TWI749740B - Lidar system - Google Patents

Lidar system Download PDF

Info

Publication number
TWI749740B
TWI749740B TW109129704A TW109129704A TWI749740B TW I749740 B TWI749740 B TW I749740B TW 109129704 A TW109129704 A TW 109129704A TW 109129704 A TW109129704 A TW 109129704A TW I749740 B TWI749740 B TW I749740B
Authority
TW
Taiwan
Prior art keywords
light
generate
detector
driver
emitting element
Prior art date
Application number
TW109129704A
Other languages
Chinese (zh)
Other versions
TW202210863A (en
Inventor
游國仁
陳慶年
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109129704A priority Critical patent/TWI749740B/en
Application granted granted Critical
Publication of TWI749740B publication Critical patent/TWI749740B/en
Publication of TW202210863A publication Critical patent/TW202210863A/en

Links

Images

Abstract

A Lidar system includes a driver, a light emitting element, a first detector, a collimating lens, a beam splitter, a reflecting element, a lens, and a second detector. The light emitting element is configured to emit first light and second light. The first detector is disposed between the driver and the light emitting element and is configured to detect power of the first light. The collimating lens is configured to collimate the second light to generate first collimation light. The beam splitter is configured to make the first collimation light to penetrate through the beam splitter to generate penetrated light. The reflecting element is configured to reflect the penetrated light to generate first reflected light, and let the first reflected light shine upon an under-test-object to generate scattered light. The lens is configured to collimate scattered light of the under-test-object to generate second collimation light. The reflecting is further configured to reflect the second collimation light to generate second reflected light. The beam splitter is further configured to reflect the second reflected light to generate third reflected light. The second detector is configured to detect the third reflected light.

Description

光達系統Lidar System

本揭示中所述實施例內容是有關於一種光達系統,特別關於一種可即時量測發光元件功率的光達系統。The contents of the embodiments described in the present disclosure are related to a LiDAR system, and particularly to a LiDAR system that can measure the power of a light-emitting element in real time.

隨著科技的發展,光達(LIDAR)系統已應用於許多領域。在一些相關技術中,是在組裝測試階段或出廠前對光達系統中的發光元件進行功率量測。然而,這無法確保此發光元件在後續的使用過程中不會發生異常。With the development of science and technology, the LIDAR system has been applied in many fields. In some related technologies, the power measurement of the light-emitting elements in the LiDAR system is performed during the assembly test stage or before leaving the factory. However, this cannot ensure that the light-emitting element will not be abnormal during subsequent use.

本揭示之一些實施方式是關於一種光達系統。光達系統包含一驅動器、一發光元件、一第一偵測器、一準直鏡、一分光鏡、一反射元件、一透鏡以及一第二偵測器。發光元件用以發出一第一光束以及一第二光束。第一偵測器設置於驅動器以及發光元件之間且用以偵測第一光束的一功率。準直鏡用以準直第二光束以產生一第一準直光。分光鏡穿透第一準直光以產生一穿透光。反射元件用以反射穿透光以產生一第一反射光,並使第一反射光打到量測物並產生散射光。透鏡用以準直量測物的散射光以產生一第二準直光。反射元件更用以反射第二準直光以產生一第二反射光。分光鏡更用以反射第二反射光以產生一第三反射光。第二偵測器用以偵測第三反射光。Some embodiments of the present disclosure are related to a LiDAR system. The LiDAR system includes a driver, a light-emitting element, a first detector, a collimator lens, a beam splitter, a reflecting element, a lens, and a second detector. The light emitting element is used for emitting a first light beam and a second light beam. The first detector is arranged between the driver and the light-emitting element and used for detecting a power of the first light beam. The collimator lens is used for collimating the second light beam to generate a first collimated light. The beam splitter penetrates the first collimated light to generate a transmitted light. The reflective element is used for reflecting the penetrating light to generate a first reflected light, and making the first reflected light hit the measuring object and generate scattered light. The lens is used for collimating the scattered light of the measurement object to generate a second collimated light. The reflective element is further used to reflect the second collimated light to generate a second reflected light. The beam splitter is further used to reflect the second reflected light to generate a third reflected light. The second detector is used for detecting the third reflected light.

本揭示之一些實施方式是關於一種光達系統。光達系統包含一第一驅動器、一第一發光元件、一第一偵測器、一第一準直鏡、一第一分光鏡、一反射元件、一第一透鏡以及一第二偵測器。第一發光元件用以發出一第一光束以及一第二光束。第一驅動器與第一發光元件之間形成一第一區域。第一光束照射第一驅動器,使第一驅動器反射第一光束以產生一第一待測光。第一偵測器設置於第一區域之外且用以偵測第一待測光。第一準直鏡用以準直第二光線,以產生一第一準直光。第一分光鏡用以穿透第一準直光以產生一第一穿透光。反射元件用以反射第一穿透光以產生一第一反射光,並使第一反射光打到量測物並產生第一散射光。第一透鏡用以準直量測物的第一散射光以產生一第二準直光。反射元件更用以反射第二準直光以產生一第二反射光。第一分光鏡更用以反射第二反射光以產生一第三反射光。第二偵測器用以偵測第三反射光。Some embodiments of the present disclosure are related to a LiDAR system. The LiDAR system includes a first driver, a first light-emitting element, a first detector, a first collimator, a first beam splitter, a reflective element, a first lens, and a second detector . The first light emitting element is used for emitting a first light beam and a second light beam. A first area is formed between the first driver and the first light-emitting element. The first light beam irradiates the first driver, so that the first driver reflects the first light beam to generate a first light to be measured. The first detector is arranged outside the first area and used for detecting the first light to be measured. The first collimating lens is used for collimating the second light to generate a first collimated light. The first beam splitter is used for penetrating the first collimated light to generate a first penetrating light. The reflective element is used for reflecting the first penetrating light to generate a first reflected light, and causing the first reflected light to hit the measuring object and generate the first scattered light. The first lens is used for collimating the first scattered light of the measurement object to generate a second collimated light. The reflective element is further used to reflect the second collimated light to generate a second reflected light. The first beam splitter is further used to reflect the second reflected light to generate a third reflected light. The second detector is used for detecting the third reflected light.

綜上所述,本揭示中的光達系統可即時量測發光元件的功率,以提高光達系統的可靠度。另外,本揭示將偵測器設置於驅動器以及發光元件之間,可有效利用空間,以避免增加光達系統的體積且避免光路過於複雜。再者,本揭示的光達系統具有設置簡易且成本較低的優點。In summary, the LiDAR system of the present disclosure can measure the power of the light-emitting element in real time, so as to improve the reliability of the LiDAR system. In addition, in the present disclosure, the detector is arranged between the driver and the light-emitting element, which can effectively use the space to avoid increasing the volume of the optical system and avoid the light path from being too complicated. Furthermore, the LiDAR system of the present disclosure has the advantages of easy installation and low cost.

