WO2020004838A1 - Vibration-resistant white light interference microscope and method for removing vibration effect thereof - Google Patents

Vibration-resistant white light interference microscope and method for removing vibration effect thereof Download PDF

Info

Publication number
WO2020004838A1
WO2020004838A1 PCT/KR2019/007143 KR2019007143W WO2020004838A1 WO 2020004838 A1 WO2020004838 A1 WO 2020004838A1 KR 2019007143 W KR2019007143 W KR 2019007143W WO 2020004838 A1 WO2020004838 A1 WO 2020004838A1
Authority
WO
WIPO (PCT)
Prior art keywords
white light
vibration
interference
light
laser light
Prior art date
Application number
PCT/KR2019/007143
Other languages
French (fr)
Korean (ko)
Inventor
이효진
안승엽
Original Assignee
케이맥(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이맥(주) filed Critical 케이맥(주)
Priority to CN201980003112.3A priority Critical patent/CN110869696B/en
Publication of WO2020004838A1 publication Critical patent/WO2020004838A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0056Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements

Definitions

  • the present invention relates to a vibration resistant white light interference microscope and a method for removing the vibration effect thereof.
  • the white light interference microscope uses a semi-transparent mirror to divide the light path into two directions of the measurement sample and the reference mirror, and accordingly, the white light interference microscope generates light between the measurement light that is reflected back from the measurement surface and the reference light that is reflected back to the reference mirror. It is an apparatus which measures the level difference on the surface of a measurement object in a relatively quick time using an interference fringe.
  • the white light interference microscope overcomes the disadvantages of contact point measurement methods such as stylus without being affected by the measurement error due to 2 ⁇ ambiguity, which is a disadvantage of Phase Shift Interferometer (PSI). Therefore, it has the advantage of the non-contact area measuring method, and thus can measure the height of many points at one time.
  • PSI Phase Shift Interferometer
  • the white light interference microscope is a high-precision measurement method
  • the vibration generated from the equipment or floor affects the optical path difference (OPD) during the z-axis scan is a major cause of measurement error.
  • OPD optical path difference
  • the measurement repeatability is affected.
  • the conventional white light interference microscope sends a triggering signal to the camera every time the PZT scanner moves a certain distance (eg, 72 nm) along the z-axis to obtain an image.
  • PZT scanners are expensive components and provide very precise control of the travel distance.
  • vibration even if the PZT scanner has moved a certain distance in the z-axis direction, there is a high probability that the object has moved at a different distance from the objective lens and the sample.
  • the distance between the objective lens and the measuring sample of the measuring instrument may vary irregularly due to vibration.
  • the white light interference microscope acquires an image whenever the distance between the measurement light reciprocating the distance between the objective lens and the sample and the reference light reciprocating between the objective lens and the reflector attached to the objective lens changes at a predetermined interval.
  • the present invention adds a high coherence laser interferometer to the optical path of a conventional white light interference microscope to provide a trigger to the camera whenever the difference in the optical path of the reference light and the measurement light is changed by a certain interval irrespective of the vibration during the scanning process. It is an object to provide a white light interference microscope.
  • an object of the present invention is to provide a vibration effect removal method of the vibration-resistant white light interference microscope.
  • the vibration-resistant white light interference microscope comprises a light source unit for generating a relatively broad spectrum of white light and a relatively narrow spectrum of laser light at the same time;
  • An interference fringe generation unit including a lens unit and a scan driver for driving the lens unit, the interference fringe generation unit making an interference fringe of the white light and an interference fringe of the laser light;
  • An illumination imaging microscope optical unit separating the interference fringes of the white light and the interference fringes of the laser light;
  • a trigger generator comprising a photodiode for measuring an interference fringe of the laser light and an FPGA controller for generating a trigger by analyzing the interference fringe of the laser light measured by the photodiode;
  • a high speed camera measuring an interference fringe of the white light;
  • a controller configured to calculate and process the interference fringe measurement information of the white light measured by the high speed camera.
  • the light source unit includes a white light generator that generates the white light, and a laser light generator that generates the laser light.
  • the white light generator includes at least one white lamp, and the laser light generator includes at least one laser diode.
  • the laser light generated by the laser light generator may have a higher coherence and relatively brighter brightness than white light generated by the white light generator.
  • the illumination imaging microscope optical unit may image the interference fringes of the separated white light and the interference fringes of the laser light into the high speed camera and the photodiode.
  • the illumination imaging microscope optical unit may include a plurality of beam splitters, and the plurality of beam splitters may include a first beam splitter disposed close to the light source unit and a second beam splitter disposed close to the photodiode. do.
  • the apparatus may further include a first tube lens positioned between the light source unit and the first beam splitter, and a second tube lens provided in the illumination imaging microscope optical system and positioned between the first beam splitter and the second beam splitter. do.
  • the lens unit may include at least one convex lens, a reference mirror, and at least one of a translucent mirror, and the scan driver may include a PZT piezoelectric element that moves the lens unit by applying an external voltage.
  • Vibration effect removal method of the vibration-resistant white light interference microscope (a) generates a white light and a laser light using the light source unit, the interference pattern of the white light and the laser using the interference pattern generating unit Making an interference fringe of light, and separating the interference fringe of the white light and the interference fringe of the laser light using the illumination imaging microscope optics, wherein the white light is formed on the high speed camera and the laser light is formed on the photodiode.
  • step (a-1) further comprises the step of measuring the vibration of the head and the measurement object of the white light interference microscope, and setting the driving speed of the scan driver and the shooting speed of the high-speed camera
  • the vibration of the head of the white light interference microscope and the measurement target is measured using a vibrometer, and the analysis is performed to obtain the maximum speed of the vibration, and faster than the maximum speed of the vibration. And setting the driving speed of the scan driver and the photographing speed of the high speed camera.
  • a high coherence laser interferometer is added to the optical path of a conventional white light interference microscope to provide a trigger to the camera whenever the difference in the optical path between the reference light and the measurement light is changed by a certain interval irrespective of the vibration during the scanning process.
  • the vibration effect of the white light interference microscope can be eliminated. According to this, since the trigger is observed by observing the actual distance, the specification of the scan driver does not have to be high, and thus, an excessively expensive cost is not provided, thereby providing an economically advantageous effect.
  • FIG. 1 is a conceptual diagram schematically showing a vibration-resistant white light interference microscope according to an embodiment of the present invention.
  • FIG. 2 is a graph illustrating a high coherence interference signal and a camera trigger generation point in a case where there is no vibration (a) and when there is vibration (b) in a vibration-resistant white light interference microscope according to an embodiment of the present invention. .
  • Vp 13 ⁇ m / s, 4Hz 995nm amplitude (twice the Class C) when the vibration
  • This graph shows an example of the interference waveform and its phase.
  • Vp 26 ⁇ m / s, 4Hz 995nm amplitude (twice the Class C) when the vibration
  • This graph shows an example of the interference waveform and its phase.
  • first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be “interposed” or each component may be “connected”, “coupled” or “connected” through other components.
  • the white light interference microscope overcomes the disadvantages of contact point measurement methods, such as a stylus, without being affected by the measurement error due to 2 ⁇ ambiguity, which is a disadvantage of the phase shift interferometer (PSI). Area) It has the merit of measuring method.
  • PSI phase shift interferometer
  • the white light interference microscope is a high-precision measurement method, and when a vibration effect is given through the equipment or the floor, there is a problem of measuring error due to the influence on the optical path difference (OPD) during the z-axis scan. In other words, the measurement of minute vibration units may affect measurement repeatability.
  • OPD optical path difference
  • the present invention is designed to solve this problem, and adds a high coherence laser interferometer to the light path of a conventional white light interference microscope. This provides a trigger to the camera whenever the difference in the optical path between the reference and measured light changes at any interval, regardless of vibration during the scan process. As a result, the vibration influence of the white light interference microscope can be eliminated.
  • FIG. 1 is a conceptual diagram schematically showing a vibration-resistant white light interference microscope according to an embodiment of the present invention.
  • the vibration-resistant white light interference microscope 100 includes a light source unit 110, an illumination imaging microscope optical unit 130, an interference fringe generating unit 150, and a trigger generating unit 170. , And the controller 190.
  • the light source unit 110 includes a white light generator 111 and a laser light generator 113.
  • the white light generator 111 refers to a white lamp for measuring and generates light of a broad spectrum.
  • the laser light generator 113 may include a laser diode, which generates light having a relatively narrow spectrum compared to the white light generator 111.
  • the laser light generator 113 generates light having high coherence and bright brightness.
  • laser light is light used for reference confirmation.
  • the illumination imaging microscope optical unit 130 separates the interference pattern of the white light generated by the white light generator 111 and the interference pattern of the laser light generated by the laser light generator 113.
  • the illumination imaging microscope optical unit 130 may separate the interference fringes of the white light and the interference fringes of the laser light to form an image on the sensors of the high speed camera 180 and the photodiode 171, respectively.
  • the illumination imaging microscope optical unit 130 includes a plurality of beam splitters 131 and 133.
  • the one arranged on the light source unit 110 side is called the first beam splitter 131
  • the one disposed on the photodiode 171 side is called the second beam splitter 133.
  • the first and second beam splitters 131 and 133 may be semi-transparent mirrors that reflect a part of light and transmit a part of the remaining light.
  • the interference fringe generator 150 serves to make an interference fringe of white light and an interference fringe of a laser beam.
  • the interference fringe generating unit 150 includes a lens unit 151, a scan driver 153, and a PZT controller 155.
  • the lens unit 151 refers to an optical system including at least one of a convex lens, a reference mirror, and a translucent mirror.
  • the lens unit 151 may use a well-known Mirau interferometer or a Michaelson interferometer.
  • the lens unit 151 is a Mirae interferometer.
  • the convex lens is disposed at the top and focuses on the reference mirror located at the center, and the light passes the sample (ie, the measurement object S) past the translucent mirror disposed at the bottom. You are beaten and come back.
  • interference occurs due to the difference between the optical path reflected by the reference mirror and the optical path returned to the sample. The result is an interference fringe.
  • the scan driver 153 refers to a piezoelectric element that generates a voltage by receiving a force from the outside or generates a movement by receiving a voltage. Specifically, the scan driver 153 is used as a driving element that receives a voltage.
  • the scan driver 153 is used to precisely move the lens unit 151.
  • the PZT controller 155 operates the scan driver 153 by receiving a command signal from a controller (eg, a PC) 190.
  • a controller eg, a PC
  • At least one tube lens 121 and 123 may be provided in the light source unit 110 and the illumination imaging microscope optical unit 130.
  • the tube lens 121 positioned on the light source unit 110 side is referred to as a first tube lens
  • the tube lens 123 positioned on the illumination imaging microscope optical unit 130 side is referred to as a second tube lens.
  • These tube lenses 121 and 123 are lens members, and light emitted from one point may be made into parallel light, and light passing in parallel may be manufactured to be collected into one point.
  • the first tube lens 121 serves to make the light diverging at one point into parallel light
  • the second tube lens 123 may serve to collect the light passing in parallel at one point.
  • the trigger generating unit 170 may generate a trigger when analyzing the interference fringes of the laser light and confirming an accurate Z-axis value to reach a position requiring measurement.
  • the trigger generator 170 includes a photo diode 171 and an FPGA controller 173.
  • the photodiode 171 measures the interference fringe of the laser light.
  • the photodiode 171 may use a device having tens of thousands to tens of millions of fps as a single pixel device.
  • the FPGA controller 173 analyzes the interference fringes of the laser light measured from the photodiode 171 to generate a trigger.
  • the high speed camera 180 measures an interference fringe of white light.
  • the high speed camera 180 may have tens to millions of pixels, and thus may measure a large area of white light interference fringes at once.
  • the controller 190 is an apparatus for calculating and processing image processing and data, and may use a conventionally known PC or the like.
  • Vibration-resistant white light interference microscope 100 adds a high coherence interferometer using a laser diode, that is, the laser light generator 113 and the photodiode 171 to the optical path of a conventional white light interference microscope. Whenever the optical path difference between the reference light and the measurement light changes by a predetermined interval irrespective of the vibration in the scanning process, a trigger is provided to the high speed camera 180 to remove the vibration influence.
  • the vibration of the head of the white light interference microscope and the measurement target is measured using a vibrometer, and the measured vibration is analyzed to obtain the maximum speed of the vibration.
  • the driving speed of the scan driver 153 is set faster than the maximum speed of the vibration.
  • the FPS of the high speed camera 180 is set according to the driving speed of the scan driver 153. In this case, the driving speed of the scan driver 153 and the high speed camera 180 have a proportional relationship.
  • the measurement is performed at the driving speed of the set scan driver 153 and the photographing speed of the high speed camera 180. Thereafter, the scan driver 153 may move at a constant speed.
  • white light and laser light are generated.
  • the white light and the laser light are converted into parallel light via the first tube lens 121.
  • the white light and the laser light which have become parallel light, strike the first beam splitter 131 and are partially transmitted and disappeared, while the other is reflected and bent in the sample direction.
  • the white light and the laser light are focused past the convex lens in the lens unit 151, and the focusing position is formed in the reference mirror.
  • the white light and the laser light hit a translucent mirror, partly toward the reference mirror and partly toward the sample S.
  • the white light and the laser light directed toward the reference mirror and the sample hit the reference mirror and the sample and are reflected to the translucent mirror.
  • the white light and the laser light reflected by hitting the reference mirror hit the translucent mirror, part of which is lost after transmission, and part of which is reflected and proceeds in the direction of the high speed camera 180 and the photodiode 171.
  • the white light and the laser light reflected by the sample hit the semi-transparent mirror, part of which is reflected and lost, and part of the white light and the laser light that are transmitted through the high speed camera 180 and the photodiode 171.
  • the light traveling toward the high speed camera 180 and the photodiode 171 is combined to cause interference.
  • the intensity of the light may vary depending on the light path difference.
  • the light causing the interference passes through the convex lens inside the lens unit 151 and is converted into parallel light.
  • the light converted into parallel light hits the first beam splitter 131 of the illumination imaging microscope optical unit 130, part of which is reflected and disappeared, and part of the light is transmitted through the high speed camera 180 and the photodiode 171. Proceeds in the direction.
  • the white light and the laser light transmitted through the first beam splitter 131 are focused through the second tube lens 123, and the focusing position is formed in the sensors of the high speed camera 180 and the photodiode 171.
  • the white light and laser light focused past the second tube lens 123 hit the second beam splitter 133 of the illumination imaging microscope optics 130, some of which are reflected and directed towards the photodiode 171, some of which are transmitted.
  • the white light and the laser light are formed only on the sensors of the high speed camera 180 and the photodiode 171 by the second tube lens 123, respectively.
  • the interference fringe of the laser light measured by the photodiode 171 is analyzed by the FPGA controller 173.
  • the triggered high speed camera 180 measures the white light interference fringe at that moment.
  • the measured white light interference fringe is accumulated over the entire scan period.
  • the controller 190 may process and analyze pixel-specific information of the high speed camera 180.
  • FDA Fourier Domain Analysis
  • FDA analyzes can provide height-by-pixel height information and step information from pixel-by-pixel heights.
  • Figures 2 to 5 are graphs for explaining the vibration effect removal method of the vibration-resistant white light interference microscope according to an embodiment of the present invention.
  • the photodiode output signal of a high coherence interferometer using a laser diode is
  • z has the following values.
  • the photodiode output signal of a high coherence interferometer using a laser diode when there is finally vibration is as follows, and the vibrations are shown in (a) and (b) of FIG. do.
  • 1 fringe occurs whenever the optical path difference between the reference light and the measured light becomes n ⁇ ref , so it appears whenever the value of actual z (t) changes by ⁇ ref / 2 regardless of vibration. do.
  • the maximum frame per second (FPS) of the high speed camera 180 (refer to FIG. 1) used should be at least twice that of the FPS when there is no vibration.
  • Vp 13 ⁇ m / s, 4Hz 995nm amplitude (twice the Class C) when the vibration
  • This graph shows an example of the interference waveform and its phase.
  • phase change is changed.
  • the circuit proceeds in the reverse direction (in this case, the decreasing direction), and during the reverse direction, phases of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 appear to generate a trigger.
  • the direction in which the scan driving unit 153 (see FIG. 1 is moved) and the distance change direction between the sample (S, FIG. 1) due to vibration are opposite and the movement speed due to vibration is faster.
  • the picture is taken again at the distance between the light and the measured light.
  • the vibration may not be removed and measured.
  • the measurement can be performed even at the higher vibration.
  • Vp 26 ⁇ m / s, 4Hz 995nm amplitude (twice the Class C) when the vibration
  • This graph shows an example of the interference waveform and its phase.
  • Vp ⁇ 50um / s it is possible to measure Class B at 4Hz and Class A at 8Hz or more, which is the case when there is no isolator in the general production line. Therefore, it can be seen that the application of this method allows accurate measurements using white light interference microscopes on all production lines.
  • a trigger can be provided to the camera to eliminate the vibration effects of a vibration-resistant white light interference microscope. According to this, since the actual distance is triggered and triggered, the specification of the PZT scanner does not have to be high, and it does not cost excessively, thus providing an economically advantageous effect.

