object may be calculated from the counting result of the counting device as disclosed in Patent Document 1. Also good. As apparent from various physical quantities calculated by the physical quantity sensor, the specific physical quantity and the physical quantity calculated by the physical quantity sensor may be the same or different.

本発明は、信号の数を数える計数装置や、計数装置を用いて干渉波形の数を測定し測定対象の物理量を求める干渉型の物理量センサに適用することができる。   The present invention can be applied to a counting device that counts the number of signals, and an interference-type physical quantity sensor that measures the number of interference waveforms by using the counting device to obtain a physical quantity to be measured.

1…半導体レーザ、2…フォトダイオード、3…レンズ、4…レーザドライバ、5…電流−電圧変換増幅部、6…フィルタ部、7,7a,7b…計数装置、8…演算装置、9…表示装置、10…物体、71…2値化部、72…論理積演算部、73,73a,73b…カウンタ、74,74a,74b…計数結果補正部、75…記憶部、80…記憶部、81…2値化部、82…周期測定部、83…度数分布作成部、84…基準周期算出部、85…カウンタ、86…補正部、87…周波数算出部、88…周期和算出部、740…半周期測定部、741,741a,741b…度数分布作成部、742,742a,742b…代表値算出部、743,743a,743b…補正値算出部、744,744b…信号結合部、745…周期測定部。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... Photodiode, 3 ... Lens, 4 ... Laser driver, 5 ... Current-voltage conversion amplification part, 6 ... Filter part, 7, 7a, 7b ... Counting device, 8 ... Arithmetic unit, 9 ... Display Device: 10: Object, 71: Binarization unit, 72: Logical product operation unit, 73, 73a, 73b: Counter, 74, 74a, 74b: Count result correction unit, 75: Storage unit, 80: Storage unit, 81 ..., Binarization unit, 82... Period measurement unit, 83... Frequency distribution creation unit, 84... Reference period calculation unit, 85 .. counter, 86 ... correction unit, 87 ... frequency calculation unit, 88 ... period sum calculation unit, 740. Half-cycle measuring unit, 741, 741a, 741b ... Frequency distribution creating unit, 742, 742a, 742b ... Representative value calculating unit, 743, 743a, 743b ... Correction value calculating unit, 744, 744b ... Signal combining unit, 745 ... Period measuring Department.

Claims (14)