下文係舉實施例配合所附圖式作詳細說明,但所提供之實施例並非用以限制本揭示所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭示所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。The following is a detailed description of the embodiments in conjunction with the accompanying drawings, but the provided embodiments are not used to limit the scope of the present disclosure, and the description of the structural operations is not used to limit the order of its execution, any recombination of components The structure and the devices with equal effects are all within the scope of this disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn in accordance with the original dimensions. To facilitate understanding, the same elements or similar elements in the following description will be described with the same symbols.

在本文中所使用的用詞『耦接』亦可指『電性耦接』,且用詞『連接』亦可指『電性連接』。『耦接』及『連接』亦可指二個或多個元件相互配合或相互互動。The term "coupled" used in this article can also refer to "electrical coupling", and the term "connected" can also refer to "electrical connection". "Coupling" and "connection" can also refer to two or more components cooperating or interacting with each other.

參考第1A圖以及第1B圖。第1A圖是依照本揭示一些實施例所繪示光達系統100的示意圖。以第1A圖以及第1B圖示例而言,光達系統100包含驅動器110、偵測器120A、發光元件130、準直鏡140、分光鏡150、偵測器160、反射元件170、處理器180以及透鏡190。第1B圖是依照本揭示一些實施例所繪示第1A圖中的驅動器110、偵測器120A以及發光元件130的上視圖。驅動器110可利用脈衝訊號驅動發光元件130發光。在一些實施例中,驅動器110可利用特殊應用積體電路(application specific integrated circuit,ASIC)或由氮化鎵(GaN)所製作的場效電晶體實現。驅動器110需要有能忍受瞬間高電流的特性。若要正常驅動發光元件130,一般需要數十安培的電流,因此,驅動器110與發光元件130之間的距離通常為毫米等級。舉例而言,驅動器110至發光元件130的距離可小於10毫米。偵測器120A設置於驅動器110以及發光元件130之間。在一些實施例中,發光元件130為雷射二極體(laser diode,LD),但本揭示不以此為限。在一些實施例中,反射元件170為反光鏡。Refer to Figure 1A and Figure 1B. FIG. 1A is a schematic diagram of the lidar system 100 according to some embodiments of the present disclosure. Taking the example of Figure 1A and Figure 1B, the LiDAR system 100 includes a driver 110, a detector 120A, a light-emitting element 130, a collimator 140, a beam splitter 150, a detector 160, a reflective element 170, and a processor. 180 and lens 190. FIG. 1B is a top view of the driver 110, the detector 120A, and the light-emitting element 130 in FIG. 1A according to some embodiments of the present disclosure. The driver 110 can use the pulse signal to drive the light-emitting element 130 to emit light. In some embodiments, the driver 110 may be implemented by an application specific integrated circuit (ASIC) or a field effect transistor made of gallium nitride (GaN). The driver 110 needs to have characteristics that can withstand high instantaneous current. To drive the light-emitting element 130 normally, a current of tens of amperes is generally required. Therefore, the distance between the driver 110 and the light-emitting element 130 is usually on the order of millimeters. For example, the distance between the driver 110 and the light emitting element 130 may be less than 10 millimeters. The detector 120A is disposed between the driver 110 and the light-emitting element 130. In some embodiments, the light-emitting element 130 is a laser diode (LD), but the present disclosure is not limited thereto. In some embodiments, the reflective element 170 is a mirror.

參考第1C圖以及第1D圖。第1C圖是依照本揭示一些實施例所繪示的發光元件130的側視圖。第1D圖是依照本揭示一些實施例所繪示的第1C圖中發光元件130的上視圖。以第1C圖以及第1D圖示例而言,發光元件130包含發光面LA1以及發光面LA2。在一些實施例中,發光元件130的中央可設有走線區域BA。其他走線可設置於走線區域BA。Refer to Figure 1C and Figure 1D. FIG. 1C is a side view of the light-emitting element 130 according to some embodiments of the present disclosure. FIG. 1D is a top view of the light-emitting element 130 in FIG. 1C according to some embodiments of the present disclosure. Taking the example of FIG. 1C and FIG. 1D as an example, the light-emitting element 130 includes a light-emitting surface LA1 and a light-emitting surface LA2. In some embodiments, a wiring area BA may be provided in the center of the light-emitting element 130. Other traces can be set in the trace area BA.

如上所述,偵測器120A設置於驅動器110以及發光元件130之間。以第1B圖示例而言,驅動器110以及偵測器120A設置於發光面LA1的一側(例如:圖面上的左側),且發光面LA1朝向偵測器120A的感光面LB。發光元件130包含軸線AL。驅動器110的中心與偵測器120A的中心形成連線P1,且連線P1對齊於軸線AL。 As mentioned above, the detector 120A is disposed between the driver 110 and the light-emitting element 130. Taking the example of FIG. 1B as an example, the driver 110 and the detector 120A are disposed on one side of the light-emitting surface LA1 (for example, the left side of the figure), and the light-emitting surface LA1 faces the photosensitive surface LB of the detector 120A. The light emitting element 130 includes an axis AL. The center of the driver 110 and the center of the detector 120A form a line P1, and the line P1 is aligned with the axis AL.

以第1A圖示例而言,發光面LA1朝向偵測器120A設置且朝向偵測器120A發出光束L1。發光面LA2朝向準直鏡140設置且朝向準直鏡140發出光束L2。本發明實施例中,自發光面LA1發出的光束L1的光強度小於自發光面LA2發出的光束L2的光強度。 Taking the example of FIG. 1A as an example, the light-emitting surface LA1 is set toward the detector 120A and emits a light beam L1 toward the detector 120A. The light-emitting surface LA2 is disposed toward the collimator lens 140 and emits a light beam L2 toward the collimator lens 140. In the embodiment of the present invention, the light intensity of the light beam L1 emitted from the light-emitting surface LA1 is less than the light intensity of the light beam L2 emitted from the light-emitting surface LA2.

偵測器120A用以偵測自發光面LA1發出的光束L1的功率,以即時量測發光元件130的功率。處理器180耦接偵測器120A。在一些實施例中,處理器180可將偵測器120A所偵測到的功率以及一門檻值進行比較,以判斷光達系統100是否異常。舉例而言,當偵測器120A所偵測到的功率小於門檻值,處理器180判斷光達系統100發生異常,且提供警示訊號。 The detector 120A is used to detect the power of the light beam L1 emitted from the light-emitting surface LA1 to measure the power of the light-emitting element 130 in real time. The processor 180 is coupled to the detector 120A. In some embodiments, the processor 180 may compare the power detected by the detector 120A with a threshold value to determine whether the LiDAR system 100 is abnormal. For example, when the power detected by the detector 120A is less than the threshold value, the processor 180 determines that the LiDAR system 100 is abnormal and provides a warning signal.