Abstract

The present invention relates to a vibration-resistant white light interference microscope, and a method for removing a vibration effect thereof. A vibration-resistant white light interference microscope according to one embodiment of the present invention, which includes: a light source unit configured to simultaneously generate a relatively broad spectrum of white light and a relatively narrow spectrum of laser light; a lens unit; and a scan drive unit configured to drive the lens unit, comprises: an interference pattern generating unit configured to make an interference pattern of the white light and an interference pattern of the laser light; an illumination imaging microscope optical unit configured to separate the interference pattern of the white light and the interference pattern of the laser light; a trigger generating unit comprising a photodiode configured to measure the interference pattern of the laser light and an FPGA controller configured to generate a trigger by analyzing the interference pattern of the laser light measured by the photodiode; a high speed camera configured to measure the interference pattern of the white light; and a controller configured to calculate and process measurement information about the interference pattern of the white light measured by the high speed camera.

Description

내진동 백색광 간섭현미경 및 그 진동영향 제거방법Vibration-resistant white light interference microscope and its vibration effect removal method
본 발명은 내진동 백색광 간섭현미경 및 그 진동영향 제거방법에 관한 것이다. The present invention relates to a vibration resistant white light interference microscope and a method for removing the vibration effect thereof.
백색광 간섭현미경은 반투명 거울을 이용하여 광 경로를 측정 시료와 기준 거울 방향 둘로 나누고, 이에 따라 측정 표면에 백색광을 조사한 후 반사되어 돌아오는 측정 광과 기준 거울에 반사되어 돌아오는 기준 광 사이에 발생하는 간섭무늬를 이용하여, 비교적 빠른 시간 내에 측정 대상의 표면상의 단차를 측정하는 장치이다. The white light interference microscope uses a semi-transparent mirror to divide the light path into two directions of the measurement sample and the reference mirror, and accordingly, the white light interference microscope generates light between the measurement light that is reflected back from the measurement surface and the reference light that is reflected back to the reference mirror. It is an apparatus which measures the level difference on the surface of a measurement object in a relatively quick time using an interference fringe.
구체적으로 살펴보면, 백색광 간섭현미경은 위상 천이 간섭 현미경(PSI: Phase Shift Interferometer)의 단점인 2π 모호성으로 인한 측정 오차의 영향을 받지 않으면서, 스타일러스와 같은 접촉식의 포인트(point) 측정 방식 단점을 극복하여 비접촉식 에어리어(Area) 측정방식의 장점을 가지고 있고, 이에 따라 한 번에 많은 점의 높이를 측정할 수 있다.Specifically, the white light interference microscope overcomes the disadvantages of contact point measurement methods such as stylus without being affected by the measurement error due to 2π ambiguity, which is a disadvantage of Phase Shift Interferometer (PSI). Therefore, it has the advantage of the non-contact area measuring method, and thus can measure the height of many points at one time.
또한, 백색광 간섭현미경은 고정밀도의 측정방식으로, 장비나 바닥에서 발생하는 진동은 z축 스캔 시 OPD(optical path difference)에 영향을 주어 측정 오차를 일으키는 주요한 원인이 된다. 이 경우, 미세한 진동도 나노 단위를 측정하는데 있어서는 측정 반복도에 영향을 끼친다.In addition, the white light interference microscope is a high-precision measurement method, the vibration generated from the equipment or floor affects the optical path difference (OPD) during the z-axis scan is a major cause of measurement error. In this case, in measuring the fine vibration degree nano unit, the measurement repeatability is affected.
특히, 양산라인 현장은 주변 기기에 의해 전달되는 바닥 진동뿐만 아니라, 공조기 등 주변 모터 장치에서 발생하여 음파의 형태로 전달되는 진동이 심하게 작용한다. 이에 따라, 아이솔레이터(Isolator) 등의 고가의 장비를 사용하여도 진동을 차단하기는 어려움이 따르며, 과다한 비용이 발생하는 문제가 있다. In particular, in the mass production line site, not only the floor vibration transmitted by the peripheral device, but also the vibration generated in the surrounding motor device such as an air conditioner and transmitted in the form of sound waves acts severely. Accordingly, even when using expensive equipment such as an isolator (Isolator) it is difficult to block the vibration, there is a problem that excessive cost occurs.
종래의 백색광 간섭현미경은 PZT 스캐너가 z축을 일정 거리(예: 72nm)를 이동할 때 마다 카메라에 트리거(triggering) 신호를 보내 영상을 얻는다. PZT 스캐너는 고가의 부품으로 이동거리의 제어가 매우 정밀하다. 다만, 진동이 있는 경우, PZT 스캐너가 z축 방향으로 일정 거리를 이동하였어도, 대물렌즈와 시료 사이는 이와 다른 거리로 이동하였을 확률이 높다. The conventional white light interference microscope sends a triggering signal to the camera every time the PZT scanner moves a certain distance (eg, 72 nm) along the z-axis to obtain an image. PZT scanners are expensive components and provide very precise control of the travel distance. However, when there is vibration, even if the PZT scanner has moved a certain distance in the z-axis direction, there is a high probability that the object has moved at a different distance from the objective lens and the sample.
특히 양산 장비에서 측정장비를 갠트리(Gantry)에 부착하여 넓은 면적을 가진 시료에 대해 여러 위치상으로 이동하며 측정하는 경우, 진동에 의한 갠트리의 움직임과 시료를 지지하는 스태이지의 움직임은 독립적이다. In particular, when mass-producing equipment is attached to the gantry (Gantry) to measure the movement of a large area of the sample in multiple positions, the movement of the gantry and the movement of the stage supporting the sample is independent.
이와 같이, 갠트리에 부착된 측정기의 z축에서의 PZT 스캐너의 움직임이 정밀하게 제어된다 하여도 측정기의 대물렌즈와 측정시료와의 거리는 진동으로 인해 불규칙하게 변할 수 있다. As such, even if the movement of the PZT scanner in the z-axis of the measuring instrument attached to the gantry is precisely controlled, the distance between the objective lens and the measuring sample of the measuring instrument may vary irregularly due to vibration.
이때, 백색광 간섭현미경은 대물렌즈와 시료와의 거리를 왕복하는 측정 광과, 대물렌즈와 대물렌즈에 부착된 반사경의 사이를 왕복하는 기준 광 사이의 거리가 일정간격으로 변할 때마다 영상을 획득하여 분석한다.In this case, the white light interference microscope acquires an image whenever the distance between the measurement light reciprocating the distance between the objective lens and the sample and the reference light reciprocating between the objective lens and the reflector attached to the objective lens changes at a predetermined interval. Analyze
따라서 진동에 의해 기준 광과 측정 광의 광 경로 차가 주어진 등 간격을 벗어난 지점에서 이미지가 획득되는 경우 정밀한 거리 분석이 불가능하며, 진동이 심할 경우 측정 자체가 불가능한 문제가 있다.Therefore, when the image is acquired at a point outside the interval such as the optical path difference between the reference light and the measurement light due to the vibration, accurate distance analysis is impossible, and when the vibration is severe, the measurement itself is impossible.
최근까지 이를 해결하기 위한 여러 가지 방법이 제안 되었지만 장치 구성이 복잡해지거나 보상 지연으로 일정 주파수 이상의 보상이 불가능한 문제가 따랐다. Until recently, a number of methods have been proposed to solve this problem, but the complexity of the device configuration and the compensation delay have made it impossible to compensate above a certain frequency.
본 발명과 관련된 종래의 기술로서, 대한민국 공개특허공보 제10-2008-0051969호(2008.06.11. 공개일)가 있으며, 상기 선행문헌에는 백색광주사간섭계 및 형상측정방법에 관한 기술 내용이 개시되어 있다. As a conventional technology related to the present invention, there is a Republic of Korea Patent Publication No. 10-2008-0051969 (2008.06.11. Publication Date), the prior art discloses the technical content of the white light interferometer and shape measurement method .
본 발명은 높은 코히어런스 레이저 간섭계를 기존 백색광 간섭 현미경의 광 경로에 부가하여 스캔 과정에서 진동에 무관하게 기준 광과 측정 광의 광 경로 차가 일정 간격 변할 때마다 카메라에 트리거를 제공할 수 있는 내진동 백색광 간섭현미경을 제공하는 것을 목적으로 한다. The present invention adds a high coherence laser interferometer to the optical path of a conventional white light interference microscope to provide a trigger to the camera whenever the difference in the optical path of the reference light and the measurement light is changed by a certain interval irrespective of the vibration during the scanning process. It is an object to provide a white light interference microscope.
또한, 본 발명은 상기의 내진동 백색광 간섭현미경의 진동영향 제거방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a vibration effect removal method of the vibration-resistant white light interference microscope.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention, which are not mentioned above, can be understood by the following description, and more clearly by the embodiments of the present invention. Also, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
상기의 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 내진동 백색광 간섭현미경은 상대적으로 넓은 스펙트럼의 백색광과 상대적으로 좁은 스펙트럼의 레이저광을 동시에 발생시키는 광원부; 렌즈부와, 상기 렌즈부를 구동하는 스캔 구동부를 포함하며, 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 만드는 간섭무늬 생성부; 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 분리시키는 조명 결상 현미경 광학부; 상기 레이저광의 간섭무늬를 측정하는 포토 다이오드와, 상기 포토 다이오드에서 측정된 상기 레이저광의 간섭무늬를 분석하여 트리거를 생성하는 FPGA 컨트롤러를 포함하는 트리거 발생부; 상기 백색광의 간섭무늬를 측정하는 고속 카메라; 및 상기 고속 카메라에서 측정된 상기 백색광의 간섭무늬 측정 정보를 연산 및 처리하는 제어부;를 포함한다. In order to achieve the above object, the vibration-resistant white light interference microscope according to an embodiment of the present invention comprises a light source unit for generating a relatively broad spectrum of white light and a relatively narrow spectrum of laser light at the same time; An interference fringe generation unit including a lens unit and a scan driver for driving the lens unit, the interference fringe generation unit making an interference fringe of the white light and an interference fringe of the laser light; An illumination imaging microscope optical unit separating the interference fringes of the white light and the interference fringes of the laser light; A trigger generator comprising a photodiode for measuring an interference fringe of the laser light and an FPGA controller for generating a trigger by analyzing the interference fringe of the laser light measured by the photodiode; A high speed camera measuring an interference fringe of the white light; And a controller configured to calculate and process the interference fringe measurement information of the white light measured by the high speed camera.
