JP2009063311A - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
JP2009063311A
JP2009063311A JP2007228969A JP2007228969A JP2009063311A JP 2009063311 A JP2009063311 A JP 2009063311A JP 2007228969 A JP2007228969 A JP 2007228969A JP 2007228969 A JP2007228969 A JP 2007228969A JP 2009063311 A JP2009063311 A JP 2009063311A
Authority
JP
Japan
Prior art keywords
light
gas
photodiode
laser diode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007228969A
Other languages
Japanese (ja)
Inventor
Tatsuya Ueno
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007228969A priority Critical patent/JP2009063311A/en
Publication of JP2009063311A publication Critical patent/JP2009063311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas detection device having a simple constitution of an optical part, and dispensing with strict optical axis adjustment. <P>SOLUTION: This gas detection device has a laser diode 1 for emitting laser light into an atmosphere of measuring object gas; a photodiode 2 for receiving the laser light, and converting it into an electric signal; an elliptically spherical reflector 8 facing to the laser diode 1 and the photodiode 2 across the gas atmosphere, for reflecting the laser light from the laser diode 1, and guiding it to the photodiode 2; and a gas concentration calculation means for calculating the concentration of the measuring object gas based on an output signal from the photodiode 2. The laser diode 1 is disposed so that its emission surface is positioned on one focal point of the elliptically spherical reflector 8, and the photodiode 2 is disposed so that its incident surface is positioned on the other focal point of the elliptically spherical reflector 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、測定対象のガスにレーザ光を照射したときのガスによる光の吸収を利用して、測定対象のガスの濃度を測定するガス検知装置に関するものである。   The present invention relates to a gas detector that measures the concentration of a gas to be measured by using light absorption by the gas when the gas to be measured is irradiated with laser light.

従来より、気体を分析する手段としてガスクロマトグラフィーが知られている。しかし、ガスクロマトグラフィーは、サンプリング時間が数十分と長く、気体の分析に時間がかかるという問題がある。
そこで、配管や容器内部を流れるガスの濃度をリアルタイムに検知するガス検知装置が提案されている(例えば特許文献1参照)。
Conventionally, gas chromatography is known as a means for analyzing gas. However, the gas chromatography has a problem that the sampling time is as long as several tens of minutes and it takes a long time to analyze the gas.
In view of this, a gas detection device that detects the concentration of gas flowing in a pipe or container in real time has been proposed (see, for example, Patent Document 1).

この特許文献1に開示されたガス検知装置は、所定距離隔てて光源部と受光部を配置し、光源部の半導体レーザによって周波数変調されたレーザ光を測定対象ガスの雰囲気に通し、その透過光を受光部で受けたときの出力信号から測定対象ガスのガス濃度を測定するようにしたものである。   The gas detection device disclosed in Patent Document 1 includes a light source unit and a light receiving unit that are separated by a predetermined distance, passes laser light that is frequency-modulated by a semiconductor laser of the light source unit through the atmosphere of the measurement target gas, and transmits the transmitted light. The gas concentration of the measurement target gas is measured from the output signal when the light is received by the light receiving unit.

特許文献1に開示されたガス検知装置では、光源部からのレーザ光が測定光路を通過中に不要に反射して光源部に戻ると、この戻り光がノイズとなって測定誤差の原因となるため、光源と光学部品に角度を持たせる必要がある。図4は特許文献1に開示されたガス検知装置の光学部の断面図である。図4に示す光学部41aでは、光源側の光ファイバ44aから出射したレーザ光は、プリズム51aによって反射され、さらにプリズム51bによって反射されて、受光側の光ファイバ44bに入射する。光ファイバ44bに入射したレーザ光は、図示しない受光器に導かれる。この光学部41aにおいて、ガス雰囲気に晒される光学部品は、ガラス板56と、ガラス板56の表面に配置された一対のプリズム51a,51bである。   In the gas detection device disclosed in Patent Document 1, when the laser light from the light source unit is reflected unnecessarily while passing through the measurement optical path and returns to the light source unit, the return light becomes noise and causes measurement errors. Therefore, it is necessary to give an angle to the light source and the optical component. FIG. 4 is a cross-sectional view of an optical unit of the gas detection device disclosed in Patent Document 1. In the optical unit 41a shown in FIG. 4, the laser light emitted from the light source side optical fiber 44a is reflected by the prism 51a, further reflected by the prism 51b, and enters the light receiving side optical fiber 44b. The laser light incident on the optical fiber 44b is guided to a light receiver (not shown). In this optical part 41a, the optical components exposed to the gas atmosphere are a glass plate 56 and a pair of prisms 51a and 51b arranged on the surface of the glass plate 56.