準直鏡140用以準直自發光面LA2發出的光束L2以產生準直光CL1。分光鏡150用以穿透準直光CL1以產生穿透光TL。反射元件170用以反射穿透光TL以產生反射光RL1。反射光RL1打到量測物OB會產生量測物OB的散射光SL。透鏡190用以準直量測物OB的散射光SL以產生準直光CL2。透鏡190亦可達到蒐集更多光的功效。反射元件170用以反射準直光CL2以產生反射光RL2。分光鏡 150用以將反射光RL2反射以產生反射光RL3。偵測器160用以偵測反射光RL3。處理器180耦接偵測器160。處理器180用以依據偵測器160所偵測到的反射光RL3以及發光元件130的發光時間執行一飛行測距(time of flight measurement,ToF)程序。在一些實施例中,偵測器160設置於透鏡190的焦點。 The collimator lens 140 is used to collimate the light beam L2 emitted from the light-emitting surface LA2 to generate the collimated light CL1. The beam splitter 150 is used for penetrating the collimated light CL1 to generate the penetrating light TL. The reflective element 170 is used to reflect the penetrating light TL to generate the reflected light RL1. When the reflected light RL1 hits the measurement object OB, the scattered light SL of the measurement object OB will be generated. The lens 190 is used to collimate the scattered light SL of the measurement object OB to generate collimated light CL2. The lens 190 can also collect more light. The reflective element 170 is used to reflect the collimated light CL2 to generate the reflected light RL2. Spectroscope 150 is used to reflect the reflected light RL2 to generate the reflected light RL3. The detector 160 is used to detect the reflected light RL3. The processor 180 is coupled to the detector 160. The processor 180 is used for executing a time of flight measurement (ToF) procedure according to the reflected light RL3 detected by the detector 160 and the light-emitting time of the light-emitting element 130. In some embodiments, the detector 160 is disposed at the focal point of the lens 190.

在一些實施例中,偵測器120A不具有放大功能,而偵測器160具有放大功能。舉例而言,偵測器120A可為光偵測器(photo diode,PD),而偵測器160可為雪崩光電二極體(avalanched photodiode,APD)。 In some embodiments, the detector 120A does not have a magnifying function, and the detector 160 has a magnifying function. For example, the detector 120A can be a photo diode (PD), and the detector 160 can be an avalanche photodiode (APD).

如上所述,在本揭示中,偵測器120A可偵測自發光面LA1發出的光束L1的功率,以即時量測發光元件130的功率。藉此,可即時得知發光元件130或光達系統100是否發生異常,以提高光達系統100的可靠度。 As described above, in the present disclosure, the detector 120A can detect the power of the light beam L1 emitted from the light-emitting surface LA1 to measure the power of the light-emitting element 130 in real time. In this way, it can be instantly known whether the light-emitting element 130 or the LiDAR system 100 is abnormal, so as to improve the reliability of the LiDAR system 100.

另外,將偵測器120A設置於驅動器110以及發光元件130之間可有效利用空間。藉此配置,可避免增加光達系統100的系統體積且可避免光路過於複雜。 In addition, arranging the detector 120A between the driver 110 and the light-emitting element 130 can effectively utilize space. With this configuration, it is possible to avoid increasing the system volume of the LiDAR system 100 and avoid the optical path from being too complicated.

再者,在一些實施例中,偵測器120A可利用較便宜的光偵測器實現。藉此,亦可避免增加過多的成本。 Furthermore, in some embodiments, the detector 120A can be implemented by a relatively inexpensive light detector. In this way, too much cost can be avoided.

參考第2A圖。第2A圖是依照本揭示一些其他實施例所繪示驅動器110、偵測器120B以及發光元件130的上視圖。以第2A圖示例而言,驅動器110以及偵測器120B設置於發光面LA1的一側(例如:圖面上的左側),且偵測器120B的感光面LB朝向另一側(例如:圖面上的右側)。發光元件130包含軸線AL。驅動器110的中心與偵測器120A的中心形成連線P2,且連線P2未對齊於軸線AL。Refer to Figure 2A. FIG. 2A is a top view of the driver 110, the detector 120B, and the light-emitting element 130 according to some other embodiments of the present disclosure. Taking the example of FIG. 2A as an example, the driver 110 and the detector 120B are disposed on one side of the light-emitting surface LA1 (for example: the left side of the figure), and the photosensitive surface LB of the detector 120B faces the other side (for example: On the right side of the picture). The light emitting element 130 includes an axis AL. The center of the driver 110 and the center of the detector 120A form a line P2, and the line P2 is not aligned with the axis AL.

參考第2B圖。第2B圖是依照本揭示一些其他實施例所繪示驅動器110A、偵測器120C以及發光元件130的上視圖。以第2B圖示例而言,驅動器110A以及偵測器120C設置於發光面LA1的一側(例如:圖面上的左側),且偵測器120C的感光面LB朝向另一側(例如:圖面上的右側)。驅動器110A相對於偵測器120C旋轉一個角度。發光元件130包含軸線AL。驅動器110A的中心與偵測器120C的中心形成連線P3,且連線P3未對齊於軸線AL。Refer to Figure 2B. FIG. 2B is a top view of the driver 110A, the detector 120C, and the light-emitting element 130 according to some other embodiments of the present disclosure. Taking the example of FIG. 2B as an example, the driver 110A and the detector 120C are disposed on one side of the light-emitting surface LA1 (for example: the left side of the figure), and the photosensitive surface LB of the detector 120C faces the other side (for example: On the right side of the picture). The driver 110A rotates by an angle relative to the detector 120C. The light emitting element 130 includes an axis AL. The center of the driver 110A and the center of the detector 120C form a line P3, and the line P3 is not aligned with the axis AL.