상기 광원부는, 상기 백색광을 발생시키는 백색광 발생부와, 상기 레이저광을 발생시키는 레이저광 발생부를 포함한다. The light source unit includes a white light generator that generates the white light, and a laser light generator that generates the laser light.
또한, 상기 백색광 발생부는 적어도 하나의 화이트 램프를 포함하고, 상기 레이저광 발생부는 적어도 하나의 레이저 다이오드를 포함한다.The white light generator includes at least one white lamp, and the laser light generator includes at least one laser diode.
또한, 상기 레이저광 발생부에서 발생된 레이저광은 상기 백색광 발생부에서 발생된 백색광에 비해 높은 코히어런스와 상대적으로 밝은 밝기를 가질 수 있다. In addition, the laser light generated by the laser light generator may have a higher coherence and relatively brighter brightness than white light generated by the white light generator.
또한, 상기 조명 결상 현미경 광학부는, 상기 분리시킨 백색광의 간섭무늬 및 레이저광의 간섭무늬 각각을 상기 고속 카메라 및 상기 포토 다이오드에 결상시킬 수 있다. The illumination imaging microscope optical unit may image the interference fringes of the separated white light and the interference fringes of the laser light into the high speed camera and the photodiode.
또한, 상기 조명 결상 현미경 광학부는 복수의 빔 스플리터를 포함하고, 상기 복수의 빔 스플리터는, 상기 광원부에 근접하여 배치되는 제1 빔 스플리터와, 상기 포토 다이오드에 근접하여 배치되는 제2 빔 스플리터를 포함한다.The illumination imaging microscope optical unit may include a plurality of beam splitters, and the plurality of beam splitters may include a first beam splitter disposed close to the light source unit and a second beam splitter disposed close to the photodiode. do.
또한, 상기 광원부와 상기 제1 빔 스플리터 사이에 위치하는 제1 튜브 렌즈와, 상기 조명 결상 현미경 광학계에 구비되며, 상기 제1 빔 스플리터와 상기 제2 빔 스플리터 사이에 위치하는 제2 튜브 렌즈를 포함한다. The apparatus may further include a first tube lens positioned between the light source unit and the first beam splitter, and a second tube lens provided in the illumination imaging microscope optical system and positioned between the first beam splitter and the second beam splitter. do.
또한, 상기 렌즈부는, 적어도 하나의 볼록렌즈와, 기준거울과, 반투명 거울 중 하나 이상을 포함하고, 상기 스캔 구동부는, 외부 전압을 인가 받아 상기 렌즈부를 이동시키는 PZT 압전소자를 포함한다. The lens unit may include at least one convex lens, a reference mirror, and at least one of a translucent mirror, and the scan driver may include a PZT piezoelectric element that moves the lens unit by applying an external voltage.
본 발명의 다른 실시예에 따르는 내진동 백색광 간섭현미경의 진동영향 제거방법은 (a) 상기 광원부를 이용하여 백색광과 레이저광을 발생시키고, 상기 간섭무늬 생성부를 이용하여 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 만들며, 상기 조명 결상 현미경 광학부를 이용하여 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 분리시키되, 상기 백색광은 상기 고속 카메라에 결상시키고 상기 레이저광은 상기 포토 다이오드에 결상시키는 단계, (b) 상기 포토 다이오드에서 측정된 상기 레이저광의 간섭무늬를 상기 FPGA 컨트롤러에서 분석하고, 상기 FPGA 컨트롤러는 상기 고속 카메라에 트리거를 제공하여 진동을 제거하는 단계, 및 (c) 상기 트리거를 제공받은 상기 고속 카메라에서 상기 백색광의 간섭무늬를 측정하는 단계를 포함한다. Vibration effect removal method of the vibration-resistant white light interference microscope according to another embodiment of the present invention (a) generates a white light and a laser light using the light source unit, the interference pattern of the white light and the laser using the interference pattern generating unit Making an interference fringe of light, and separating the interference fringe of the white light and the interference fringe of the laser light using the illumination imaging microscope optics, wherein the white light is formed on the high speed camera and the laser light is formed on the photodiode. (b) analyzing the interference fringes of the laser light measured by the photodiode in the FPGA controller, wherein the FPGA controller provides a trigger to the high speed camera to remove vibration, and (c) the trigger is provided with the Measuring an interference fringe of the white light in a high speed camera The.
이때, 상기 (a) 단계 이전에, (a-1) 백색광 간섭현미경의 헤드와 측정 대상물의 진동을 측정하고, 상기 스캔 구동부의 구동속도와 상기 고속 카메라의 촬영속도를 설정하는 단계를 더 포함하며, 상기 (a-1) 단계는, 진동계를 이용하여 백색광 간섭현미경의 헤드와 측정 대상의 진동을 측정하고, 측정된 진동을 분석하여 진동의 최대속도를 구하는 단계와, 진동의 최대속도보다 빠르게 상기 스캔 구동부의 구동속도와 상기 고속 카메라의 촬영속도를 설정하는 단계를 포함한다. At this time, before the step (a), (a-1) further comprises the step of measuring the vibration of the head and the measurement object of the white light interference microscope, and setting the driving speed of the scan driver and the shooting speed of the high-speed camera In the step (a-1), the vibration of the head of the white light interference microscope and the measurement target is measured using a vibrometer, and the analysis is performed to obtain the maximum speed of the vibration, and faster than the maximum speed of the vibration. And setting the driving speed of the scan driver and the photographing speed of the high speed camera.
본 발명에 의하면, 높은 코히어런스 레이저 간섭계를 기존 백색광 간섭 현미경의 광 경로에 부가하여 스캔 과정에서 진동에 무관하게 기준 광과 측정 광의 광 경로 차가 일정 간격 변할 때마다 카메라에 트리거를 제공하여 내진동 백색광 간섭현미경의 진동영향을 제거할 수 있다. 이에 따르면 실제 거리를 관측하며 트리거를 주기 때문에, 스캔 구동부의 사양이 높지 않아도 되어 추가적으로 과다한 비용이 소요되지 않아 경제적으로 유리한 효과를 제공한다.According to the present invention, a high coherence laser interferometer is added to the optical path of a conventional white light interference microscope to provide a trigger to the camera whenever the difference in the optical path between the reference light and the measurement light is changed by a certain interval irrespective of the vibration during the scanning process. The vibration effect of the white light interference microscope can be eliminated. According to this, since the trigger is observed by observing the actual distance, the specification of the scan driver does not have to be high, and thus, an excessively expensive cost is not provided, thereby providing an economically advantageous effect.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the effects described above, the specific effects of the present invention will be described together with the following description of specifics for carrying out the invention.
도 1은 본 발명의 실시예에 따른 내진동 백색광 간섭현미경을 간략히 도시한 개념도이다. 1 is a conceptual diagram schematically showing a vibration-resistant white light interference microscope according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 없는 경우(a)와 진동이 있는 경우(b)의 높은 코히어런스 간섭 신호와 카메라 트리거 발생 지점을 예시적으로 나타낸 그래프이다. FIG. 2 is a graph illustrating a high coherence interference signal and a camera trigger generation point in a case where there is no vibration (a) and when there is vibration (b) in a vibration-resistant white light interference microscope according to an embodiment of the present invention. .
도 3은 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=13μm/s, 4Hz 498nm 진폭의 (Class C) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다.Figure 3 is a high coherence interference signal when vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 13μm / s, the interference waveform when (Class C) vibration of 4Hz 498nm amplitude and The graph shows the phase by way of example.
도 4는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=13μm/s, 4Hz 995nm 진폭의 (Class C의 2배) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다. 4 is a high coherence interference signal when the vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 13μm / s, 4Hz 995nm amplitude (twice the Class C) when the vibration This graph shows an example of the interference waveform and its phase.
도 5는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=26μm/s, 4Hz 995nm 진폭의 (Class C의 2배) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다.5 is a high coherence interference signal when the vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 26μm / s, 4Hz 995nm amplitude (twice the Class C) when the vibration This graph shows an example of the interference waveform and its phase.
이하, 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and like reference numerals designate like elements throughout the specification. In addition, some embodiments of the invention will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description may be omitted.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) can be used. These terms are only to distinguish the components from other components, and the terms are not limited in nature, order, order or number of the components. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but between components It is to be understood that the elements may be "interposed" or each component may be "connected", "coupled" or "connected" through other components.
또한, 본 발명을 구현함에 있어서 설명의 편의를 위하여 구성요소를 세분화하여 설명할 수 있으나, 이들 구성요소가 하나의 장치 또는 모듈 내에 구현될 수도 있고, 혹은 하나의 구성요소가 다수의 장치 또는 모듈들에 나뉘어져서 구현될 수도 있다.In addition, in the implementation of the present invention may be described by subdividing the components for convenience of description, these components may be implemented in one device or module, or one component is a plurality of devices or modules It can also be implemented separately.
백색광 간섭현미경은 위상천이 간섭현미경(PSI: Phase Shift Interferometer)의 단점인 2π 모호성으로 인한 측정 오차의 영향을 받지 않으면서, 스타일러스와 같은 접촉식의 포인트(point) 측정 방식 단점을 극복하여 비접촉식 에어리어(Area) 측정방식의 장점을 가지고 있다.The white light interference microscope overcomes the disadvantages of contact point measurement methods, such as a stylus, without being affected by the measurement error due to 2π ambiguity, which is a disadvantage of the phase shift interferometer (PSI). Area) It has the merit of measuring method.