そして、光学部41aでは、反射防止対策として、プリズム51aの入射面への垂直入射(入射角0°)に対して、光源側の光ファイバ44aからプリズム51aへの入射角度を所定角度(例えば4°程度)傾斜させている。その際、プリズム51bの反射面に対する出射角度は入射角度と同一角であり、プリズム51aに入射されるレーザ光と、プリズム51bから出射されるレーザ光とが平行になる。これにより、反射(迷光)による測定ノイズ成分を排除している。   In the optical unit 41a, as an anti-reflection measure, the incident angle from the optical fiber 44a on the light source side to the prism 51a is set to a predetermined angle (for example, 4) with respect to the vertical incidence (incident angle 0 °) on the incident surface of the prism 51a. It is slanted. At that time, the emission angle with respect to the reflecting surface of the prism 51b is the same as the incident angle, and the laser light incident on the prism 51a and the laser light emitted from the prism 51b are parallel to each other. This eliminates measurement noise components due to reflection (stray light).

特開2007−113948号公報JP 2007-1113948 A

以上のように、特許文献1に開示されたガス検知装置では、戻り光のノイズ(自己結合効果)による測定誤差を防止するために、光源と光学部品に角度を持たせる必要があり、また高分解能を実現するためにレーザ光を細いビームにする必要があるため、部品が多い上に光学部品の光軸調整が難しくなるという問題点があった。   As described above, in the gas detection device disclosed in Patent Document 1, it is necessary to provide an angle between the light source and the optical component in order to prevent measurement error due to noise (self-coupling effect) of the return light. Since it is necessary to make the laser beam a thin beam in order to realize the resolution, there are problems that there are many parts and it is difficult to adjust the optical axis of the optical parts.

本発明は、上記課題を解決するためになされたもので、光学部の構成が簡単で、厳密な光軸調整も不要なガス検知装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gas detection device in which the configuration of the optical unit is simple and strict optical axis adjustment is unnecessary.