參考第3A圖以及第3B圖。第3A圖是依照本揭示一些實施例所繪示的光達系統300的示意圖。第3B圖是依照本揭示一些實施例所繪示第3A圖中的驅動器110、偵測器120D以及發光元件130的上視圖。以第3A圖示例而言,驅動器110與發光元件130之間形成區域A1,該區域A1之範圍為發光元件130之上邊與下邊往驅動器110延伸包圍的區域。偵測器120D設置於區域A1外。以第3B圖示例而言,驅動器110以及偵測器120D設置於發光面LA1的一側(例如:圖面上的左側),且偵測器120D的感光面LB朝向驅動器110。發光元件130包含軸線AL。驅動器110的中心與偵測器120D的中心形成連線P4,且連線P4未對齊於軸線AL。舉例而言,連線P4與軸線AL形成銳角D。Refer to Figure 3A and Figure 3B. FIG. 3A is a schematic diagram of the LiDAR system 300 according to some embodiments of the present disclosure. FIG. 3B is a top view of the driver 110, the detector 120D, and the light-emitting element 130 in FIG. 3A according to some embodiments of the present disclosure. Taking the example of FIG. 3A as an example, an area A1 is formed between the driver 110 and the light-emitting element 130, and the area A1 is an area extending from the upper and lower sides of the light-emitting element 130 toward the driver 110. The detector 120D is arranged outside the area A1. Taking the example of FIG. 3B as an example, the driver 110 and the detector 120D are disposed on one side of the light-emitting surface LA1 (for example, the left side of the figure), and the photosensitive surface LB of the detector 120D faces the driver 110. The light emitting element 130 includes an axis AL. The center of the driver 110 and the center of the detector 120D form a line P4, and the line P4 is not aligned with the axis AL. For example, the line P4 forms an acute angle D with the axis AL.

再次參考第3A圖。驅動器110用以反射來自發光元件130的發光面LA1的光束L1以產生待測光UL1。而偵測器120D用以接收且偵測被驅動器110所反射的待測光UL1,以即時量測發光元件130的功率。Refer again to Figure 3A. The driver 110 is used to reflect the light beam L1 from the light emitting surface LA1 of the light emitting element 130 to generate the light to be measured UL1. The detector 120D is used to receive and detect the light UL1 to be measured reflected by the driver 110 to measure the power of the light-emitting element 130 in real time.

在第3A圖的光達系統300中,由於偵測器120D並非設置於驅動器110與發光元件130之間的區域A1中,因此偵測器120D與驅動器110之間的距離可縮短。藉此配置,可達到節省空間的功效。舉例而言,驅動器110至發光元件130的距離可小於5毫米。In the lidar system 300 in FIG. 3A, since the detector 120D is not disposed in the area A1 between the driver 110 and the light emitting element 130, the distance between the detector 120D and the driver 110 can be shortened. With this configuration, the space saving effect can be achieved. For example, the distance between the driver 110 and the light emitting element 130 may be less than 5 millimeters.

準直鏡140用以準直自發光面LA2發出的光束L2以產生準直光CL1。分光鏡150用以穿透準直光CL1以產生穿透光TL。反射元件170用以反射穿透光TL以產生反射光RL1。反射光RL1打到量測物OB會產生量測物OB的散射光SL。透鏡190用以準直量測物OB的散射光SL以產生準直光CL2。反射元件170用以反射準直光CL2以產生反射光RL2。分光鏡150用以將反射光RL2反射以產生反射光RL3。偵測器160用以偵測反射光RL3。處理器180耦接偵測器160。處理器180用以依據偵測器160所偵測到的反射光RL3以及發光元件130的發光時間執行一飛行測距程序。The collimator lens 140 is used to collimate the light beam L2 emitted from the light-emitting surface LA2 to generate the collimated light CL1. The beam splitter 150 is used for penetrating the collimated light CL1 to generate the penetrating light TL. The reflective element 170 is used to reflect the penetrating light TL to generate the reflected light RL1. When the reflected light RL1 hits the measurement object OB, the scattered light SL of the measurement object OB will be generated. The lens 190 is used to collimate the scattered light SL of the measurement object OB to generate collimated light CL2. The reflective element 170 is used to reflect the collimated light CL2 to generate the reflected light RL2. The beam splitter 150 is used to reflect the reflected light RL2 to generate the reflected light RL3. The detector 160 is used to detect the reflected light RL3. The processor 180 is coupled to the detector 160. The processor 180 is used for executing a flight distance measurement procedure according to the reflected light RL3 detected by the detector 160 and the light-emitting time of the light-emitting element 130.

參考第4圖。第4圖是依照本揭示一些實施例所繪示的光達系統400的示意圖。以第4圖示例而言,光達系統400包含驅動器110-1以及110-2、偵測器120-1以及120-2、發光元件130-1以及130-2、準直鏡140-1以及140-2、分光鏡150-1以及150-2、偵測器160-1以及160-2、反射元件170、處理器180以及透鏡190-1以及190-2。Refer to Figure 4. FIG. 4 is a schematic diagram of the LiDAR system 400 according to some embodiments of the present disclosure. Taking the example of Figure 4 as an example, the LiDAR system 400 includes drivers 110-1 and 110-2, detectors 120-1 and 120-2, light-emitting elements 130-1 and 130-2, and collimator 140-1 And 140-2, beam splitters 150-1 and 150-2, detectors 160-1 and 160-2, reflective element 170, processor 180, and lenses 190-1 and 190-2.

驅動器110-1、偵測器120-1、發光元件130-1、準直鏡140-1、分光鏡150-1、反射元件170以及透鏡190-1的配置相似於第3A圖中的光達系統300且可形成第一光訊號通道(channel)。驅動器110-2、偵測器120-2、發光元件130-2、準直鏡140-2、分光鏡150-2、反射元件170以及透鏡190-2的配置亦相似於第3A圖中的光達系統300且可形成第二光訊號通道。也就是說,第4圖的光達系統400為多通道(multi-channel)的架構且包含兩個光訊號通道。在一些其他的實施中,光達系統400可包含超過兩個光訊號通道。The configuration of the driver 110-1, the detector 120-1, the light-emitting element 130-1, the collimator 140-1, the beam splitter 150-1, the reflecting element 170, and the lens 190-1 is similar to that of the light-emitting element in Figure 3A. The system 300 can also form a first optical signal channel. The configuration of the driver 110-2, the detector 120-2, the light-emitting element 130-2, the collimator 140-2, the beam splitter 150-2, the reflective element 170, and the lens 190-2 is also similar to the light-emitting element in Figure 3A. It reaches the system 300 and can form a second optical signal channel. In other words, the LiDAR system 400 in FIG. 4 has a multi-channel architecture and includes two optical signal channels. In some other implementations, the LiDAR system 400 may include more than two optical signal channels.