다만, 백색광 간섭현미경은 고정밀도의 측정방식으로, 장비나 바닥을 통해 진동영향이 주어질 경우 z축 스캔 시 OPD(optical path difference)에 영향을 주어 측정 오차를 일으키는 문제가 있다. 다시 말해, 미세한 진동도 나노 단위를 측정하는데 있어서는 측정 반복도에 영향을 끼칠 수 있다. However, the white light interference microscope is a high-precision measurement method, and when a vibration effect is given through the equipment or the floor, there is a problem of measuring error due to the influence on the optical path difference (OPD) during the z-axis scan. In other words, the measurement of minute vibration units may affect measurement repeatability.
본 발명은 이러한 문제를 해결하고자 안출된 것으로, 높은 코히어런스 레이저 간섭계를 기존 백색광 간섭 현미경의 광 경로에 부가한다. 이를 통해 스캔 과정에서 진동에 무관하게 기준 광과 측정 광의 광 경로 차가 일정 간격 변할 때마다 카메라에 트리거를 제공한다. 이로써, 백색광 간섭현미경의 진동영향을 제거할 수 있다. The present invention is designed to solve this problem, and adds a high coherence laser interferometer to the light path of a conventional white light interference microscope. This provides a trigger to the camera whenever the difference in the optical path between the reference and measured light changes at any interval, regardless of vibration during the scan process. As a result, the vibration influence of the white light interference microscope can be eliminated.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 내진동 백색광 간섭현미경 및 그 진동영향 제거방법에 관하여 구체적으로 살펴보기로 한다. Hereinafter, a vibration-resistant white light interference microscope and a method of removing the vibration influence thereof according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 내진동 백색광 간섭현미경을 간략히 도시한 개념도이다. 1 is a conceptual diagram schematically showing a vibration-resistant white light interference microscope according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 내진동 백색광 간섭현미경(100)은 광원부(110), 조명 결상 현미경 광학부(130), 간섭무늬 생성부(150), 트리거 발생부(170), 및 제어부(190)를 포함한다. Referring to FIG. 1, the vibration-resistant white light interference microscope 100 according to the embodiment of the present invention includes a light source unit 110, an illumination imaging microscope optical unit 130, an interference fringe generating unit 150, and a trigger generating unit 170. , And the controller 190.
광원부(110)는 백색광 발생부(111)와 레이저광 발생부(113)를 포함한다. The light source unit 110 includes a white light generator 111 and a laser light generator 113.
백색광 발생부(111)는 측정용 화이트 램프(White Lamp)를 말하며, 넓은 스펙트럼의 빛을 발생시킨다. The white light generator 111 refers to a white lamp for measuring and generates light of a broad spectrum.
레이저광 발생부(113)는 레이저 다이오드(Laser Diode)를 포함하여 구성될 수 있는데, 백색광 발생부(111)에 비해 상대적으로 좁은 스팩트럼의 빛을 발생시킨다. The laser light generator 113 may include a laser diode, which generates light having a relatively narrow spectrum compared to the white light generator 111.
또한, 레이저광 발생부(113)는 높은 코히어런스와 밝은 밝기의 광을 발생시킨다. In addition, the laser light generator 113 generates light having high coherence and bright brightness.
레이저광은 측정용 백색광과 달리 레퍼런스 확인용으로 이용되는 광이다.Unlike the white light for measurement, laser light is light used for reference confirmation.
조명 결상 현미경 광학부(130)는 백색광 발생부(111)에서 발생된 백색광의 간섭무늬와 레이저광 발생부(113)에서 발생된 레이저광의 간섭무늬를 분리한다.The illumination imaging microscope optical unit 130 separates the interference pattern of the white light generated by the white light generator 111 and the interference pattern of the laser light generated by the laser light generator 113.
그리고 조명 결상 현미경 광학부(130)는 백색광의 간섭무늬 및 레이저광의 간섭무늬를 분리시켜 각각을 고속 카메라(180)와 포토 다이오드(171)의 센서에 결상시킬 수 있다. In addition, the illumination imaging microscope optical unit 130 may separate the interference fringes of the white light and the interference fringes of the laser light to form an image on the sensors of the high speed camera 180 and the photodiode 171, respectively.
조명 결상 현미경 광학부(130)에는 복수의 빔 스플리터(131, 133)가 구비된다. 설명의 편의상 광원부(110) 쪽에 배치된 것을 제1 빔 스플리터(131)라 하고, 포토 다이오드(171) 쪽에 배치된 것을 제2 빔 스플리터(133)라 한다. The illumination imaging microscope optical unit 130 includes a plurality of beam splitters 131 and 133. For convenience of explanation, the one arranged on the light source unit 110 side is called the first beam splitter 131, and the one disposed on the photodiode 171 side is called the second beam splitter 133.
제1, 2 빔 스플리터(131, 133)는 광의 일부는 반사 시키고 나머지 광의 일부는 투과시키는 반투명 거울일 수 있다. The first and second beam splitters 131 and 133 may be semi-transparent mirrors that reflect a part of light and transmit a part of the remaining light.
간섭무늬 생성부(150)는 백색광의 간섭무늬와 레이저광의 간섭무늬를 만드는 역할을 한다. The interference fringe generator 150 serves to make an interference fringe of white light and an interference fringe of a laser beam.
구체적으로 설명하면, 간섭무늬 생성부(150)는 렌즈부(151), 스캔 구동부(153), 그리고 PZT 컨트롤러(155)를 포함한다. Specifically, the interference fringe generating unit 150 includes a lens unit 151, a scan driver 153, and a PZT controller 155.
렌즈부(151)는 볼록렌즈, 기준거울, 반투명 거울 중 하나 이상을 포함하여 구성되는 광학계를 말한다.The lens unit 151 refers to an optical system including at least one of a convex lens, a reference mirror, and a translucent mirror.
렌즈부(151)는 주지된 미라우(Mirau) 간섭계 또는 마이클슨(Michelson) 간섭계 등을 이용할 수 있다. The lens unit 151 may use a well-known Mirau interferometer or a Michaelson interferometer.
예를 들어, 렌즈부(151)가 미라우 간섭계인 경우를 설명한다. For example, the case where the lens unit 151 is a Mirae interferometer will be described.
도 1에 도시된 바와 같이, 볼록렌즈는 상부에 배치되며, 가운데에 위치한 기준거울에 초점을 맞추며, 광은 하부에 배치된 반투명 거울을 지나서 시료(즉, 측정 대상물(S)을 의미함)를 맞고 돌아오게 된다. 여기서, 기준거울에 반사되어 돌아오는 광 경로와 시료를 맞고 돌아오는 광 경로 차이에 의해 간섭이 일어난다. 그 결과 간섭무늬가 만들어진다.As shown in FIG. 1, the convex lens is disposed at the top and focuses on the reference mirror located at the center, and the light passes the sample (ie, the measurement object S) past the translucent mirror disposed at the bottom. You are beaten and come back. Here, interference occurs due to the difference between the optical path reflected by the reference mirror and the optical path returned to the sample. The result is an interference fringe.
스캔 구동부(153)는 외부로부터 힘을 받아 전압을 발생시키거나 또는 전압을 받아 움직임을 발생시키는 압전(piezoelectric) 소자를 말하는데, 구체적으로는 전압을 받아 움직이는 구동 소자로 이용된다. The scan driver 153 refers to a piezoelectric element that generates a voltage by receiving a force from the outside or generates a movement by receiving a voltage. Specifically, the scan driver 153 is used as a driving element that receives a voltage.
스캔 구동부(153)는 렌즈부(151)를 정밀하게 움직이는데 사용된다.The scan driver 153 is used to precisely move the lens unit 151.
PZT 컨트롤러(155)는 제어부(예: PC 등)(190)에서 지령 신호를 인가 받아 스캔 구동부(153)를 동작시킨다. The PZT controller 155 operates the scan driver 153 by receiving a command signal from a controller (eg, a PC) 190.
한편, 광원부(110)와 조명 결상 현미경 광학부(130)에는 적어도 하나의 튜브 렌즈(121,123)가 구비될 수 있다. Meanwhile, at least one tube lens 121 and 123 may be provided in the light source unit 110 and the illumination imaging microscope optical unit 130.
광원부(110) 쪽에 위치하는 튜브 렌즈(121)를 제1 튜브 렌즈라 하고, 조명 결상 현미경 광학부(130) 쪽에 위치하는 튜브 렌즈(123)를 제2 튜브 렌즈라 한다. 이들 튜브 렌즈(121, 123)는 렌즈 부재로서, 한 점에서 발산하는 광은 평행 광으로 만들고, 평행으로 지나가는 광은 한 점으로 모을 수 있도록 제작될 수 있다. The tube lens 121 positioned on the light source unit 110 side is referred to as a first tube lens, and the tube lens 123 positioned on the illumination imaging microscope optical unit 130 side is referred to as a second tube lens. These tube lenses 121 and 123 are lens members, and light emitted from one point may be made into parallel light, and light passing in parallel may be manufactured to be collected into one point.
예를 들면, 제1 튜브 렌즈(121)는 한 점에서 발산하는 광을 평행 광으로 만드는 역할을 하며, 제2 튜브 렌즈(123)는 평행으로 지나가는 광을 한 점에서 모으는 역할을 할 수 있다. For example, the first tube lens 121 serves to make the light diverging at one point into parallel light, and the second tube lens 123 may serve to collect the light passing in parallel at one point.
트리거 발생부(170)는 레이저광의 간섭무늬를 분석하고 정확한 Z축 값을 확인하여 측정이 필요한 위치에 도달하였을 때, 트리거를 생성할 수 있다. The trigger generating unit 170 may generate a trigger when analyzing the interference fringes of the laser light and confirming an accurate Z-axis value to reach a position requiring measurement.
구체적인 예로서, 트리거 발생부(170)는 포토 다이오드(Photo Diode)(171)와 FPGA 컨트롤러(173)를 포함한다. As a specific example, the trigger generator 170 includes a photo diode 171 and an FPGA controller 173.
포토 다이오드(171)는 레이저광의 간섭무늬를 측정한다. 예컨대, 포토 다이오드(171)는 단일 픽셀 장치로서 수만 내지 수천만 fps를 갖는 소자를 이용할 수 있다. The photodiode 171 measures the interference fringe of the laser light. For example, the photodiode 171 may use a device having tens of thousands to tens of millions of fps as a single pixel device.
FPGA 컨트롤러(173)는 포토 다이오드(171)로부터 측정된 레이저광의 간섭무늬를 분석하여 트리거를 발생시킨다. The FPGA controller 173 analyzes the interference fringes of the laser light measured from the photodiode 171 to generate a trigger.
고속 카메라(180)는 백색광의 간섭무늬를 측정한다. 예컨대, 고속 카메라(180)는 수십 내지 수백만 픽셀(pixel)을 가지고 있을 수 있어, 넓은 면적의 백색광 간섭무늬를 한꺼번에 측정해 낼 수 있다. The high speed camera 180 measures an interference fringe of white light. For example, the high speed camera 180 may have tens to millions of pixels, and thus may measure a large area of white light interference fringes at once.
제어부(190)는 이미지 처리와 데이터를 연산 및 처리하는 장치로서, 관용적으로 알려진 PC 등을 이용할 수 있다. The controller 190 is an apparatus for calculating and processing image processing and data, and may use a conventionally known PC or the like.
이하, 본 발명의 실시예에 따른 내진동 백색광 간섭현미경의 진동영향 제거 방법에 관하여 살펴보기로 한다. 이하의 설명에서 장치의 구성요소에 관하여는 도 1의 도면부호를 참조하기로 한다. Hereinafter, a method of removing vibration influences of a vibration-resistant white light interference microscope according to an embodiment of the present invention will be described. In the following description, reference is made to the reference numerals of FIG. 1 for the components of the apparatus.