特定の物理量と信号の数とが線形の関係を有し、前記特定の物理量が一定の場合は略単一周波数となる前記信号を数える計数装置において、
一定の計数期間における入力信号の半周期の数を数える信号計数手段と、
前記計数期間中の前記入力信号の半周期を信号の半周期分が入力される度に測定する信号半周期測定手段と、
この信号半周期測定手段の測定結果から前記計数期間中の入力信号の半周期の度数分布を作成する度数分布作成手段と、
前記度数分布から前記入力信号の半周期の分布の代表値を算出する代表値算出手段と、
前記信号半周期測定手段の測定結果から、前記代表値の0.5倍未満である半周期の数の総和Nsと、前記代表値の2n倍以上(2n+2)倍未満(nは1以上の自然数)である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいて前記信号計数手段の計数結果を補正し前記入力信号の数を算出する補正値算出手段とを備えることを特徴とする計数装置。
In the counting device that counts the signal having a linear relationship between the specific physical quantity and the number of signals and having a single frequency when the specific physical quantity is constant,
Signal counting means for counting the number of half-cycles of the input signal in a fixed counting period;
A signal half cycle measuring means for measuring a half cycle of the input signal during the counting period every time a half cycle of the signal is input;
Frequency distribution creating means for creating a frequency distribution of the half cycle of the input signal during the counting period from the measurement result of the signal half cycle measuring means,
Representative value calculating means for calculating a representative value of a half-cycle distribution of the input signal from the frequency distribution;
From the measurement result of the signal half-cycle measuring means, the sum Ns of the number of half-cycles that is less than 0.5 times the representative value and less than 2n times (2n + 2) times the representative value (n is a natural number of 1 or more) ) obtains a total sum Nw n of the number of half cycles it is, and a correction value calculating means for calculating the number of corrected said input signal cycles of the input signal counting means on the basis of the frequencies Ns and Nw n A counting device characterized by that.
請求項1記載の計数装置において、
前記補正値算出手段は、前記信号計数手段の計数結果をN、前記代表値をT0、前記信号の半周期がとり得る最大値をTmaxとしたとき、補正後の計数結果N’を、
Figure 0005798668
により求めることを特徴とする計数装置。
The counting device according to claim 1, wherein
The correction value calculation means, when the counting result of the signal counting means is N, the representative value is T0, and the maximum value that the half cycle of the signal can take is T max , the corrected counting result N ′,
Figure 0005798668
A counting device characterized by obtaining by:
請求項1または2記載の計数装置において、
さらに、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期と、その前後に測定された半周期のうち少なくとも一方とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とする信号結合手段を備え、
前記信号計数手段は、前記入力信号の数を数える代わりに、前記計数期間における前記信号結合手段の処理後の信号を数えることを特徴とする計数装置。
The counting device according to claim 1 or 2,
Further, for the measurement result of the signal half-cycle measuring means, after combining a cycle that is a combination of a half cycle less than 0.5 times the representative value and at least one of the half cycles measured before and after the half cycle A signal combining means for making a signal waveform with a combined period into a half-cycle waveform of one signal,
The counting device according to claim 1, wherein the signal counting means counts the signal after processing of the signal combining means in the counting period, instead of counting the number of the input signals.
請求項3記載の計数装置において、
前記信号結合手段は、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とすることを、結合後の半周期が前記代表値の0.5倍以上になるまで行うことを特徴とする計数装置。
The counting device according to claim 3, wherein
The signal combining unit is configured to combine a cycle obtained by combining a half cycle having a length less than 0.5 times the representative value and a half cycle measured immediately after the measurement result of the signal half cycle measurement unit. The counting is characterized in that a half cycle is performed, and the combined signal waveform is a waveform corresponding to a half cycle of one signal until the combined half cycle is 0.5 times or more of the representative value. apparatus.
請求項3記載の計数装置において、
前記信号結合手段は、前記信号半周期測定手段の測定結果について、前記代表値の0.5倍未満の長さの半周期が前記代表値の0.5倍以上の長さのm番目の半周期Tmと前記代表値の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた信号波形をm番目の半周期分の波形とすることを特徴とする計数装置。
The counting device according to claim 3, wherein
The signal combining means has an m-th half of a measurement result of the signal half-cycle measuring means in which a half cycle having a length less than 0.5 times the representative value is 0.5 times or more of the representative value. When sandwiched between a cycle Tm and a p-th half cycle Tp (m and p are natural numbers) having a length of 0.5 times or more of the representative value, when (m + p) is an even number, the half cycle Tm is half The period up to the period Tp is the half period after the combination, and when (m + p) is an odd number, the period from the half period Tm to the half period T p -1 is the half period after the combination, and the period is adjusted A counting device characterized in that a signal waveform is a waveform corresponding to the m-th half cycle.