第4圖中的驅動器110-1(110-2)、偵測器120-1(120-2)、發光元件130-1(130-2)的配置可相同於第3B圖中的驅動器110、偵測器120D、發光元件130的配置。以第4圖示例而言,驅動器110-1與發光元件130-1之間形成區域A1。偵測器120-1設置於區域A1外。詳細而言,驅動器110-1以及偵測器120-1設置於發光元件130-1的發光面LA1的一側(例如:圖面上的左側),且偵測器120-1的感光面LB朝向驅動器110-1。發光元件130-1包含一軸線(例如:第3B圖中的軸線AL)。驅動器110-1的中心與偵測器120-1的中心形成一連線(例如:第3B圖中的連線P4),且此連線未對齊於發光元件130-1的軸線。舉例而言,此連線(例如:第3B圖中的連線P4)與發光元件130-1的軸線(例如:第3B圖中的軸線AL)形成銳角(例如:第3B圖中的銳角D)。相似地,驅動器110-2與發光元件130-2之間形成區域A2。偵測器120-2設置於區域A2外。詳細而言,驅動器110-2以及偵測器120-2設置於發光元件130-2的發光面LA1的一側(例如:圖面上的左側),且偵測器120-2的感光面LB朝向驅動器110-2。發光元件130-2包含一軸線(例如:第3B圖中的軸線AL)。驅動器110-2的中心與偵測器120-2的中心形成一連線 (例如:第3B圖中的連線P4),且此連線未對齊於發光元件130-2的軸線。舉例而言,此連線(例如:第3B圖中的連線P4)與發光元件130-2的軸線(例如:第3B圖中的軸線AL)形成銳角(例如:第3B圖中的銳角D)。The configuration of the driver 110-1 (110-2), the detector 120-1 (120-2), and the light-emitting element 130-1 (130-2) in Figure 4 can be the same as the configuration of the driver 110, The configuration of the detector 120D and the light-emitting element 130. Taking the example of FIG. 4 as an example, an area A1 is formed between the driver 110-1 and the light-emitting element 130-1. The detector 120-1 is arranged outside the area A1. In detail, the driver 110-1 and the detector 120-1 are disposed on one side of the light-emitting surface LA1 of the light-emitting element 130-1 (for example, the left side of the figure), and the photosensitive surface LB of the detector 120-1 Towards the driver 110-1. The light emitting element 130-1 includes an axis (for example, the axis AL in Fig. 3B). The center of the driver 110-1 and the center of the detector 120-1 form a line (for example, the line P4 in Figure 3B), and the line is not aligned with the axis of the light-emitting element 130-1. For example, this line (for example: line P4 in Figure 3B) and the axis of the light-emitting element 130-1 (for example: axis AL in Figure 3B) form an acute angle (for example: acute angle D in Figure 3B) ). Similarly, an area A2 is formed between the driver 110-2 and the light emitting element 130-2. The detector 120-2 is arranged outside the area A2. In detail, the driver 110-2 and the detector 120-2 are disposed on one side of the light-emitting surface LA1 of the light-emitting element 130-2 (for example, the left side of the figure), and the photosensitive surface LB of the detector 120-2 Towards the driver 110-2. The light emitting element 130-2 includes an axis (for example, the axis AL in Fig. 3B). The center of the driver 110-2 and the center of the detector 120-2 form a line (for example, the line P4 in Figure 3B), and the line is not aligned with the axis of the light-emitting element 130-2. For example, this connection (for example: connection P4 in Fig. 3B) and the axis of the light-emitting element 130-2 (for example: axis AL in Fig. 3B) form an acute angle (for example: acute angle D in Fig. 3B) ).

發光元件130-1或130-2具有兩個不同光強度的發光面LA1以及LA2。發光元件130-1的發光面LA1以及LA2分別用以發出不同光強度的光束L1以及光束L2。驅動器110-1用以反射光束L1以產生待測光UL1。偵測器120-1用以偵測待測光UL1,以即時量測發光元件130-1的功率。準直鏡140-1用以準直光束L2以產生準直光CL1。分光鏡150-1用以穿透準直光CL1以產生穿透光TL1。反射元件170用以反射穿透光TL1以產生反射光RL1。反射光RL1打到量測物OB會產生量測物OB的散射光SL1。透鏡190-1用以準直量測物OB的散射光SL1以產生準直光CL2。反射元件170用以反射準直光CL2以產生反射光RL2。分光鏡150-1用以將反射光RL2反射以產生反射光RL3。偵測器160-1用以偵測反射光RL3,以供處理器180執行飛行測距程序。相似地,發光元件130-2的發光面LA1以及LA2分別用以發出不同光強度的光束L3以及光束L4。驅動器110-2用以反射光束L3以產生待測光UL2。偵測器120-2用以偵測待測光UL2,以即時量測發光元件130-2的功率。準直鏡140-2用以準直光束L4以產生準直光CL3。分光鏡150-2用以穿透準直光CL3以產生穿透光TL2。反射元件170用以反射穿透光TL2以產生反射光RL4。反射光RL4打到量測物OB會產生量測物OB的散射光SL2。透鏡190-2用以準直量測物OB的散射光SL2以產生準直光CL4。反射元件170用以反射準直光CL4以產生反射光RL5。分光鏡150-2用以將反射光RL5反射以產生反射光RL6。偵測器160-2用以偵測反射光RL6,以供處理器180執行飛行測距程序。The light-emitting element 130-1 or 130-2 has two light-emitting surfaces LA1 and LA2 with different light intensities. The light-emitting surfaces LA1 and LA2 of the light-emitting element 130-1 are used to emit light beams L1 and L2 with different light intensities, respectively. The driver 110-1 is used to reflect the light beam L1 to generate the light to be measured UL1. The detector 120-1 is used to detect the light UL1 to be measured to measure the power of the light-emitting element 130-1 in real time. The collimator lens 140-1 is used to collimate the light beam L2 to generate collimated light CL1. The beam splitter 150-1 is used for penetrating the collimated light CL1 to generate the penetrating light TL1. The reflective element 170 is used to reflect the penetrating light TL1 to generate the reflected light RL1. When the reflected light RL1 hits the measuring object OB, the scattered light SL1 of the measuring object OB will be generated. The lens 190-1 is used to collimate the scattered light SL1 of the measurement object OB to generate the collimated light CL2. The reflective element 170 is used to reflect the collimated light CL2 to generate the reflected light RL2. The beam splitter 150-1 is used to reflect the reflected light RL2 to generate the reflected light RL3. The detector 160-1 is used for detecting the reflected light RL3 for the processor 180 to execute the flight ranging procedure. Similarly, the light-emitting surfaces LA1 and LA2 of the light-emitting element 130-2 are respectively used to emit light beams L3 and L4 of different light intensities. The driver 110-2 is used to reflect the light beam L3 to generate the light to be measured UL2. The detector 120-2 is used to detect the light UL2 to be measured to measure the power of the light-emitting element 130-2 in real time. The collimator lens 140-2 is used to collimate the light beam L4 to generate collimated light CL3. The beam splitter 150-2 is used for penetrating the collimated light CL3 to generate the penetrating light TL2. The reflective element 170 is used to reflect the penetrating light TL2 to generate the reflected light RL4. When the reflected light RL4 hits the measurement object OB, the scattered light SL2 of the measurement object OB will be generated. The lens 190-2 is used to collimate the scattered light SL2 of the measurement object OB to generate the collimated light CL4. The reflective element 170 is used to reflect the collimated light CL4 to generate the reflected light RL5. The beam splitter 150-2 is used to reflect the reflected light RL5 to generate the reflected light RL6. The detector 160-2 is used to detect the reflected light RL6 for the processor 180 to execute the flight ranging procedure.