내진동 백색광 간섭현미경(100)은 레이저 다이오드 즉, 레이저 광 발생부(113)와 포토 다이오드(171)를 이용한 높은 코히어런스 간섭계를 기존의 백색광 간섭 현미경의 광 경로에 부가한다. 스캔 과정에서 진동에 무관하게 기준 광과 측정 광의 광 경로 차가 일정 간격 변할 때마다 고속 카메라(180)에 트리거를 제공하여 진동영향을 제거한다. Vibration-resistant white light interference microscope 100 adds a high coherence interferometer using a laser diode, that is, the laser light generator 113 and the photodiode 171 to the optical path of a conventional white light interference microscope. Whenever the optical path difference between the reference light and the measurement light changes by a predetermined interval irrespective of the vibration in the scanning process, a trigger is provided to the high speed camera 180 to remove the vibration influence.
진동 측정 및 PZT 구동속도 설정단계Vibration Measurement and PZT Drive Speed Setting Step
먼저, 진동계를 이용하여 백색광 간섭현미경의 헤드와 측정 대상물, 즉 시료(S)에 존재하는 진동을 측정하고, 측정된 진동을 분석하여 진동의 최대속도를 구한다. 그리고 진동의 최대속도보다 빠르게 스캔 구동부(153)의 구동속도를 설정한다. 스캔 구동부(153)의 구동속도에 따라 고속 카메라(180)의 FPS를 설정한다. 이때, 스캔 구동부(153)의 구동속도와 고속 카메라(180)는 비례관계가 있다. 설정된 스캔 구동부(153)의 구동속도와 고속 카메라(180)의 촬영속도로 측정을 한다. 이후, 스캔 구동부(153)는 등속도로 움직일 수 있다. First, the vibration of the head of the white light interference microscope and the measurement target, that is, the sample S, is measured using a vibrometer, and the measured vibration is analyzed to obtain the maximum speed of the vibration. Then, the driving speed of the scan driver 153 is set faster than the maximum speed of the vibration. The FPS of the high speed camera 180 is set according to the driving speed of the scan driver 153. In this case, the driving speed of the scan driver 153 and the high speed camera 180 have a proportional relationship. The measurement is performed at the driving speed of the set scan driver 153 and the photographing speed of the high speed camera 180. Thereafter, the scan driver 153 may move at a constant speed.
백색광과 레이저광 결상단계White light and laser light imaging stage
광원부(110)에서 백색광과 레이저광이 발생된다. 백색광과 레이저광은 제1 튜브렌즈(121)를 거쳐 평행광으로 바뀐다. 평행광이 된 백색광과 레이저광은 제1 빔 스플리터(131)에 부딪혀 일부는 투과되어 소실되고 나머지 일부는 시료 방향으로 반사되어 꺾인다. In the light source unit 110, white light and laser light are generated. The white light and the laser light are converted into parallel light via the first tube lens 121. The white light and the laser light, which have become parallel light, strike the first beam splitter 131 and are partially transmitted and disappeared, while the other is reflected and bent in the sample direction.
이어서, 백색광과 레이저광은 렌즈부(151) 내부의 볼록렌즈를 지나 포커싱 되는데, 포커싱 위치는 기준거울에 형성된다.Subsequently, the white light and the laser light are focused past the convex lens in the lens unit 151, and the focusing position is formed in the reference mirror.
그리고 백색광과 레이저광은 반투명거울에 부딪혀 일부는 기준거울로 향하고 일부는 시료(S)를 향한다. 기준거울과 시료를 향한 백색광과 레이저광은 기준거울과 시료에 부딪혀 반사되며 반투명거울로 향하게 된다. The white light and the laser light hit a translucent mirror, partly toward the reference mirror and partly toward the sample S. The white light and the laser light directed toward the reference mirror and the sample hit the reference mirror and the sample and are reflected to the translucent mirror.
이때, 기준거울에 부딪혀 반사된 백색광과 레이저광은 반투명거울에 부딪혀 일부는 투과 후 소실되고, 일부는 반사되어 고속 카메라(180)와 포토 다이오드(171)가 있는 방향으로 진행된다. At this time, the white light and the laser light reflected by hitting the reference mirror hit the translucent mirror, part of which is lost after transmission, and part of which is reflected and proceeds in the direction of the high speed camera 180 and the photodiode 171.
그리고 시료에 부딪혀 반사된 백색광과 레이저광은 반투명거울에 부딪혀 일부는 반사되어 소실되고, 일부는 투과되어 고속 카메라(180)와 포토 다이오드(171)가 있는 방향으로 진행된다. In addition, the white light and the laser light reflected by the sample hit the semi-transparent mirror, part of which is reflected and lost, and part of the white light and the laser light that are transmitted through the high speed camera 180 and the photodiode 171.
이후, 고속 카메라(180)와 포토 다이오드(171)를 향하여 진행하는 광들이 합쳐져서 간섭을 일으키는데, 이때 광 경로 차에 따라 광의 세기가 달라질 수 있다. 그리고 간섭을 일으킨 광들은 렌즈부(151) 내부의 볼록렌즈를 지나 평행광으로 바뀐다. Subsequently, the light traveling toward the high speed camera 180 and the photodiode 171 is combined to cause interference. In this case, the intensity of the light may vary depending on the light path difference. The light causing the interference passes through the convex lens inside the lens unit 151 and is converted into parallel light.
한편, 평행광으로 바뀐 광들이 조명 결상 현미경 광학부(130)의 제1 빔 스플리터(131)에 부딪혀 일부는 반사되어 소실되고, 일부는 투과되어 고속 카메라(180)와 포토 다이오드(171)가 있는 방향으로 진행된다. On the other hand, the light converted into parallel light hits the first beam splitter 131 of the illumination imaging microscope optical unit 130, part of which is reflected and disappeared, and part of the light is transmitted through the high speed camera 180 and the photodiode 171. Proceeds in the direction.
제1 빔 스플리터(131)를 투과한 백색광과 레이저광은 제2 튜브 렌즈(123)를 지나 포커싱 되는데, 포커싱 위치는 고속 카메라(180)와 포토 다이오드(171)의 센서에 형성된다.The white light and the laser light transmitted through the first beam splitter 131 are focused through the second tube lens 123, and the focusing position is formed in the sensors of the high speed camera 180 and the photodiode 171.
제2 튜브 렌즈(123)를 지나 포커싱 된 백색광과 레이저광은 조명 결상 현미경 광학부(130)의 제2 빔 스플리터(133)에 부딪혀, 일부는 반사되어 포토 다이오드(171) 쪽으로 향하고, 일부는 투과되어 고속 카메라(180) 쪽으로 향한다. The white light and laser light focused past the second tube lens 123 hit the second beam splitter 133 of the illumination imaging microscope optics 130, some of which are reflected and directed towards the photodiode 171, some of which are transmitted. Toward the high speed camera 180.
이와 같이, 백색광과 레이저광은 제2 튜브 렌즈(123)에 의해 각각 고속 카메라(180)와 포토 다이오드(171)의 센서에만 결상된다. As described above, the white light and the laser light are formed only on the sensors of the high speed camera 180 and the photodiode 171 by the second tube lens 123, respectively.
레이저광 간섭무늬 분석단계Laser light interference pattern analysis step
포토 다이오드(171)에서 측정된 레이저광의 간섭무늬는 FPGA 컨트롤러(173)에서 분석된다. The interference fringe of the laser light measured by the photodiode 171 is analyzed by the FPGA controller 173.
레이저광의 간섭무늬의 위상이 nπ/2에 해당하면, FPGA 컨트롤러(173)는 고속 카메라(180)에 트리거를 준다. nπ/2에 트리거를 줌으로써 진동이 제거된다.(n=0, 1, 2, 3, 4, 5, …)When the phase of the interference fringe of the laser beam corresponds to nπ / 2, the FPGA controller 173 gives a trigger to the high speed camera 180. Vibration is eliminated by triggering nπ / 2 (n = 0, 1, 2, 3, 4, 5,…)
백색광 간섭무늬 측정단계White light interference fringe measurement
트리거를 받은 고속 카메라(180)는 해당 순간의 백색광 간섭무늬를 측정한다. The triggered high speed camera 180 measures the white light interference fringe at that moment.
측정된 백색광 간섭무늬는 전체 스캔 구간 동안 누적된다.The measured white light interference fringe is accumulated over the entire scan period.
한편, 제어부(190)는 고속 카메라(180)의 픽셀 별 정보를 연산 처리하고 분석할 수 있다. 이때, 분석에는 FDA(Fourier Domain Analysis)가 사용될 수 있다. FDA 분석을 통해 픽셀 별 높이 정보가 구해지고 픽셀 별 높이로 단차 정보를 구할 수 있다. The controller 190 may process and analyze pixel-specific information of the high speed camera 180. In this case, Fourier Domain Analysis (FDA) may be used for the analysis. FDA analyzes can provide height-by-pixel height information and step information from pixel-by-pixel heights.
한편, 도 2 내지 도 5는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경의 진동영향 제거 방법을 설명하기 위한 그래프들이다.On the other hand, Figures 2 to 5 are graphs for explaining the vibration effect removal method of the vibration-resistant white light interference microscope according to an embodiment of the present invention.
레이저 다이오드가 사용된 높은 코히어런스 간섭계의 포토 다이오드 출력 신호는 다음과 같다.The photodiode output signal of a high coherence interferometer using a laser diode is
Figure PCTKR2019007143-appb-I000001
Figure PCTKR2019007143-appb-I000001
그런데
Figure PCTKR2019007143-appb-I000002
(여기서, θin 은 시료에 입사되는 기준광의 각도)의 관계가 있으므로 다음과 같이 근사 된다.
By the way
Figure PCTKR2019007143-appb-I000002
Since θin is the angle of the reference light incident on the sample, it is approximated as follows.
Figure PCTKR2019007143-appb-I000003
Figure PCTKR2019007143-appb-I000003
진동이 있을 경우 z 는 다음과 같은 값을 갖는다.If there is vibration, z has the following values.
Figure PCTKR2019007143-appb-I000004
Figure PCTKR2019007143-appb-I000004
그리고 만약
Figure PCTKR2019007143-appb-I000005
가 상수에 가깝다면, 최종적으로 진동이 있을 경우 레이저 다이오드가 사용된 높은 코히어런스 간섭계의 포토 다이오드 출력 신호는 다음과 같으며, 진동에 따라 도 2의 (a) 와 (b)의 모습으로 나타나게 된다.
And if
Figure PCTKR2019007143-appb-I000005
If is close to a constant, the photodiode output signal of a high coherence interferometer using a laser diode when there is finally vibration is as follows, and the vibrations are shown in (a) and (b) of FIG. do.
Figure PCTKR2019007143-appb-I000006
Figure PCTKR2019007143-appb-I000006
높은 코히어런스 간섭계 출력 신호에서 1 fringe는 기준 광과 측정 광의 광 경로 차가 nλref가 될 때마다 발생하므로, 진동과는 무관하게 실제 z(t)의 값이 λref/2만큼 변할 때마다 나타나게 된다.In the high coherence interferometer output signal, 1 fringe occurs whenever the optical path difference between the reference light and the measured light becomes nλ ref , so it appears whenever the value of actual z (t) changes by λ ref / 2 regardless of vibration. do.
예컨대, λref=520nm 를 사용한 경우, 도 2에 도시된 바와 같이 fringe의 π/2간격마다 트리거를 주게 되면, 진동과는 무관하게 약 λref/8(λref=520nm 인 경우 약 65nm)의 간격으로 트리거를 줄 수 있다. 이렇게 트리거를 발생시킬 때 마다 낮은 코히어런스 간섭무늬를 측정할 수 있다. 그리고 간섭 신호에서 트리거 위치를 찾을 때, GPU 또는 FPGA 를 사용하면 실시간 처리가 가능해 질 수 있다. For example, when λ ref = 520 nm is used, if a trigger is given at every π / 2 interval of fringe as shown in FIG. 2, about λ ref / 8 (about 65 nm when λ ref = 520 nm) is independent of vibration. Trigger at intervals. Whenever this trigger is generated, a low coherence interference fringe can be measured. And when looking for trigger positions in interfering signals, GPUs or FPGAs can be used to enable real-time processing.