請求項1乃至3のいずれか1項に記載の計数装置において、
前記代表値は、中央値、最頻値、平均値、階級値と度数との積が最大となる階級値のうちのいずれか1つであることを特徴とする計数装置。
The counting device according to any one of claims 1 to 3,
The counting device according to claim 1, wherein the representative value is any one of a median value, a mode value, an average value, and a class value that maximizes a product of the class value and the frequency.
測定対象にレーザ光を放射する半導体レーザと、
発振波長が連続的に単調増加する第1の発振期間と発振波長が連続的に単調減少する第2の発振期間のうち少なくとも一方が繰り返し存在するように前記半導体レーザを動作させる発振波長変調手段と、
前記半導体レーザから放射されたレーザ光と前記測定対象からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手段と、
この検出手段の出力信号を入力とし、前記第1の発振期間と前記第2の発振期間の各々を計数期間として、前記干渉波形の数を数える、請求項1乃至のいずれか1項に記載の計数装置と、
この計数装置の計数結果から前記測定対象の物理量を求める演算手段とを備えることを特徴とする物理量センサ。
A semiconductor laser that emits laser light to the object to be measured;
Oscillation wavelength modulation means for operating the semiconductor laser so that at least one of a first oscillation period in which the oscillation wavelength continuously increases monotonously and a second oscillation period in which the oscillation wavelength continuously decreases monotonously exists ,
Detection means for detecting an electrical signal including an interference waveform generated by a self-coupling effect between the laser light emitted from the semiconductor laser and the return light from the measurement object;
The number of the interference waveforms is counted according to any one of claims 1 to 6 , wherein an output signal of the detection means is input and each of the first oscillation period and the second oscillation period is a counting period. A counting device,
A physical quantity sensor comprising: an arithmetic means for obtaining a physical quantity of the measurement object from a counting result of the counting device.
特定の物理量と信号の数とが線形の関係を有し、前記特定の物理量が一定の場合は略単一周波数となる前記信号を数える計数方法において、
一定の計数期間における入力信号の半周期の数を数える信号計数手順と、
前記計数期間中の前記入力信号の半周期を信号の半周期分が入力される度に測定する信号半周期測定手順と、
この信号半周期測定手順の測定結果から前記計数期間中の入力信号の半周期の度数分布を作成する度数分布作成手順と、
前記度数分布から前記入力信号の半周期の分布の代表値を算出する代表値算出手順と、
前記信号半周期測定手順の測定結果から、前記代表値の0.5倍未満である半周期の数の総和Nsと、前記代表値の2n倍以上(2n+2)倍未満(nは1以上の自然数)である半周期の数の総和Nwnとを求め、これらの度数NsとNwnに基づいて前記信号計数手順の計数結果を補正し前記入力信号の数を算出する補正値算出手順とを備えることを特徴とする計数方法。
In the counting method of counting the signals that have a linear relationship between a specific physical quantity and the number of signals, and when the specific physical quantity is constant, the signal has a substantially single frequency.
A signal counting procedure for counting the number of half cycles of the input signal in a fixed counting period;
A signal half cycle measurement procedure for measuring a half cycle of the input signal during the counting period every time a half cycle of the signal is input;
A frequency distribution creating procedure for creating a frequency distribution of the half cycle of the input signal during the counting period from the measurement result of the signal half cycle measuring procedure;
A representative value calculation procedure for calculating a representative value of a half-cycle distribution of the input signal from the frequency distribution;
From the measurement result of the signal half-cycle measurement procedure, the sum Ns of the number of half-cycles that is less than 0.5 times the representative value and less than 2n times (2n + 2) times the representative value (n is a natural number of 1 or more) ) obtains a total sum Nw n of the number of half cycles it is, and a correction value calculation procedure of calculating the number of the input signal by correcting the counting result of the signal counting procedure on the basis of the frequencies Ns and Nw n The counting method characterized by the above-mentioned.
請求項記載の計数方法において、
前記補正値算出手順は、前記信号計数手順の計数結果をN、前記代表値をT0、前記信号の半周期がとり得る最大値をTmaxとしたとき、補正後の計数結果N’を、
Figure 0005798668
により求めることを特徴とする計数方法。
The counting method according to claim 8 , wherein
In the correction value calculation procedure, when the counting result of the signal counting procedure is N, the representative value is T0, and the maximum value that the half cycle of the signal can take is T max , the corrected counting result N ′ is
Figure 0005798668
The counting method characterized by calculating | requiring by.
請求項または記載の計数方法において、
さらに、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期と、その前後に測定された半周期のうち少なくとも一方とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とする信号結合手順を備え、
前記信号計数手順は、前記入力信号の数を数える代わりに、前記計数期間における前記信号結合手順の処理後の信号を数えることを特徴とする計数方法。
The counting method according to claim 8 or 9 ,
Further, for the measurement result of the signal half cycle measurement procedure, after combining a cycle that is a combination of a half cycle less than 0.5 times the representative value and at least one of the half cycles measured before and after the half cycle A signal combining procedure in which a signal waveform obtained by combining the periods is a waveform corresponding to a half period of one signal,