本発明のガス検知装置は、レーザ光を測定対象ガスの雰囲気中に出射する投光手段と、前記レーザ光を受光して電気信号に変換する受光手段と、前記ガス雰囲気を挟んで前記投光手段及び受光手段と対向し、前記投光手段からのレーザ光を反射させて前記受光手段に導く楕円球面反射鏡と、前記受光手段の出力信号に基づいて前記測定対象ガスの濃度を算出するガス濃度算出手段とを有し、前記投光手段は、その出射面が前記楕円球面反射鏡の一方の焦点に位置するように配設され、前記受光手段は、その入射面が前記楕円球面反射鏡の他方の焦点に位置するように配設されることを特徴とするものである。
また、本発明のガス検知装置の1構成例において、前記投光手段は、前記レーザ光を出射するレーザダイオードと、このレーザダイオードから発せられた光を前記ガス雰囲気中に出射する第1の光ファイバとからなるものであり、前記受光手段は、前記楕円球面反射鏡からの反射光を受光する第2の光ファイバと、この第2の光ファイバからの光を受光して電気信号に変換するフォトダイオードとからなるものであり、前記第1の光ファイバは、その出射面が前記楕円球面反射鏡の一方の焦点に位置するように配設され、前記第2の光ファイバは、その入射面が前記楕円球面反射鏡の他方の焦点に位置するように配設されることを特徴とするものである。
The gas detector of the present invention includes a light projecting unit that emits laser light into an atmosphere of a measurement target gas, a light receiving unit that receives the laser light and converts the laser light into an electrical signal, and the light projecting across the gas atmosphere. An ellipsoidal reflector that reflects the laser light from the light projecting means and guides it to the light receiving means, and a gas that calculates the concentration of the measurement target gas based on the output signal of the light receiving means Density calculating means, and the light projecting means is disposed such that its exit surface is positioned at one focal point of the elliptical spherical reflector, and the light receiving means has its incident surface having the elliptical spherical reflector. It is arrange | positioned so that it may be located in the other focus.
In one configuration example of the gas detection device of the present invention, the light projecting means includes a laser diode that emits the laser light, and a first light that emits light emitted from the laser diode into the gas atmosphere. The light receiving means receives a second optical fiber that receives the reflected light from the ellipsoidal reflecting mirror, and receives light from the second optical fiber and converts it into an electrical signal. The first optical fiber is disposed such that an exit surface thereof is positioned at one focal point of the elliptical spherical reflector, and the second optical fiber includes an incident surface thereof. Is arranged so as to be located at the other focal point of the elliptical spherical reflecting mirror.

本発明によれば、ガス雰囲気を挟んで投光手段及び受光手段と対向するように楕円球面反射鏡を設け、投光手段をその出射面が楕円球面反射鏡の一方の焦点に位置するように配設し、受光手段をその入射面が楕円球面反射鏡の他方の焦点に位置するように配設することにより、光学部の構成が簡単で、厳密な光軸調整も不要なガス検知装置を実現することができる。   According to the present invention, the ellipsoidal reflecting mirror is provided so as to face the light projecting means and the light receiving means across the gas atmosphere, and the light projecting means is arranged so that the exit surface thereof is located at one focal point of the ellipsoidal reflecting mirror. By disposing the light receiving means so that the incident surface is positioned at the other focal point of the elliptic spherical reflector, the gas detection device can be configured with a simple optical unit and does not require strict optical axis adjustment. Can be realized.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1(A)は本発明の第1の実施の形態に係るガス検知装置の光学部の側断面図、図1(B)は図1(A)のA−A線断面図、図1(C)は図1(A)のB−B線断面図である。本実施の形態のガス検知装置の光学部は、レーザ光を出射するレーザダイオード1と、レーザ光を受光して電気信号に変換するフォトダイオード2と、測定対象のガスが流入する容器の底面部を構成する底面部材3と、容器の上面部を構成する上面部材4と、容器の側面部を構成する側面部材5と、レーザダイオード1を上面部材4に固定するホルダ6と、フォトダイオード2を上面部材4に固定するホルダ7とを有する。レーザダイオード1は投光手段を構成し、フォトダイオード2は受光手段を構成している。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A is a side sectional view of an optical part of the gas detection device according to the first embodiment of the present invention, FIG. 1B is a sectional view taken along line AA in FIG. (C) is the BB sectional drawing of FIG. 1 (A). The optical part of the gas detector of the present embodiment includes a laser diode 1 that emits laser light, a photodiode 2 that receives the laser light and converts it into an electrical signal, and a bottom part of a container into which a gas to be measured flows. A bottom member 3, a top member 4 constituting the top surface of the container, a side member 5 constituting the side of the container, a holder 6 for fixing the laser diode 1 to the top member 4, and a photodiode 2 And a holder 7 fixed to the upper surface member 4. The laser diode 1 constitutes light projecting means, and the photodiode 2 constitutes light receiving means.