λref/8당 하나의 신호를 얻는 것은 낮은 코히어런스 간섭 신호의 중심 파장(약 570nm)과 높은 코히어런스 간섭 신호의 파장의 길이가 비슷하므로 Nyquist 이론에 의해 충분한 수의 낮은 코히어런스 간섭 신호를 얻을 수 있게 된다.Obtaining one signal per λ ref / 8 yields a sufficient number of low coherence interferences by Nyquist theory because the length of the center wavelength of the low coherence interference signal (about 570 nm) and the wavelength of the high coherence interference signal are similar. You get a signal.
이상에서 설명한 방법으로 측정을 하면, 진동과 무관하게 기준 광과 측정 광 사이가 일정하게 변할 때마다 영상을 얻을 수 있게 되어 정확한 측정을 할 수 있다. 만약, 아주 큰 진동에 의해 기준 광과 측정 광의 광 경로 차의 변화율의 부호가 바뀌게 되면, 이미 지나온 곳을 다시 지나가게 된다. 이것이 문제가 되는 이유는 높은 코히어런스 간섭 신호의 위상 값을 I(z(t)) 와 1대1 대응시킬 수 없어서 정확한 z(t) 를 구할 수 없게 되기 때문이다.When the measurement is performed by the method described above, an image can be obtained whenever a constant change is made between the reference light and the measurement light irrespective of vibration, thereby making accurate measurement. If the sign of the rate of change of the optical path difference between the reference light and the measurement light is changed by a very large vibration, it passes again where it has already passed. This is a problem because the phase value of the high coherence interference signal cannot be matched one-to-one with I (z (t)), so that an accurate z (t) cannot be obtained.
도 3은 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=13μm/s, 4Hz 498nm 진폭의 (Class C) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다.Figure 3 is a high coherence interference signal when vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 13μm / s, the interference waveform when (Class C) vibration of 4Hz 498nm amplitude and The graph shows the phase by way of example.
도 3에 도시된 간섭파형의 위상을 보면 위상 증가를 거의 멈추는 구간이 있지만, 이 구간에서 역방향(이 경우 감소하는 방향)으로 진행하지는 않으므로 트리거 지점을 찾는데 영향을 주지 않는다.In the phase of the interference waveform shown in FIG. 3, there is a section that almost stops the phase increase, but does not affect the finding of the trigger point because it does not proceed in the reverse direction (in this case, the decreasing direction).
이 지점 근처에서는 스캔 구동부(153, 도 1 참조)의 진행과 진동에 의한 대물렌즈와 시료(S, 도 1 참조) 간의 거리변화가 상쇄되어 z(t)가 거의 변하지 않으므로 트리거 신호가 발생하지 않는다. Near this point, the distance change between the objective lens and the specimen S (see FIG. 1) due to the movement and vibration of the scan driver 153 (see FIG. 1) is canceled and z (t) hardly changes so that no trigger signal is generated. .
스캔 구동부(153, 도 1 참조)와 진동의 움직이는 방향이 같은 경우는 z(t) 가 빠른 속도로 증가하여 트리거 발생이 빨라진다. 이를 대비하여 사용되는 고속 카메라(180, 도 1 참조)의 최대 초당 영상 획득수(FPS: frame per second)는 진동이 없을 때 FPS 대비 2배 이상이 가능해야 한다.In the case where the scan driver 153 (see FIG. 1) and the moving direction of vibration are the same, z (t) increases at a high speed and trigger generation is accelerated. In contrast, the maximum frame per second (FPS) of the high speed camera 180 (refer to FIG. 1) used should be at least twice that of the FPS when there is no vibration.
도 4는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=13μm/s, 4Hz 995nm 진폭의 (Class C의 2배) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다4 is a high coherence interference signal when the vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 13μm / s, 4Hz 995nm amplitude (twice the Class C) when the vibration This graph shows an example of the interference waveform and its phase.
도 4에 도시된 간섭파형의 위상을 보면 위상의 변화가 바뀌는 구간이 있다. 이 구간에서 역방향(이 경우 감소하는 방향)으로 진행하고, 역 방향 진행 동안에 0, π/2, π, 3π/2의 위상이 나타나 트리거가 발생한다. Looking at the phase of the interference waveform shown in FIG. 4, there is a section in which the phase change is changed. In this section, the circuit proceeds in the reverse direction (in this case, the decreasing direction), and during the reverse direction, phases of 0, π / 2, π, and 3π / 2 appear to generate a trigger.
이 지점들은 앞의 빠른 트리거 동안에 영상을 얻었던 기준 광과 측정 광의 거리에 해당하므로 반복 촬영이 되며, 다시 정 방향으로 이동 시에도 한번 더 촬영이 되어 동일한 구역에서 세 번의 촬영이 일어난다.These points correspond to the distance between the reference light and the measured light that were acquired during the previous quick trigger, and are repeated. When the camera moves forward, the camera takes another shot and takes three shots in the same area.
역방향 이동 구간에서는 스캔 구동부(153, 도 1 참조)의 진행 방향과 진동에 의한 시료(S, 도 1 참조)와의 거리 변화 방향이 반대이고 진동에 의한 이동 속도가 더 빠른 경우로서, 이미 촬영한 기준 광과 측정 광의 거리에서 다시 촬영이 이루어진다. In the reverse movement section, the direction in which the scan driving unit 153 (see FIG. 1 is moved) and the distance change direction between the sample (S, FIG. 1) due to vibration are opposite and the movement speed due to vibration is faster. The picture is taken again at the distance between the light and the measured light.
이후, 진동에 의한 움직임의 방향이 바뀌면 스캔 구동부(153, 도 1 참조)와 진동의 움직이는 방향이 서로 같게 되고, z(t)가 빠른 속도로 증가하여 트리거 발생이 빨라지는데, 2번 촬영한 지점을 다시 촬영하며 진행한다. Subsequently, when the direction of movement due to vibration is changed, the scan driving unit 153 (see FIG. 1) and the direction of vibration are the same, and z (t) is increased at a high speed to accelerate the trigger generation. Shoot again to proceed.
이처럼 진동에 의한 z(t)변화가, 스캔 구동부(153, 도 1 참조)의 움직임에 의한 변화보다 커지는 경우에는 측정이 불가능하다. 이를 수식으로 나타내면 간섭신호 위상의 시간 미분 값이 음의 값을 갖는 경우에 해당하며 다음의 식으로 나타낼 수 있다.As described above, when the change in z (t) due to vibration is larger than the change due to the movement of the scan driver 153 (see FIG. 1), measurement is impossible. This expression represents the case where the time differential value of the interference signal phase has a negative value and can be expressed by the following equation.
Figure PCTKR2019007143-appb-I000007
Figure PCTKR2019007143-appb-I000007
일 때, 속도는 아래와 같이 된다.When, the speed becomes
Figure PCTKR2019007143-appb-I000008
Figure PCTKR2019007143-appb-I000008
여기서 Vp>0 이고 dt>0 일 때
Figure PCTKR2019007143-appb-I000009
가 되면, z(t)의 변화율이 뒤바뀌어 역방향 진행이 발생하게 된다.
Where Vp> 0 and dt> 0
Figure PCTKR2019007143-appb-I000009
, The rate of change of z (t) is reversed, resulting in reverse progression.
그런데
Figure PCTKR2019007143-appb-I000010
가 되면, 언제나
Figure PCTKR2019007143-appb-I000011
의 상황이 된다. 그러므로
Figure PCTKR2019007143-appb-I000012
의 조건을 만족시켜서, 역방향 진행 문제가 발생하지 않도록 해야 한다. 만일, 진동의 peak 속도가 스캔 구동부(153, 도 1 참조)의 속도보다 빠를 경우 진동을 제거하여 측정할 수 없는 경우가 발생한다.
By the way
Figure PCTKR2019007143-appb-I000010
Always,
Figure PCTKR2019007143-appb-I000011
It becomes the situation of. therefore
Figure PCTKR2019007143-appb-I000012
The condition must be satisfied so that the backward progress problem does not occur. If the peak speed of the vibration is faster than the speed of the scan driver 153 (refer to FIG. 1), the vibration may not be removed and measured.
또한,
Figure PCTKR2019007143-appb-I000013
의 조건을 만족시키면 더 큰 진동에서도 측정이 가능하다.
Also,
Figure PCTKR2019007143-appb-I000013
If the condition is satisfied, the measurement can be performed even at the higher vibration.
도 5는 본 발명의 실시예에 따른 내진동 백색광 간섭현미경에서 진동이 있을 때, 높은 코히어런스 간섭신호: Vp=26μm/s, 4Hz 995nm 진폭의 (Class C의 2배) 진동이 있을 때의 간섭파형과 그 위상을 예시적으로 보여주는 그래프이다.5 is a high coherence interference signal when the vibration in the vibration-resistant white light interference microscope according to an embodiment of the present invention: Vp = 26μm / s, 4Hz 995nm amplitude (twice the Class C) when the vibration This graph shows an example of the interference waveform and its phase.
도 5를 참조하면,
Figure PCTKR2019007143-appb-I000014
의 조건을 만족시킴으로써 역방향 진행이 발생하지 않는 것을 볼 수 있다.
5,
Figure PCTKR2019007143-appb-I000014
It can be seen that the backward progress does not occur by satisfying the condition of.
만일, Vp≥50um/s이면, 4Hz에서 Class B, 8Hz 이상에서 Class A까지 측정이 가능한 상태가 되고, 이것은 일반 생산라인에서 아이솔레이터(Isolator)가 없는 경우에 해당한다. 따라서 이 방법을 적용하면 모든 생산라인에서 백색광 간섭 현미경을 사용하여 정확한 측정이 가능함을 알 수 있다.If Vp≥50um / s, it is possible to measure Class B at 4Hz and Class A at 8Hz or more, which is the case when there is no isolator in the general production line. Therefore, it can be seen that the application of this method allows accurate measurements using white light interference microscopes on all production lines.
상술한 바와 같이, 본 발명의 구성 및 작용에 따르면 높은 코히어런스 레이저 간섭계를 기존 백색광 간섭 현미경의 광 경로에 부가하여 스캔 과정에서 진동에 무관하게 기준 광과 측정 광의 광 경로 차가 일정 간격 변할 때마다 카메라에 트리거를 제공하여 내진동 백색광 간섭현미경의 진동영향을 제거할 수 있다. 이에 따르면 실제 거리를 관측하며 트리거를 주기 때문에, PZT 스캐너의 사양이 높지 않아도 되어 추가적으로 과다한 비용이 소요되지 않아 경제적으로 유리한 효과를 제공한다.As described above, according to the configuration and operation of the present invention, by adding a high coherence laser interferometer to the optical path of the existing white light interference microscope, whenever the optical path difference between the reference light and the measurement light changes at regular intervals regardless of the vibration during the scanning process A trigger can be provided to the camera to eliminate the vibration effects of a vibration-resistant white light interference microscope. According to this, since the actual distance is triggered and triggered, the specification of the PZT scanner does not have to be high, and it does not cost excessively, thus providing an economically advantageous effect.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.Although the present invention has been described with reference to the drawings exemplified as above, the present invention is not limited to the embodiments and drawings disclosed herein, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that modifications can be made. In addition, even if the above described embodiments of the present invention while not explicitly described and described the effect of the effect of the configuration of the present invention, it is obvious that the effect predictable by the configuration is also to be recognized.