以第4圖示例而言,由於偵測器120-2設置於區域A1與區域A2之間(待測光UL1的光路徑上以及待測光UL2的光路徑上),因此偵測器120-2可阻擋待測光UL1以避免待測光UL1影響到第二光訊號通道,也可阻擋待測光UL2以避免待測光UL2影響到第一光訊號通道。也就是說,第4圖中的光達系統400可降低不同光訊號通道之間的串音(crosstalk)干擾。Taking the example of Figure 4 as an example, since the detector 120-2 is disposed between the area A1 and the area A2 (on the optical path of the light to be measured UL1 and on the optical path of the light to be measured UL2), the detector 120-2 The light to be measured UL1 can be blocked to prevent the light to be measured UL1 from affecting the second optical signal channel, and the light to be measured UL2 can also be blocked to prevent the light to be measured UL2 from affecting the first optical signal channel. In other words, the LiDAR system 400 in Figure 4 can reduce crosstalk interference between different optical signal channels.

綜上所述,本揭示中的光達系統可即時量測發光元件的功率,以提高光達系統的可靠度。另外,本揭示將偵測器設置於驅動器以及發光元件之間,可有效利用空間,以避免增加光達系統的體積且避免光路過於複雜。再者,本揭示的光達系統具有設置簡易且成本較低的優點。In summary, the LiDAR system of the present disclosure can measure the power of the light-emitting element in real time, so as to improve the reliability of the LiDAR system. In addition, in the present disclosure, the detector is arranged between the driver and the light-emitting element, which can effectively use the space to avoid increasing the volume of the optical system and avoid the light path from being too complicated. Furthermore, the LiDAR system of the present disclosure has the advantages of easy installation and low cost.

雖然本揭示已以實施方式揭露如上,然其並非用以限定本揭示,任何本領域具通常知識者,在不脫離本揭示之精神和範圍內,當可作各種之更動與潤飾,因此本揭示之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the field can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the present disclosure The scope of protection shall be subject to the scope of the attached patent application.

100:光達系統 110:驅動器 110A:驅動器 110-1:驅動器 110-2:驅動器 120A:偵測器 120B:偵測器 120C:偵測器 120D:偵測器 120-1:偵測器 120-2:偵測器 130:發光元件 130-1:發光元件 130-2:發光元件 140:準直鏡 140-1:準直鏡 140-2:準直鏡 150:分光鏡 150-1:分光鏡 150-2:分光鏡 160:偵測器 170:反射元件 180:處理器 190:透鏡 190-1:透鏡 190-2:透鏡 300:光達系統 400:光達系統 L1:光束 L2:光束 L3:光束 L4:光束 AL:軸線 P1:連線 P2:連線 P3:連線 P4:連線 D:銳角 LA1:發光面 LA2:發光面 LB:感光面 BA:走線區域 OB:量測物 SL:散射光 SL1:散射光 SL2:散射光 CL1:準直光 CL2:準直光 CL3:準直光 CL4:準直光 RL0:反射光 RL1:反射光 RL2:反射光 RL3:反射光 RL4:反射光 RL5:反射光 RL6:反射光 UL1:待測光 UL2:待測光 TL:穿透光 TL1:穿透光 TL2:穿透光 A1:區域 A2:區域 100: Lidar System 110: drive 110A: Drive 110-1: Drive 110-2: Drive 120A: Detector 120B: Detector 120C: Detector 120D: Detector 120-1: Detector 120-2: Detector 130: light-emitting element 130-1: Light-emitting element 130-2: Light-emitting element 140: collimator lens 140-1: Collimating lens 140-2: collimator lens 150: Spectroscope 150-1: Spectroscope 150-2: Spectroscope 160: Detector 170: reflective element 180: processor 190: lens 190-1: lens 190-2: lens 300: Lidar System 400: Lidar System L1: beam L2: beam L3: beam L4: beam AL: axis P1: Connect P2: Connect P3: Connect P4: Connect D: acute angle LA1: Light-emitting surface LA2: Light-emitting surface LB: photosensitive surface BA: Wiring area OB: Measured object SL: scattered light SL1: scattered light SL2: scattered light CL1: collimated light CL2: collimated light CL3: collimated light CL4: Collimated light RL0: reflected light RL1: reflected light RL2: reflected light RL3: reflected light RL4: Reflected light RL5: reflected light RL6: Reflected light UL1: Light to be measured UL2: Light to be measured TL: penetrating light TL1: penetrating light TL2: penetrating light A1: area A2: area

為讓本揭示之上述和其他目的、特徵、優點與實施例能夠更明顯易懂,所附圖式之說明如下: 第1A圖是依照本揭示一些實施例所繪示一光達系統的示意圖; 第1B圖是依照本揭示一些實施例所繪示第1A圖中的驅動器、偵測器以及發光元件的上視圖; 第1C圖是依照本揭示一些實施例所繪示的一發光元件的側視圖; 第1D圖是依照本揭示一些實施例所繪示的第1C圖中發光元件的上視圖; 第2A圖是依照本揭示一些其他實施例所繪示驅動器、偵測器以及發光元件的上視圖; 第2B圖是依照本揭示一些其他實施例所繪示驅動器、偵測器以及發光元件的上視圖; 第3A圖是依照本揭示一些實施例所繪示的一光達系統的示意圖; 第3B圖是依照本揭示一些實施例所繪示第3A圖中的驅動器、偵測器以及發光元件的上視圖;以及 第4圖是依照本揭示一些實施例所繪示的一光達系統的示意圖。 In order to make the above and other objectives, features, advantages and embodiments of the present disclosure more obvious and understandable, the description of the accompanying drawings is as follows: FIG. 1A is a schematic diagram of a LiDAR system according to some embodiments of the present disclosure; FIG. 1B is a top view of the driver, detector, and light-emitting element in FIG. 1A according to some embodiments of the present disclosure; FIG. 1C is a side view of a light emitting device according to some embodiments of the present disclosure; FIG. 1D is a top view of the light-emitting element in FIG. 1C according to some embodiments of the present disclosure; FIG. 2A is a top view of a driver, a detector, and a light-emitting element according to some other embodiments of the present disclosure; FIG. 2B is a top view of the driver, the detector, and the light-emitting element according to some other embodiments of the present disclosure; FIG. 3A is a schematic diagram of a lidar system according to some embodiments of the present disclosure; FIG. 3B is a top view of the driver, detector, and light-emitting element in FIG. 3A according to some embodiments of the present disclosure; and FIG. 4 is a schematic diagram of a lidar system according to some embodiments of the present disclosure.