底面部材3には、レーザダイオード1及びフォトダイオード2が配置される容器上面に対して凹状の楕円球面反射鏡8が形成されている。
側面部材5は、底面部材3上に所定の距離を隔てて上面部材4を固定する。また、側面部材5には、容器の入口となる通気孔9と、容器の出口となる通気孔10とが形成されている。
The bottom surface member 3 is formed with an elliptical spherical reflecting mirror 8 that is concave with respect to the top surface of the container in which the laser diode 1 and the photodiode 2 are disposed.
The side member 5 fixes the top member 4 on the bottom member 3 with a predetermined distance. Further, the side member 5 is formed with a vent hole 9 serving as an inlet of the container and a vent hole 10 serving as an outlet of the container.

レーザダイオード1は、ホルダ6によって上面部材4に固定され、フォトダイオード2は、ホルダ7によって上面部材4に固定される。このとき、レーザダイオード1は、その出射面が楕円球面反射鏡8の一方の焦点f1に位置するように固定され、フォトダイオード2は、その入射面が楕円球面反射鏡8の他方の焦点f2に位置するように固定される。レーザダイオード1は、電線11を介して後述するレーザドライバと接続され、フォトダイオード2は、電線12を介して後述する信号検出部と接続される。   The laser diode 1 is fixed to the upper surface member 4 by the holder 6, and the photodiode 2 is fixed to the upper surface member 4 by the holder 7. At this time, the laser diode 1 is fixed so that its emission surface is located at one focal point f1 of the elliptical spherical reflecting mirror 8, and the photodiode 2 has its incident surface at the other focal point f2 of the elliptical spherical reflecting mirror 8. It is fixed to be positioned. The laser diode 1 is connected to a laser driver described later via an electric wire 11, and the photodiode 2 is connected to a signal detection unit described later via an electric wire 12.

図2は本実施の形態のガス検知装置の検知部の構成を示すブロック図である。ガス検知装置の検知部は、レーザドライバ13と、信号検出部14と、ガス濃度算出部15と、表示部16とを有する。
次に、図1、図2を用いて本実施の形態のガス検知装置の動作を説明する。測定対象のガスは、通気孔9から容器内に流入し、図1(A)の矢印17の方向に流れ、通気孔10から容器外に流出する。
FIG. 2 is a block diagram illustrating a configuration of a detection unit of the gas detection device according to the present embodiment. The detection unit of the gas detection device includes a laser driver 13, a signal detection unit 14, a gas concentration calculation unit 15, and a display unit 16.
Next, operation | movement of the gas detection apparatus of this Embodiment is demonstrated using FIG. 1, FIG. The gas to be measured flows into the container through the vent hole 9, flows in the direction of the arrow 17 in FIG. 1A, and flows out of the container from the vent hole 10.

レーザドライバ13は、周波数変調されたレーザ光をレーザダイオード1から出射させる。このとき、レーザドライバ13は、レーザ光の発振中心波長が測定対象のガスの測定波長(吸収線波長)と一致するようにレーザダイオード1を制御する。なお、投光手段は、測定対象となるガスの吸収線を少なくとも含む波長に周波数変調されたレーザ光を出射する構成であれば良い。
レーザダイオード1から出射したレーザ光は、容器内のガス雰囲気中を通過して楕円球面反射鏡8によって反射され、再びガス雰囲気中を通過してフォトダイオード2に入射する。このガス雰囲気中を通過する際にレーザ光は、ガスによる吸収を受ける。
The laser driver 13 emits frequency-modulated laser light from the laser diode 1. At this time, the laser driver 13 controls the laser diode 1 so that the oscillation center wavelength of the laser light coincides with the measurement wavelength (absorption line wavelength) of the measurement target gas. The light projecting means may be configured to emit laser light that is frequency-modulated to a wavelength that includes at least the absorption line of the gas to be measured.
The laser light emitted from the laser diode 1 passes through the gas atmosphere in the container, is reflected by the elliptic spherical reflector 8, passes through the gas atmosphere again, and enters the photodiode 2. When passing through the gas atmosphere, the laser beam is absorbed by the gas.

フォトダイオード2は、受光した反射光を電気信号に変換する。信号検出部14は、フォトダイオード2の出力電流を電圧に変換して増幅し、増幅後の信号からレーザダイオード1の変調周波数の基本波信号と基本波信号の2倍の周波数の2倍波信号とを位相敏感検波する。
そして、ガス濃度算出部15は、基本波信号と2倍波信号との強度比に基づいて、測定対象のガスの濃度を算出する。基本波信号と2倍波信号との強度比は、ガス濃度に比例しているので、この比からガス濃度を算出することができる。ガス濃度算出部15の算出結果は、表示部16に表示される。
The photodiode 2 converts the received reflected light into an electrical signal. The signal detection unit 14 converts the output current of the photodiode 2 into a voltage and amplifies it, and a fundamental wave signal having a modulation frequency of the laser diode 1 and a double wave signal having a frequency twice that of the fundamental wave signal from the amplified signal. And phase sensitive detection.
Then, the gas concentration calculation unit 15 calculates the concentration of the gas to be measured based on the intensity ratio between the fundamental wave signal and the second harmonic signal. Since the intensity ratio between the fundamental wave signal and the second harmonic signal is proportional to the gas concentration, the gas concentration can be calculated from this ratio. The calculation result of the gas concentration calculation unit 15 is displayed on the display unit 16.

以上のようなガス検知装置では、ガス雰囲気中の光路が既知の一定値であることが必要である。本実施の形態では、楕円球面反射鏡8の一方の焦点f1にレーザダイオード1を配置し、他方の焦点f2にフォトダイオード2を配置するようにしたので、レーザダイオード1から楕円球面反射鏡8を経由してフォトダイオード2に到達する全ての光路の長さは同一となる。   In the gas detection apparatus as described above, the optical path in the gas atmosphere needs to be a known constant value. In the present embodiment, the laser diode 1 is arranged at one focal point f1 of the elliptical spherical reflecting mirror 8, and the photodiode 2 is arranged at the other focal point f2, so that the elliptical spherical reflecting mirror 8 is arranged from the laser diode 1. The lengths of all optical paths that reach the photodiode 2 via the same path are the same.

また、このような配置により、レーザダイオード1の位置や角度がばらついても、幾何学的にレーザダイオード1への戻り光は発生せず、レーザダイオード1から発せられた光は全てもう1つの焦点に配置されたフォトダイオード2に集まる。したがって、受光感度を向上させるためにコリメート光を用いる必要がなく、戻り光ノイズを防止するために光学部品に所定角度の傾斜をつける必要もなくなるので、レーザダイオード1及びフォトダイオード2の光軸を厳密に調整する必要がない。   Also, with this arrangement, even if the position and angle of the laser diode 1 vary, no return light is geometrically generated to the laser diode 1, and all the light emitted from the laser diode 1 is another focal point. Gathered in the photodiodes 2 arranged in Therefore, it is not necessary to use collimated light in order to improve the light receiving sensitivity, and it is not necessary to incline the optical component at a predetermined angle in order to prevent return light noise, so that the optical axes of the laser diode 1 and the photodiode 2 can be changed. There is no need to adjust strictly.

つまり、本実施の形態では、レーザダイオード1の光軸の傾き(図1のα,α’)を厳密に調整する必要がなく、フォトダイオード2の光軸の傾き(図1のβ)を厳密に調整する必要もなくなる。また、レーザダイオード1とフォトダイオード2の光軸の精度が一般機械加工精度レベルであれば、レーザダイオード1とフォトダイオード2の光軸方向の位置ずれ(図1のd1,d2)が多少あっても問題がない。
また、本実施の形態では、楕円球面反射鏡8の面積が広いため、楕円球面反射鏡8へのごみの付着などによるノイズに対しての耐性が良い。
That is, in this embodiment, it is not necessary to strictly adjust the tilt of the optical axis of the laser diode 1 (α, α ′ in FIG. 1), and the tilt of the optical axis of the photodiode 2 (β in FIG. 1) is strictly adjusted. There is no need to make adjustments. Further, if the accuracy of the optical axes of the laser diode 1 and the photodiode 2 is a general machining accuracy level, there is a slight displacement (d1, d2 in FIG. 1) of the laser diode 1 and the photodiode 2 in the optical axis direction. There is no problem.
In the present embodiment, since the elliptical spherical reflecting mirror 8 has a large area, it has good resistance to noise caused by dust adhering to the elliptical spherical reflecting mirror 8.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図3(A)は本発明の第2の実施の形態に係るガス検知装置の光学部の側断面図、図3(B)は図3(A)のA−A線断面図、図3(C)は図3(A)のB−B線断面図であり、図1(A)〜図1(C)と同一の構成には同一の符号を付してある。図3(A)〜図3(C)において、18,19は光ファイバ、20,21はホルダである。光ファイバ18と図示しないレーザダイオードとは、投光手段を構成し、光ファイバ19と図示しないフォトダイオードとは、受光手段を構成している。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. 3A is a side sectional view of an optical part of a gas detection device according to a second embodiment of the present invention, FIG. 3B is a sectional view taken along line AA in FIG. 3A, and FIG. FIG. 3C is a cross-sectional view taken along the line B-B in FIG. 3A, and the same reference numerals are given to the same components as those in FIGS. 1A to 1C. 3A to 3C, 18 and 19 are optical fibers, and 20 and 21 are holders. The optical fiber 18 and a laser diode (not shown) constitute a light projecting means, and the optical fiber 19 and a photodiode (not shown) constitute a light receiving means.

本実施の形態のガス検知装置では、レーザダイオードから発せられた光を光ファイバ18によって光学部に導き、楕円球面反射鏡8からの反射光を光ファイバ19によってフォトダイオードに導くようにしている。光ファイバ18は、ホルダ20によって上面部材4に固定され、光ファイバ19は、ホルダ21によって上面部材4に固定される。このとき、光ファイバ18は、その出射面が楕円球面反射鏡8の一方の焦点f1に位置するように固定され、光ファイバ19は、その入射面が楕円球面反射鏡8の他方の焦点f2に位置するように固定される。   In the gas detection device of the present embodiment, light emitted from the laser diode is guided to the optical part by the optical fiber 18, and reflected light from the elliptic spherical reflector 8 is guided to the photodiode by the optical fiber 19. The optical fiber 18 is fixed to the upper surface member 4 by a holder 20, and the optical fiber 19 is fixed to the upper surface member 4 by a holder 21. At this time, the optical fiber 18 is fixed so that its exit surface is located at one focal point f1 of the elliptical spherical reflecting mirror 8, and the optical fiber 19 has its incident surface at the other focal point f2 of the elliptical spherical reflecting mirror 8. It is fixed to be positioned.

第1の実施の形態と同様に、測定対象のガスは、通気孔9から容器内に流入し、図3(A)の矢印17の方向に流れ、通気孔10から容器外に流出する。
レーザダイオードから発せられた光は、光ファイバ18によって光学部に導かれ、光ファイバ18から出射したレーザ光は、容器内のガス雰囲気中を通過して楕円球面反射鏡8によって反射され、再びガス雰囲気中を通過して光ファイバ19に入射する。光ファイバ19は、楕円球面反射鏡8からの反射光をフォトダイオードに導く。
As in the first embodiment, the gas to be measured flows into the container from the vent hole 9, flows in the direction of the arrow 17 in FIG. 3A, and flows out of the container from the vent hole 10.
The light emitted from the laser diode is guided to the optical unit by the optical fiber 18, and the laser light emitted from the optical fiber 18 passes through the gas atmosphere in the container and is reflected by the ellipsoidal reflecting mirror 8, and again the gas. The light passes through the atmosphere and enters the optical fiber 19. The optical fiber 19 guides the reflected light from the elliptic spherical reflector 8 to the photodiode.

レーザダイオードは、図2のレーザドライバ13と接続され、フォトダイオードは、信号検出部14と接続されている。検知部の構成と動作は、第1の実施の形態と同じである。こうして、本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。   The laser diode is connected to the laser driver 13 in FIG. 2, and the photodiode is connected to the signal detection unit 14. The configuration and operation of the detection unit are the same as those in the first embodiment. Thus, also in this embodiment, the same effect as that of the first embodiment can be obtained.

本発明は、ガス検知装置に適用することができる。   The present invention can be applied to a gas detection device.

本発明の第1の実施の形態に係るガス検知装置の光学部の断面図である。It is sectional drawing of the optical part of the gas detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るガス検知装置の検知部の構成を示すブロック図である。It is a block diagram which shows the structure of the detection part of the gas detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るガス検知装置の光学部の断面図である。It is sectional drawing of the optical part of the gas detection apparatus which concerns on the 2nd Embodiment of this invention. 従来のガス検知装置の光学部の断面図である。It is sectional drawing of the optical part of the conventional gas detection apparatus.

符号の説明Explanation of symbols

1…レーザダイオード、2…フォトダイオード、3…底面部材、4…上面部材、5…側面部材、6,7,20,21…ホルダ、8…楕円球面反射鏡、9,10…通気孔、11,12…電線、13…レーザドライバ、14…信号検出部、15…ガス濃度算出部、16…表示部、18,19…光ファイバ。   DESCRIPTION OF SYMBOLS 1 ... Laser diode, 2 ... Photodiode, 3 ... Bottom member, 4 ... Upper surface member, 5 ... Side member, 6, 7, 20, 21 ... Holder, 8 ... Elliptical spherical reflector, 9, 10 ... Vent hole, 11 , 12 ... Electric wire, 13 ... Laser driver, 14 ... Signal detection unit, 15 ... Gas concentration calculation unit, 16 ... Display unit, 18, 19 ... Optical fiber.

Claims (2)

レーザ光を測定対象ガスの雰囲気中に出射する投光手段と、
前記レーザ光を受光して電気信号に変換する受光手段と、
前記ガス雰囲気を挟んで前記投光手段及び受光手段と対向し、前記投光手段からのレーザ光を反射させて前記受光手段に導く楕円球面反射鏡と、
前記受光手段の出力信号に基づいて前記測定対象ガスの濃度を算出するガス濃度算出手段とを有し、
前記投光手段は、その出射面が前記楕円球面反射鏡の一方の焦点に位置するように配設され、前記受光手段は、その入射面が前記楕円球面反射鏡の他方の焦点に位置するように配設されることを特徴とするガス検知装置。
A light projecting means for emitting laser light into the atmosphere of the gas to be measured;
A light receiving means for receiving the laser beam and converting it into an electrical signal;
An elliptical spherical reflector that faces the light projecting means and the light receiving means across the gas atmosphere, reflects the laser light from the light projecting means, and guides it to the light receiving means;
Gas concentration calculating means for calculating the concentration of the measurement target gas based on the output signal of the light receiving means;
The light projecting means is arranged so that its exit surface is located at one focal point of the elliptical spherical reflector, and the light receiving means is such that its incident surface is located at the other focal point of the elliptical spherical reflector. A gas detection device arranged in
請求項1記載のガス検知装置において、
前記投光手段は、前記レーザ光を出射するレーザダイオードと、このレーザダイオードから発せられた光を前記ガス雰囲気中に出射する第1の光ファイバとからなるものであり、
前記受光手段は、前記楕円球面反射鏡からの反射光を受光する第2の光ファイバと、この第2の光ファイバからの光を受光して電気信号に変換するフォトダイオードとからなるものであり、
前記第1の光ファイバは、その出射面が前記楕円球面反射鏡の一方の焦点に位置するように配設され、前記第2の光ファイバは、その入射面が前記楕円球面反射鏡の他方の焦点に位置するように配設されることを特徴とするガス検知装置。
The gas detection device according to claim 1,
The light projecting means includes a laser diode that emits the laser light, and a first optical fiber that emits light emitted from the laser diode into the gas atmosphere,
The light receiving means includes a second optical fiber that receives the reflected light from the elliptic spherical reflector and a photodiode that receives the light from the second optical fiber and converts it into an electrical signal. ,
The first optical fiber is disposed so that an exit surface thereof is positioned at one focal point of the elliptical spherical reflector, and an incident surface of the second optical fiber is the other of the elliptical spherical reflector. A gas detector arranged to be located at a focal point.
JP2007228969A 2007-09-04 2007-09-04 Gas detection device Pending JP2009063311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228969A JP2009063311A (en) 2007-09-04 2007-09-04 Gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228969A JP2009063311A (en) 2007-09-04 2007-09-04 Gas detection device

Publications (1)

Publication Number Publication Date
JP2009063311A true JP2009063311A (en) 2009-03-26

Family

ID=40558025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228969A Pending JP2009063311A (en) 2007-09-04 2007-09-04 Gas detection device

Country Status (1)

Country Link
JP (1) JP2009063311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150808A (en) * 2007-12-21 2009-07-09 Yamatake Corp Cloudiness detection device and mirror surface cooling type dew point recorder
KR20180115954A (en) * 2017-04-14 2018-10-24 엘지이노텍 주식회사 Apparatus for sensing particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127128A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH07198590A (en) * 1993-12-29 1995-08-01 Furukawa Electric Co Ltd:The Gas sensor using gas cell
JP2003501653A (en) * 1999-06-08 2003-01-14 ツェー・エス・クリーン・ジステームス・アクチエンゲゼルシャフト Analysis equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127128A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH07198590A (en) * 1993-12-29 1995-08-01 Furukawa Electric Co Ltd:The Gas sensor using gas cell
JP2003501653A (en) * 1999-06-08 2003-01-14 ツェー・エス・クリーン・ジステームス・アクチエンゲゼルシャフト Analysis equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150808A (en) * 2007-12-21 2009-07-09 Yamatake Corp Cloudiness detection device and mirror surface cooling type dew point recorder
KR20180115954A (en) * 2017-04-14 2018-10-24 엘지이노텍 주식회사 Apparatus for sensing particle
KR102380173B1 (en) 2017-04-14 2022-03-29 엘지이노텍 주식회사 Apparatus for sensing particle

Similar Documents

Publication Publication Date Title
US5767976A (en) Laser diode gas sensor
JP5959509B2 (en) Measuring unit and gas analyzer
US7068367B2 (en) Arrangement for the optical detection of a moving target flow for a pulsed energy beam pumped radiation
JP4446195B2 (en) Laser beam output unit, laser beam input unit and laser gas analyzer
US5202570A (en) Gas detection device
US20060109450A1 (en) Laser distance measuring device
US7342662B2 (en) Sample analyzer
US6885454B2 (en) Measuring apparatus
KR101635656B1 (en) An apparatus adapted for spectral analysis of high concentrations of gas
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
JP2019184523A (en) Gas analyser
EP3557228B1 (en) Gas analyzer
US6876450B2 (en) Laser absorption spectral diffraction type gas detector and method for gas detection using laser absorption spectral diffraction
JP7336695B2 (en) optical device
JP2008070314A (en) Gas detection apparatus
JP2009063311A (en) Gas detection device
JP2898489B2 (en) Equipment for spectrophotometric analysis
JP4737896B2 (en) Sample concentration measuring device
JP5001226B2 (en) Photothermal conversion measuring device and method
JP7486178B2 (en) Spectroscopic equipment
JP4029406B2 (en) Optical analyzer
JP4229793B2 (en) Optical distance measuring device
JP4299798B2 (en) Photothermal conversion measuring device, sample cell
CN219657489U (en) Spectrum detection equipment
US20150015878A1 (en) Raman spectroscopic analyzing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120228

A131 Notification of reasons for refusal

Effective date: 20120313

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20120409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205