Claims (10)

  1. 상대적으로 넓은 스펙트럼의 백색광과 상대적으로 좁은 스펙트럼의 레이저광을 동시에 발생시키는 광원부;A light source unit which simultaneously generates a relatively broad spectrum of white light and a relatively narrow spectrum of laser light;
    렌즈부와, 상기 렌즈부를 구동하는 스캔 구동부를 포함하며, 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 만드는 간섭무늬 생성부;An interference fringe generation unit including a lens unit and a scan driver for driving the lens unit, the interference fringe generation unit making an interference fringe of the white light and an interference fringe of the laser light;
    상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 분리시키는 조명 결상 현미경 광학부;An illumination imaging microscope optical unit separating the interference fringes of the white light and the interference fringes of the laser light;
    상기 레이저광의 간섭무늬를 측정하는 포토 다이오드와, 상기 포토 다이오드에서 측정된 상기 레이저광의 간섭무늬를 분석하여 트리거를 생성하는 FPGA 컨트롤러를 포함하는 트리거 발생부;A trigger generator comprising a photodiode for measuring an interference fringe of the laser light and an FPGA controller for generating a trigger by analyzing the interference fringe of the laser light measured by the photodiode;
    상기 백색광의 간섭무늬를 측정하는 고속 카메라; 및A high speed camera measuring an interference fringe of the white light; And
    상기 고속 카메라에서 측정된 상기 백색광의 간섭무늬 측정 정보를 연산 및 처리하는 제어부;A control unit for calculating and processing interference fringe measurement information of the white light measured by the high speed camera;
    를 포함하는 내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 광원부는,The light source unit,
    상기 백색광을 발생시키는 백색광 발생부와, A white light generator for generating the white light;
    상기 레이저광을 발생시키는 레이저광 발생부를 포함하는 Including a laser light generating unit for generating the laser light
    내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope.
  3. 제2항에 있어서,The method of claim 2,
    상기 백색광 발생부는 적어도 하나의 화이트 램프를 포함하고, The white light generator includes at least one white lamp,
    상기 레이저광 발생부는 적어도 하나의 레이저 다이오드를 포함하는 The laser light generator includes at least one laser diode
    내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope.
  4. 제2항에 있어서,The method of claim 2,
    상기 레이저광 발생부에서 발생된 레이저광은 상기 백색광 발생부에서 발생된 백색광에 비해 높은 코히어런스와 상대적으로 밝은 밝기를 갖는 것을 특징으로 하는 The laser light generated by the laser light generator has a higher coherence and a relatively brighter brightness than the white light generated by the white light generator.
    내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope.
  5. 제1항에 있어서,The method of claim 1,
    상기 조명 결상 현미경 광학부는, The illumination imaging microscope optical unit,
    상기 분리시킨 백색광의 간섭무늬 및 레이저광의 간섭무늬 각각을 상기 고속 카메라 및 상기 포토 다이오드에 결상시키는 것을 특징으로 하는 Imaging the separated interference pattern of the white light and the interference pattern of the laser light on the high speed camera and the photodiode.
    내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope.
  6. 제5항에 있어서,The method of claim 5,
    상기 조명 결상 현미경 광학부는 복수의 빔 스플리터를 포함하고, The illumination imaging microscope optics comprises a plurality of beam splitters,
    상기 복수의 빔 스플리터는, The plurality of beam splitters,
    상기 광원부에 근접하여 배치되는 제1 빔 스플리터와, A first beam splitter disposed close to the light source unit;
    상기 포토 다이오드에 근접하여 배치되는 제2 빔 스플리터를 포함하는 A second beam splitter disposed proximate the photodiode
    내진동 백색광 간섭현미경.Vibration-resistant white light interference microscope.
  7. 제6항에 있어서,The method of claim 6,
    상기 광원부와 상기 제1 빔 스플리터 사이에 위치하는 제1 튜브 렌즈와, A first tube lens positioned between the light source unit and the first beam splitter;
    상기 조명 결상 현미경 광학계에 구비되며, 상기 제1 빔 스플리터와 상기 제2 빔 스플리터 사이에 위치하는 제2 튜브 렌즈를 포함하는 And a second tube lens provided in the illumination imaging microscope optical system and positioned between the first beam splitter and the second beam splitter.
    내진동 백색광 간섭현미경. Vibration-resistant white light interference microscope.
  8. 제1항에 있어서,The method of claim 1,
    상기 렌즈부는,The lens unit,
    적어도 하나의 볼록렌즈와, 기준거울과, 반투명 거울 중 하나 이상을 포함하고,At least one convex lens, at least one of a reference mirror and a translucent mirror,
    상기 스캔 구동부는,The scan driver,
    외부 전압을 인가 받아 상기 렌즈부를 이동시키는 압전소자를 포함하는It includes a piezoelectric element for moving the lens unit receives an external voltage
    내진동 백색광 간섭현미경. Vibration-resistant white light interference microscope.
  9. 제1항 내지 제8항의 내진동 백색광 간섭현미경의 진동영향 제거방법으로서,As a method for removing the vibration effect of the vibration-resistant white light interference microscope of claim 1,
    (a) 상기 광원부를 이용하여 백색광과 레이저광을 발생시키고, 상기 간섭무늬 생성부를 이용하여 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 만들며, 상기 조명 결상 현미경 광학부를 이용하여 상기 백색광의 간섭무늬 및 상기 레이저광의 간섭무늬를 분리시키되, 상기 백색광은 상기 고속 카메라에 결상시키고 상기 레이저광은 상기 포토 다이오드에 결상시키는 단계;(a) generating white light and laser light using the light source unit, making an interference pattern of the white light and an interference pattern of the laser light using the interference pattern generating unit, and using the illumination imaging microscope optical unit And separating the interference fringes of the laser light, wherein the white light is formed in the high speed camera and the laser light is formed in the photodiode.
    (b) 상기 포토 다이오드에서 측정된 상기 레이저광의 간섭무늬를 상기 FPGA 컨트롤러에서 분석하고, 상기 FPGA 컨트롤러는 상기 고속 카메라에 트리거를 제공하여 진동을 제거하는 단계; 및(b) analyzing the interference fringes of the laser light measured by the photodiode in the FPGA controller, the FPGA controller providing a trigger to the high speed camera to remove vibration; And
    (c) 상기 트리거를 제공받은 상기 고속 카메라에서 상기 백색광의 간섭무늬를 측정하는 단계;(c) measuring an interference fringe of the white light in the high speed camera provided with the trigger;
    를 포함하는 내진동 백색광 간섭현미경의 진동영향 제거방법.Vibration effect removal method of the vibration-resistant white light interference microscope comprising a.
  10. 제9항에 있어서,The method of claim 9,
    상기 (a) 단계 이전에, Before step (a) above,
    (a-1) 백색광 간섭현미경의 헤드와 측정 대상물의 진동을 측정하고, 상기 스캔 구동부의 구동속도와 상기 고속 카메라의 촬영속도를 설정하는 단계를 더 포함하며, (a-1) measuring vibrations of the head of the white light interference microscope and the measurement object, and setting a driving speed of the scan driver and a shooting speed of the high speed camera,
    상기 (a-1) 단계는, 진동계를 이용하여 백색광 간섭현미경의 헤드와 측정 대상의 진동을 측정하고, 측정된 진동을 분석하여 진동의 최대속도를 구하는 단계와,In the step (a-1), the vibration of the head of the white light interference microscope and the measurement target is measured using a vibrometer, and the measured vibration is obtained to obtain the maximum speed of the vibration;
    진동의 최대속도보다 빠르게 상기 스캔 구동부의 구동속도와 상기 고속 카메라의 촬영속도를 설정하는 단계를 포함하는Setting a driving speed of the scan driver and a shooting speed of the high speed camera faster than a maximum speed of vibration;
    내진동 백색광 간섭현미경의 진동영향 제거방법.Vibration resistance elimination method of white light interference microscope.
PCT/KR2019/007143 2018-06-25 2019-06-13 Vibration-resistant white light interference microscope and method for removing vibration effect thereof WO2020004838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980003112.3A CN110869696B (en) 2018-06-25 2019-06-13 Vibration-resistant white light interference microscope and vibration influence removing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0072933 2018-06-25
KR1020180072933A KR102019326B1 (en) 2018-06-25 2018-06-25 Vibration tolerant white light scanning interferometer and its vibration effect removal method

Publications (1)

Publication Number Publication Date
WO2020004838A1 true WO2020004838A1 (en) 2020-01-02

Family

ID=67949936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007143 WO2020004838A1 (en) 2018-06-25 2019-06-13 Vibration-resistant white light interference microscope and method for removing vibration effect thereof

Country Status (3)

Country Link
KR (1) KR102019326B1 (en)
CN (1) CN110869696B (en)
WO (1) WO2020004838A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220067A (en) * 2020-02-27 2020-06-02 中国工程物理研究院机械制造工艺研究所 Automatic focusing device and method of white light interferometer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473742B (en) * 2020-05-22 2021-07-16 大连理工大学 Morphology simulation and compensation method for batwing effect of white light scanning interferometry
KR102504845B1 (en) * 2020-12-17 2023-03-02 인천대학교 산학협력단 Apparatus and method for measuring surface topograph of sample
CN117006971A (en) * 2023-09-25 2023-11-07 板石智能科技(深圳)有限公司 Three-dimensional morphology measurement system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033216A (en) * 2005-07-26 2007-02-08 Keyence Corp White interference measuring instrument, and white interference measuring method
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
KR20080051969A (en) * 2006-12-07 2008-06-11 한국과학기술원 Apparatus and method of white-light interferometry for 3-d profile measurements with large field of view using macro lenses
US20100195112A1 (en) * 2009-01-30 2010-08-05 Zygo Corporation Interferometer with scan motion detection
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
KR20130049551A (en) * 2011-11-04 2013-05-14 한국표준과학연구원 Spatial phase shifting interferometer using multiwavelength

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693771B2 (en) * 1996-11-13 2005-09-07 オリンパス株式会社 Shape measuring method and apparatus
US8004688B2 (en) * 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry
GB0900705D0 (en) * 2009-01-16 2009-03-04 Univ Huddersfield Surface measurement system
US8599383B2 (en) * 2009-05-06 2013-12-03 The Regents Of The University Of California Optical cytometry
CN101718520B (en) * 2009-11-16 2011-01-05 浙江大学 System for quickly measuring surface quality
CN201666783U (en) * 2010-04-23 2010-12-08 浙江大学 White light interferometer with a quick zero-setting system
JPWO2013084557A1 (en) * 2011-12-07 2015-04-27 コニカミノルタ株式会社 Shape measuring device
CN103471533B (en) * 2013-09-22 2016-03-30 浙江大学 Surface appearance anti-vibration interferometry system
WO2015121853A1 (en) * 2014-02-13 2015-08-20 B. G. Negev Technologies And Applications Ltd., At Ben-Gurion University Real time dual mode full-field optical coherence microscopy with full range imaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033216A (en) * 2005-07-26 2007-02-08 Keyence Corp White interference measuring instrument, and white interference measuring method
JP2007033217A (en) * 2005-07-26 2007-02-08 Keyence Corp Interference measuring instrument, and interference measuring method
KR20080051969A (en) * 2006-12-07 2008-06-11 한국과학기술원 Apparatus and method of white-light interferometry for 3-d profile measurements with large field of view using macro lenses
US20100195112A1 (en) * 2009-01-30 2010-08-05 Zygo Corporation Interferometer with scan motion detection
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
KR20130049551A (en) * 2011-11-04 2013-05-14 한국표준과학연구원 Spatial phase shifting interferometer using multiwavelength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220067A (en) * 2020-02-27 2020-06-02 中国工程物理研究院机械制造工艺研究所 Automatic focusing device and method of white light interferometer
CN111220067B (en) * 2020-02-27 2021-07-13 中国工程物理研究院机械制造工艺研究所 Automatic focusing device and method of white light interferometer

Also Published As

Publication number Publication date
CN110869696B (en) 2021-12-28
CN110869696A (en) 2020-03-06
KR102019326B1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020004838A1 (en) Vibration-resistant white light interference microscope and method for removing vibration effect thereof
US7545505B2 (en) Device and method for a combined interferometry and image-based determination of geometry, especially for use in micro system engineering
WO2017213464A1 (en) Structured illumination microscopy system using digital micromirror device and time-complex structured illumination, and operation method therefor
WO2013036076A2 (en) Device and method for measuring three-dimensional shapes using amplitude of a projection grid
JP4452815B2 (en) Depth measuring device
KR20130090313A (en) Three-dimensional shape measuring apparatus
JP6522344B2 (en) Height detection device, coating device and height detection method
KR20070042841A (en) Apparatus and method for measuring image
JPH074928A (en) Strain measuring apparatus
JP3924076B2 (en) Non-contact measuring device
JP5264064B2 (en) Detection apparatus and detection method using scanning microscope
CN113056650B (en) Method and apparatus for in situ process monitoring
CN112729135B (en) Area array frequency sweep distance measuring/thickness measuring device and method with active optical anti-shake function
WO2011126220A2 (en) Image acquisition method for object to be measured using confocal microscope structure
CN111578844B (en) High vibration resistance electronic speckle interferometry system and method
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
WO2023121094A1 (en) Three-dimensional shape measurement device for acquiring multiple pieces of image information
WO2020022786A1 (en) Specimen inspection device and specimen inspection method
US10948284B1 (en) Optical profilometer with color outputs
KR20110121497A (en) Confocal microscopy system usning of pzt stage and scan method
WO2018174392A1 (en) Method and device for measuring reflection surface profile
WO2001044852A3 (en) Microscopy method and device
Annovazzi-Lodi et al. Spot optical measurements on micromachined mirrors for photonic switching
CN111736332A (en) Optical fiber scanning imaging device and method
JPH09113240A (en) Method and device for detecting three-dimensional information of light transmitting substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825697

Country of ref document: EP

Kind code of ref document: A1