The counting method according to claim 1, wherein the signal counting procedure counts signals after processing of the signal combining procedure in the counting period instead of counting the number of the input signals.
請求項10記載の計数方法において、
前記信号結合手順は、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期とその直後に測定された半周期とを合わせた周期を結合後の半周期とし、周期を合わせた信号波形を1つの信号の半周期分の波形とすることを、結合後の半周期が前記代表値の0.5倍以上になるまで行うことを特徴とする計数方法。
The counting method according to claim 10 , wherein
In the signal combining procedure, the measurement result of the signal half cycle measuring procedure is obtained by combining a cycle obtained by combining a half cycle having a length less than 0.5 times the representative value and a half cycle measured immediately thereafter. The counting is characterized in that a half cycle is performed, and the combined signal waveform is a waveform corresponding to a half cycle of one signal until the combined half cycle is 0.5 times or more of the representative value. Method.
請求項10記載の計数方法において、
前記信号結合手順は、前記信号半周期測定手順の測定結果について、前記代表値の0.5倍未満の長さの半周期が前記代表値の0.5倍以上の長さのm番目の半周期Tmと前記代表値の0.5倍以上の長さのp番目の半周期Tp(m,pは自然数)とに挟まれていたとき、(m+p)が偶数の場合は半周期Tmから半周期Tpまでを合わせた周期を結合後の半周期とし、(m+p)が奇数の場合は半周期Tmから半周期T-1までを合わせた周期を結合後の半周期とし、周期を合わせた信号波形をm番目の半周期分の波形とすることを特徴とする計数方法。
The counting method according to claim 10 , wherein
In the signal combining procedure, for the measurement result of the signal half cycle measurement procedure, the mth half of the length less than 0.5 times the representative value is 0.5 times the length of the representative value. When sandwiched between a cycle Tm and a p-th half cycle Tp (m and p are natural numbers) having a length of 0.5 times or more of the representative value, when (m + p) is an even number, the half cycle Tm is half The period up to the period Tp is the half period after the combination, and when (m + p) is an odd number, the period from the half period Tm to the half period T p -1 is the half period after the combination, and the period is adjusted A counting method characterized in that a signal waveform is a waveform corresponding to the m-th half cycle.
請求項乃至10のいずれか1項に記載の計数方法において、
前記代表値は、中央値、最頻値、平均値、階級値と度数との積が最大となる階級値のうちのいずれか1つであることを特徴とする計数方法。
The counting method according to any one of claims 8 to 10 ,
The counting method according to claim 1, wherein the representative value is any one of a median value, a mode value, an average value, and a class value that maximizes a product of the class value and the frequency.
発振波長が連続的に単調増加する第1の発振期間と発振波長が連続的に単調減少する第2の発振期間のうち少なくとも一方が繰り返し存在するように半導体レーザを動作させる発振手順と、
前記半導体レーザから放射されたレーザ光と測定対象からの戻り光との自己結合効果によって生じる干渉波形を含む電気信号を検出する検出手順と、
この検出手順で得られた出力信号に含まれる前記干渉波形の数を、前記第1の発振期間と前記第2の発振期間の各々について数える信号抽出手順と、
この信号抽出手順の計数結果から前記測定対象の物理量を求める演算手順とを備え、
前記信号抽出手順は、前記検出手順で得られた出力信号を入力とし、前記第1の発振期間と前記第2の発振期間の各々を計数期間として、請求項乃至13のいずれか1項に記載の計数方法を用いることを特徴とする物理量計測方法。
An oscillation procedure for operating the semiconductor laser so that at least one of the first oscillation period in which the oscillation wavelength continuously increases monotonously and the second oscillation period in which the oscillation wavelength continuously decreases monotonously exists;
A detection procedure for detecting an electrical signal including an interference waveform caused by a self-coupling effect between laser light emitted from the semiconductor laser and return light from a measurement object;
A signal extraction procedure for counting the number of the interference waveforms included in the output signal obtained by the detection procedure for each of the first oscillation period and the second oscillation period;
A calculation procedure for obtaining the physical quantity of the measurement object from the counting result of the signal extraction procedure,
The signal extraction procedure, receives the output signal obtained in the detection procedure, as each counting period of the first oscillation period and the second oscillation interval, to any one of claims 8 to 13 A physical quantity measuring method using the counting method described.
JP2014103204A 2014-05-19 2014-05-19 Counting device, physical quantity sensor, counting method and physical quantity measuring method Expired - Fee Related JP5798668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103204A JP5798668B2 (en) 2014-05-19 2014-05-19 Counting device, physical quantity sensor, counting method and physical quantity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103204A JP5798668B2 (en) 2014-05-19 2014-05-19 Counting device, physical quantity sensor, counting method and physical quantity measuring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009181442A Division JP2011033525A (en) 2009-08-04 2009-08-04 Counter, physical quantity sensor, counting method, and physical quantity measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015071575A Division JP6018662B2 (en) 2015-03-31 2015-03-31 Counting device, physical quantity sensor, counting method and physical quantity measuring method