100:光達系統 100: Lidar System

110:驅動器 110: drive

120A:偵測器 120A: Detector

130:發光元件 130: light-emitting element

140:準直鏡 140: collimator lens

150:分光鏡 150: Spectroscope

160:偵測器 160: Detector

170:反射元件 170: reflective element

180:處理器 180: processor

190:透鏡 190: lens

L1:光束 L1: beam

L2:光束 L2: beam

LA1:發光面 LA1: Light-emitting surface

LA2:發光面 LA2: Light-emitting surface

LB:感光面 LB: photosensitive surface

OB:量測物 OB: Measured object

SL:散射光 SL: scattered light

CL1:準直光 CL1: collimated light

CL2:準直光 CL2: collimated light

RL1:反射光 RL1: reflected light

RL2:反射光 RL2: reflected light

RL3:反射光 RL3: reflected light

TL:穿透光 TL: penetrating light

Claims (13)

一種光達系統,包含: 一驅動器; 一發光元件,用以發出一第一光束以及一第二光束; 一第一偵測器,設置於該驅動器以及該發光元件之間且用以偵測該第一光束的一功率; 一準直鏡,用以準直該第二光束以產生一第一準直光; 一分光鏡,用以穿透該第一準直光以產生一穿透光; 一反射元件,用以反射該穿透光以產生一第一反射光,並使該第一反射光打到量測物並產生散射光; 一透鏡,用以準直量測物的散射光以產生一第二準直光,其中該反射元件更用以反射該第二準直光以產生一第二反射光,且該分光鏡更用以反射該第二反射光以產生一第三反射光;以及 一第二偵測器,用以偵測該第三反射光。 A LiDAR system, including: A drive A light emitting element for emitting a first light beam and a second light beam; A first detector arranged between the driver and the light-emitting element and used for detecting a power of the first light beam; A collimating lens for collimating the second light beam to generate a first collimated light; A beam splitter for penetrating the first collimated light to generate a penetrating light; A reflective element for reflecting the penetrating light to generate a first reflected light, and causing the first reflected light to hit the measuring object and generate scattered light; A lens for collimating the scattered light of the measurement object to generate a second collimated light, wherein the reflective element is further used for reflecting the second collimated light to generate a second reflected light, and the beam splitter is further used To reflect the second reflected light to generate a third reflected light; and A second detector is used to detect the third reflected light. 如請求項1所述的光達系統,其中該發光元件包含一第一發光面以及一第二發光面,其中該第一發光面以及該第二發光面用以分別發出該第一光束以及該第二光束。The lidar system according to claim 1, wherein the light-emitting element includes a first light-emitting surface and a second light-emitting surface, wherein the first light-emitting surface and the second light-emitting surface are used to respectively emit the first light beam and the The second beam. 如請求項2所述的光達系統,其中該發光元件包含一軸線,該驅動器以及該第一偵測器設置於該第一發光面的一側,該驅動器的中心與該第一偵測器的中心形成一連線,且該連線對齊於該軸線。The LiDAR system according to claim 2, wherein the light-emitting element includes an axis, the driver and the first detector are disposed on one side of the first light-emitting surface, and the center of the driver and the first detector A line is formed at the center of, and the line is aligned with the axis. 如請求項2所述的光達系統,其中該發光元件包含一軸線,該驅動器以及該第一偵測器設置於該第一發光面的一側,該驅動器的中心與該第一偵測器的中心形成一連線,且該連線未對齊於該軸線。The LiDAR system according to claim 2, wherein the light-emitting element includes an axis, the driver and the first detector are disposed on one side of the first light-emitting surface, and the center of the driver and the first detector A line is formed at the center of, and the line is not aligned with the axis. 如請求項1所述的光達系統,更包含: 一處理器,用以依據偵測到的該功率以及一門檻值判斷該光達系統是否異常。 The Lidar system as described in claim 1, further including: A processor is used for judging whether the LiDAR system is abnormal according to the detected power and a threshold value. 一種光達系統,包含: 一第一驅動器; 一第一發光元件,用以發出一第一光束以及一第二光束,其中該第一驅動器與該第一發光元件之間形成一第一區域,其中該第一光束照射該第一驅動器,使該第一驅動器反射該第一光束產生一第一待測光; 一第一偵測器,設置於該第一區域之外且用以偵測該第一待測光; 一第一準直鏡,用以準直該第二光束以產生一第一準直光; 一第一分光鏡,用以穿透該第一準直光以產生一第一穿透光; 一反射元件,用以反射該第一穿透光以產生一第一反射光,並使該第一反射光打到量測物並產生第一散射光; 一第一透鏡,用以準直量測物的第一散射光以產生一第二準直光,其中該反射元件更用以反射該第二準直光以產生一第二反射光,且該第一分光鏡更用以反射該第二反射光以產生一第三反射光;以及 一第二偵測器,用以偵測該第三反射光。 A LiDAR system, including: A first drive; A first light-emitting element for emitting a first light beam and a second light beam, wherein a first area is formed between the first driver and the first light-emitting element, and the first light beam irradiates the first driver so that The first driver reflects the first light beam to generate a first light to be measured; A first detector arranged outside the first area and used for detecting the first light to be measured; A first collimator lens for collimating the second light beam to generate a first collimated light; A first beam splitter for penetrating the first collimated light to generate a first penetrating light; A reflective element for reflecting the first penetrating light to generate a first reflected light, and causing the first reflected light to hit the measuring object and generate the first scattered light; A first lens is used to collimate the first scattered light of the measurement object to generate a second collimated light, wherein the reflective element is further used to reflect the second collimated light to generate a second reflected light, and the The first beam splitter is further used to reflect the second reflected light to generate a third reflected light; and A second detector is used to detect the third reflected light. 如請求項6所述的光達系統,其中該第一驅動器至該第一發光元件的距離小於5毫米。The LiDAR system according to claim 6, wherein the distance from the first driver to the first light-emitting element is less than 5 millimeters. 如請求項6所述的光達系統,其中該第一發光元件包含一第一發光面以及一第二發光面,其中該第一發光面以及該第二發光面用以分別發出該第一光束以及該第二光束。The LiDAR system according to claim 6, wherein the first light-emitting element includes a first light-emitting surface and a second light-emitting surface, wherein the first light-emitting surface and the second light-emitting surface are used to respectively emit the first light beam And the second light beam. 如請求項8所述的光達系統,其中該第一發光元件包含一軸線,該第一驅動器以及該第一偵測器設置於該第一發光面的一側,該第一驅動器的中心與該第一偵測器的中心形成一連線,且該連線未對齊於該軸線。The LiDAR system according to claim 8, wherein the first light-emitting element includes an axis, the first driver and the first detector are disposed on one side of the first light-emitting surface, and the center of the first driver and The center of the first detector forms a line, and the line is not aligned with the axis. 如請求項6所述的光達系統,更包含: 一第二驅動器; 一第二發光元件,用以發出一第三光束以及一第四光束,其中該第二驅動器與該第二發光元件之間形成一第二區域,其中該第三光束照射該第二驅動器,使該第二驅動器反射該第三光束產生一第二待測光; 一第三偵測器,設置於該第二區域之外且用以偵測該第二待測光的一功率; 一第二準直鏡,用以準直該第四光束以產生一第三準直光; 一第二分光鏡,用以穿透該第三準直光以產生一第二穿透光,其中該反射元件更用以反射該第二穿透光以產生一第四反射光,並使該第四反射光打到量測物並產生第二散射光; 一第二透鏡,用以準直第二散射光以產生一第四準直光,其中該反射元件更用以反射該第四準直光以產生一第五反射光,且該第二分光鏡更用以反射該第五反射光以產生一第六反射光;以及 一第四偵測器,用以偵測該第六反射光。 The Lidar system as described in claim 6, further including: A second drive; A second light-emitting element is used to emit a third light beam and a fourth light beam, wherein a second area is formed between the second driver and the second light-emitting element, and the third light beam irradiates the second driver to make The second driver reflects the third light beam to generate a second light to be measured; A third detector arranged outside the second area and used for detecting a power of the second light to be measured; A second collimator lens for collimating the fourth light beam to generate a third collimated light; A second beam splitter for penetrating the third collimated light to generate a second penetrating light, wherein the reflective element is further for reflecting the second penetrating light to generate a fourth reflected light, and making the The fourth reflected light hits the measurement object and generates second scattered light; A second lens is used to collimate the second scattered light to generate a fourth collimated light, wherein the reflective element is further used to reflect the fourth collimated light to generate a fifth reflected light, and the second beam splitter It is further used to reflect the fifth reflected light to generate a sixth reflected light; and A fourth detector is used to detect the sixth reflected light. 如請求項10所述的光達系統,其中該第二發光元件包含一第三發光面以及一第四發光面,其中該第三發光面以及該第四發光面用以分別發出該第三光束以及該第四光束。The lidar system according to claim 10, wherein the second light-emitting element includes a third light-emitting surface and a fourth light-emitting surface, wherein the third light-emitting surface and the fourth light-emitting surface are used to respectively emit the third light beam And the fourth beam. 如請求項11所述的光達系統,其中該第二發光元件包含一軸線,該第二驅動器以及該第三偵測器設置於該第三發光面的一側,該第二驅動器的中心與該第三偵測器的中心形成一連線,且該連線未對齊於該軸線。The LiDAR system according to claim 11, wherein the second light-emitting element includes an axis, the second driver and the third detector are disposed on one side of the third light-emitting surface, and the center of the second driver and The center of the third detector forms a line, and the line is not aligned with the axis. 如請求項10所述的光達系統,其中該第三偵測器設置於該第一區域與該第二區域之間。The LiDAR system according to claim 10, wherein the third detector is disposed between the first area and the second area.
TW109129704A 2020-08-31 2020-08-31 Lidar system TWI749740B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129704A TWI749740B (en) 2020-08-31 2020-08-31 Lidar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129704A TWI749740B (en) 2020-08-31 2020-08-31 Lidar system

Publications (2)

Publication Number Publication Date
TWI749740B true TWI749740B (en) 2021-12-11
TW202210863A TW202210863A (en) 2022-03-16

Family

ID=80680995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129704A TWI749740B (en) 2020-08-31 2020-08-31 Lidar system

Country Status (1)

Country Link
TW (1) TWI749740B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160299228A1 (en) * 2015-04-07 2016-10-13 Oewaves, Inc. Compact LIDAR System
US20170307736A1 (en) * 2016-04-22 2017-10-26 OPSYS Tech Ltd. Multi-Wavelength LIDAR System
TWI623755B (en) * 2017-04-28 2018-05-11 Nat Chung Shan Inst Science & Tech Power measuring device for high power fiber laser system
TW201835603A (en) * 2017-03-01 2018-10-01 美商奧斯特公司 Accurate photo detector measurements for lidar
TWI649579B (en) * 2013-12-19 2019-02-01 美商Dscg史羅軒公司 Single laser light system
TW201920983A (en) * 2017-09-08 2019-06-01 美商昆奈吉系統有限公司 Apparatus and method for selective disabling of lidar detector array elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649579B (en) * 2013-12-19 2019-02-01 美商Dscg史羅軒公司 Single laser light system
US20160299228A1 (en) * 2015-04-07 2016-10-13 Oewaves, Inc. Compact LIDAR System
US20170307736A1 (en) * 2016-04-22 2017-10-26 OPSYS Tech Ltd. Multi-Wavelength LIDAR System
TW201835603A (en) * 2017-03-01 2018-10-01 美商奧斯特公司 Accurate photo detector measurements for lidar
TWI623755B (en) * 2017-04-28 2018-05-11 Nat Chung Shan Inst Science & Tech Power measuring device for high power fiber laser system
TW201920983A (en) * 2017-09-08 2019-06-01 美商昆奈吉系統有限公司 Apparatus and method for selective disabling of lidar detector array elements

Also Published As

Publication number Publication date
TW202210863A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
CA3017735C (en) Integrated illumination and detection for lidar based 3-d imaging
US8692979B2 (en) Laser sensor system based on self-mixing interference
US6833909B2 (en) Device for optical distance measurement of distance over a large measuring range
US10473783B2 (en) Laser processing device and laser processing system
JP2013104746A (en) Laser radar device
WO2018107528A1 (en) Laser radar system and distance measurement method
JP7135350B2 (en) OBJECT DETECTION DEVICE, MOBILE DEVICE, AND OBJECT DETECTION METHOD
RU2015144501A (en) SURFACE RURGE MEASUREMENT DEVICE
JP2007108122A (en) Laser measuring method, laser condition detection equipment, and laser condition detection system
JP2007333592A (en) Distance measurement device
WO2020107250A1 (en) Laser receiving circuit, distance measurement device, and mobile platform
JP2018151278A (en) Measurement device
TWI749740B (en) Lidar system
JPS59762B2 (en) displacement measuring device
JP5376824B2 (en) Position measuring apparatus and position measuring processing method
US11567202B2 (en) SPAD-based LIDAR system
JP2018040748A (en) Laser range measuring device
CN215573687U (en) Light detection assembly and laser device
CN114114214A (en) Light reaches system
US20230350033A1 (en) Optical measurement system and method of measuring a distance or speed of an object
KR20200058831A (en) LIDAR apparatus
US7336903B2 (en) Optical wireless transmission apparatus
JP2009289739A (en) Photoelectric sensor
KR102548859B1 (en) Beam projector module providing eye protection
JP2013181968A (en) Optical instrument