Publications (2)

Publication Number Publication Date
JP2014170010A JP2014170010A (en) 2014-09-18
JP5798668B2 true JP5798668B2 (en) 2015-10-21

Family

ID=51692468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103204A Expired - Fee Related JP5798668B2 (en) 2014-05-19 2014-05-19 Counting device, physical quantity sensor, counting method and physical quantity measuring method

Country Status (1)

Country Link
JP (1) JP5798668B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145877A (en) * 2015-03-31 2015-08-13 アズビル株式会社 Counter, physical quantity sensor, and counting method and physical quantity measuring method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346069A (en) * 1991-05-24 1992-12-01 Nippon Telegr & Teleph Corp <Ntt> Speed signal generating circuit
JPH0566560U (en) * 1992-02-21 1993-09-03 住友電気工業株式会社 Pulse input processing circuit and wheel speed calculation device having this circuit
JPH1038907A (en) * 1996-07-25 1998-02-13 Denso Corp Period detector for pulse signal
JP2007121216A (en) * 2005-10-31 2007-05-17 Aisin Seiki Co Ltd Rotation state detector
JP5545915B2 (en) * 2007-01-25 2014-07-09 アズビル株式会社 Counting device, distance meter, counting method, and distance measuring method
JP5545913B2 (en) * 2007-10-03 2014-07-09 アズビル株式会社 Counting device, distance meter, counting method, and distance measuring method
JP5663130B2 (en) * 2008-03-18 2015-02-04 アズビル株式会社 Reflective photoelectric switch and object detection method
JP5651289B2 (en) * 2008-03-25 2015-01-07 アズビル株式会社 Reflective photoelectric switch and object detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145877A (en) * 2015-03-31 2015-08-13 アズビル株式会社 Counter, physical quantity sensor, and counting method and physical quantity measuring method

Also Published As

Publication number Publication date
JP2014170010A (en) 2014-09-18

Similar Documents

Publication Publication Date Title
JP5663148B2 (en) Counting device, physical quantity sensor, counting method and physical quantity measuring method
JP2011033525A (en) Counter, physical quantity sensor, counting method, and physical quantity measuring method
KR100945209B1 (en) Counting Device, Distance Meter, Counting Method, And Distance Measuring Method
JP5545916B2 (en) Physical quantity sensor and physical quantity measuring method
JP5702536B2 (en) Velocity measuring apparatus and method
US8537341B2 (en) Physical quantity sensor and physical quantity measuring method
JP5548055B2 (en) Signal determination apparatus and signal determination method
JP5081776B2 (en) Vibration frequency measuring device and vibration frequency measuring method
JP5798668B2 (en) Counting device, physical quantity sensor, counting method and physical quantity measuring method
JP5596915B2 (en) Physical quantity sensor and physical quantity measuring method
JP2010078560A (en) Device and method for measuring oscillation frequency
JP5081778B2 (en) Vibration amplitude measuring apparatus and vibration amplitude measuring method
JP6018662B2 (en) Counting device, physical quantity sensor, counting method and physical quantity measuring method
JP5718410B2 (en) Counting device, physical quantity sensor, counting method and physical quantity measuring method
JP5421568B2 (en) Physical quantity sensor and physical quantity measuring method
JP2012013488A (en) Signal determination device and signal determination method
JP2011058833A (en) Counter, physical quantity sensor, method for counting, and method for measuring physical quantity
JP5818485B2 (en) Counting device and counting method
JP5426344B2 (en) Object detection sensor and object detection method
JP5541774B2 (en) Physical quantity sensor and physical quantity measuring method
JP5426345B2 (en) Vibration amplitude measuring apparatus and vibration amplitude measuring method
JP5596917B2 (en) Physical quantity sensor and physical quantity measuring method
WO2011111180A1 (en) Physical quantity sensor and physical quantity measuring method
JP5421577B2 (en) Physical quantity sensor and physical quantity measuring method
JP2009085910A (en) Counting device, range finder, counting method and range-finding method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees