WO2023121094A1 - Three-dimensional shape measurement device for acquiring multiple pieces of image information - Google Patents

Three-dimensional shape measurement device for acquiring multiple pieces of image information Download PDF

Info

Publication number
WO2023121094A1
WO2023121094A1 PCT/KR2022/020107 KR2022020107W WO2023121094A1 WO 2023121094 A1 WO2023121094 A1 WO 2023121094A1 KR 2022020107 W KR2022020107 W KR 2022020107W WO 2023121094 A1 WO2023121094 A1 WO 2023121094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
splitter
photographing
dimensional shape
Prior art date
Application number
PCT/KR2022/020107
Other languages
French (fr)
Korean (ko)
Inventor
유준호
정희원
장진
노진태
Original Assignee
㈜넥센서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220036938A external-priority patent/KR20230096797A/en
Application filed by ㈜넥센서 filed Critical ㈜넥센서
Publication of WO2023121094A1 publication Critical patent/WO2023121094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a three-dimensional shape measurement device that acquires a plurality of image information, and more particularly, to an improved measurement speed compared to a three-dimensional shape measurement device that acquires single image information according to a single camera. It relates to a three-dimensional shape measuring device capable of maximizing various horizontal resolutions and dynamic range of a measurement module, and capable of simultaneously obtaining two-dimensional shape information and three-dimensional shape information not including an interference signal from a measurement target.
  • the white-light scanning interferometry measurement method is a method of measuring the minute surface shape of a precision part. It measures a geometric shape on a two-dimensional plane, such as a circle, line, angle, line width, etc. , asymmetry, etc., and is based on image processing technology and a probe system composed mainly of an optical microscope, lighting, and imaging devices represented by a CCD camera. From semiconductor pattern measurement to soft material surface roughness measurement, BGA ( Ball Grid Array) It is in the limelight as a non-contact measurement method that is widely applied to 3D measurement of micro shapes such as ball measurement, laser marking pattern measurement, and via hole measurement.
  • BGA Ball Grid Array
  • This measurement method is light interference in which the light is expressed in bright and dark forms according to the optical path difference between the two lights when the lights simultaneously departing from an arbitrary reference point are combined after moving through different optical paths.
  • Korean Patent Registration No. 10-0598572 July 7, 2006 describes a process of coating a transparent thin film layer on the surface of an opaque metal layer among semiconductor and LCD (Liquid Crystal Display) manufacturing processes.
  • White-light Scanning Interferometry has been proposed to measure information on the thickness of the transparent thin film layer or its surface shape, and its basic measurement principle is short coherence length of white light.
  • WSI White-light Scanning Interferometry
  • each point When the interference signal is observed at each measurement point in the measurement area while moving the measurement object in the direction of the optical axis by a transport means such as a PZT actuator at minute intervals of several nanometers, each point has the same optical path as the reference mirror.
  • a short interference signal is generated at the point where the difference occurs, and when the location of the interference signal is calculated at all measurement points within the measurement area, information on the 3D shape of the measurement surface is obtained, and the surface of the thin film layer is obtained from the obtained 3D information. shape to be measured.
  • FIG. 1 is a diagram showing a surface shape measuring device using the white light scanning interferometry according to the prior art.
  • the basic concept of the three-dimensional shape measuring device is that illumination light from a light source 1 It is divided through (2) and irradiated to the reference plane and the measurement object surface of the measurement object, respectively, and is reflected from the reference mirror 3 and the measurement plane, and then combined through the light (beam) splitter 2.
  • the combined interference fringes are detected by a photographing device such as the CCD camera 4, and the phase of the interference fringes is calculated by the control computer 5, or the point with the maximum coherence is extracted from the envelope of the interference fringes. height can be measured.
  • the interference fringe appears at a point where the distance from the beam splitter to the measurement surface and the distance from the beam splitter to the reference mirror coincide.
  • the reference mirror or the object to be measured is microscopically moved for each divided section to acquire the interference pattern, and then synthesize the obtained multiple interference patterns to measure the surface shape.
  • the entire support means is moved using an actuator in the state of being installed on a support means (tilting stage, etc.) for movably supporting the reference mirror. It can be used to adjust the distance between the beam splitter and the reference mirror.
  • FIG. 2 shows a white light scanning interferometer based on a general Mirau-type microscope structure according to the prior art, including a light source, a light splitting unit, an interference module, an imaging unit, a transfer unit, and a control unit.
  • the illumination light from the light source passes through the lens to become parallel light and is incident on the objective lens by the first beam splitter, and the measurement light in the lower direction and the upper direction are measured by the flat light splitter in the objective lens.
  • the reference light is separated and incident on the reference mirror and measurement plane, respectively.
  • the reference light reflected from the reference mirror in the objective lens and the measurement light reflected from the measurement surface generate an interference signal on the image plane, thereby obtaining three-dimensional shape information of the surface.
  • a monochromatic light such as a laser can generate an interference signal at a long distance of several m, but in the case of a low-coherence light source, when using a short coherence length of several ⁇ m, the interference signal is also only within a few ⁇ m.
  • the interference signal is calculated from each pixel of the CCD camera, which is the imaging plane. It is possible to measure the 3D surface shape of the measuring surface for
  • the three-dimensional shape measuring device using the white light interferometry needs to obtain an interference pattern over the entire height while stepping in the direction of the optical axis at very short intervals, .
  • This increases the time required for measurement, and when moving a step at a short interval, only one image can be obtained by one scan (single scan) for each step, and due to the limitation of the image according to the one scan It has a limitation that the horizontal resolution is bound to be limited.
  • the measurement area of the target surface is in the range of several tens of millimeters and the precision is in the range of hundreds of nanometers to several micrometers.
  • Observation in a specific area of the measurement object is more efficient, convenient and quick in the case of acquiring 2-dimensional shape information that does not include the interference signal from the measurement object and obtaining 3-dimensional shape information of the measurement object at the same time in order to obtain it quickly.
  • it is possible to reduce the overall measurement time for obtaining three-dimensional shape information and at the same time provide conditions for more efficient measurement of three-dimensional shape information to the user.
  • the present invention has been devised to solve the above-mentioned problem, by dividing the interference pattern acquisition section regularly according to the height information, and in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section, the interference signal in the measurement target 3D shape information of the object to be measured can be obtained after or simultaneously with obtaining the 2D shape information that does not include, improved measurement speed and more efficient compared to single 3D shape information using a single existing camera. It is an object of the invention to provide a three-dimensional shape measurement device capable of providing a measurement environment.
  • the present invention emits light and includes a light source unit 100 positioned in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or opposite the light source unit to the other side of the first beam splitter 200; and
  • the three-dimensional shape measuring device including a first photographing unit 501 for photographing the reflected light from the surface of the object to be measured, which has passed through the first light splitter 200
  • the three-dimensional shape measuring device comprises: Located in the upper optical path of the optical splitter 200, the light reflected from the surface of the object to be measured and divided through the first optical splitter 200 is irradiated, and the first capturing unit 501 and the second capturing unit 501 described below are irradiated.
  • splitting the light in each of the sub 502 directions is located in the lower optical path of the first optical splitter 200, and the light reflected from the surface of the object to be measured is irradiated in the direction of the first optical splitter 200 and the second capturing unit 502, respectively.
  • a second light splitter 300 that splits the light; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit 502 is included.
  • the light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502.
  • the light emitted from the light source unit 100 passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It provides a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference pattern obtained by combining the light by the optical path obtained by the.
  • the three-dimensional shape measuring device includes between the optical path of the second light splitter 300 and the first photographing unit 501; or between the optical path of the second optical splitter 300 and the second photographing unit 502; a third light splitter 303 provided in; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300.
  • the light is divided and irradiated to the third capture unit 503, and the light captured by at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 is Light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained, and light captured by at least one selected from the remaining two imaging units excluding the imaging unit that captures the light without the interference signal. is obtained by the light emitted from the light source unit 100, irradiated onto the surface of the object to be measured through the first light splitter 200 and reflected from the reference mirror 400 through the first light splitter 200 It is the light of the interference fringe in which the light from the optical path is combined, through which the 3D shape information of the object to be measured can be obtained.
  • the three-dimensional shape measuring device may additionally include a micro-drive device 600 to move the reference mirror 400.
  • the three-dimensional shape measuring device may be any one type selected from the Michelson type, the Mirau type, and the Linik type.
  • the three-dimensional shape measuring device may further include a synchronization board 500 generating a trigger for capturing each camera included in each capturing unit.
  • the first beam splitter 200 to the third beam splitter 300 in the three-dimensional shape measuring device according to the present invention may be any one of a cubic type, a pellicle type, or a plate type, respectively.
  • each photographing unit in the three-dimensional shape measurement apparatus may include a camera and a tube lens, respectively.
  • the three-dimensional shape measuring device when the three-dimensional shape measuring device includes the first capturing unit 501 and the second capturing unit 502, the three-dimensional shape measuring device i) the first capturing unit 501 and After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using any one of the second capture units 502, among the first capture unit 501 and the second capture unit 502 Obtaining 3D shape information by measuring a plurality of images by light of an interference fringe using the other one; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502; iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501
  • the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the three-dimensional shape measuring device i) the above After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal using at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503 , By measuring a plurality of images by light of the interference fringes using at least one of the remaining two capturing units except for the capturing unit capturing the 2D shape information of the specific surface area of the measurement object without the interference signal, the 3D shape obtain information; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except
  • the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again.
  • Obtaining 3D shape information by measuring an image by light of; may be characterized.
  • the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal differ in focus from each other, It may be characterized in that there is no interference signal in a photographing unit that photographs light without an interference signal.
  • the three-dimensional shape measuring device when the three-dimensional shape measuring device includes the first capturing unit 501 and the second capturing unit 502, the three-dimensional shape measuring device includes the second beam splitter 300 and the second capturing unit 502.
  • the light split and irradiated from the second optical splitter 300 is reflected by the reflection mirror 350 and the second photographing unit ( 502) may be characterized in that it is irradiated.
  • the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the second beam splitter 300 and By additionally providing a reflective mirror 350 between the light paths of the second photographing unit 502, the light split and irradiated from the second light splitter 300 is reflected by the reflective mirror 350 to capture the second image. irradiated with section 502; Alternatively, by additionally providing a reflection mirror 350' between the optical path of the third optical splitter 303 and the third photographing unit 503, the light split from the third optical splitter 303 and irradiated is It may be characterized by being reflected by the reflection mirror 350' and irradiated to the third photographing unit 503.
  • the present invention emits light, the light source unit 100 located in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned on the other side of the first beam splitter 200 facing the light source unit; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200; It is located in the optical path in the lower direction of the light splitter 200, and the light reflected from the surface of the object to be measured is irradiated, splitting the light in the direction of the first light splitter 200 and the second photographing unit 502, respectively; a second light splitter 300; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit
  • the light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502.
  • the light emitted from the light source unit 100 passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It provides a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference pattern obtained by combining the light by the optical path obtained by the.
  • the present invention emits light, the light source unit 100 located in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or in the other direction of the first beam splitter 200; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200; The light reflected from the surface and divided through the first beam splitter 200 is irradiated, splitting the light in the direction of the first photographing unit 501 and the reflection mirror 350, respectively, and the first beam splitter 200 ) and the second optical splitter 300 located in the optical path between the first photographing unit 501; a reflection mirror 350 positioned apart from the second beam splitter 300 and reflecting split light reflected from the second beam splitter
  • the light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained.
  • a three-dimensional shape measuring device is provided.
  • the three-dimensional shape measuring device includes a third optical splitter 303 provided between the optical path of the second optical splitter 300 and the reflection mirror 350; And a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the synchronization board 500 in the three-dimensional shape measuring device includes a camera included in the third photographing unit.
  • a trigger may be generated for the photographing of, and the third beam splitter 303 splits the light irradiated from the second beam splitter 300, and the divided light reflected from the third beam splitter 303
  • the light irradiated to the third capture unit 503, passed through the third beam splitter 303, and split is irradiated to the reflection mirror 350, and the first capture unit 501 and the second capture unit 502 )
  • the light photographed by at least one selected from the third photographing unit 503 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200 and reflected light, It is the light of the interference fringe in which the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 is combined, through which the three-dimensional shape information of the object to be measured can be obtained.
  • the light captured by at least one selected from the remaining two imaging units excluding the imaging unit that photographs the light of the interference pattern is light without an interference signal, and through this, it
  • the three-dimensional shape measuring device divides the interference pattern acquisition section regularly according to the height information of the measurement object, and includes the interference signal from the measurement object in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section.
  • the camera in the photographing unit acquires 2D image information not including an interference signal according to the present invention.
  • the 2D image information obtained through this may be clearer image information than each of the 2D image information obtained through the photographing unit for measuring the 3D shape. Because, in the case of each of the plurality of 2D image information measured by the photographing unit for measuring the 3D shape, an interference signal is generated at the optimal focus (focusing) position, and the 2D image is distorted according to the interference signal.
  • the obtained two-dimensional image is out of focus and blurred, it is impossible to obtain a clear image at both the optimal focus and the out-of-focus position, but in the present invention This is because the 2D image information obtained through the camera in the photographing unit that obtains the 2D image information not including the interference signal of can solve this problem.
  • FIG. 1 is a diagram showing a schematic configuration of a three-dimensional shape measuring apparatus using white light scanning interferometry according to the prior art.
  • FIG. 2 is a diagram showing a schematic configuration of a three-dimensional shape measuring apparatus using white light scanning interferometry based on a Mirau-type microscope structure according to the prior art.
  • FIG. 3 is a diagram showing the configuration of a three-dimensional shape measuring device in which the second light splitter 300 is positioned in the upper optical path of the first light splitter 200 according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of a three-dimensional shape measuring device in which the second light splitter 300 is located in the lower optical path of the first light splitter 200 according to another embodiment of the present invention.
  • FIG. 5a) is a diagram showing a part below the first beam splitter in a Michelson-type three-dimensional shape measurement device according to an embodiment of the present invention
  • FIG. 5b) is a first beam splitter in a Mirau-type three-dimensional shape measurement device
  • 5c) is a diagram showing the parts below the first light splitter in the linic-type three-dimensional shape measuring device.
  • FIG. 6 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located in the upper optical path of the first beam splitter 200. is a drawing showing
  • Configuration of the three-dimensional shape measurement device is a drawing showing
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second photographing unit 502, the third beam splitter 303 is provided.
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the first photographing unit 501, the third beam splitter 303 is provided.
  • the second optical splitter 300 is located in the lower optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second photographing unit 502, the third beam splitter 303 is provided.
  • 11 is a three-dimensional shape measurement apparatus composed of two photographing units according to an embodiment of the present invention, an image obtained by light including an interference signal by a camera in the first photographing unit and an interference signal by a camera in the second photographing unit. It is a diagram showing images obtained by light not including .
  • FIG. 12 shows a second optical splitter 300 according to another embodiment of the present invention located in an optical path in the upper direction of the first optical splitter 200, and the second optical splitter 300 and the second photographing unit It is a diagram showing the configuration of a three-dimensional shape measuring device including a reflection mirror 350 between optical paths of 502.
  • FIG. 13 is a diagram showing the second optical splitter 300 located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention, the second optical splitter 300 and the second photographing unit (502) It is a diagram showing the configuration of a three-dimensional shape measuring device of a linic type, including a reflection mirror 350 between optical paths.
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second capturing unit 502, a third optical splitter 303 is provided, and a reflection mirror 350 is provided between the third optical splitter 303 and the optical path of the second capturing unit 502.
  • It is a diagram showing the configuration of a three-dimensional shape measuring device including.
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second capturing unit 502, a third optical splitter 303 is provided, and a reflection mirror 350' is provided between the third optical splitter 303 and the optical path of the third capturing unit 503. )
  • first light splitter 300 second light splitter 303: third light splitter
  • first capture unit 502 second capture unit 503: third capture unit
  • first camera 512 second camera 513: third camera
  • first tube lens 522 second tube lens 523: second tube lens
  • a three-dimensional shape measuring device emits light, and is located in one direction of the first beam splitter 100;
  • a first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
  • a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or opposite the light source unit to the other side of the first beam splitter 200;
  • a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200;
  • it is located in the lower optical path of the first optical splitter 200
  • the light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502.
  • the light emitted from the light source unit 100 passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It is characterized in that it is possible to obtain three-dimensional shape information of the object to be measured through the light of the interference fringe obtained by combining the light by the light path obtained by the optical path, and this will be described in more detail with reference to FIGS.
  • 3 to 7 are an embodiment of a three-dimensional shape measuring device having a second optical splitter 300 above or below the optical path of the first optical splitter 200 according to the present invention, based on these Each component of the three-dimensional shape measuring device according to will be described below in more detail.
  • the three-dimensional shape measuring device includes a light source unit 100, a first beam splitter 200, a second beam splitter 300, and a reference mirror 400 as main components. ), a micro-drive device 600, a first capturing unit 501 and a second capturing unit 502.
  • the light source unit 100 is a means for emitting light to the measurement object and can measure the shape of the measurement surface of the measurement object from the interference fringe formed by the reflection of this light on the measurement object, as shown in FIG. As described above, it is located in one direction (left side) of the first light splitter 200, and its position may be located without limitation when it corresponds to a position where there is no obstruction to emit light.
  • the light source of the light source unit 100 may use a white light source.
  • the white light source is a light source for obtaining data on the three-dimensional shape of the object to be measured, and may be one of a tungsten halogen lamp, a xenon lamp, a white light emitting diode, and the like, and the light source is a broadband white light can be
  • the first light splitter 200 splits the light (light) irradiated (emitted) from the light source unit so that some of it is transmitted in a straight line and lost, and the other part is irradiated in the direction of the measurement object 700. It is a beam splitter that is reflected and divided in 200, and serves to divide and pass the reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 to be described later.
  • the first optical splitter 200 may be selected from any one of a cubic type, a pellicle type, or a plate type, but is not limited thereto, and a second type to be described below.
  • the optical splitter 300, the third optical splitter 320, and the interference module optical splitter 450 may also be selected from any one of a cubic type, a pellicle type, and a plate type. , but not limited thereto.
  • an illumination lens 101 may be included between the first light splitter and the light source unit to transmit light from the light source to the light splitter.
  • the three-dimensional shape measuring device may be any one type selected from among a Michelson type, a Mirau type, and a Linik type.
  • the three-dimensional shape measurement device may have various configurations of three-dimensional shape measurement devices (interferometers) depending on the magnification of the objective lens used.
  • a Michelson type is used for low magnifications of 1 to 5 times, and 10 times -
  • a Mirau type may be used, and for a high magnification of 100 times or more, a Linic type may be mainly used.
  • an interference fringe In order to form an interference fringe, it is configured to be irradiated to the surface of the measurement object through a path different from the light irradiated to the surface of the measurement object and combined with the reflected light, and the above Michelson type, Mirau type, and Linic type According to this, by being located between the first light splitter 200 and the object to be measured 700 in the three-dimensional shape measuring device or in the other direction of the first light splitter 200, the position and size may have different configurations.
  • FIG. 5a is a part below the light source unit and the first beam splitter 200 in FIG. 3 or the light source unit and the second beam splitter 300 in FIG. 4 in the Michelson-type three-dimensional shape measuring device.
  • Figure 5b) is a picture showing the parts below the light source unit and the first beam splitter 200 in FIG. 3 or the light source unit and the second beam splitter 300 in FIG. 4 in the Mirau type three-dimensional shape measurement device. It is a picture showing the following parts, and FIG. 4c) corresponds to a picture showing a configuration corresponding to the linic type.
  • the reference mirror 400 is the first optical splitter 200 and the measurement object ), more specifically, located between the objective lens 410 and the measurement object 700 in the three-dimensional shape device (Michelson type or Mirau type) or located in the other direction of the first beam splitter 200 (Linic type) )can do.
  • the reference mirror 400 is the first beam splitter (200, in the case of FIG. 3) or the second optical beam splitter. It is located in the vertical direction between the divider (300, in the case of FIG. 4) and the measurement object 700, and the optical path between the reference mirror 400 and the measurement object is obliquely tilted to the reference mirror 400.
  • Interference A module beam splitter 450 may be provided, and in the case of a Mirau type, as shown in FIG. 5B), the three-dimensional shape measurement apparatus according to the present invention includes a reference mirror 400, In the case of FIG.
  • the reference mirror 400 faces the light source unit in the other direction of the first beam splitter 200. can be positioned to do so.
  • the second light splitter 300 in the three-dimensional shape measuring device is located on the upper light path of the first light splitter 200 or on the lower light path of the first light splitter 200, and emits light from the light source unit.
  • the light reflected from the surface of the object to be measured and split through the first light splitter 200 is irradiated (located in the upper light path of the first light splitter 200), Splitting the light in the direction of the first capturing unit 501 and the second capturing unit 502, respectively;
  • the light emitted from the light source unit is irradiated onto the surface of the object to be measured, and then the light reflected from the surface of the object to be measured is irradiated (when located in the lower light path of the first light splitter 200), and is converted into the first light splitter.
  • the second light splitter 300 in the present invention is directed upward of the first light splitter 200. Being located in the optical path or located in the lower optical path corresponds to the main technical feature of the present invention.
  • the second light splitter 300 in the present invention is located in the optical path in the upper direction of the first light splitter 200 (in the opposite direction to the direction in which the measurement object is located), preferably the second light splitter 300
  • the splitter 300 may be located in an optical path between the first light splitter 200 and the first photographing unit 501, and the second light splitter 300 extends downward of the first light splitter 200 ( direction in which the object to be measured) is located in the optical path, it may be preferably located between the first optical splitter 200 and the object to be measured 700, more preferably the first optical splitter 200 and the object It may be located in an optical path between the lenses 410 .
  • the second optical splitter 300 may also be selected from any one of a cubic type, a pellicle type, and a plate type, similarly to the first optical splitter, but is not limited thereto. possible.
  • the first photographing unit 501 in the present invention may be provided to photograph the reflected light from the surface of the object to be measured, passing through the first light splitter 200 or the second light splitter 300,
  • the first photographing unit 501 is located in the optical axis direction along the optical path between the first optical splitter 200 and the second optical splitter 300, and the second optical splitter 300 is the first optical splitter.
  • the divided light is captured by passing through the second optical splitter 300 by introducing the second optical splitter, and the second optical splitter 300 captures the first light
  • the split light is converted into a first light splitter by passing through the second light splitter 300 and the first light splitter 200 respectively by introduction of the second light splitter 300.
  • the photographing unit 501 takes pictures.
  • the first photographing unit 501 photographs light including an interference fringe
  • the light reflected from the surface of the object to be measured and then passing through the first optical splitter and the reference mirror ( 400) serves to capture an interference pattern in which light along an optical path reflected from the first beam splitter is combined
  • the first photographing unit includes a camera and a tube lens for condensing light including the interference pattern with the camera. can do.
  • a CCD or CMOS camera charge-coupled device camera
  • any device capable of measuring the shape of the measurement surface of the measurement object from the interference fringes may be used without limitation.
  • the second photographing unit 502 serves to photograph the light reflected from the second beam splitter 300, and when photographing the light including the interference fringe, the first photographing unit 501 It is possible to obtain 3-dimensional information of the object to be measured by photographing light according to the same interference fringe as in, and may have the same or different configuration as the first photographing unit.
  • the second photographing unit 502 may include a camera and a tube lens for condensing light including interference fringes with the camera, as in the first photographing unit 501, and the camera may include a CCD or CMOS camera ( A charge-coupled device camera) may be used, but any device capable of measuring the shape of the measurement surface of the measurement object from the interference fringes may be used without limitation, which may be further provided with a third photographing unit to be described later or The same can be applied to the fourth photographing unit and the like.
  • CMOS camera A charge-coupled device camera
  • the light emitted from the light source unit is irradiated to the surface of the measurement object and then reflected from the surface of the measurement object again.
  • the light is split in the direction of the second capture unit 502, which is the third beam splitter 303 to be described later.
  • the light is additionally divided and the light is split in the direction of the third capturing unit 503, so that the split light through the second optical splitter 300 and/or the third optical splitter 303 is transmitted to the second capturing unit.
  • At least one of the plurality of imaging units obtains two-dimensional shape information that does not include an interference signal in the measurement target, and also among the remaining imaging units.
  • By including at least one image including an interference fringe it is possible to obtain 3D shape information of the object to be measured, so that observation in a specific area of the object to be measured can be made more in-depth, conveniently and quickly. corresponds to the characteristic.
  • the light photographed by one of the first photographing unit 501 and the second photographing unit 502 is emitted from the light source unit 100 and
  • the light of the interference pattern in which the light irradiated and reflected on the surface of the object to be measured through the light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined.
  • the light irradiated from the light source 100 is split in the first beam splitter 200, which is used to obtain an interference pattern according to the structure of the Michelson type, Mirau type or Linik type depending on the environment of the objective lens used.
  • the configuration of the optical path may be different, the light divided from the light source 100 through the first beam splitter 200 when viewed with respect to the first photographing unit 501 of FIG. 3 or 4 is i) After being reflected from the measurement surface of the object to be measured, it passes through the first light splitter 200 according to FIG. 3 and sequentially in the direction of the second light splitter 300 (or, according to FIG.
  • the second light splitter 300 ii) the incoming light sequentially in the direction of the first light splitter 200 through , and ii) the second light splitter 300 through the first light splitter 200 according to FIG. 3 after being reflected through the reference mirror 400 ) direction (or sequentially in the direction of the first beam splitter 200 through the second beam splitter 300 according to FIG. It is possible to obtain the light of the interference fringe in which the lights of are combined.
  • the first beam splitter 200 passes through the surface of the object to be measured and is reflected therefrom.
  • the distance reached by the 1 beam splitter 200 and the distance from the first beam splitter 200 through the reference mirror 400 and the distance reached by the first beam splitter 200 after being reflected therefrom must match.
  • the interference fringe is obtained while moving the part including the reference mirror 400 in detail for each divided section. 3D information of the object to be measured can be obtained by measuring the surface shape.
  • the present invention provides two-dimensional shape information of the object to be measured through a photographing unit of the first photographing unit 501 and the second photographing unit 502 for photographing light that does not contain an interference signal. can be obtained.
  • the three-dimensional shape measurement device including the first capture unit 501 and the second capture unit 502, one capture unit measures light including an interference signal to obtain 3D shape information of a measurement object.
  • the three-dimensional shape measurement device obtains two-dimensional shape information of the object in real time and At the same time, it has the advantage of being able to more easily obtain the three-dimensional shape information of the measurement object through the image information including the interference signal.
  • the image of the video does not include an interference fringe, so that the surface state of the measurement object can be obtained cleaner and clearer, and through this, defects or foreign substances on the surface of the measurement object can be obtained.
  • 2D inspection is possible, 2D measurement of geometric shapes such as pattern line width and circle diameter is possible on a 2D plane, and imaging units including interference signals (the first imaging unit 501 and the second imaging unit 501) Using any one of the parts 502), after dividing the interference fringe acquisition section regularly according to each height information for the measurement object having a step, the part including the reference mirror 400 is divided for each divided section.
  • 3D surface information of the object to be measured can be obtained by acquiring the interference fringe while moving it in detail.
  • the three-dimensional shape measurement apparatus sets the focus of the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal to be different from each other, It is possible to ensure that there is no interference signal in a photographing unit that photographs light without an interference signal.
  • the focal position of each camera is first made different, and then the micro actuator is used.
  • the 2D image information is photographed when the measurement object and the focus are matched in the photographing unit that captures the 2D image information
  • a photographing unit for acquiring 3D shape information before or after or both before and after acquires images including each interference signal in the range of tens to thousands, preferably 50 to 1000 images, to create a 3D image. shape measurements can be performed.
  • the second optical splitter 300 when the second optical splitter 300 is located in the lower optical path of the first optical splitter 200, in order to obtain an interference fringe from the first capturing unit 501, it is necessary to proceed as described above. Similarly, the distance from the first light splitter 200 through the surface of the object to be measured and reflected therefrom to reach the first light splitter 200 again, and the distance from the first light splitter 200 through the reference mirror 400 and reflected therefrom. However, in order to obtain an interference fringe from the second photographing unit 502 in FIG. 4, the object to be measured from the first optical splitter 200 The distance reached by reflection through the surface of and the second beam splitter 300, and the distance from the first beam splitter 200 through the reference mirror 400 to the second beam splitter 300. It is only necessary to match the distance up to one distance, and this is because the second beam splitter 300 in FIG. Since the light does not pass through the first light splitter 200, the distances each light reaches to the second light splitter 300 must be matched.
  • the first photographing unit 501 in the three-dimensional shape measuring device according to the present invention captures the divided light irradiated from the first light splitter 200 and passed through the second light splitter 300, ,
  • the second photographing unit 502 captures the split light by being irradiated from the first light splitter 200 and reflecting the second light splitter 300, and as shown in FIG. 4, the second light splitter 300 ) is located in the lower optical path of the first optical splitter 200, the first photographing unit 501 is irradiated from the second optical splitter 200 and passes through the first optical splitter 300.
  • the divided light is photographed, and the second photographing unit 502 reflects the second light splitter 300 to photograph the divided light, and the first photographing unit 501 and the second photographing unit 502
  • the light photographed from any one of the light source unit 100 is emitted from the light source unit 100 and irradiated onto the surface of the object to be measured through the first light splitter 200 and reflected, and the reference mirror through the first light splitter 200.
  • the light obtained by reflection at 400 corresponds to the light of the interference pattern in which the light from the optical path is combined, and the light photographed by the other photographing unit is light without an interference signal, through which 2D shape information of the object to be measured is obtained. 2D and 3D information of the object to be measured can be obtained together.
  • the light passing through the first light splitter 200 and entering the direction of the second light splitter 300 is reflected from the reference mirror 400
  • Interference fringes obtained by combining the light entering the direction of the second optical splitter 300 through the first optical splitter 200 are split in the second optical splitter 300, and are divided by passing through the second optical splitter 300.
  • the light to be captured is irradiated to the first capture unit 501, and the light reflected and divided by the second beam splitter 300 is irradiated in the direction of the second capture unit 502 so that the user can view the first capture unit and the 3D image information along with 2D image information of the object to be measured can be obtained by photographing light including interference fringes in one of the second photographing units and photographing light without an interference signal in the other photographing unit. there is.
  • the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal capture the light without the interference signal by making the focus of each camera different from each other. It is possible to prevent interference signals from the photographing unit.
  • the light reflected from the surface (measurement surface) of the object to be measured and then entering the direction of the second optical splitter 300 and the light reflected from the reference mirror 400 are reflected in the direction of the second optical splitter 300.
  • Interference fringes obtained by combining light coming into the beam splitter are split in the second beam splitter 300, and the split light passing through the second beam splitter 300 passes through the first beam splitter 200 to take the first shot.
  • the light irradiated to the unit 501, reflected by the second light splitter 300 and divided is irradiated in the direction of the second capturing unit 502, so that the user can select one of the first capturing unit and the second capturing unit.
  • 3D image information as well as 2D image information of the object to be measured can be obtained by photographing light including interference fringes and photographing light without an interference signal in the other photographing unit.
  • FIG. 6 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located above the optical path of the first beam splitter 200.
  • the reference mirror 400 faces the light source unit and is located in the other direction of the first beam splitter 200, and accordingly, the reflection from the surface (measurement surface) of the object to be measured is reflected. Then, the interference fringes obtained by combining the light entering the first beam splitter 200 and the light reflected from the reference mirror 400 and entering the first beam splitter 200 are divided by the second beam splitter 300.
  • the light passing through the second light splitter 300 and being divided is irradiated to the first capturing unit 501, and the light reflected and divided by the second optical splitter 300 is the second capturing unit ( 502), the user captures the light including the interference fringe in one of the first capture unit and the second capture unit, and captures light without an interference signal in the other capture unit, thereby measuring the object to be measured.
  • 3D image information can be acquired together with 2D image information.
  • the second beam splitter 300 is located in the lower optical path of the first beam splitter 200.
  • the reference mirror 400 faces the light source and is located in the other direction of the first beam splitter 200, but the second As a structural result of the location of the splitter 300 and the second capture unit 502, the second capture unit 502 cannot capture the light reflected from the reference mirror 400, so that the light including the interference fringes won't be made
  • the first photographing unit 501 can photograph the light including the interference fringes.
  • the first photographing unit 501 reflects the light from the surface (measurement surface) of the object to be measured, and then the second optical splitter. It is possible to capture light of an interference fringe obtained by combining the light passing through and entering the first beam splitter 200 and the light reflected from the reference mirror 400 and entering the first beam splitter 200.
  • the photographing unit 502 may photograph only the 2D image information of the object to be measured by photographing light without an interference signal.
  • a light splitter may be additionally included between the first light splitter 200 and the reference mirror 400, which is to improve the visibility of the interference signal. It is to maintain the same optical environment of the reference light irradiated to and reflected from the reference mirror 400 and the measurement light irradiated and reflected from the measurement object, which is photographed by the first photographing unit 501 in consideration of light dispersion, preferably More specifically, the same optical splitter as the second optical splitter 300 may be used.
  • the image without interference fringes captured by the second photographing unit 502 corresponds to 2D information obtained by the structure not originally including interference fringes. Therefore, it is possible to promote convenience in measuring a clearer two-dimensional image without reflected light reflected from the reference mirror than in the case where the interference fringes obtained from each of the photographing units in FIGS. 3, 4, and 6 are included. there is.
  • the second capture unit 502 in the three-dimensional shape measuring device has the same configuration as the first capture unit 501 or to obtain image information desired by the user, the first capture unit 501 may have a different configuration.
  • the first photographing unit 501 and the second photographing unit 502 have tube lenses having different magnifications or intra-camera lenses having different magnifications, thereby capturing images of different magnifications of a specific surface area of an object to be measured. It is configured to be simultaneously acquired, so that the first capture unit 501 can provide image information for a small area at high magnification through a camera, and the second capture unit 502 can provide image information for a wide area at low magnification. It can be configured to provide, or it can be configured to provide the opposite configuration.
  • the first capture unit 501 that captures light including interference fringes acquires image information for a small area at high magnification
  • the second capture unit 502 captures light that does not include interference fringes at low magnification.
  • image information for a large area of after the user recognizes the surface information of the measurement object in advance based on the low magnification information of the large area obtained from the second photographing unit 502, 3 images of the measurement object for a small area are obtained. It can be configured to obtain dimension information, or it can be configured to provide the opposite configuration.
  • the first capture unit 501 and the second capture unit 502 measure the specific surface area of the measurement object with different brightness, so that the specific surface area of the measurement object is different from each other. Images of different brightnesses can be acquired simultaneously.
  • the first capture unit 501 that captures light including interference fringes acquires an image of normal brightness
  • the second capture unit 502 captures light without interference fringes.
  • the first photographing unit 501 captures an image with a long exposure time of the camera (or captures without using a filter) through a camera that measures the brightness of an image of a specific surface area of a measurement object differently.
  • Information can be provided, and the second capture unit 502 captures image information that is underexposed by taking a short exposure time of the camera (or using a brightness control filter (eg, ND filter)).
  • a brightness control filter eg, ND filter
  • It may be configured to provide, or may be configured to provide the opposite configuration, and in this case, preferably, each camera in each photographing unit may have a tube lens of the same magnification or an intra-camera lens of the same magnification, respectively. there is.
  • 3 and 4 show a Mirau-type three-dimensional shape measurement device, according to which, the reference mirror 400 is located between the first light splitter 200 and the measurement object 700, and the reference mirror 400 A configuration in which the objective lens 410 is positioned between the mirror 400 and the first beam splitter 200 is shown.
  • the white light reflected from the light source unit 100 emitting white light and the like by the first beam splitter 200 and split passes through the objective lens 410 to the Mirau type interference module.
  • Part of the white light that is split in the light splitter 450 and passed through the interference module light splitter 450 is irradiated to the surface of the object to be measured, then reflected from the surface, passes through the interference module light splitter 450, and then passes through the first light splitter 450.
  • the white light reflected and divided by the interference module light splitter 450 functions as reference light irradiated to the reference mirror 400, and the white light transmitted from the interference module light splitter 450 toward the object to be measured is directed toward the object to be measured. It performs the function of measurement light because it is irradiated, and the interference module beam splitter 450 separates the light irradiated from the light source into reference light and measurement light, and when the separated reference light and measurement light are reflected and returned, they interfere with each other to interfere with the interference light.
  • each optical path can be matched or different, so that appropriate image information of the surface can be obtained.
  • each interference light irradiated to the second photographing unit 502 is reflected by the second beam splitter 300 and directly removed without passing through the first beam splitter 200 again. 2 There is a difference only in what is photographed by the photographing unit 502 .
  • the light photographed by any one selected from the first photographing unit 501 and the second photographing unit 502 in FIGS. 3 and 4 must have no interference signal to obtain 2D surface information of the object to be measured. Therefore, the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal set the focus of each camera to be different from each other, thereby making the light without the interference signal different from each other. Light without an interference signal can be photographed in a photographing unit for photographing.
  • the divided white light reflected from the light source unit 100 by the first beam splitter 200 passes through the objective lens 410 to the surface of the measurement object. After being irradiated, it is reflected from the surface again, passes through the first light splitter 200, and is irradiated in the direction of the second light splitter 300, and the remaining part passed through the first light splitter 200 and divided is the reference mirror ( 400), is reflected from the first light splitter 200, and then irradiated toward the second light splitter 300, and the light from each optical path is combined to form an interference pattern, and an interference signal is generated.
  • the camera in the photographing unit for photographing light without an interference signal and the camera in the photographing unit for photographing light containing an interference signal differ in focus from each other.
  • Light without an interference signal may be photographed by a photographing unit that photographs light without an interference signal.
  • the measurement method of the three-dimensional shape measuring device of the linic type according to FIG. 7 is the same as that of FIG.
  • the rest of the divided light passes through the reference mirror 400 and is reflected therefrom and irradiated to the first light splitter 200 again, and the light from each optical path is combined to form an interference fringe, thereby forming the first photographing image.
  • the unit 501 light including an interference signal can be photographed, and in the second photographing unit 502, each camera in FIGS. 3, 4, and 6 according to the structural characteristics of the linic type according to FIG. It is possible to photograph light that does not contain an interference signal in a two-dimensional surface image of the object to be measured without the need for an operation of making the focal points different from each other.
  • the three-dimensional shape measuring device may additionally include a micro-drive device 600 to move the reference mirror 400 or components including the reference mirror, and through this, the reference mirror is moved by Interference fringes can be obtained by matching the optical paths of the light reflected from the reference mirror 400 and the light reflected from the object to be measured.
  • a micro-drive device 600 to move the reference mirror 400 or components including the reference mirror, and through this, the reference mirror is moved by Interference fringes can be obtained by matching the optical paths of the light reflected from the reference mirror 400 and the light reflected from the object to be measured.
  • a device capable of moving a distance in the range of several tens of um (1 to 1000 um) may be used as the micro-drive device 600, and for example, a piezoelectric actuator widely used for fine position control may be used.
  • the objective lens unit including the reference mirror 400 and the objective lens 410 is vertically vertical in the direction of the extension lines of the first beam splitter 200 and the second beam splitter 300 by the fine driving device 600.
  • reciprocating driving to enable movement, information on the height of the surface of the object to be measured can be obtained.
  • the three-dimensional shape measurement apparatus may further include a synchronization board 500 generating a trigger for capturing each camera included in each capturing unit.
  • the three-dimensional shape measuring device may further include a synchronization board 500 generating triggers for capturing images of the cameras of the first and second capturing units.
  • the interference pattern acquisition section is regularly divided according to the height information of the object to be measured, and in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section, after each step movement is performed, each plurality of scans for scanning are performed. of camera can be controlled.
  • the three-dimensional shape measurement device may additionally include a fine drive controller (not shown) for controlling the fine drive device 600 for fine movement of the reference mirror 400, and the fine drive
  • the control unit may independently control the micro-drive device 600, or combine the control of the micro-drive device 600 with a control signal for generating a trigger for each camera photographing in the synchronization board 500 can be controlled at the same time.
  • the three-dimensional shape measurement device may additionally include an image controller (not shown) that serves to process images captured through the first screen capture unit 501 and the second capture unit 502. can
  • the three-dimensional shape measuring device includes i) the first capturing unit 501 and After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using any one of the second capture units 502, among the first capture unit 501 and the second capture unit 502 Using the other one, the light emitted from the light source unit 100 and irradiated and reflected on the surface of the object to be measured through the first light splitter 200 and the reference mirror 400 through the first light splitter 200 Obtain 3D shape information by measuring a plurality of images by light of interference fringes in which light from an optical path obtained by reflection in ) is combined; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by
  • the movement of the reference mirror 400 can be performed by using the micro-drive device 600, and after first obtaining 2D shape information without an interference signal in the image of the object to be measured. While moving the reference mirror 400 while using the micro-drive device 600, tens to hundreds of images including interference signals are obtained, and based on this, 3D shape information of the measurement object is obtained, or the image In the opposite case in terms of the acquisition order, the 3D shape information of the object to be measured is acquired first and then the 2D shape information is obtained, or the image by the light of the interference fringe is used to acquire the 3D shape information of the object to be measured. It is also possible to obtain 2D shape information during the process of multiple measurements.
  • a three-dimensional shape measuring device including three or more imaging units, which is expanded from a three-dimensional shape measuring device consisting of only two photographing units for surface image information of a measurement object, at least one of which is 2D shape information of a specific surface area of the object to be measured is obtained by measuring light without an interference signal, and at least one of the remaining imaging units except for the imaging unit that measures the light without an interference signal is caused by the light of the interference fringe.
  • it may be configured to acquire 3D shape information.
  • the three-dimensional shape measuring device includes: between the optical path of the second beam splitter 300 and the first photographing unit 501; or between the optical path of the second optical splitter 300 and the second photographing unit 502; a third light splitter 303 provided in; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300.
  • the light is divided and irradiated to the third capture unit 503, and the light captured by at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 is As light without an interference signal, it is possible to obtain 2D shape information of the measurement object through this, and also, except for the photographing unit for photographing the light without the interference signal, the remaining two photographing units (first photographing unit 501, Light captured by at least one selected from among the second capture unit 502 and the third capture unit 503 except for the previously selected one) is emitted from the light source unit 100 to form the first beam splitter 200.
  • the three-dimensional shape measuring device may additionally include a third capturing unit 502 in addition to the configuration of the second capturing unit according to FIG.
  • a third capturing unit 502 in addition to the configuration of the second capturing unit according to FIG.
  • a detailed description can be made with reference to a Mirau-type three-dimensional shape measuring device.
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the third light splitter 303 is provided between the optical path of the second photographing unit 502, and FIG. It consists of two photographing parts, and the second light splitter 300 is located in the upper optical path of the first light splitter 200, and is located between the second light splitter 300 and the light path of the first photographing part 501.
  • 10 is a view showing the configuration of a three-dimensional shape measuring device equipped with a 3 beam splitter 303, and FIG.
  • the second beam splitter 300 is Configuration of a three-dimensional shape measuring device located in the lower optical path of the first optical splitter 200 and provided with the third optical splitter 303 between the second optical splitter 300 and the optical path of the second photographing unit 502 is a drawing showing
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and in the case of FIG. 10, the second optical splitter 300 is the first optical splitter. 200, and in FIG. 8, a third light splitter 303 is provided between the second light splitter 300 and the light path of the second photographing unit 502, and FIG. A third beam splitter 303 is provided between the optical path of the 2 beam splitter 300 and the first capture unit 501, and FIG. 10 shows the second optical splitter 300 and the second capture unit ( 502) shows a configuration in which a third optical splitter 303 is provided between optical paths.
  • the three-dimensional shape measurement device includes a third light splitter 303 provided between the second light splitter 300 and the optical path of the second projection unit 502; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300.
  • the light is split, and the split light reflected from the third beam splitter 303 is irradiated to the third capture unit 503, and the split light passing through the third beam splitter 303 is split into the second capture unit ( 502) will be investigated.
  • the light photographed by the first, second, and third photographing units in the three-dimensional shape measuring device according to FIG. 7 is emitted from the light source unit 100 to form the first beam splitter 200. It corresponds to the light of the interference pattern in which the light irradiated and reflected on the surface of the measurement object through the first light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined.
  • the photographing unit that photographs the light without an interference signal captures the light without an interference signal to obtain a two-dimensional surface image of the object to be measured.
  • the light photographed by at least one selected from the remaining two photographing units excluding the photographing unit photographing the light without the interference signal is emitted from the light source unit 100 and passes through the first optical splitter 200 to measure the object.
  • the three-dimensional shape measuring device composed of three photographing units according to FIG. 8 includes a third optical splitter 303 as an additional optical splitter between the optical path of the second beam splitter 300 and the second projection unit 502 And the divided and reflected light can be additionally obtained as image information by an additional photographing unit, and as such a configuration, the present invention provides an optical path of the second optical splitter 300 and the second photographing unit 502. Between 1 to n (n is a natural number of 100 or less), preferably 1 to 8, more preferably 1 to 5, still more preferably 1 to 3 optical splitters and corresponding additionally provided.
  • each photographing unit may include each photographing unit, and accordingly, in each photographing unit, the light irradiated and reflected on the surface of the object to be measured and an optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 Improved measurement speed through the ability to capture the light of the interference fringe combined with the light by a separate camera.
  • at least one of the entire photographing units, including the additional photographing unit can photograph light without an interference signal, so that the measurement object 2 It can be configured to acquire a dimensional surface image, and this can be equally applied to the three-dimensional shape measuring device according to FIGS. 9 and 10.
  • 1 to n (n is a natural number of 100 or less), preferably 1 to 8, more preferably 1 to n optical paths between the second optical splitter 300 and the first photographing unit 501.
  • a separate camera captures the light of the interference pattern in which the light of the optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400 is combined, and at least one of the photographing units is an interference signal It can be configured to acquire the 2D surface information of the object to be measured.
  • each photographing unit irradiates and reflects on the surface of the object to be measured.
  • the synchronization board 500 when the three-dimensional shape measurement device according to the present invention further includes a synchronization board 500 generating a trigger for capturing each camera included in each photographing unit, the synchronization board 500 first A trigger can be generated for each camera of the photographing unit to the third photographing unit, and in addition to this, in the present invention, by including a separate photographing unit in addition to the third photographing unit, in the case of including a total of n photographing units A trigger may be generated for photographing of a total of n additionally included cameras.
  • the third capture unit in the three-dimensional shape measuring device may include a camera and a tube lens similarly to the first capture unit and the second capture unit.
  • the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the three-dimensional shape measuring device i) the first capturing unit 501, the second capture unit 502, and the third capture unit 503 are used to obtain 2D shape information of a specific surface area of a measurement object without an interference signal, and then the interference signal
  • the object to be measured is emitted from the light source unit 100 through the first optical splitter 200 by using at least one of the two remaining capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without
  • the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again.
  • Acquiring 3D shape information by measuring an image by light of may be configured to.
  • the photographing unit is a unique component added in the present invention, which is largely differentiated from the three-dimensional shape measuring device according to the prior art.
  • the scanning process according to the step movement of the three-dimensional shape measuring device for each section divided according to the height information of the object to be measured by quickly acquiring a plurality of image information simultaneously or with a close time difference during the scanning process at each step, Improved measurement speed, as opposed to single image information from a single camera. It has the effect of maximizing the dynamic range of various horizontal resolutions and measurement modules.
  • the three-dimensional shape measurement apparatus further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and each photographing unit has the same magnification. It is configured to acquire image information or image information of the same brightness, and by sequentially generating triggers to cameras in each capturing unit in the synchronization board, the scan speed can be increased compared to the case of having a single capturing unit.
  • the three-dimensional shape measurement apparatus further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and at least two of each photographing unit
  • a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and at least two of each photographing unit
  • the three-dimensional shape measurement apparatus further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and at least two of each photographing unit By measuring specific surface regions of the measurement object with different brightness, images of different brightness between specific surface regions of the measurement object may be simultaneously obtained.
  • each camera in the imaging unit may have a tube lens having the same magnification or an intra-camera lens having the same magnification.
  • a three-dimensional shape measuring device composed of two photographing units according to an embodiment of the present invention has two photographing units (cameras) compared to a single photographing unit (camera) according to the prior art, thereby dramatically improving the scan speed.
  • the synchronization board can generate a trigger for every minute movement at equal intervals as the microdrive device moves.
  • each of the two photographing units (cameras) alternately receives the trigger generated from the synchronization board and acquires an image, it is possible to measure at almost twice the speed compared to a single photographing unit (camera) according to the prior art.
  • the control signals such as the control and movement time of the micro-drive device and the synchronization board require a very short time.
  • the time actually required for shooting is relatively long compared to the control and movement time of the micro-drive device, and in the present invention, as the micro-drive device moves,
  • the camera in each photographing unit only needs to take 50 images, so a single photograph is taken. It has the advantage that the image acquisition time can be reduced by almost half compared to the case of using a camera (camera).
  • the three-dimensional shape measuring device has a variety of horizontal resolution and dynamic range of the measurement module compared to the three-dimensional shape measuring device including only a single photographing unit (camera) according to the prior art through a plurality of photographing units (cameras). There is an effect that can be maximized.
  • the photographing unit 502 photographs at a low magnification, and in the case of having photographing units (cameras) having different magnifications, the synchronization board 500 photographs each camera at every minute movement at equal intervals according to the movement of the micro-drive device.
  • a trigger is generated, and at this time, each camera simultaneously acquires an image according to the trigger, so that the first photographing unit 501 can provide high-magnification image information for a small area with one scan.
  • the second photographing unit 502 is configured to provide low-magnification image information for a large area, and thus has the advantage of simultaneously acquiring images of different magnifications of a specific surface area of the object to be measured.
  • the first photographing unit 501 captures a dark image
  • the second photographing unit 502 is configured to capture a brighter image and has a photographing unit (camera) that measures the brightness of the image differently, each small movement at equal intervals according to the movement of the micro-drive device.
  • the synchronization board 500 generates a trigger for each camera to shoot, and at this time, each camera simultaneously acquires an image according to the trigger, so that the first capture unit 501 shortens the exposure time of the camera ( Alternatively, it is possible to provide information on an image captured so that the exposure is insufficient by using a brightness control filter (eg, ND filter), etc., and the second capture unit 502 takes a long exposure time of the camera (or , It is configured to provide high-exposure image information by taking pictures without using a brightness control filter (eg, ND filter), etc., so that images with various brightness within a specific surface area of the measurement object can be acquired at the same time. Through this, it is possible to measure this when there is a different area of the reflectance in a specific area within the measurement object, and through this, there is an effect of maximizing the dynamic range.
  • a brightness control filter eg, ND filter
  • At least one photographing unit obtains a plurality of image information by measuring light including an interference signal in order to obtain three-dimensional shape information of a measurement object, and separately from this, another One or more photographing units additionally obtain 2D shape information of a clean object to be measured without an interference signal, and in the case of light that does not contain the interference signal, the image of the image does not include an interference fringe, thereby making the surface state of the object to be measured more clearly. Since it can be obtained cleanly and clearly, the operator has the advantage of being able to utilize a clearer two-dimensional image of the object to be measured.
  • FIG. 11 is a photograph showing image information obtained by the three-dimensional shape measuring device according to the present invention when there is an interference signal and when there is no interference signal, and more specifically, one of the present invention
  • an image (right image) obtained by light containing an interference signal by a camera in the first photographing unit and not including an interference signal by a camera in the second photographing unit
  • the second capture unit 502 since the second capture unit 502 does not include an interference signal, it is possible to obtain 2D information of the object to be measured more clearly and cleanly, through which the user can obtain more information about the object to be measured.
  • the first photographing unit 501 obtains image information of the measurement object including the interference signal and then moves the reference mirror 400, 3D shape information of the measurement object may be obtained by obtaining image information of the measurement object including the interference signal from the other location and synthesizing them.
  • the three-dimensional shape measuring device includes the second light splitter 300 and the second capture unit 502, this is By additionally providing a reflective mirror 350 between optical paths, the light split and irradiated from the second light splitter 300 is reflected by the reflective mirror 350 and irradiated to the second photographing unit 502 in a three-dimensional manner.
  • a shape measuring device can be configured.
  • FIG. 12 shows that the second optical splitter 300 is located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention
  • a diagram showing the configuration of a three-dimensional shape measuring device including a reflective mirror 350 between the second beam splitter 300 and the second capturing unit 502 the second capturing unit through the introduction of the reflective mirror 350 Since the position can be changed, the overall structure or shape of the three-dimensional shape measuring device can be changed.
  • the reflection mirror 350 is positioned apart from the second light splitter 300, and reflects the divided light reflected from the second light splitter 300 to the second photographing unit 502. will play a role
  • FIG. 13 shows that the second optical splitter 300 is located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention, and the second optical splitter 300 and the second optical splitter 300
  • This is a diagram showing the configuration of a linic-type three-dimensional shape measuring device including a reflection mirror 350 between photographing units 502, in which the second beam splitter 300 is the first beam splitter 200, as in FIG.
  • a reference mirror 400 located in an optical path in an upper direction of and facing the light source unit and located in the other direction of the first optical splitter 200 is provided, so that the first photographing unit 501 is the first optical splitter 200 passes through the second beam splitter 300 and captures the split light, and the second photographing unit 502 is irradiated from the first beam splitter 200 and passes through the second beam splitter 300 After being divided by reflection, the light reflected from the reflective mirror 350 is photographed. At this time, the light captured by the first photographing unit and the second photographing unit is emitted from the light source unit 100, respectively, to capture the first image.
  • the light of the interference pattern in which the light irradiated and reflected on the surface of the object to be measured through the light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined.
  • one of the first capture unit and the second capture unit acquires 2D shape information of a specific surface area of the measurement object without an interference signal
  • the other acquires 2D shape information of a specific surface area of the measurement object including an interference signal. It can be configured to acquire 3D shape information of.
  • the three-dimensional shape measuring device includes a first beam splitter, a second beam splitter 300, a first capture unit and a second capture unit 502, and the second beam splitter 300 and the second beam splitter 300 2
  • the present invention emits light, and the light source unit 100 positioned in one direction of the first light splitter;
  • a first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
  • a reference mirror 400 positioned on the other side of the first beam splitter 200 facing the light source unit;
  • a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200; It is located in the optical path in the lower direction of the light splitter 200, and the light reflected from the surface of the object to
  • the light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502.
  • the light emitted from the light source unit 100 passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It is possible to provide a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference fringe obtained by combining the light by the optical path obtained by this.
  • the first photographing unit 501 acquires 3D shape information of a measurement object by capturing a plurality of images by photographing light having an interference signal
  • the second photographing unit 502 acquires information on the 3D shape of an object without an interference signal.
  • 2D shape information of the object to be measured may be obtained by photographing light, or as described above, each photographing unit may photograph light including or not including an interference signal.
  • the present invention emits light, and is located in one direction of the first light splitter, the light source unit 100;
  • a first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
  • a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or in the other direction of the first beam splitter 200;
  • a first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200;
  • the light reflected from the surface and divided through the first beam splitter 200 is irradiated, splitting the light in the direction of the first photographing unit 501 and the reflection mirror 350, respectively, and the first beam splitter 200 ) and the second optical splitter 300 located in the optical path between the first photographing unit 501;
  • a reflection mirror 350 positioned in the first light splitter, the light source
  • the light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained. It is possible to provide a three-dimensional shape measuring device that does.
  • the three-dimensional shape measuring device includes a first light splitter 200, a second light splitter 300, a third light splitter 303, a first capture unit, a second capture unit 502, and a third light splitter.
  • this is achieved by additionally providing a reflection mirror 350 between the optical path of the second optical splitter 300 and the second photographing unit 502, so that the second optical splitter 300 The light divided from ) and irradiated is reflected by the reflective mirror 350 and irradiated to the second photographing unit 502;
  • the light split from the third optical splitter 303 and irradiated is It may be configured to be reflected by the reflection mirror 350' and irradiated to the third photographing unit 503.
  • FIG. 14 is composed of three photographing units according to another embodiment of the present invention, and the second optical splitter 300 is located above the first optical splitter 200. Located in the directional optical path, a third optical splitter 303 is provided between the optical path of the second optical splitter 300 and the second capturing unit 502, and the third optical splitter 303 and the second capturing unit 502 are provided. 502 is a diagram showing the configuration of a three-dimensional shape measuring device including a reflection mirror 350, which is a third optical splitter provided between the optical path of the second optical splitter 300 and the reflecting mirror 350.
  • the light is divided, and the divided light reflected from the third beam splitter 303 is irradiated to the third photographing unit 503, and the divided light passing through the third beam splitter 303 is divided into the reflection mirror 350. ) is configured to investigate.
  • the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter A third beam splitter 303 is provided between the optical path of the optical path of the optical path 300 and the second capture unit 502, and a reflection mirror 350' is provided between the third optical splitter 303 and the third capture unit 503.
  • the position of the third photographing unit 503 can be changed through the introduction of the reflection mirror 350' according to FIG. 15, and the overall structure of the three-dimensional shape measuring device Or the shape can be changed.
  • the three-dimensional shape measuring device includes a third light splitter 303 provided between the optical path of the second light splitter 300 and the reflection mirror 350; And a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the synchronization board 500 in the three-dimensional shape measuring device includes a camera included in the third photographing unit.
  • a trigger may be generated for the photographing of, and the third beam splitter 303 splits the light irradiated from the second beam splitter 300, and the divided light reflected from the third beam splitter 303
  • the light irradiated to the third capture unit 503, passed through the third beam splitter 303, and split is irradiated to the reflection mirror 350, and the first capture unit 501 and the second capture unit 502 )
  • the light photographed by at least one selected from the third photographing unit 503 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200 and reflected light, It is the light of the interference fringe in which the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 is combined, through which the three-dimensional shape information of the object to be measured can be obtained.
  • the light captured by at least one selected from the remaining two imaging units excluding the imaging unit that photographs the light of the interference fringe is light without an interference signal, through which 2D shape
  • the reflective mirrors 350 and 350' are positioned apart from the second light splitter 300 or the third light splitter 300, and are reflected from the second light splitter 300 and divided.
  • the light is reflected to the second capture unit 502 (350, see FIG. 14) or the divided light reflected from the third beam splitter 303 is reflected to the third capture unit 503 (350′, see FIG. 15). ) will play a role.
  • the reflective mirrors 350 and 350' in the three-dimensional shape measuring device according to the present invention are the positions of the second optical splitter 300 and the third optical splitter 303 in addition to the positions of the reflective mirrors according to FIGS. 12 to 15. It can be variously modified according to various combinations and Michelson type, Mirau type, and Linic type according to.
  • the three-dimensional shape measuring device in the present invention when the three-dimensional shape measuring device in the present invention includes the reflective mirrors 350 and 350', it may additionally include a micro-drive device 600 to move the reference mirror 400, Each of the photographing units may include a camera and a tube lens, respectively.
  • the three-dimensional shape measurement device includes the first light splitter 200, the second light splitter 300, the first and second capture units 502, the three-dimensional shape measurement device i) After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using either the first capture unit 501 or the second capture unit 502, the reference mirror 400 is moved. While using the other one of the first capture unit 501 and the second capture unit 502, the light emitted from the light source unit 100 passes through the first light splitter 200 and is irradiated onto the surface of the object to be measured and reflected.
  • 3D shape information or ; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502; iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. obtain; can be configured to.
  • the three-dimensional shape measuring device includes a first light splitter 200, a second light splitter 300, a third light splitter 303, a first capture unit, a second capture unit 502, and a second light splitter 502.
  • the first beam splitter 200 is emitted from the light source unit 100 by using at least one of the two remaining capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without the interference signal. Measurement of multiple images of light of interference fringes in which the light irradiated and reflected on the surface of the measurement object through the first optical splitter 200 and the optical path obtained by being reflected from the reference mirror 400 through the first optical splitter 200 are combined By doing so, obtaining three-dimensional shape information; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe.
  • the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again.
  • Obtaining 3D shape information by measuring an image by light of; can be obtained.
  • the three-dimensional shape measuring device in the present invention includes the reflective mirrors 350 and 350', the three-dimensional shape measuring device synchronizes generating a trigger for shooting of each camera included in each photographing unit. It may further include a board 500.
  • each photographing unit is configured to obtain image information of the same magnification or image information of the same brightness, and sequentially from the synchronization board to the camera in each photographing unit.
  • the scan speed can be increased compared to the case of having a single imaging unit, or at least two of each imaging unit have tube lenses of different magnifications or intra-camera lenses of different magnifications, thereby measuring Images of different magnifications of a specific surface area of the object can be acquired simultaneously, or at least two of each photographing unit measures the specific surface area of the measurement object with different brightness, so that different magnifications of the specific surface area of the measurement object can be obtained. Brightness images can be acquired simultaneously.
  • the three-dimensional shape measuring device enables measurement of two-dimensional information and three-dimensional information about a measurement object compared to single three-dimensional shape information according to a conventional single camera, so that observation in a specific area of the measurement object is more accurate. It can be done efficiently, conveniently and quickly, reducing the overall measurement time to obtain three-dimensional shape information in industrial fields that require measurement of three-dimensional shape information, and at the same time enabling users to measure more efficient three-dimensional shape information can provide.

Abstract

The present invention relates to a three-dimensional shape measurement device for acquiring multiple pieces of image information during a single scan procedure and, more specifically, to a three-dimensional shape measurement device which: enables an improved measurement speed, various lateral resolutions, and maximization of a dynamic range of a measurement module compared to an existing three-dimensional shape measurement device which acquires a single piece of image information according to a single camera; and is capable of concurrently acquiring three-dimensional shape information and two-dimensional shape information including no interference signal from an object to be measured.

Description

다수의 영상 정보를 획득하는 입체형상 측정장치Three-dimensional shape measurement device that acquires multiple image information
본 발명은 다수의 영상 정보를 획득하는 입체 형상 측정장치에 관한 것으로, 보다 상세하게는 기존의 단일 카메라에 따른 단일 영상 정보를 획득하는 입체 형상 측정장치와 대비하여 개선된 측정 속도. 다양한 수평 분해능 및 측정 모듈의 다이나믹 레인지를 극대화 시킬 수 있고, 또한 측정대상에서의 간섭신호를 포함하지 않는 2차원 형상정보와 3차원 형상정보를 동시에 획득가능한 입체 형상 측정장치에 관한 것이다. The present invention relates to a three-dimensional shape measurement device that acquires a plurality of image information, and more particularly, to an improved measurement speed compared to a three-dimensional shape measurement device that acquires single image information according to a single camera. It relates to a three-dimensional shape measuring device capable of maximizing various horizontal resolutions and dynamic range of a measurement module, and capable of simultaneously obtaining two-dimensional shape information and three-dimensional shape information not including an interference signal from a measurement target.
백색광 주사 간섭계(White-Light Scanning Interferometry) 측정법은 정밀 부품의 미세한 표면 형상을 측정하는 방법으로서, 2차원 평면상의 기하학적 형상, 예를 들어 원이나 선, 각도, 선폭 등을 측정하거나 패턴의 결함, 이물질, 비대칭성 등을 검사하며, 주로 광학 현미경, 조명, 그리고 CCD 카메라로 대표되는 촬상소자로 구성된 프로브 시스템과 영상처리기술에 그 바탕을 두고 있으며, 반도체 패턴 측정에서부터 연질재료의 표면 거칠기 측정, BGA(Ball Grid Array) 볼 측정, 레이저 마킹 패턴 측정, Via Hole 측정 등 미세형상에 대한 3차원 측정 전반에 폭넓게 적용되는 비접촉식 측정법으로서 각광을 받고 있다.The white-light scanning interferometry measurement method is a method of measuring the minute surface shape of a precision part. It measures a geometric shape on a two-dimensional plane, such as a circle, line, angle, line width, etc. , asymmetry, etc., and is based on image processing technology and a probe system composed mainly of an optical microscope, lighting, and imaging devices represented by a CCD camera. From semiconductor pattern measurement to soft material surface roughness measurement, BGA ( Ball Grid Array) It is in the limelight as a non-contact measurement method that is widely applied to 3D measurement of micro shapes such as ball measurement, laser marking pattern measurement, and via hole measurement.
이의 측정법은 임의의 기준점에서 동시에 출발한 광이 각기 다른 광경로(Optical Path)를 이동한 후 합쳐질 때 두 개의 광이 지난 거리차(Optical Path Difference)에 따라 빛이 밝고 어두운 형태로 표현되는 광 간섭 신호를 이용한다. This measurement method is light interference in which the light is expressed in bright and dark forms according to the optical path difference between the two lights when the lights simultaneously departing from an arbitrary reference point are combined after moving through different optical paths. use the signal
이러한 백색광 간섭계에 관련된 선행문헌으로, 한국등록특허 제10-0598572호(2006.07.07.)에서는 반도체 및 LCD(Liquid Crystal Display) 제조 공정 중에서 불투명한 금속 층의 표면상에 투명한 박막 층을 도포하는 공정 중에 투명박막 층의 두께나 그 표면 형상에 대한 정보를 측정하기 위하여 백색광 주사 간섭법(WSI : White-light Scanning Interferometry)이 제안되어 있고, 이의 기본 측정 원리는 백색광의 짧은 가간섭(Short Coherence Length) 특성을 이용하는 것으로, 보다 상세하게는 광분할기인 빔 스플리터(Beam splitter)에서 분리되는 기준광과 측정광이 거의 동일한 광경로차(Optical path difference)를 겪을 때에만 간섭신호(Interference signal)가 발생하는 원리를 이용하며, 측정 대상물을 광축 방향으로 PZT 액츄에이터와 같은 이송수단으로 수 나노미터(nanometer)의 미소 간격씩 이동하면서 측정 영역 내의 각 측정점에서의 간섭신호를 관찰하면, 각 점이 기준미러와 동일한 광경로차가 발생하는 지점에서 짧은 간섭신호가 발생하고, 이러한 간섭신호의 발생 위치를 측정 영역 내의 모든 측정점에서 산출하면 측정면의 3차원 형상에 대한 정보를 획득하게 되고, 획득된 3차원 정보로부터 박막층의 표면 형상을 측정하게 된다. As a prior literature related to such a white light interferometer, Korean Patent Registration No. 10-0598572 (July 7, 2006) describes a process of coating a transparent thin film layer on the surface of an opaque metal layer among semiconductor and LCD (Liquid Crystal Display) manufacturing processes. White-light Scanning Interferometry (WSI) has been proposed to measure information on the thickness of the transparent thin film layer or its surface shape, and its basic measurement principle is short coherence length of white light. In more detail, the principle that an interference signal is generated only when the reference light and the measurement light separated by a beam splitter, which is an optical splitter, experience almost the same optical path difference. When the interference signal is observed at each measurement point in the measurement area while moving the measurement object in the direction of the optical axis by a transport means such as a PZT actuator at minute intervals of several nanometers, each point has the same optical path as the reference mirror. A short interference signal is generated at the point where the difference occurs, and when the location of the interference signal is calculated at all measurement points within the measurement area, information on the 3D shape of the measurement surface is obtained, and the surface of the thin film layer is obtained from the obtained 3D information. shape to be measured.
도 1은 상기 종래 기술에 따른 백색광 주사 간섭법을 이용한 표면형상 측정장치를 도시한 도면으로서, 이러한 입체형상 측정장치의 기본 개념은 도 1에서 나타난 바와 같이, 광원(1)으로부터의 조명광이 빔분할기(2)를 통해 분할되어 각각 기준면와 측정 대상물의 측정 대상면에 조사되고, 기준미러(3)와 측정면에서 반사된 후 광(빔)분할기(2)를 통해 합쳐진다.1 is a diagram showing a surface shape measuring device using the white light scanning interferometry according to the prior art. As shown in FIG. 1, the basic concept of the three-dimensional shape measuring device is that illumination light from a light source 1 It is divided through (2) and irradiated to the reference plane and the measurement object surface of the measurement object, respectively, and is reflected from the reference mirror 3 and the measurement plane, and then combined through the light (beam) splitter 2.
이렇게 합쳐진 간섭무늬를 CCD 카메라(4)와 같은 촬영장치를 통해 검출하고 제어 컴퓨터(5)에서 간섭 무늬의 위상 계산하거나, 또는 간섭 무늬의 포락선(envelope)으로부터 가간섭성이 최대인 점을 추출해서 높이 측정을 할 수 있다.The combined interference fringes are detected by a photographing device such as the CCD camera 4, and the phase of the interference fringes is calculated by the control computer 5, or the point with the maximum coherence is extracted from the envelope of the interference fringes. height can be measured.
여기서, 상기 입체 형상 측정장치에서 간섭무늬는 빔분할기로부터 측정면과의 거리 및 빔분할기로부터 기준미러와의 거리가 일치하는 지점에서 나타나고, 이에 따라, 단차를 가지는 측정 대상물에 대해서는 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할한 후, 분할된 구간별로 기준미러나 측정 대상물을 미소 이동시키면서 간섭무늬를 획득해한 후 획득된 다수의 간섭무늬를 합성하여 표면 형상을 측정하게 되며, 이렇게 빔분할기로부터 측정면과의 거리 및 빔분할기로부터 기준미러와의 거리를 조절하기 위한 수단으로 기준미러를 이동 가능하게 지지하기 위한 지지수단(틸팅스테이지 등)에 설치한 상태에서 액츄에이터 등을 이용하여 지지수단 전체를 이용시켜 빔분할기와 기준미러 사이의 거리를 조절할 수 있다.Here, in the three-dimensional shape measuring device, the interference fringe appears at a point where the distance from the beam splitter to the measurement surface and the distance from the beam splitter to the reference mirror coincide. After dividing the pattern acquisition section into regular intervals, the reference mirror or the object to be measured is microscopically moved for each divided section to acquire the interference pattern, and then synthesize the obtained multiple interference patterns to measure the surface shape. In this way, from the beam splitter As a means for adjusting the distance from the measuring plane and the distance from the beam splitter to the reference mirror, the entire support means is moved using an actuator in the state of being installed on a support means (tilting stage, etc.) for movably supporting the reference mirror. It can be used to adjust the distance between the beam splitter and the reference mirror.
또한, 도 2에서는 종래기술에 따른 일반적인 미라우 방식의 현미경 구조에 기반한 백색광 주사 간섭계로서, 광원, 광분할부, 간섭모듈, 촬상부, 이송유닛 및 제어부를 포함하는 구성을 보여주고 있다.In addition, FIG. 2 shows a white light scanning interferometer based on a general Mirau-type microscope structure according to the prior art, including a light source, a light splitting unit, an interference module, an imaging unit, a transfer unit, and a control unit.
상기 도 2를 참조하면, 광원에서 나온 조명광은 렌즈를 통과하여 평행광이 되어 첫 번째 광분할기에 의해 대물렌즈에 입사되고 상기 대물렌즈내에 있는 평판 광분할기에 의해 하부방향의 측정광과 상부방향의 기준광으포 분리되어 각각 기준미러와 측정면으로 입사한다. 여기서 상기 대물렌즈내의 기준미러에서 반사된 기준광과 측정면에서 반사된 측정광이 결상면에서 간섭신호를 생성하게 되며, 이에 의해 표면의 입체형상 정보를 획득할 수 있다.Referring to FIG. 2, the illumination light from the light source passes through the lens to become parallel light and is incident on the objective lens by the first beam splitter, and the measurement light in the lower direction and the upper direction are measured by the flat light splitter in the objective lens. The reference light is separated and incident on the reference mirror and measurement plane, respectively. Here, the reference light reflected from the reference mirror in the objective lens and the measurement light reflected from the measurement surface generate an interference signal on the image plane, thereby obtaining three-dimensional shape information of the surface.
이때, 레이저와 같은 단색광은 수 m의 긴 거리에서 간섭신호를 발생시킬 수 있지만,저결맞음 광원의 경우, 수 um의 짧은 가간섭성(coherence length)을 이용하기 때분에 간섭신호 역시 수 um 내에서만 생성이 될 수 있어, 측정 물체를 광축 방향으로 수십 nm 에서 수백 nm 의 미소간격씩 이동하면서 한 측정점에서의 간섭신호를 획득한 후, 결상면인 CCD카메라의 각 픽셀에서 간섭신호를 계산해 내면 기준면에 대한 측정면의 3차원 표면 형상을 측정할 수 있다. At this time, a monochromatic light such as a laser can generate an interference signal at a long distance of several m, but in the case of a low-coherence light source, when using a short coherence length of several μm, the interference signal is also only within a few μm. After obtaining an interference signal from one measurement point while moving the measurement object in the direction of the optical axis at minute intervals of tens of nm to hundreds of nm, the interference signal is calculated from each pixel of the CCD camera, which is the imaging plane. It is possible to measure the 3D surface shape of the measuring surface for
이러한 종래의 기술에 따른 백색광 간섭법을 이용한 입체형상 측정장치는 높낮이가 존재하는 입체형상을 측정하기 위해서는, 매우 짧은 간격으로 광축 방향으로 스텝(step) 이송하면서 전체 높이에 걸쳐서 간섭무늬를 획득해야 하며, 이로 인해서 측정에 소요되는 시간이 길어지게 되며, 짧은 간격의 스텝 이동시 각 스텝당 하나의 스캔(단일 스캔)에 의한 하나의 이미지만을 얻을 수 있게 되며, 상기 하나의 스캔에 따른 이미지의 한계로 인해 수평 분해능이 제한될 수 밖에 없는 한계를 가진다. In order to measure a three-dimensional shape with a height, the three-dimensional shape measuring device using the white light interferometry according to the prior art needs to obtain an interference pattern over the entire height while stepping in the direction of the optical axis at very short intervals, , This increases the time required for measurement, and when moving a step at a short interval, only one image can be obtained by one scan (single scan) for each step, and due to the limitation of the image according to the one scan It has a limitation that the horizontal resolution is bound to be limited.
특히, 최근의 반도체, 전자 부품에 대한 대량 생산과 높은 수율을 얻기 위해서 타겟 표면의 측정영역이 수십 밀리미터 범위이고 정밀도는 수백 나노미터 내지 수 마이크로미터의 범위를 갖는 입체 형상 측정 장치의 표면 형상 정보를 신속히 획득하기 위해서, 측정대상에서의 간섭신호를 포함하지 않는 2차원 형상정보를 얻음과 동시에 측정대상물의 3차원 형상정보를 얻는 경우에, 측정대상물의 특정 영역에서의 관측이 보다 효율적이면서도 편리하고 신속하게 이루어질 수 있어, 입체 형상 정보를 얻기 위한 전체적 측정시간을 감소시킬 수 있음과 동시에 사용자에게 보다 효율적인 3차원 형상정보를 측정할 수 있는 여건을 제공할 수 있다.In particular, in order to obtain high yield and mass production of recent semiconductors and electronic components, the measurement area of the target surface is in the range of several tens of millimeters and the precision is in the range of hundreds of nanometers to several micrometers. Observation in a specific area of the measurement object is more efficient, convenient and quick in the case of acquiring 2-dimensional shape information that does not include the interference signal from the measurement object and obtaining 3-dimensional shape information of the measurement object at the same time in order to obtain it quickly. Thus, it is possible to reduce the overall measurement time for obtaining three-dimensional shape information and at the same time provide conditions for more efficient measurement of three-dimensional shape information to the user.
따라서, 이와 같은 요구에 부응하는, 보다 개선된 입체형상 측정장치의 개발에 대한 필요성은 지속적으로 요구되고 있는 실정이다. Therefore, the need for the development of a more improved three-dimensional shape measuring device that meets such demands is continuously demanded.
본 발명은 전술한 문제를 해결하기 위해 안출한 것으로, 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할하여 분할된 구간별로 입체형상 측정장치의 스텝이동에 따른 스캔 과정에서, 측정대상에서의 간섭신호를 포함하지 않는 2차원 형상정보를 얻은 후, 또는 얻음과 동시에 측정대상물의 3차원 형상정보를 얻을 수 있어, 기존의 단일 카메라에 따른 단일 3차원 형상 정보와 대비하여 개선된 측정 속도, 및 보다 효율적인 측정 환경을 제공할 수 있는 입체형상 측정장치를 제공하는 것을 발명의 목적으로 한다. The present invention has been devised to solve the above-mentioned problem, by dividing the interference pattern acquisition section regularly according to the height information, and in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section, the interference signal in the measurement target 3D shape information of the object to be measured can be obtained after or simultaneously with obtaining the 2D shape information that does not include, improved measurement speed and more efficient compared to single 3D shape information using a single existing camera. It is an object of the invention to provide a three-dimensional shape measurement device capable of providing a measurement environment.
이를 위해 본 발명은, 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 제1 광분할기(200)와 측정 대상물(700) 사이, 또는 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 To this end, the present invention emits light and includes a light source unit 100 positioned in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or opposite the light source unit to the other side of the first beam splitter 200; and
상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는, 상기 제1 광분할기(200)의 상부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사되어 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할하거나; 또는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공한다.In the three-dimensional shape measuring device including a first photographing unit 501 for photographing the reflected light from the surface of the object to be measured, which has passed through the first light splitter 200, the three-dimensional shape measuring device comprises: Located in the upper optical path of the optical splitter 200, the light reflected from the surface of the object to be measured and divided through the first optical splitter 200 is irradiated, and the first capturing unit 501 and the second capturing unit 501 described below are irradiated. splitting the light in each of the sub 502 directions; Alternatively, it is located in the lower optical path of the first optical splitter 200, and the light reflected from the surface of the object to be measured is irradiated in the direction of the first optical splitter 200 and the second capturing unit 502, respectively. a second light splitter 300 that splits the light; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit 502 is included. The light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502. The light emitted from the light source unit 100, passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It provides a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference pattern obtained by combining the light by the optical path obtained by the.
또한, 본 발명에 따른 입체형상 측정장치는 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이; 또는 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이; 에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하여 상기 제3 촬영부(503)으로 조사하며, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 또한, 상기 간섭 신호가 없는 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있다. In addition, the three-dimensional shape measuring device according to the present invention includes between the optical path of the second light splitter 300 and the first photographing unit 501; or between the optical path of the second optical splitter 300 and the second photographing unit 502; a third light splitter 303 provided in; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300. The light is divided and irradiated to the third capture unit 503, and the light captured by at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 is Light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained, and light captured by at least one selected from the remaining two imaging units excluding the imaging unit that captures the light without the interference signal. is obtained by the light emitted from the light source unit 100, irradiated onto the surface of the object to be measured through the first light splitter 200 and reflected from the reference mirror 400 through the first light splitter 200 It is the light of the interference fringe in which the light from the optical path is combined, through which the 3D shape information of the object to be measured can be obtained.
또한, 본 발명에 따른 입체형상 측정장치는 상기 기준미러(400)의 이동을 위해 미세구동장치(600)를 추가적으로 포함할 수 있다.In addition, the three-dimensional shape measuring device according to the present invention may additionally include a micro-drive device 600 to move the reference mirror 400.
또한, 본 발명에 따른 입체형상 측정장치는 상기 입체형상 측정장치는 미켈슨 타입, 미라우 타입 및 리닉 타입 중에서 선택되는 어느 하나의 타입일 수 있다.In addition, the three-dimensional shape measuring device according to the present invention may be any one type selected from the Michelson type, the Mirau type, and the Linik type.
또한, 본 발명에 따른 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함할 수 있다. In addition, the three-dimensional shape measuring device according to the present invention may further include a synchronization board 500 generating a trigger for capturing each camera included in each capturing unit.
또한, 본 발명에 따른 입체형상 측정장치내 상기 제1 광분할기(200) 내지 제3 광분할기(300)는 각각 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나일 수 있다.In addition, the first beam splitter 200 to the third beam splitter 300 in the three-dimensional shape measuring device according to the present invention may be any one of a cubic type, a pellicle type, or a plate type, respectively. can
또한, 본 발명에 따른 입체형상 측정장치내 각각의 촬영부는 카메라 및 튜브렌즈를 각각 포함할 수 있다. In addition, each photographing unit in the three-dimensional shape measurement apparatus according to the present invention may include a camera and a tube lens, respectively.
또한, 본 발명에서, 상기 입체형상 측정장치가 제1 촬영부(501) 및 제2 촬영부(502)를 포함하는 경우에, 상기 입체형상 측정장치는 i) 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 할 수 있다.In addition, in the present invention, when the three-dimensional shape measuring device includes the first capturing unit 501 and the second capturing unit 502, the three-dimensional shape measuring device i) the first capturing unit 501 and After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using any one of the second capture units 502, among the first capture unit 501 and the second capture unit 502 Obtaining 3D shape information by measuring a plurality of images by light of an interference fringe using the other one; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502; iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. Acquiring; can be characterized as.
또한, 본 발명에서, 상기 입체형상 측정장치가 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503)를 포함하는 경우에, 상기 입체형상 측정장치는 i) 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 간섭 신호가 없는 측정대상물의 특정한 표면 영역의 2차원 형상 정보를 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 간섭무늬의 광에 의한 영상을 다수 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 간섭무늬의 광에 의한 영상을 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 할 수 있다. In addition, in the present invention, when the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the three-dimensional shape measuring device i) the above After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal using at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503 , By measuring a plurality of images by light of the interference fringes using at least one of the remaining two capturing units except for the capturing unit capturing the 2D shape information of the specific surface area of the measurement object without the interference signal, the 3D shape obtain information; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe. obtain; iii) Alternatively, while measuring a plurality of images by light of interference fringes using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503, the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again. Obtaining 3D shape information by measuring an image by light of; may be characterized.
또한, 본 발명에 따른 입체형상 측정장치는 상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 함으로써, 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없게 되는 것을 특징으로 할 수 있다.In addition, in the three-dimensional shape measurement apparatus according to the present invention, the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal differ in focus from each other, It may be characterized in that there is no interference signal in a photographing unit that photographs light without an interference signal.
또한, 본 발명에서, 상기 입체형상 측정장치가 제1 촬영부(501) 및 제2 촬영부(502)를 포함하는 경우에, 상기 입체형상 측정장치는 상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, 상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되는 것을 특징으로 할 수 있다.In addition, in the present invention, when the three-dimensional shape measuring device includes the first capturing unit 501 and the second capturing unit 502, the three-dimensional shape measuring device includes the second beam splitter 300 and the second capturing unit 502. By additionally providing a reflection mirror 350 between optical paths of the photographing unit 502, the light split and irradiated from the second optical splitter 300 is reflected by the reflection mirror 350 and the second photographing unit ( 502) may be characterized in that it is irradiated.
또한, 본 발명에서, 상기 입체형상 측정장치가 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503)를 포함하는 경우에, 상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, 상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되거나; 또는, 상기 제3 광분할기(303)과 제3 촬영부(503)의 광경로사이에 반사미러(350’)를 추가적으로 구비함으로써, 상기 제3 광분할기(303)로부터 분할되어 조사되는 광은 상기 반사미러(350’)에 의해 반사되어 제3 촬영부(503)로 조사되는 것;을 특징으로 할 수 있다.In addition, in the present invention, when the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the second beam splitter 300 and By additionally providing a reflective mirror 350 between the light paths of the second photographing unit 502, the light split and irradiated from the second light splitter 300 is reflected by the reflective mirror 350 to capture the second image. irradiated with section 502; Alternatively, by additionally providing a reflection mirror 350' between the optical path of the third optical splitter 303 and the third photographing unit 503, the light split from the third optical splitter 303 and irradiated is It may be characterized by being reflected by the reflection mirror 350' and irradiated to the third photographing unit 503.
또한, 본 발명은 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공한다.In addition, the present invention emits light, the light source unit 100 located in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned on the other side of the first beam splitter 200 facing the light source unit; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200; It is located in the optical path in the lower direction of the light splitter 200, and the light reflected from the surface of the object to be measured is irradiated, splitting the light in the direction of the first light splitter 200 and the second photographing unit 502, respectively; a second light splitter 300; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit 502 is included. The light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502. The light emitted from the light source unit 100, passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It provides a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference pattern obtained by combining the light by the optical path obtained by the.
또한, 본 발명은 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 제1 광분할기(200)와 측정 대상물(700) 사이 또는 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는 측정 대상물의 표면으로부터 반사되고 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 반사미러(350) 방향으로 각각 광을 분할하며, 상기 제1 광분할기(200)와 제1 촬영부(501)사이의 광경로에 위치하는 제2 광분할기(300); 상기 제2 광분할기(300)와 이격되어 위치하며, 제2 광분할기(300)로부터 반사되어 분할된 광을 하기 제2 촬영부(502)로 반사하는 반사미러(350); 및 상기 반사미러(350)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함함으로써, 상기 제1 촬영부(501)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 통과하여 분할된 광을 촬영하며, 상기 제2 촬영부(502)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 반사하여 분할된 후, 상기 반사미러(350)로부터 반사된 광을 촬영하며, 상기 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며,상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공한다. In addition, the present invention emits light, the light source unit 100 located in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or in the other direction of the first beam splitter 200; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200; The light reflected from the surface and divided through the first beam splitter 200 is irradiated, splitting the light in the direction of the first photographing unit 501 and the reflection mirror 350, respectively, and the first beam splitter 200 ) and the second optical splitter 300 located in the optical path between the first photographing unit 501; a reflection mirror 350 positioned apart from the second beam splitter 300 and reflecting split light reflected from the second beam splitter 300 to a second capture unit 502; and a second photographing unit 502 for photographing the light reflected from the reflection mirror 350, so that the first photographing part 501 is irradiated from the first light splitter 200 to capture the second light After passing through the splitter 300 and photographing the divided light, the second photographing unit 502 is irradiated from the first light splitter 200 and is divided by reflecting the second light splitter 300, and then the reflection Photographing the light reflected from the mirror 350, the three-dimensional shape measuring device further includes a synchronization board 500 generating a trigger for photographing of each camera included in each photographing unit, and the first photographing device The light photographed by any one selected from the unit 501 and the second photographing unit 502 is emitted from the light source unit 100, passes through the first light splitter 200, and is reflected on the surface of the object to be measured. Light of an interference fringe in which light from an optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400 is combined, through which three-dimensional shape information of the object to be measured can be obtained, The light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained. A three-dimensional shape measuring device is provided.
이 경우에, 상기 입체형상 측정장치는 제2 광분할기(300)와 반사미러(350)의 광경로 사이에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 입체형상 측정장치내 동기화 보드(500)는 제3 촬영부내 포함된 카메라의 촬영을 위해 트리거를 발생시킬 수 있으며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하되, 제3 광분할기(303)로부터 반사되어 분할된 광은 상기 제3 촬영부(503)으로 조사하고, 제3 광분할기(303)를 통과되어 분할된 광은 상기 반사미러(350)로 조사하며, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며, 또한, 상기 간섭무늬의 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있는 것을 특징으로 한다.In this case, the three-dimensional shape measuring device includes a third optical splitter 303 provided between the optical path of the second optical splitter 300 and the reflection mirror 350; And a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the synchronization board 500 in the three-dimensional shape measuring device includes a camera included in the third photographing unit. A trigger may be generated for the photographing of, and the third beam splitter 303 splits the light irradiated from the second beam splitter 300, and the divided light reflected from the third beam splitter 303 The light irradiated to the third capture unit 503, passed through the third beam splitter 303, and split is irradiated to the reflection mirror 350, and the first capture unit 501 and the second capture unit 502 ) And the light photographed by at least one selected from the third photographing unit 503 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200 and reflected light, It is the light of the interference fringe in which the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 is combined, through which the three-dimensional shape information of the object to be measured can be obtained. The light captured by at least one selected from the remaining two imaging units excluding the imaging unit that photographs the light of the interference pattern is light without an interference signal, and through this, it is characterized in that two-dimensional shape information of the object to be measured can be obtained. .
본 발명에 따른 입체형상 측정장치는 측정 대상물의 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할하여 분할된 구간별로 입체형상 측정장치의 스텝이동에 따른 스캔 과정에서, 측정대상에서의 간섭신호를 포함하지 않는 2차원 영상정보를 얻음과 동시에 측정대상물의 3차원 형상정보를 얻을 수 있어, 측정대상물의 특정 영역에서의 관측이 보다 심도있고 편리하면서도 신속하게 이루어질 수 있어, 기존의 단일 카메라에 따른 단일 3차원 형상 정보와 대비하여 측정대상에 대해서 2차원 정보 및 3차원 정보의 측정이 가능함으로써, 보다 효율적인 측정 환경을 제공할 수 있다.The three-dimensional shape measuring device according to the present invention divides the interference pattern acquisition section regularly according to the height information of the measurement object, and includes the interference signal from the measurement object in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section. Obtain 2D image information that does not exist, and 3D shape information of the object to be measured at the same time, so observation in a specific area of the object to be measured can be made more in-depth, convenient, and speedy. It is possible to provide a more efficient measurement environment by measuring 2D information and 3D information about a measurement target in comparison with dimensional shape information.
특히, 통상의 단일 카메라에 따른 간섭계를 통해 얻는 3차원 형상측정을 위한 다수의 2차원 영상정보들 각각 보다, 본 발명에 따른, 간섭신호를 포함하지 않는 2차원 영상정보를 획득하는 촬영부내 카메라를 통해 얻는 2차원 영상정보는 상기 3차원 형상측정을 위한 촬영부를 통해 얻은 각각의 2차원 영상 정보보다 더욱 선명한 영상정보일 수 있다. 왜냐하면, 상기 3차원 형상측정을 위한 촬영부에서 측정되는 다수의 각각의 2차원 영상정보의 경우에는, 최적의 초점(포커싱) 위치에서는 간섭신호가 발생하여 그 간섭신호에 따른 왜곡된 2차원 영상 이미지를 얻을 수 밖에 없고, 또한, 최적의 초점위치가 아닌 경우에는 얻어진 2차원 영상이 초점이 안맞아 흐리게 촬영되기 때문에, 결국 최적의 초점 또는 이를 벗어난 초점위치 모두에서 선명한 영상을 얻을 수 없으나, 본 발명에서의 간섭신호를 포함하지 않는 2차원 영상정보를 획득하는 촬영부내 카메라를 통해 얻는 2차원 영상정보는 이러한 문제점을 해결할 수 있기 때문이다.In particular, rather than each of a plurality of 2D image information for 3D shape measurement obtained through an interferometer according to a single normal camera, the camera in the photographing unit acquires 2D image information not including an interference signal according to the present invention. The 2D image information obtained through this may be clearer image information than each of the 2D image information obtained through the photographing unit for measuring the 3D shape. Because, in the case of each of the plurality of 2D image information measured by the photographing unit for measuring the 3D shape, an interference signal is generated at the optimal focus (focusing) position, and the 2D image is distorted according to the interference signal. In addition, since the obtained two-dimensional image is out of focus and blurred, it is impossible to obtain a clear image at both the optimal focus and the out-of-focus position, but in the present invention This is because the 2D image information obtained through the camera in the photographing unit that obtains the 2D image information not including the interference signal of can solve this problem.
도 1은 종래 기술에 따른 백색광 주사 간섭법을 이용한 입체형상 측정장치의 개략적 구성도를 도시한 도면이다. 1 is a diagram showing a schematic configuration of a three-dimensional shape measuring apparatus using white light scanning interferometry according to the prior art.
도 2은 종래 기술에 따른 미라우 방식의 현미경 구조에 기반한 백색광 주사 간섭법을 이용한 입체형상 측정장치의 개략적 구성도를 도시한 도면이다. FIG. 2 is a diagram showing a schematic configuration of a three-dimensional shape measuring apparatus using white light scanning interferometry based on a Mirau-type microscope structure according to the prior art.
도 3은 본 발명의 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하는 입체형상 측정장치의 구성을 나타낸 도면이다. FIG. 3 is a diagram showing the configuration of a three-dimensional shape measuring device in which the second light splitter 300 is positioned in the upper optical path of the first light splitter 200 according to an embodiment of the present invention.
도 4는 본 발명의 또 다른 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 하부 방향 광경로에 위치하는 입체형상 측정장치의 구성을 나타낸 도면이다. FIG. 4 is a diagram showing the configuration of a three-dimensional shape measuring device in which the second light splitter 300 is located in the lower optical path of the first light splitter 200 according to another embodiment of the present invention.
도 5a)는 본 발명의 일실시예에 따른 미켈슨 타입의 입체형상 측정장치에서 제1 광분할기 이하의 부분을 도시한 도면이고, 도 5b)는 미라우 타입의 입체형상 측정장치에서 제1 광분할기 이하의 부분을 도시한 도면이며, 도 5c)는 리닉 타입의 입체형상 측정장치에서 제1 광분할기 이하의 부분을 도시한 도면이다.5a) is a diagram showing a part below the first beam splitter in a Michelson-type three-dimensional shape measurement device according to an embodiment of the present invention, and FIG. 5b) is a first beam splitter in a Mirau-type three-dimensional shape measurement device. 5c) is a diagram showing the parts below the first light splitter in the linic-type three-dimensional shape measuring device.
도 6은 본 발명의 또 다른 일실시예에 따른, 리닉 타입에서의 간섭계로서, 제2 광분할기(300)가 제1 광분할기(200)의 상부방향 광경로에 위치하는 입체형상 측정장치의 구성을 나타낸 도면이다. 6 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located in the upper optical path of the first beam splitter 200. is a drawing showing
도 7은 본 발명의 또 다른 일실시예에 따른, 리닉 타입에서의 간섭계로서, 제2 광분할기(300)가 제1 광분할기(200)의 하부방향 광경로에 위치하는 입체형상 측정장치의 구성을 나타낸 도면이다. 7 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located in the lower optical path of the first beam splitter 200. Configuration of the three-dimensional shape measurement device is a drawing showing
도 8은 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이다.8 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second photographing unit 502, the third beam splitter 303 is provided.
도 9는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이다.9 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the first photographing unit 501, the third beam splitter 303 is provided.
도 10은 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 하부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이다.10 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the lower optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second photographing unit 502, the third beam splitter 303 is provided.
도 11은 본 발명의 일실시예에 따른 2개의 촬영부로 구성된 입체형상 측정장치에 있어서, 제1 촬영부내 카메라에 의해 간섭신호를 포함하는 광에 의해 얻어지는 영상 및 제2 촬영부내 카메라에 의해 간섭신호를 포함하지 않는 광에 의해 얻어지는 영상을 각각 나타낸 도면이다. 11 is a three-dimensional shape measurement apparatus composed of two photographing units according to an embodiment of the present invention, an image obtained by light including an interference signal by a camera in the first photographing unit and an interference signal by a camera in the second photographing unit. It is a diagram showing images obtained by light not including .
도 12는 본 발명의 또 다른 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하며, 제2 광분할기(300)와 제2촬영부(502)의 광경로사이에 반사미러(350)를 포함하는 입체형상 측정장치의 구성을 나타낸 도면이다. 12 shows a second optical splitter 300 according to another embodiment of the present invention located in an optical path in the upper direction of the first optical splitter 200, and the second optical splitter 300 and the second photographing unit It is a diagram showing the configuration of a three-dimensional shape measuring device including a reflection mirror 350 between optical paths of 502.
도 13은 본 발명의 또 다른 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하며, 제2 광분할기(300)와 제2촬영부(502) 광경로 사이에 반사미러(350)를 포함하는, 리닉 타입의 입체형상 측정장치의 구성을 나타낸 도면이다. 13 is a diagram showing the second optical splitter 300 located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention, the second optical splitter 300 and the second photographing unit (502) It is a diagram showing the configuration of a three-dimensional shape measuring device of a linic type, including a reflection mirror 350 between optical paths.
도 14는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되며, 상기 제3 광분할기(303)와 제2 촬영부(502) 광경로 사이에 반사미러(350)을 포함하는 입체형상 측정장치의 구성을 나타낸 도면이다.14 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second capturing unit 502, a third optical splitter 303 is provided, and a reflection mirror 350 is provided between the third optical splitter 303 and the optical path of the second capturing unit 502. It is a diagram showing the configuration of a three-dimensional shape measuring device including.
도 15는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되며, 상기 제3 광분할기(303)와 제3 촬영부(503) 광경로 사이에 반사미러(350’)을 포함하는 입체형상 측정장치의 구성을 나타낸 도면이다.15 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the optical path of the second capturing unit 502, a third optical splitter 303 is provided, and a reflection mirror 350' is provided between the third optical splitter 303 and the optical path of the third capturing unit 503. ) It is a diagram showing the configuration of a three-dimensional shape measuring device including.
[부호의 설명][Description of code]
100: 광원부100: light source
101 : 조명렌즈101: lighting lens
200: 제1 광분할기 300 : 제2 광분할기 303: 제3 광분할기200: first light splitter 300: second light splitter 303: third light splitter
350, 350’: 반사 미러350, 350’: Reflective mirror
400: 기준 미러(미라우 타입 또는 리닉 타입)400: reference mirror (mirror type or linic type)
410 : 대물렌즈410: objective lens
450 : 간섭 모듈 광분할기(미라우 타입)450: Interference module optical splitter (Mirau type)
500 : 동기화 보드500: synchronization board
501 : 제1 촬영부 502 : 제2 촬영부 503 : 제3 촬영부501: first capture unit 502: second capture unit 503: third capture unit
511 : 제1 카메라 512: 제2 카메라 513 : 제3 카메라511: first camera 512: second camera 513: third camera
521 : 제1 튜브렌즈 522 : 제2 튜브렌즈 523 : 제2 튜브렌즈521: first tube lens 522: second tube lens 523: second tube lens
600: 미세구동장치600: fine drive
700 : 측정 대상물700: object to be measured
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록, 본 발명에 따른 측정 대상물의 입체형상을 측정하는 입체형상 측정장치에 대해 상세히 설명하도록 한다. Hereinafter, with reference to the accompanying drawings, a three-dimensional shape measuring device for measuring the three-dimensional shape of a measurement object according to the present invention is described in detail so that those skilled in the art can easily practice the present invention. let me explain
본 발명의 각 도면에 있어서, 구조물들의 사이즈나 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나 축소하여 도시한 것이고, 특징적 구성이 드러나도록 공지의 구성들은 생략하여 도시하였으므로 도면으로 한정하지는 아니한다.In each drawing of the present invention, the size or dimensions of the structures are enlarged or reduced from the actual ones for clarity of the present invention, and the known configurations are omitted so that the characteristic configurations are revealed, so they are not limited to the drawings. .
본 발명의 바람직한 실시예에 대한 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In describing the principles of preferred embodiments of the present invention in detail, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
또한, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.In addition, since the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, various alternatives may be used at the time of this application. It should be understood that there may be equivalents and variations.
본 발명에 따른 입체형상 측정장치는, 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 제1 광분할기(200)와 측정 대상물(700) 사이, 또는 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는, 상기 제1 광분할기(200)의 상부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사되어 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할하거나; 또는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하며, 이를 도 3 내지 도 15를 통해 보다 상세히 설명한다. A three-dimensional shape measuring device according to the present invention, emits light, and is located in one direction of the first beam splitter 100; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or opposite the light source unit to the other side of the first beam splitter 200; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200; Located in the upper optical path of the first optical splitter 200, the light reflected from the surface of the object to be measured and divided through the first optical splitter 200 is irradiated, and the first photographing unit 501 and the second Dividing the light in the direction of the photographing unit 502, respectively; Alternatively, it is located in the lower optical path of the first optical splitter 200, and the light reflected from the surface of the object to be measured is irradiated in the direction of the first optical splitter 200 and the second capturing unit 502, respectively. a second light splitter 300 that splits the light; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit 502 is included. The light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502. The light emitted from the light source unit 100, passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It is characterized in that it is possible to obtain three-dimensional shape information of the object to be measured through the light of the interference fringe obtained by combining the light by the light path obtained by the optical path, and this will be described in more detail with reference to FIGS.
도 3 내지 도 7은 본 발명에 따른, 제1 광분할기(200)의 광경로 상부 또는 하부에 제2 광분할기(300)를 구비하는 입체형상 측정장치의 일 실시예로, 이들을 바탕으로 본 발명에 따른 입체형상 측정장치의 각각의 구성요소를 보다 상세히 아래에서 설명한다. 3 to 7 are an embodiment of a three-dimensional shape measuring device having a second optical splitter 300 above or below the optical path of the first optical splitter 200 according to the present invention, based on these Each component of the three-dimensional shape measuring device according to will be described below in more detail.
도 3 내지 도 7에 도시한 바와 같이, 본 발명에 따른 입체형상 측정장치는 주요 구성요소로서, 광원부(100), 제1 광분할기(200), 제2 광분할기(300), 기준미러(400), 미세구동장치(600), 제1 촬영부(501) 및 제2 촬영부(502)를 포함한다. 3 to 7, the three-dimensional shape measuring device according to the present invention includes a light source unit 100, a first beam splitter 200, a second beam splitter 300, and a reference mirror 400 as main components. ), a micro-drive device 600, a first capturing unit 501 and a second capturing unit 502.
여기서, 상기 광원부(100)는 측정 대상물에 광을 방출하기 위한 수단으로 측정 대상물에서의 이 빛의 반사에 의해 형성된 간섭무늬로부터 측정 대상물의 측정면의 형상을 측정할 수 있으며, 상기 도 3에 도시된 바와 같이, 제1 광분할기(200)의 일측 방향(좌측)에 위치하고 있으며, 이의 위치는 광을 방출하기 위하여 방해받지 않는 위치에 해당하는 경우에 제한없이 위치할 수 있다. Here, the light source unit 100 is a means for emitting light to the measurement object and can measure the shape of the measurement surface of the measurement object from the interference fringe formed by the reflection of this light on the measurement object, as shown in FIG. As described above, it is located in one direction (left side) of the first light splitter 200, and its position may be located without limitation when it corresponds to a position where there is no obstruction to emit light.
상기 광원부(100)의 광원은 백색광원을 사용할 수 있다. 상기 백색광원은 측정 대상물의 입체형상에 대한 데이터를 획득하기 위한 광원으로, 텅스텐 할로겐 램프(Tungsten Halogen Lamp ), 제논 램프(Xenon Lamp), 백색 발광다이오드 등 하나일 수 있으며, 상기 광원은 광대역의 백색광일 수 있다. The light source of the light source unit 100 may use a white light source. The white light source is a light source for obtaining data on the three-dimensional shape of the object to be measured, and may be one of a tungsten halogen lamp, a xenon lamp, a white light emitting diode, and the like, and the light source is a broadband white light can be
한편, 상기 제1 광분할기(200)는 광원부에서 조사(방출)된 광(빛)을 분할하여 일부는 직진하도록 투과하여 손실되게 되며 나머지 일부는 측정 대상물(700) 방향으로 조사되도록 제1 광분할기(200)에서 반사되어 분할시키는 빔 스플리터(Beam Splitter)이며, 이는 측정 대상물의 표면으로부터의 반사광을 이후에 설명될 제1 촬영부(501)방향으로 분할하여 통과시키는 역할을 한다. On the other hand, the first light splitter 200 splits the light (light) irradiated (emitted) from the light source unit so that some of it is transmitted in a straight line and lost, and the other part is irradiated in the direction of the measurement object 700. It is a beam splitter that is reflected and divided in 200, and serves to divide and pass the reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 to be described later.
여기서, 상기 제1 광분할기(200)는 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나의 형태에서 선택될 수 있으나, 이에 제한되지 않으며, 이하에서 설명될 제2 광분할기(300), 제3 광분할기(320), 간섭모듈 광분할기(450) 또한, 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나의 형태에서 선택될 수 있으나, 이에 제한되지 않는다.Here, the first optical splitter 200 may be selected from any one of a cubic type, a pellicle type, or a plate type, but is not limited thereto, and a second type to be described below. The optical splitter 300, the third optical splitter 320, and the interference module optical splitter 450 may also be selected from any one of a cubic type, a pellicle type, and a plate type. , but not limited thereto.
또한, 상기 제1 광분할기와 광원부의 사이에는 광원의 빛을 광 분할기로 전달하는 조명렌즈(101)를 포함할 수 있다.In addition, an illumination lens 101 may be included between the first light splitter and the light source unit to transmit light from the light source to the light splitter.
한편, 본 발명에 따른 입체 형상 측정장치는 미켈슨 타입, 미라우 타입 및 리닉 타입 중에서 선택되는 어느 하나의 타입일 수 있다. Meanwhile, the three-dimensional shape measuring device according to the present invention may be any one type selected from among a Michelson type, a Mirau type, and a Linik type.
보다 구체적으로. 본 발명에 따른 입체 형상 측정장치는 사용되는 대물렌즈 배율에 따라 다양한 입체형상 측정장치(간섭계)의 구성을 가질 수 있는데,일반적으로 1 배 - 5배 정도의 저배율은 미켈슨 타입을 사용하며, 10배 - 50 배의 중배율은 미라우 타입을 사용하고, 100배 이상의 고배율은 리닉 타입을 주로 사용할 수 있으며, 이때, 본 발명에서의 상기 기준미러(400)는 측정 대상물의 표면에 조사되어 반사된 광과 간섭무늬를 형성하기 위하여, 측정 대상물의 표면에 조사되는 광과 상이한 경로를 통하여 상기 측정 대상물의 표면에 조사되어 반사된 광과 합쳐질 수 있도록 구성되며, 앞서의 미켈슨 타입, 미라우 타입, 리닉 타입에 따라 입체형상 측정장치내 상기 제1 광분할기(200)와 측정 대상물(700) 사이 또는 제1 광분할기(200)의 타측 방향에 위치함으로써, 그 위치와 크기가 상이한 구성을 가질 수 있다.more specifically. The three-dimensional shape measurement device according to the present invention may have various configurations of three-dimensional shape measurement devices (interferometers) depending on the magnification of the objective lens used. In general, a Michelson type is used for low magnifications of 1 to 5 times, and 10 times - For a medium magnification of 50 times, a Mirau type may be used, and for a high magnification of 100 times or more, a Linic type may be mainly used. In order to form an interference fringe, it is configured to be irradiated to the surface of the measurement object through a path different from the light irradiated to the surface of the measurement object and combined with the reflected light, and the above Michelson type, Mirau type, and Linic type According to this, by being located between the first light splitter 200 and the object to be measured 700 in the three-dimensional shape measuring device or in the other direction of the first light splitter 200, the position and size may have different configurations.
이를 도 5를 통해 보다 상세하게 살펴보면, 도 5a)는 미켈슨 타입의 입체형상 측정장치에서 도 3내 광원부 및 제1 광분할기(200) 이하의 부분 또는 도 4내 광원부 및 제2 광분할기(300) 이하의 부분을 도시한 그림이고, 도 5b)는 미라우 타입의 입체형상 측정장치에서 도 3내 광원부 및 제1 광분할기(200) 이하의 부분 또는 도 4내 광원부 및 제2 광분할기(300) 이하의 부분을 도시한 그림이고, 도 4c)는 리닉 타입에 대응하는 구성을 도시한 그림에 해당하며, 이에 따르면, 상기 기준미러(400)는 상기 제1 광분할기(200)와 측정 대상물(700) 사이, 보다 상세하게는 입체형상장치내 대물렌즈(410)와 측정 대상물(700) 사이에 위치(미켈슨 타입 또는 미라우 타입)하거나 또는 제1 광분할기(200)의 타측 방향에 위치(리닉 타입)할 수 있다.Looking at this in more detail through FIG. 5, FIG. 5a) is a part below the light source unit and the first beam splitter 200 in FIG. 3 or the light source unit and the second beam splitter 300 in FIG. 4 in the Michelson-type three-dimensional shape measuring device. Figure 5b) is a picture showing the parts below the light source unit and the first beam splitter 200 in FIG. 3 or the light source unit and the second beam splitter 300 in FIG. 4 in the Mirau type three-dimensional shape measurement device. It is a picture showing the following parts, and FIG. 4c) corresponds to a picture showing a configuration corresponding to the linic type. According to this, the reference mirror 400 is the first optical splitter 200 and the measurement object ), more specifically, located between the objective lens 410 and the measurement object 700 in the three-dimensional shape device (Michelson type or Mirau type) or located in the other direction of the first beam splitter 200 (Linic type) )can do.
보다 구체적으로, 미켈슨 타입의 경우에는 도 5a)에 도시된 바와 같이, 본 발명에 따른 입체형상 측정장치는 기준미러(400)가 상기 제1 광분할기(200, 도 3의 경우) 또는 제2 광분할기(300, 도 4의 경우)와 측정 대상물(700) 사이에 수직방향으로 위치하며, 기준미러(400)과 측정 대상물 사이의 광경로에는 기준미러(400)에 비스듬하게 틸트(tilt)된 간섭모듈 광분할기(450)가 구비될 수 있고, 미라우 타입의 경우에는 도 5b)에 도시된 바와 같이, 본 발명에 따른 입체형상 측정장치는 기준미러(400)가 상기 제1 광분할기(200, 도 3의 경우) 또는 제2 광분할기(300, 도 4의 경우)와 측정 대상물(700) 사이에 위치하며, 기준미러(400)과 측정 대상물 사이에는 기준미러와 평행한 간섭모듈 광분할기(450)이 구비될 수 있고, 리닉 타입의 경우에는 도 5c)에 도시된 바와 같이, 본 발명에 따른 입체형상 측정장치는 기준미러(400)가 제1 광분할기(200)의 타측 방향인 광원부에 대향하도록 위치할 수 있다. More specifically, in the case of the Michelson type, as shown in FIG. 5a), in the three-dimensional shape measuring device according to the present invention, the reference mirror 400 is the first beam splitter (200, in the case of FIG. 3) or the second optical beam splitter. It is located in the vertical direction between the divider (300, in the case of FIG. 4) and the measurement object 700, and the optical path between the reference mirror 400 and the measurement object is obliquely tilted to the reference mirror 400. Interference A module beam splitter 450 may be provided, and in the case of a Mirau type, as shown in FIG. 5B), the three-dimensional shape measurement apparatus according to the present invention includes a reference mirror 400, In the case of FIG. 3) or the second optical splitter (300, in the case of FIG. 4) and the object to be measured 700, between the reference mirror 400 and the object to be measured is an interference module optical splitter (450 parallel to the reference mirror). ) may be provided, and in the case of the linic type, as shown in FIG. 5c), in the three-dimensional shape measuring device according to the present invention, the reference mirror 400 faces the light source unit in the other direction of the first beam splitter 200. can be positioned to do so.
상기 미켈슨 타입 또는 미라우 타입 또는 리닉 타입에 따른 입체 형상 측정장치내 이와 관련된 보다 상세한 세부적 구성은 통상의 기술자에게 이미 공지된 기술로서, 이에 대한 추가적인 설명은 생략하기로 한다.More detailed configurations related to this in the three-dimensional shape measuring device according to the Michelson type, Mirau type, or Linik type are techniques already known to those skilled in the art, and further description thereof will be omitted.
한편, 본 발명에 따른 입체 형상 측정장치내 상기 제2 광분할기(300)는 상기 제1 광분할기(200)의 상부방향 광경로에 위치하거나 또는 이의 하부방향 광경로에 위치하여, 상기 광원부로부터 방출되어 측정 대상물의 표면에 조사된 후 다시 측정 대상물의 표면으로부터 반사되고 제1 광분할기(200)를 거쳐 분할된 광이 조사되어(제1 광분할기(200)의 상부 방향 광경로에 위치한 경우), 이를 상기 제1 촬영부(501) 및 제2 촬영부(502) 방향으로 각각 광을 분할하거나; 또는 상기 광원부로부터 방출되어 측정 대상물의 표면에 조사된 후 다시 측정 대상물의 표면으로부터 반사된 광이 조사되어(제1 광분할기(200)의 하부방향 광경로에 위치한 경우), 이를 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 기능을 하며, 여기서, 본 발명에서의 상기 제2 광분할기(300)가 상기 제1 광분할기(200)의 상부 방향 광경로에 위치하거나 또는 이의 하부 방향 광경로에 위치하는 것은 본 발명의 주요한 기술적 특징에 해당된다.On the other hand, the second light splitter 300 in the three-dimensional shape measuring device according to the present invention is located on the upper light path of the first light splitter 200 or on the lower light path of the first light splitter 200, and emits light from the light source unit. After being irradiated to the surface of the object to be measured, the light reflected from the surface of the object to be measured and split through the first light splitter 200 is irradiated (located in the upper light path of the first light splitter 200), Splitting the light in the direction of the first capturing unit 501 and the second capturing unit 502, respectively; Alternatively, the light emitted from the light source unit is irradiated onto the surface of the object to be measured, and then the light reflected from the surface of the object to be measured is irradiated (when located in the lower light path of the first light splitter 200), and is converted into the first light splitter. 200 and splitting light in the direction of the second photographing unit 502, respectively; here, the second light splitter 300 in the present invention is directed upward of the first light splitter 200. Being located in the optical path or located in the lower optical path corresponds to the main technical feature of the present invention.
여기서, 본 발명에서의 상기 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향(측정 대상물이 위치한 방향의 반대쪽 방향) 광경로에 위치하는 경우에, 바람직하게는 상기 제2 광분할기(300)가 제1 광분할기(200)와 제1촬영부(501) 사이의 광경로에 위치할 수 있으며, 상기 제2 광분할기(300)가 제1 광분할기(200)의 하부방향(측정 대상물이 위치한 방향) 광경로에 위치하는 경우에, 바람직하게는 제1 광분할기(200)와 측정대상물(700) 사이에 위치할 수 있으며, 더욱 바람직하게는 제1 광분할기(200)와 대물렌즈(410) 사이의 광경로에 위치할 수 있다. Here, in the case where the second light splitter 300 in the present invention is located in the optical path in the upper direction of the first light splitter 200 (in the opposite direction to the direction in which the measurement object is located), preferably the second light splitter 300 The splitter 300 may be located in an optical path between the first light splitter 200 and the first photographing unit 501, and the second light splitter 300 extends downward of the first light splitter 200 ( direction in which the object to be measured) is located in the optical path, it may be preferably located between the first optical splitter 200 and the object to be measured 700, more preferably the first optical splitter 200 and the object It may be located in an optical path between the lenses 410 .
한편, 상기 제2 광분할기(300) 또한 제1 광분할기와 마찬가지로 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나의 형태에서 선택될 수 있으나, 이에 제한되지 않고 사용가능하다. Meanwhile, the second optical splitter 300 may also be selected from any one of a cubic type, a pellicle type, and a plate type, similarly to the first optical splitter, but is not limited thereto. possible.
또한, 본 발명에서의 제1 촬영부(501)는 상기 제1 광분할기(200) 또는 제2 광분할기(300)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영할 수 있도록 구비될 수 있으며, 여기서, 상기 제1 촬영부(501)는 제1 광분할기(200)과 제2 광분할기(300) 사이의 광경로에 따른 광축 방향에 위치하며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치한 경우, 제2 광분할기의 도입에 의해 상기 제2 광분할기(300)를 통과함으로써 분할된 광을 촬영하게 되며, 제2 광분할기(300)가 제1 광분할기(200)의 하부방향 광경로에 위치한 경우, 제2 광분할기(300)의 도입에 의해 상기 제2 광분할기(300) 및 제1 광분할기(200)를 각각 통과함으로써 분할된 광을 제1 촬영부(501)는 촬영하게 된다. In addition, the first photographing unit 501 in the present invention may be provided to photograph the reflected light from the surface of the object to be measured, passing through the first light splitter 200 or the second light splitter 300, Here, the first photographing unit 501 is located in the optical axis direction along the optical path between the first optical splitter 200 and the second optical splitter 300, and the second optical splitter 300 is the first optical splitter. When located in the optical path in the upper direction of (200), the divided light is captured by passing through the second optical splitter 300 by introducing the second optical splitter, and the second optical splitter 300 captures the first light When located in the optical path in the downward direction of the splitter 200, the split light is converted into a first light splitter by passing through the second light splitter 300 and the first light splitter 200 respectively by introduction of the second light splitter 300. The photographing unit 501 takes pictures.
한편, 상기 제1 촬영부(501)는 간섭무늬를 포함하는 광을 촬영하는 경우에, 상기 측정 대상물의 표면에 조사된 후 이의 표면에서 반사되어 제1 광분할기를 거치는 광과, 상기 기준미러(400)에서 반사되어 제1 광분할기를 거치는 광경로에 따른 광이 합쳐진 간섭무늬를 촬영하는 역할을 하며, 상기 제1 촬영부는 카메라 및 상기 카메라로 간섭무늬를 포함하는 광을 집광하는 튜브렌즈를 포함할 수 있다. On the other hand, when the first photographing unit 501 photographs light including an interference fringe, the light reflected from the surface of the object to be measured and then passing through the first optical splitter and the reference mirror ( 400) serves to capture an interference pattern in which light along an optical path reflected from the first beam splitter is combined, and the first photographing unit includes a camera and a tube lens for condensing light including the interference pattern with the camera. can do.
여기서, 상기 제1 촬영부내 카메라로서는 CCD 또는 CMOS 카메라(charge-coupled device camera)가 사용될 수 있으나, 상기 간섭무늬로부터 측정 대상물의 측정면의 형상을 측정할 수 있는 장치이면 제한되지 않고 사용될 수 있다. Here, a CCD or CMOS camera (charge-coupled device camera) may be used as the camera in the first photographing unit, but any device capable of measuring the shape of the measurement surface of the measurement object from the interference fringes may be used without limitation.
또한, 상기 제2 촬영부(502)는 상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 역할을 하고, 이는 간섭무늬를 포함하는 광을 촬영하는 경우에, 제1 촬영부(501)에서와 동일한 간섭 무늬에 따른 광을 촬영하여 측정대상물의 3차원 정보를 얻을 수 있게 되며, 상기 제1 촬영부와 동일하거나 상이한 구성을 가질 수 있다. In addition, the second photographing unit 502 serves to photograph the light reflected from the second beam splitter 300, and when photographing the light including the interference fringe, the first photographing unit 501 It is possible to obtain 3-dimensional information of the object to be measured by photographing light according to the same interference fringe as in, and may have the same or different configuration as the first photographing unit.
또한, 상기 제2 촬영부(502)는 제1 촬영부(501)에서와 마찬가지로 카메라 및 상기 카메라로 간섭무늬를 포함하는 광을 집광하는 튜브렌즈를 포함할 수 있고, 카메라로서는 CCD 또는 CMOS 카메라(charge-coupled device camera)가 사용될 수 있으나, 상기 간섭무늬로부터 측정 대상물의 측정면의 형상을 측정할 수 있는 장치이면 제한되지 않고 사용될 수 있으며, 이는 후술될 제3 촬영부 혹은 추가로 구비될 수 있는 제4 촬영부 등에서도 마찬가지로 적용될 수 있다.In addition, the second photographing unit 502 may include a camera and a tube lens for condensing light including interference fringes with the camera, as in the first photographing unit 501, and the camera may include a CCD or CMOS camera ( A charge-coupled device camera) may be used, but any device capable of measuring the shape of the measurement surface of the measurement object from the interference fringes may be used without limitation, which may be further provided with a third photographing unit to be described later or The same can be applied to the fourth photographing unit and the like.
여기서, 본 발명에서의 상기 제2 광분할기(300) 및 제2 촬영부(502)를 제외하고 제1 촬영부(501)만으로서 입체 형상 측정장치를 구성하게 되는 경우에, 종래 기술에서 사용되는, 단일의 촬영부(카메라)에 따른 단일 영상 정보만을 획득할 수 있는 입체 형상 측정장치에 해당하게 된다.Here, in the case of constructing a three-dimensional shape measuring device with only the first capturing unit 501 excluding the second optical splitter 300 and the second capturing unit 502 in the present invention, , Corresponds to a three-dimensional shape measurement device capable of obtaining only single image information according to a single photographing unit (camera).
즉, 종래기술에 따른 입체 형상 측정 장치의 경우에, 광원부로부터 방출되어 측정 대상물의 표면에 조사된 후 다시 측정 대상물의 표면으로부터 반사되는 광을 입체 형상 측정 장치내에 하나의 촬영부를 이용하여 촬영하게 되나, 본 발명에서는 상기 제2 광분할기(300)를 통하여, 제1 촬영부로 분할되는 광이외에 제2 촬영부(502) 방향으로도 광을 분할되도록 하여, 이는 후술될 제3 광분할기(303)를 통하여, 추가적으로 분할되어 제3 촬영부(503) 방향으로도 광을 분할되도록 하여, 상기 제2 광분할기(300) 및/또는 제3 광분할기(303) 등을 통해 분할된 광을 제2 촬영부(502) 및/또는 제3 광분할기(303)에서 촬영함으로써, 상기 복수의 촬영부 중에 적어도 하나는 측정대상에서의 간섭신호를 포함하지 않는 2차원 형상정보를 얻도록 하며, 또한 나머지 촬영부 중에 적어도 하나는 간섭무늬를 포함하는 영상을 포함함으로써, 측정대상물의 3차원 형상정보를 얻을 수 있어, 측정대상물의 특정 영역에서의 관측이 보다 심도있고 편리하면서도 신속하게 이루어질 수 있으며, 이는 본 발명의 기술적 특징에 해당된다. That is, in the case of the three-dimensional shape measurement device according to the prior art, the light emitted from the light source unit is irradiated to the surface of the measurement object and then reflected from the surface of the measurement object again. , In the present invention, through the second beam splitter 300, in addition to the light split into the first capture unit, the light is split in the direction of the second capture unit 502, which is the third beam splitter 303 to be described later. Through this, the light is additionally divided and the light is split in the direction of the third capturing unit 503, so that the split light through the second optical splitter 300 and/or the third optical splitter 303 is transmitted to the second capturing unit. 502 and/or the third beam splitter 303, at least one of the plurality of imaging units obtains two-dimensional shape information that does not include an interference signal in the measurement target, and also among the remaining imaging units. By including at least one image including an interference fringe, it is possible to obtain 3D shape information of the object to be measured, so that observation in a specific area of the object to be measured can be made more in-depth, conveniently and quickly. corresponds to the characteristic.
한편, 상기 도 3에 따른 본 발명에 따른 입체형상 측정장치에서의 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 해당된다. On the other hand, in the three-dimensional shape measuring device according to the present invention according to FIG. 3, the light photographed by one of the first photographing unit 501 and the second photographing unit 502 is emitted from the light source unit 100 and The light of the interference pattern in which the light irradiated and reflected on the surface of the object to be measured through the light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined. applies to
즉, 상기 광원(100)에서 조사된 빛은 상기 제1 광분할기(200)에서 분할되고, 이는 사용되는 대물렌즈의 환경에 의래 미켈슨 타입, 미라우 타입 또는 리닉 타입의 구조에 따라 간섭무늬를 얻기 위한 광경로의 구성을 달리할 수 있으나, 상기 도 3 또는 도 4의 제1 촬영부(501)를 기준으로 보았을 때, 상기 광원(100)으로부터 제1 광분할기(200)를 거쳐 분할된 광은 i) 측정 대상물의 측정면에서 반사된 후 도 3에 따라 상기 제1 광분할기(200)를 거쳐 제2 광분할기(300) 방향으로 순차적으로(또는, 도 4에 따라 제2 광분할기(300)를 거쳐 제1 광분할기(200) 방향으로 순차적으로) 들어오는 광과, ii) 상기 기준미러(400)를 거쳐 반사되어 도 3에 따라 상기 제1 광분할기(200)를 거쳐 제2 광분할기(300) 방향으로 순차적으로(또는, 도 4에 따라 제2 광분할기(300)를 거쳐 제1 광분할기(200) 방향으로 순차적으로) 들어오는 광으로 나누어지며, 상기 제1 촬영부(501)에서는 이들 각각의 광이 합쳐진 간섭 무늬의 광을 얻을 수 있다. That is, the light irradiated from the light source 100 is split in the first beam splitter 200, which is used to obtain an interference pattern according to the structure of the Michelson type, Mirau type or Linik type depending on the environment of the objective lens used. Although the configuration of the optical path may be different, the light divided from the light source 100 through the first beam splitter 200 when viewed with respect to the first photographing unit 501 of FIG. 3 or 4 is i) After being reflected from the measurement surface of the object to be measured, it passes through the first light splitter 200 according to FIG. 3 and sequentially in the direction of the second light splitter 300 (or, according to FIG. 4, the second light splitter 300) ii) the incoming light sequentially in the direction of the first light splitter 200 through , and ii) the second light splitter 300 through the first light splitter 200 according to FIG. 3 after being reflected through the reference mirror 400 ) direction (or sequentially in the direction of the first beam splitter 200 through the second beam splitter 300 according to FIG. It is possible to obtain the light of the interference fringe in which the lights of are combined.
여기서, 도 3에 따라 상기 제1 촬영부(501) 또는 제2 촬영부(502) 중 하나에서 이러한 간섭무늬를 얻기 위해서는 제1 광분할기(200)로부터 측정 대상물의 표면을 거쳐 이로부터 반사되어 제1 광분할기(200)로 다시 도달한 거리 및 제1 광분할기(200)로부터 기준미러(400)를 거쳐 이로부터 반사되어 제1 광분할기(200)로 다시 도달한 거리까지의 거리를 일치시켜야 하며, 이에 따라, 단차를 가지는 측정 대상에 대해서 각각의 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할한 후, 분할된 구간별로 기준미러(400)를 포함하는 부분을 세밀하게 이동시키면서 간섭무늬를 획득하여 표면 형상을 측정함으로써, 측정 대상물의 3차원 정보를 얻을 수 있다. Here, according to FIG. 3, in order to obtain such an interference fringe in either the first capture unit 501 or the second capture unit 502, the first beam splitter 200 passes through the surface of the object to be measured and is reflected therefrom. The distance reached by the 1 beam splitter 200 and the distance from the first beam splitter 200 through the reference mirror 400 and the distance reached by the first beam splitter 200 after being reflected therefrom must match. , Accordingly, after dividing the interference fringe acquisition section regularly according to each height information for the measurement object having a step difference, the interference fringe is obtained while moving the part including the reference mirror 400 in detail for each divided section. 3D information of the object to be measured can be obtained by measuring the surface shape.
또한, 상기 도 3 또는 도 4에서, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 간섭 신호를 포함하지 않는 광을 촬영하는 촬영부를 통하여 본 발명은 측정 대상물의 2차원 형상 정보를 획득할 수 있다.In addition, in FIG. 3 or 4, the present invention provides two-dimensional shape information of the object to be measured through a photographing unit of the first photographing unit 501 and the second photographing unit 502 for photographing light that does not contain an interference signal. can be obtained.
즉, 상기 제1 촬영부(501) 및 제2 촬영부(502)를 포함하는 입체형상 측정장치에서, 하나의 촬영부는 측정대상물의 3차원 형상정보를 획득하기 위해 간섭신호를 포함하는 광을 측정하여 다수의 영상정보를 획득하고, 이와는 별개로 간섭신호가 없이 깨끗한 측정 대상물의 2차원 형상 정보를 추가적으로 얻음으로써, 본 발명에 따른 입체형상 측정장치는 측정대상물의 2차원 형상 정보를 실시간으로 얻음과 동시에, 간섭신호를 포함한 영상정보를 통해 측정대상물의 3차원 형상정보를 보다 용이하게 얻을 수 있는 장점을 가진다.That is, in the three-dimensional shape measurement device including the first capture unit 501 and the second capture unit 502, one capture unit measures light including an interference signal to obtain 3D shape information of a measurement object. By acquiring a plurality of image information and separately obtaining two-dimensional shape information of a clean object to be measured without an interference signal, the three-dimensional shape measurement device according to the present invention obtains two-dimensional shape information of the object in real time and At the same time, it has the advantage of being able to more easily obtain the three-dimensional shape information of the measurement object through the image information including the interference signal.
여기서, 상기 간섭신호를 포함하지 않는 광의 경우에 영상의 이미지가 간섭무늬를 포함하지 않음으로써, 측정대상물의 표면상태를 보다 깨끗하고 선명하게 얻을 수 있어, 이를 통해 측정 대상물내 표면의 불량이나 이물질의 2차원적 검사가 가능하고, 2차원 평면상에서 패턴의 선폭, 원의 직경등 기하학적 모양의 2차원 계측이 가능하고, 간섭 신호를 포함하는 촬영부(상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나)를 이용하여, 단차를 가지는 측정 대상에 대해서 각각의 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할한 후, 분할된 구간별로 기준미러(400)를 포함하는 부분을 세밀하게 이동시키면서 간섭무늬를 획득하여 측정 대상물의 3차원 표면 정보를 얻을 수 있다. Here, in the case of light that does not contain the interference signal, the image of the video does not include an interference fringe, so that the surface state of the measurement object can be obtained cleaner and clearer, and through this, defects or foreign substances on the surface of the measurement object can be obtained. 2D inspection is possible, 2D measurement of geometric shapes such as pattern line width and circle diameter is possible on a 2D plane, and imaging units including interference signals (the first imaging unit 501 and the second imaging unit 501) Using any one of the parts 502), after dividing the interference fringe acquisition section regularly according to each height information for the measurement object having a step, the part including the reference mirror 400 is divided for each divided section. 3D surface information of the object to be measured can be obtained by acquiring the interference fringe while moving it in detail.
여기서, 본 발명에 따른 입체형상 측정장치는 상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 함으로써, 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없게 되도록 할 수 있다.Here, the three-dimensional shape measurement apparatus according to the present invention sets the focus of the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal to be different from each other, It is possible to ensure that there is no interference signal in a photographing unit that photographs light without an interference signal.
즉, 상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부에 있어, 우선적으로 각각의 카메라의 초점위치를 각각 상이하게 한 후, 미세구동기를 이용하여 광축방향으로 측정대상물, 또는 기준미러, 또는 상기 기준미러를 포함하는 측정모듈을 이동시키면서, 2차원 영상정보를 촬영하는 촬영부에서 측정대상물과 초점이 맞는 경우에 2차원 영상 정보를 촬영하고, 그 이전 또는 그 이후 또는 그이전 및 그이후 모두에 각각 3차원 형상 정보를 획득하기 위한 촬영부에서 각각의 간섭신호를 포함하는 영상을 수십내지 수천장, 바람직하게는 50 내지 1000장의 범위로 획득하여 3차원 형상측정을 수행할 수 있다. That is, in the camera in the photographing unit for photographing light without the interference signal and in the photographing unit for photographing light including the interference signal, the focal position of each camera is first made different, and then the micro actuator is used. While moving the measurement object, the reference mirror, or the measurement module including the reference mirror in the direction of the optical axis, the 2D image information is photographed when the measurement object and the focus are matched in the photographing unit that captures the 2D image information, A photographing unit for acquiring 3D shape information before or after or both before and after acquires images including each interference signal in the range of tens to thousands, preferably 50 to 1000 images, to create a 3D image. shape measurements can be performed.
한편, 도 4에서 나타난 바와 같이, 제2 광분할기(300)가 제1 광분할기(200)의 하부방향 광경로에 위치한 경우에, 상기 제1 촬영부(501)에서 간섭무늬를 얻기 위해서는 앞서와 마찬가지로 제1 광분할기(200)로부터 측정 대상물의 표면을 거쳐 이로부터 반사되어 제1 광분할기(200)로 다시 도달한 거리 및 제1 광분할기(200)로부터 기준미러(400)를 거쳐 이로부터 반사되어 제1 광분할기(200)로 다시 도달한 거리까지의 거리를 일치시켜면 되나, 상기 도 4에서의 제2 촬영부(502)에서 간섭무늬를 얻기 위해서는 제1 광분할기(200)로부터 측정 대상물의 표면을 거쳐 이로부터 반사되어 제2 광분할기(300)로 다시 도달한 거리 및 제1 광분할기(200)로부터 기준미러(400)를 거쳐 이로부터 반사되어 제2 광분할기(300)로 다시 도달한 거리까지의 거리를 일치시키면 되며, 이는 도 4에서의 상기 제2 광분할기(300)가 제1 광분할기(200)의 하부방향 광경로에 위치하기 때문에 제2 촬영부(502)로 조사되는 광이 제1 광분할기(200)을 거치지 않아 각각의 광이 제2 광분할기(300)까지 도달한 거리를 일치시켜야 하는 것이다.On the other hand, as shown in FIG. 4 , when the second optical splitter 300 is located in the lower optical path of the first optical splitter 200, in order to obtain an interference fringe from the first capturing unit 501, it is necessary to proceed as described above. Similarly, the distance from the first light splitter 200 through the surface of the object to be measured and reflected therefrom to reach the first light splitter 200 again, and the distance from the first light splitter 200 through the reference mirror 400 and reflected therefrom. However, in order to obtain an interference fringe from the second photographing unit 502 in FIG. 4, the object to be measured from the first optical splitter 200 The distance reached by reflection through the surface of and the second beam splitter 300, and the distance from the first beam splitter 200 through the reference mirror 400 to the second beam splitter 300. It is only necessary to match the distance up to one distance, and this is because the second beam splitter 300 in FIG. Since the light does not pass through the first light splitter 200, the distances each light reaches to the second light splitter 300 must be matched.
즉, 본 발명에 따른 입체형상 측정장치는 상기 제2 광분할기(300)을 추가함으로써, 도 3에서와 같이, 제2 광분할기(300)가 제1 광분할기(200)의 상부방향 광경로에 위치하는 경우에, 본 발명에 따른 입체 형상 측정장치내 상기 제1 촬영부(501)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 통과하여 분할된 광을 촬영하며, 상기 제2 촬영부(502)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 반사하여 분할된 광을 촬영하며, 도 4에서와 같이, 제2 광분할기(300)가 제1 광분할기(200)의 하부방향 광경로에 위치하는 경우에, 상기 제1 촬영부(501)는 상기 제2 광분할기(200)로부터 조사되어 제1 광분할기(300)를 통과하여 분할된 광을 촬영하며, 상기 제2 촬영부(502)는 상기 제2 광분할기(300)를 반사하여 분할된 광을 촬영하며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 해당하며, 나머지 하나의 촬영부에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있도록 함으로써, 측정대상물의 2차원 정보와 3차원 정보를 함께 획득할 수 있다.That is, in the three-dimensional shape measuring device according to the present invention, by adding the second beam splitter 300, as shown in FIG. When positioned, the first photographing unit 501 in the three-dimensional shape measuring device according to the present invention captures the divided light irradiated from the first light splitter 200 and passed through the second light splitter 300, , The second photographing unit 502 captures the split light by being irradiated from the first light splitter 200 and reflecting the second light splitter 300, and as shown in FIG. 4, the second light splitter 300 ) is located in the lower optical path of the first optical splitter 200, the first photographing unit 501 is irradiated from the second optical splitter 200 and passes through the first optical splitter 300. The divided light is photographed, and the second photographing unit 502 reflects the second light splitter 300 to photograph the divided light, and the first photographing unit 501 and the second photographing unit 502 The light photographed from any one of the light source unit 100 is emitted from the light source unit 100 and irradiated onto the surface of the object to be measured through the first light splitter 200 and reflected, and the reference mirror through the first light splitter 200. The light obtained by reflection at 400 corresponds to the light of the interference pattern in which the light from the optical path is combined, and the light photographed by the other photographing unit is light without an interference signal, through which 2D shape information of the object to be measured is obtained. 2D and 3D information of the object to be measured can be obtained together.
예컨대, 도 3의 경우, 측정 대상물의 표면(측정면)에서 반사된 후 상기 제1 광분할기(200)를 거쳐 제2 광분할기(300) 방향으로 들어오는 광과 상기 기준미러(400)로부터 반사되어 상기 제1 광분할기(200)를 거쳐 제2 광분할기(300) 방향으로 들어오는 광이 합쳐진 간섭무늬는 상기 제2 광분할기(300)에서 분할되는 바, 제2 광분할기(300)를 통과하여 분할되는 광은 상기 제1 촬영부(501)로 조사되고, 상기 제2 광분할기(300)에서 반사되어 분할되는 광은 상기 제2 촬영부(502) 방향으로 조사되어 사용자는 상기 제1 촬영부 및 제2 촬영부 중 어느 하나에서 간섭무늬를 포함하는 광을 촬영하고, 나머지 하나의 촬영부에서는 간섭신호가 없는 광을 촬영함으로써, 측정대상물의 2차원 영상정보와 함께 3차원 영상정보를 획득할 수 있다.For example, in the case of FIG. 3 , after being reflected from the surface (measurement surface) of the object to be measured, the light passing through the first light splitter 200 and entering the direction of the second light splitter 300 is reflected from the reference mirror 400 Interference fringes obtained by combining the light entering the direction of the second optical splitter 300 through the first optical splitter 200 are split in the second optical splitter 300, and are divided by passing through the second optical splitter 300. The light to be captured is irradiated to the first capture unit 501, and the light reflected and divided by the second beam splitter 300 is irradiated in the direction of the second capture unit 502 so that the user can view the first capture unit and the 3D image information along with 2D image information of the object to be measured can be obtained by photographing light including interference fringes in one of the second photographing units and photographing light without an interference signal in the other photographing unit. there is.
이 경우에, 상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 함으로써, 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없게 할 수 있다.In this case, the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal capture the light without the interference signal by making the focus of each camera different from each other. It is possible to prevent interference signals from the photographing unit.
또한, 도 4의 경우, 측정 대상물의 표면(측정면)에서 반사된 후 상기 제2 광분할기(300) 방향으로 들어오는 광과 상기 기준미러(400)로부터 반사되어 상기 제2 광분할기(300) 방향으로 들어오는 광이 합쳐진 간섭무늬는 상기 제2 광분할기(300)에서 분할되는 바, 제2 광분할기(300)를 통과하여 분할되는 광은 상기 제1 광분할기(200)를 통과하여 상기 제1 촬영부(501)로 조사되고, 상기 제2 광분할기(300)에서 반사되어 분할되는 광은 상기 제2 촬영부(502) 방향으로 조사되어 사용자는 상기 제1 촬영부 및 제2 촬영부 중 어느 하나에서 간섭무늬를 포함하는 광을 촬영하고, 나머지 하나의 촬영부에서는 간섭신호가 없는 광을 촬영함으로써, 측정대상물의 2차원 영상정보와 함께 3차원 영상정보를 획득할 수 있다. In addition, in the case of FIG. 4, the light reflected from the surface (measurement surface) of the object to be measured and then entering the direction of the second optical splitter 300 and the light reflected from the reference mirror 400 are reflected in the direction of the second optical splitter 300. Interference fringes obtained by combining light coming into the beam splitter are split in the second beam splitter 300, and the split light passing through the second beam splitter 300 passes through the first beam splitter 200 to take the first shot. The light irradiated to the unit 501, reflected by the second light splitter 300 and divided is irradiated in the direction of the second capturing unit 502, so that the user can select one of the first capturing unit and the second capturing unit. 3D image information as well as 2D image information of the object to be measured can be obtained by photographing light including interference fringes and photographing light without an interference signal in the other photographing unit.
한편, 도 6은 본 발명의 또 다른 일실시예에 따른, 리닉 타입에서의 간섭계로서, 제2 광분할기(300)가 제1 광분할기(200)의 광경로 상부에 위치하는 입체형상 측정장치의 구성을 나타낸 도면이다. Meanwhile, FIG. 6 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located above the optical path of the first beam splitter 200. A diagram showing the configuration.
상기 도 6에서 나타난 바와 같이, 리닉 타입에서는 기준 미러(400)가 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하게 되며, 이에 따라 측정 대상물의 표면(측정면)에서 반사된 후 상기 제1 광분할기(200) 방향으로 들어오는 광과 상기 기준미러(400)로부터 반사되어 상기 제1 광분할기(200) 방향으로 들어오는 광이 합쳐진 간섭무늬는 상기 제2 광분할기(300)에서 분할되는 바, 제2 광분할기(300)를 통과하여 분할되는 광은 상기 제1 촬영부(501)로 조사되고, 상기 제2 광분할기(300)에서 반사되어 분할되는 광은 상기 제2 촬영부(502) 방향으로 조사되어 사용자는 상기 제1 촬영부 및 제2 촬영부 중 어느 하나에서 간섭무늬를 포함하는 광을 촬영하고, 나머지 하나의 촬영부에서는 간섭신호가 없는 광을 촬영함으로써, 측정대상물의 2차원 영상정보와 함께 3차원 영상정보를 획득할 수 있다.As shown in FIG. 6, in the linic type, the reference mirror 400 faces the light source unit and is located in the other direction of the first beam splitter 200, and accordingly, the reflection from the surface (measurement surface) of the object to be measured is reflected. Then, the interference fringes obtained by combining the light entering the first beam splitter 200 and the light reflected from the reference mirror 400 and entering the first beam splitter 200 are divided by the second beam splitter 300. As such, the light passing through the second light splitter 300 and being divided is irradiated to the first capturing unit 501, and the light reflected and divided by the second optical splitter 300 is the second capturing unit ( 502), the user captures the light including the interference fringe in one of the first capture unit and the second capture unit, and captures light without an interference signal in the other capture unit, thereby measuring the object to be measured. 3D image information can be acquired together with 2D image information.
또한, 도 7은 본 발명의 또 다른 일실시예에 따른, 리닉 타입에서의 간섭계로서, 제2 광분할기(300)가 제1 광분할기(200)의 광경로 하부 방향 광경로에 위치하는 입체형상 측정장치의 구성을 나타낸 도면으로서, 상기 도 6에서의 기준미러(400)과 마찬가지로 기준 미러(400)가 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하게 되나, 제2 광분할기(300) 및 제2 촬영부(502)의 위치에 따른 구조적 결과로서, 상기 제2 촬영부(502)에서는 기준미러(400)로부터 반사되는 광을 촬영할 수 없어서, 간섭무늬를 포함하는 광이 만들어지지 않게 된다. 7 is an interferometer in a linic type according to another embodiment of the present invention, in which the second beam splitter 300 is located in the lower optical path of the first beam splitter 200. As a diagram showing the configuration of the measuring device, like the reference mirror 400 in FIG. 6, the reference mirror 400 faces the light source and is located in the other direction of the first beam splitter 200, but the second As a structural result of the location of the splitter 300 and the second capture unit 502, the second capture unit 502 cannot capture the light reflected from the reference mirror 400, so that the light including the interference fringes won't be made
따라서, 제1 촬영부(501)에서만 간섭무늬를 포함하는 광을 촬영할 수 있으며, 이 때, 상기 제1 촬영부(501)에서는 측정 대상물의 표면(측정면)에서 반사된 후 상기 제2 광분할기를 통과하여 제1 광분할기(200) 방향으로 들어오는 광과 상기 기준미러(400)로부터 반사되어 상기 제1 광분할기(200) 방향으로 들어오는 광이 합쳐진 간섭무늬의 광을 촬영할 수 있게 되며, 상기 제2 촬영부(502)에서는 간섭신호가 없는 광을 촬영하여 측정대상물의 2차원 영상 정보만을 촬영할 수 있다. Therefore, only the first photographing unit 501 can photograph the light including the interference fringes. At this time, the first photographing unit 501 reflects the light from the surface (measurement surface) of the object to be measured, and then the second optical splitter. It is possible to capture light of an interference fringe obtained by combining the light passing through and entering the first beam splitter 200 and the light reflected from the reference mirror 400 and entering the first beam splitter 200. 2 The photographing unit 502 may photograph only the 2D image information of the object to be measured by photographing light without an interference signal.
한편, 상기 도 7에 따른 리닉 타입의 입체 형상 측정 장치의 경우에 제1 광분할기(200)과 기준미러(400) 사이에 추가적으로 광분할기를 포함할 수 있으며, 이는 간섭신호의 가시도 향상을 위해서 광분산을 고려하여 제1 촬영부(501)에서 촬영되는, 기준미러(400)에 조사되어 이로부터 반사되는 기준광과 측정 대상물에 조사되어 반사되는 측정광의 광학적 환경을 동일하게 유지하기 위한 것으로서, 바람직하게는 상기 추가되는 광분할기는 제2 광분할기(300)과 동일한 것을 사용할 수 있다.Meanwhile, in the case of the linic-type three-dimensional shape measuring device according to FIG. 7, a light splitter may be additionally included between the first light splitter 200 and the reference mirror 400, which is to improve the visibility of the interference signal. It is to maintain the same optical environment of the reference light irradiated to and reflected from the reference mirror 400 and the measurement light irradiated and reflected from the measurement object, which is photographed by the first photographing unit 501 in consideration of light dispersion, preferably More specifically, the same optical splitter as the second optical splitter 300 may be used.
상기 도 7에서의 구성을 가지는 입체영상 측정장치의 경우에, 상기 제2 촬영부(502)에서 촬영되는, 간섭무늬가 없는 영상은 원래부터 간섭무늬를 포함하지 않는 구조에 의해 얻어지는 2차원 정보에 해당하므로, 앞서의 도 3, 도 4 및 도 6에서의 각각의 촬영부에서 얻어지는, 간섭무늬가 포함가능한 경우보다 기준미러에서 반사되는 반사광이 없는 보다 선명한 2차원 영상 측정에 있어 편리함을 도모할 수 있다.In the case of the stereoscopic image measuring device having the configuration shown in FIG. 7, the image without interference fringes captured by the second photographing unit 502 corresponds to 2D information obtained by the structure not originally including interference fringes. Therefore, it is possible to promote convenience in measuring a clearer two-dimensional image without reflected light reflected from the reference mirror than in the case where the interference fringes obtained from each of the photographing units in FIGS. 3, 4, and 6 are included. there is.
또한, 본 발명에 따른 입체 형상 측정장치내 상기 제2 촬영부(502)는 제1 촬영부(501)와 동일한 구성을 가지거나 또는 사용자가 원하는 영상정보를 얻기 위하여, 제1 촬영부(501)와 상이한 구성을 가질 수 있다. In addition, the second capture unit 502 in the three-dimensional shape measuring device according to the present invention has the same configuration as the first capture unit 501 or to obtain image information desired by the user, the first capture unit 501 may have a different configuration.
예컨대, 상기 제1 촬영부(501)와 제2 촬영부(502)는 서로 상이한 배율의 튜브 렌즈 또는 서로 상이한 배율의 카메라내 렌즈를 가짐으로써, 측정 대상물의 특정한 표면 영역의 서로 상이한 배율의 영상을 동시에 획득할 수 있도록 구성되어, 카메라를 통하여 제1 촬영부(501)에서는 고배율의 좁은 면적에 대한 영상정보를 제공할 수 있고, 제2 촬영부(502)에서는 저배율의 넓은 면적에 대한 영상정보를 제공할 수 있도록 구성하거나, 또는 이와 반대의 구성을 제공하도록 구성할 수 있다.For example, the first photographing unit 501 and the second photographing unit 502 have tube lenses having different magnifications or intra-camera lenses having different magnifications, thereby capturing images of different magnifications of a specific surface area of an object to be measured. It is configured to be simultaneously acquired, so that the first capture unit 501 can provide image information for a small area at high magnification through a camera, and the second capture unit 502 can provide image information for a wide area at low magnification. It can be configured to provide, or it can be configured to provide the opposite configuration.
예컨대, 간섭무늬를 포함하는 광을 촬영하는 제1 촬영부(501)에서는 고배율의 좁은 면적에 대한 영상정보를 획득하고, 간섭무늬를 포함하지 않는 광을 촬영하는 제2 촬영부(502)에서는 저배율의 넓은 면적에 대한 영상정보를 획득함으로써, 상기 제2 촬영부(502)에서 얻어진 넓은 면적의 저배율 정보를 바탕으로 사용자가 측정 대상물상의 표면 정보를 미리 인지한 이후에 좁은 면적에 대한 측정 대상물의 3차원 정보를 획득할 수 있도록 구성할 수 있고, 또는 이와 반대의 구성을 제공하도록 구성할 수 있다.For example, the first capture unit 501 that captures light including interference fringes acquires image information for a small area at high magnification, and the second capture unit 502 captures light that does not include interference fringes at low magnification. By acquiring image information for a large area of , after the user recognizes the surface information of the measurement object in advance based on the low magnification information of the large area obtained from the second photographing unit 502, 3 images of the measurement object for a small area are obtained. It can be configured to obtain dimension information, or it can be configured to provide the opposite configuration.
또 다른 예시적 구성으로서, 상기 제1 촬영부(501)와 제2 촬영부(502)는 각각의 촬영부가 측정 대상물의 특정한 표면 영역을 서로 상이한 밝기로 측정함으로써, 측정 대상물의 특정한 표면 영역의 서로 상이한 밝기의 영상을 동시에 획득할 수 있다. 예시적 구성으로서, 간섭무늬를 포함하는 광을 촬영하는 제1 촬영부(501)에서는 통상적인 밝기 의 영상을 획득하며, 간섭무늬를 포함하지 않는 광을 촬영하는 제2 촬영부(502)에서는 상기 제1 촬영부에서 획득하는 영상보다 더 밝은 2차원 표면 영상을 획득함으로써, 이러한 측정 대상물의 더 선명한 2차원 영상을 이용하여 기하학적 정보에 대한 정확성을 높이고 불량에 대한 검출력을 향상시킬 수 있다. As another exemplary configuration, the first capture unit 501 and the second capture unit 502 measure the specific surface area of the measurement object with different brightness, so that the specific surface area of the measurement object is different from each other. Images of different brightnesses can be acquired simultaneously. As an exemplary configuration, the first capture unit 501 that captures light including interference fringes acquires an image of normal brightness, and the second capture unit 502 captures light without interference fringes. By obtaining a 2D surface image that is brighter than the image obtained by the first photographing unit, it is possible to increase the accuracy of geometric information and improve detection of defects using the clearer 2D image of the object to be measured.
예컨대, 측정 대상물의 특정한 표면 영역의 영상의 밝기를 서로 다르게 측정한 카메라를 통하여 제1 촬영부(501)에서는 카메라의 노출시간을 길게 촬영(또는, 필터를 사용하지 않고 촬영)하여 노출이 많은 영상정보를 제공할 수 있고, 제2 촬영부(502)에서는 카메라의 노출시간을 짧게 촬영(또는, 밝기 조절 필터(예 : ND 필터) 등을 사용하여 촬영)하여 노출이 부족하도록 촬영된 영상정보를 제공할 수 있도록 구성하거나, 또는 이와 반대의 구성을 제공하도록 구성할 수 있으며, 이 경우에 바람직하게는, 각각의 촬영부내 카메라가 각각 동일한 배율의 튜브 렌즈 또는 서로 동일한 배율의 카메라내 렌즈를 가질 수 있다. For example, the first photographing unit 501 captures an image with a long exposure time of the camera (or captures without using a filter) through a camera that measures the brightness of an image of a specific surface area of a measurement object differently. Information can be provided, and the second capture unit 502 captures image information that is underexposed by taking a short exposure time of the camera (or using a brightness control filter (eg, ND filter)). It may be configured to provide, or may be configured to provide the opposite configuration, and in this case, preferably, each camera in each photographing unit may have a tube lens of the same magnification or an intra-camera lens of the same magnification, respectively. there is.
이하에서는 도 3 및 도 4에 따라 본 발명에 따른 입체형상 측정장치의 예시적 구성을 보다 구체적으로 살펴보기로 한다. Hereinafter, exemplary configurations of the three-dimensional shape measuring device according to the present invention will be described in more detail according to FIGS. 3 and 4 .
상기 도 3 및 도 4에서는 미라우 타입의 입체형상 측정장치를 나타내고 있으며, 이에 따르면, 상기 기준미러(400)가 상기 제1 광분할기(200)와 측정 대상물(700) 사이에 위치하며, 상기 기준미러(400)와 제1 광분할기(200)의 사이에 대물렌즈(410)이 위치하는 구성을 나타내고 있다. 3 and 4 show a Mirau-type three-dimensional shape measurement device, according to which, the reference mirror 400 is located between the first light splitter 200 and the measurement object 700, and the reference mirror 400 A configuration in which the objective lens 410 is positioned between the mirror 400 and the first beam splitter 200 is shown.
이의 간섭 무늬 측정을 위한 광경로를 보다 상세히 살펴보면, 백색광 등을 방출하는 광원부(100)로부터 제1 광분할기(200)에서 반사되어 분할된 백색광이 대물렌즈(410)을 거쳐 미라우 타입의 간섭모듈 광분할기(450)에서 분할되며, 간섭모듈 광분할기(450)를 투과한 일부의 백색광은 측정 대상물의 표면으로 조사된 후 표면에서 다시 반사되어 간섭모듈 광분할기(450)를 통과하여 상기 제1 광분할기(200) 방향으로 조사되며, 간섭모듈 광분할기(450)에서 반사되어 분할된 나머지 일부는 상기 기준미러(400)을 거쳐 이로부터 반사되어 다시 간섭모듈 광분할기(450)에서 반사된 후 제1 광분할기(200) 방향으로 조사되어 각각의 광경로에 의한 광이 합쳐져 간섭무늬를 형성하게 된다.Looking at the optical path for measuring the interference fringe in more detail, the white light reflected from the light source unit 100 emitting white light and the like by the first beam splitter 200 and split passes through the objective lens 410 to the Mirau type interference module. Part of the white light that is split in the light splitter 450 and passed through the interference module light splitter 450 is irradiated to the surface of the object to be measured, then reflected from the surface, passes through the interference module light splitter 450, and then passes through the first light splitter 450. It is irradiated in the direction of the splitter 200, and the remaining part of the split after being reflected by the interference module light splitter 450 is reflected from the reference mirror 400 and reflected again by the interference module light splitter 450, and then the first It is irradiated in the direction of the light splitter 200 and the light from each optical path is combined to form an interference fringe.
즉, 상기 간섭모듈 광분할기(450)에서 반사되어 분할된 백색광은 기준미러(400)에 조사되는 기준광으로 기능을 하며, 간섭모듈 광분할기(450)에서 측정 대상물 방향으로 투과된 백색광은 측정 대상물에 조사되기에 측정광의 기능을 수행하고 있으며, 상기 간섭모듈 광분할기(450)는 광원으로부터 조사된 광을 기준광과 측정광으로 분리시키고, 분리되었던 기준광과 측정광이 반사되어 되돌아오면 이를 간섭시켜 간섭광으로 만들게 된다.That is, the white light reflected and divided by the interference module light splitter 450 functions as reference light irradiated to the reference mirror 400, and the white light transmitted from the interference module light splitter 450 toward the object to be measured is directed toward the object to be measured. It performs the function of measurement light because it is irradiated, and the interference module beam splitter 450 separates the light irradiated from the light source into reference light and measurement light, and when the separated reference light and measurement light are reflected and returned, they interfere with each other to interfere with the interference light. will make
이때, 측정 대상물의 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할하여 분할된 구간별로 입체형상 측정장치의 스텝이동에 따른 스캔 과정에서, 각각의 스캔시 상기 기준미러(400), 또는 상기 기준미러(400)를 포함하는 구성요소를 미세하게 이동하게 되면, 각각의 광경로를 일치시키거나 상이하게 할 수 있어 적절한 표면의 영상 정보를 획득할 수 있게 된다.At this time, in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section by dividing the interference pattern acquisition section according to the height information of the object to be measured, the reference mirror 400 or the reference mirror When the components including 400 are moved finely, each optical path can be matched or different, so that appropriate image information of the surface can be obtained.
이러한 영상 정보를 획득하는 원리는 도 4에 따른 미라우 타입의 입체형상 측정장치에서도 마찬가지로 적용될 수 있으며, 다만 도 4의 경우에 제2 광분할기(300)의 위치가 도 3에서와는 달리 제1 광분할기(200)의 하부방향 광경로에 위치하고 있어, 제2 촬영부(502)로 조사되는 각각의 간섭광은 제2 광분할기(300)에서 반사되어 제1 광분할기(200)를 다시 거치지 않고 곧바로 제2 촬영부(502)에서 촬영되는 것만이 차이가 있다.The principle of acquiring such image information can also be applied to the Mirau-type three-dimensional shape measurement device according to FIG. 4, except that in the case of FIG. 200, each interference light irradiated to the second photographing unit 502 is reflected by the second beam splitter 300 and directly removed without passing through the first beam splitter 200 again. 2 There is a difference only in what is photographed by the photographing unit 502 .
한편, 상기 도 3 및 도 4에서의 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광이어야 측정대상물의 2차원 표면 정보를 얻을 수 있으므로, 상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 하며, 이에 의해 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없는 광을 촬영할 수 있다.On the other hand, the light photographed by any one selected from the first photographing unit 501 and the second photographing unit 502 in FIGS. 3 and 4 must have no interference signal to obtain 2D surface information of the object to be measured. Therefore, the camera in the photographing unit for photographing the light without the interference signal and the camera in the photographing unit for photographing the light including the interference signal set the focus of each camera to be different from each other, thereby making the light without the interference signal different from each other. Light without an interference signal can be photographed in a photographing unit for photographing.
또한, 도 6에 따른 리닉 타입의 입체형상 측정장치의 측정 방식을 살펴보면, 광원부(100)로부터 제1 광분할기(200)에서 반사되어 분할된 백색광이 대물렌즈(410)을 거쳐 측정 대상물의 표면으로 조사된 후 표면에서 다시 반사되어 제1 광분할기(200)를 통과하여 상기 제2 광분할기(300) 방향으로 조사되며, 제1 광분할기(200)를 통과하어 분할된 나머지 일부는 상기 기준미러(400)을 거쳐 이로부터 반사되어 다시 제1 광분할기(200)에서 반사된 후 제2 광분할기(300) 방향으로 조사되어 각각의 광경로에 의한 광이 합쳐져 간섭무늬를 형성하게 되며, 간섭신호를 포함하지 않는 광의 경우에 도 3 및 도 4에서와 마찬가지로 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 하여 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없는 광을 촬영할 수 있다.In addition, looking at the measurement method of the three-dimensional shape measuring device of the linic type according to FIG. 6, the divided white light reflected from the light source unit 100 by the first beam splitter 200 passes through the objective lens 410 to the surface of the measurement object. After being irradiated, it is reflected from the surface again, passes through the first light splitter 200, and is irradiated in the direction of the second light splitter 300, and the remaining part passed through the first light splitter 200 and divided is the reference mirror ( 400), is reflected from the first light splitter 200, and then irradiated toward the second light splitter 300, and the light from each optical path is combined to form an interference pattern, and an interference signal is generated. In the case of light not included, as in FIGS. 3 and 4, the camera in the photographing unit for photographing light without an interference signal and the camera in the photographing unit for photographing light containing an interference signal differ in focus from each other. Light without an interference signal may be photographed by a photographing unit that photographs light without an interference signal.
또한, 도 7에 따른 리닉 타입의 입체형상 측정장치의 측정 방식도 도 6과 마찬가지로서, 광원부(100)로부터 제1 광분할기(200)에서 반사되어 분할된 백색광이 제2 광분할기(300) 및 대물렌즈(410)을 거쳐 측정 대상물의 표면으로 조사된 후 표면에서 다시 반사되어 제2 광분할기(300)를 통과하여 상기 제1 광분할기(200) 방향으로 조사되며, 제1 광분할기(200)를 통과하어 분할된 나머지 광은 상기 기준미러(400)을 거쳐 이로부터 반사되어 다시 제1 광분할기(200)로 조사되어 각각의 광경로에 의한 광이 합쳐져 간섭무늬를 형성하게 되어 상기 제1 촬영부(501)에서 간섭신호를 포함하는 광을 촬영할 수 있며, 제2 촬영부(502)에서는 상기 도 7에 따른 리닉 타입의 구조적 특징에 따라 상기 도 3, 도 4 및 도 6에서의 각각의 카메라의 초점을 서로 상이하게 하는 작업이 필요없이, 측정대상물의 2차원 표면 영상에 있어, 간섭신호를 포함하지 않는 광을 촬영할 수 있다.In addition, the measurement method of the three-dimensional shape measuring device of the linic type according to FIG. 7 is the same as that of FIG. After being irradiated onto the surface of the object to be measured through the objective lens 410, it is reflected back from the surface, passes through the second beam splitter 300, and is irradiated in the direction of the first beam splitter 200, and the first beam splitter 200 The rest of the divided light passes through the reference mirror 400 and is reflected therefrom and irradiated to the first light splitter 200 again, and the light from each optical path is combined to form an interference fringe, thereby forming the first photographing image. In the unit 501, light including an interference signal can be photographed, and in the second photographing unit 502, each camera in FIGS. 3, 4, and 6 according to the structural characteristics of the linic type according to FIG. It is possible to photograph light that does not contain an interference signal in a two-dimensional surface image of the object to be measured without the need for an operation of making the focal points different from each other.
한편, 본 발명에 따른 입체형상 측정장치는 상기 기준미러(400) 또는 기준미러를 포함하는 구성요소의 이동을 위해 미세구동장치(600)를 추가적으로 포함할 수 있고, 이를 통한 기준미러의 이동에 의해 기준미러(400)를 반사한 광과 측정 대상물로부터 반사된 광에서의 각각의 광경로를 일치시켜 간섭무늬를 얻을 수 있게 된다. On the other hand, the three-dimensional shape measuring device according to the present invention may additionally include a micro-drive device 600 to move the reference mirror 400 or components including the reference mirror, and through this, the reference mirror is moved by Interference fringes can be obtained by matching the optical paths of the light reflected from the reference mirror 400 and the light reflected from the object to be measured.
여기서, 상기 미세구동장치(600)는 수십 um 범위(1 ~ 1000 um)의 거리를 이동시킬 수 있는 장치를 사용할 수 있고, 예컨대 미세한 위치조절에 많이 사용되는 압전 구동기를 사용할 수 있다. Here, a device capable of moving a distance in the range of several tens of um (1 to 1000 um) may be used as the micro-drive device 600, and for example, a piezoelectric actuator widely used for fine position control may be used.
예컨대, 도 3에 따른 미라우 타입의 입체 형상 측정장치에서 상기 기준미러(400); 또는 기준미러(400) 및 대물렌즈(410)를 포함하는 대물렌즈부;는 미세 구동장치(600)에 의해 제1 광분할기(200)와 제2 광분할기(300)의 연장선 방향으로 상하로 수직이동이 가능하도록 왕복 구동함으로써, 측정 대상물의 표면의 높이에 관한 정보를 얻어낼 수 있다.For example, the reference mirror 400 in the three-dimensional shape measuring device of the Mirau type according to FIG. 3; Alternatively, the objective lens unit including the reference mirror 400 and the objective lens 410; is vertically vertical in the direction of the extension lines of the first beam splitter 200 and the second beam splitter 300 by the fine driving device 600. By reciprocating driving to enable movement, information on the height of the surface of the object to be measured can be obtained.
한편, 본 발명에 따른 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함할 수 있다. On the other hand, the three-dimensional shape measurement apparatus according to the present invention may further include a synchronization board 500 generating a trigger for capturing each camera included in each capturing unit.
예컨대, 상기 도 3에서 나타난 바와 같이, 본 발명에 따른 입체형상 측정장치는 제1 촬영부 및 제2 촬영부의 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함할 수 있고, 이를 통해 측정 대상물의 높이 정보에 따라 간섭무늬 획득 구간을 일정하게 분할하여 분할된 구간별로 입체형상 측정장치의 스텝이동에 따른 스캔 과정에서, 각각의 스텝이동이 이루어진 후에 스캔을 위한 각각의 복수의 카메라를 제어할 수 있다. For example, as shown in FIG. 3, the three-dimensional shape measuring device according to the present invention may further include a synchronization board 500 generating triggers for capturing images of the cameras of the first and second capturing units. Through this, the interference pattern acquisition section is regularly divided according to the height information of the object to be measured, and in the scanning process according to the step movement of the three-dimensional shape measuring device for each divided section, after each step movement is performed, each plurality of scans for scanning are performed. of camera can be controlled.
또한, 본 발명에 따른 입체형상 측정장치는 상기 기준미러(400)의 미세 이동을 위한 미세구동장치(600)의 제어를 위해 미세 구동 제어부(미도시);를 추가적으로 포함할 수 있고, 상기 미세 구동 제어부는 미세구동장치(600)를 독립적으로 제어할 수 있고, 또는 상기 미세구동장치(600)의 제어를 상기 동기화 보드(500)에서의 각각의 카메라 촬영을 위한 트리거 발생을 위한 제어 신호와 결합하여 동시에 제어할 수도 있다.In addition, the three-dimensional shape measurement device according to the present invention may additionally include a fine drive controller (not shown) for controlling the fine drive device 600 for fine movement of the reference mirror 400, and the fine drive The control unit may independently control the micro-drive device 600, or combine the control of the micro-drive device 600 with a control signal for generating a trigger for each camera photographing in the synchronization board 500 can be controlled at the same time.
또한, 본 발명에 따른 입체형상 측정장치는 상기 제1 찰영부(501) 및 제2 촬영부(502)를 통해 촬영된 영상을 처리할 수 있는 역할을 하는 영상 제어부(미도시)를 추가적으로 포함할 수 있다.In addition, the three-dimensional shape measurement device according to the present invention may additionally include an image controller (not shown) that serves to process images captured through the first screen capture unit 501 and the second capture unit 502. can
또한, 본 발명에 따른 상기 입체형상 측정장치가 제1 촬영부(501) 및 제2 촬영부(502)를 포함하는 경우에, 상기 입체형상 측정장치는 i) 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득;하도록 구성될 수 있다.In addition, when the three-dimensional shape measuring device according to the present invention includes the first capturing unit 501 and the second capturing unit 502, the three-dimensional shape measuring device includes i) the first capturing unit 501 and After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using any one of the second capture units 502, among the first capture unit 501 and the second capture unit 502 Using the other one, the light emitted from the light source unit 100 and irradiated and reflected on the surface of the object to be measured through the first light splitter 200 and the reference mirror 400 through the first light splitter 200 Obtain 3D shape information by measuring a plurality of images by light of interference fringes in which light from an optical path obtained by reflection in ) is combined; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502; iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. obtain; can be configured to.
이 경우에, 바람직하게는 상기 기준미러(400)를 이동함으로써 상기 간섭무늬의 광에 의한 영상을 다수 측정하여 측정대상물의 3차원 형상정보를 획득 할 수 있다. In this case, preferably, by moving the reference mirror 400, it is possible to obtain 3D shape information of the object to be measured by measuring a plurality of images of the light of the interference fringe.
이 경우에, 상기 기준미러(400)의 이동은 앞서 설명한 바와 같이, 미세구동장치(600)를 이용할 수 있으며, 또한, 측정 대상물의 영상내에 간섭신호가 없는 2차원 형상정보를 우선적으로 획득한 후, 상기 미세구동장치(600)를 이용하면서 기준미러(400)를 이동시켜가면서 수십 내지 수백장의 간섭신호를 포함하는 영상을 획득하여 이를 바탕으로 측정대상물의 3차원 형상정보를 획득하거나, 또는 상기 영상획득 순서의 관점에서 반대의 경우로서 측정대상물의 3차원 형상정보를 우선적으로 획득한 후 2차원 형상정보를 획득하거나, 또는 측정대상물의 3차원 형상정보를 획득하기 위해 간섭무늬의 광에 의한 영상을 다수 측정하는 과정 중에도 2차원 형상 정보를 얻는 것도 가능하다.In this case, as described above, the movement of the reference mirror 400 can be performed by using the micro-drive device 600, and after first obtaining 2D shape information without an interference signal in the image of the object to be measured. While moving the reference mirror 400 while using the micro-drive device 600, tens to hundreds of images including interference signals are obtained, and based on this, 3D shape information of the measurement object is obtained, or the image In the opposite case in terms of the acquisition order, the 3D shape information of the object to be measured is acquired first and then the 2D shape information is obtained, or the image by the light of the interference fringe is used to acquire the 3D shape information of the object to be measured. It is also possible to obtain 2D shape information during the process of multiple measurements.
한편, 본 발명에서는 측정 대상물의 표면 영상 정보를 위한 2 개의 촬영부만으로 이루어진 입체형상 측정장치로부터 확장되어, 3 개의 촬영부 또는 3 개 이상의 촬영부를 포함하는 입체 형상 측정장치로서, 이들 중 적어도 하나는 간섭신호가 없는 광을 측정하여 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 또한, 상기 간섭신호가 없는 광을 측정한 촬영부를 제외한 나머지 촬영부들 중 적어도 하나는 간섭무늬의 광에 의한 영상을 다수 획득함으로써, 3차원 형상정보를 획득하도록 구성될 수 있다. On the other hand, in the present invention, a three-dimensional shape measuring device including three or more imaging units, which is expanded from a three-dimensional shape measuring device consisting of only two photographing units for surface image information of a measurement object, at least one of which is 2D shape information of a specific surface area of the object to be measured is obtained by measuring light without an interference signal, and at least one of the remaining imaging units except for the imaging unit that measures the light without an interference signal is caused by the light of the interference fringe. By acquiring a plurality of images, it may be configured to acquire 3D shape information.
보다 상세하게는, 본 발명에 따른 입체형상 측정장치는 상기 입체형상 측정장치는 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이; 또는 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이; 에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하여 상기 제3 촬영부(503)으로 조사하며, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 또한, 상기 간섭 신호가 없는 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부(제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중 앞서 선택된 하나를 제외한 나머지 두개) 중에서 선택되는 적어도 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공할 수 있다.More specifically, the three-dimensional shape measuring device according to the present invention includes: between the optical path of the second beam splitter 300 and the first photographing unit 501; or between the optical path of the second optical splitter 300 and the second photographing unit 502; a third light splitter 303 provided in; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300. The light is divided and irradiated to the third capture unit 503, and the light captured by at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 is As light without an interference signal, it is possible to obtain 2D shape information of the measurement object through this, and also, except for the photographing unit for photographing the light without the interference signal, the remaining two photographing units (first photographing unit 501, Light captured by at least one selected from among the second capture unit 502 and the third capture unit 503 except for the previously selected one) is emitted from the light source unit 100 to form the first beam splitter 200. Light of an interference fringe in which the light irradiated and reflected on the surface of the object to be measured through the first light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined, It is possible to provide a three-dimensional shape measuring device characterized in that it can obtain the three-dimensional shape information of.
즉, 본 발명에 따른 입체형상 측정장치는 도 3에 따른 제2 촬영부의 구성에 추가하여, 제3 촬영부(502)를 추가적으로 포함할 수 있으며, 이를 도 8 내지 도 10에 따른 미라우 타입의 입체 형상 측정 장치를 참조하여 상세하게 설명할 수 있다.That is, the three-dimensional shape measuring device according to the present invention may additionally include a third capturing unit 502 in addition to the configuration of the second capturing unit according to FIG. A detailed description can be made with reference to a Mirau-type three-dimensional shape measuring device.
도 8은 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이고, 도 9는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이며, 도 10은 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 하부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되는 입체형상 측정장치의 구성을 나타낸 도면이다. 8 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter 300 ) and the third light splitter 303 is provided between the optical path of the second photographing unit 502, and FIG. It consists of two photographing parts, and the second light splitter 300 is located in the upper optical path of the first light splitter 200, and is located between the second light splitter 300 and the light path of the first photographing part 501. 10 is a view showing the configuration of a three-dimensional shape measuring device equipped with a 3 beam splitter 303, and FIG. 10 is composed of three photographing units according to another embodiment of the present invention, and the second beam splitter 300 is Configuration of a three-dimensional shape measuring device located in the lower optical path of the first optical splitter 200 and provided with the third optical splitter 303 between the second optical splitter 300 and the optical path of the second photographing unit 502 is a drawing showing
즉, 도 8 및 도 9의 경우에 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 도 10의 경우에는 제2 광분할기(300)가 제1 광분할기(200)의 하부 방향 광경로에 위치하며, 도 8은 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되고, 도 9는 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이에 제3 광분할기(303)가 구비되며, 도 10은 도 8과 마찬가지로 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되는 구성을 나타내고 있다.That is, in the case of FIGS. 8 and 9, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and in the case of FIG. 10, the second optical splitter 300 is the first optical splitter. 200, and in FIG. 8, a third light splitter 303 is provided between the second light splitter 300 and the light path of the second photographing unit 502, and FIG. A third beam splitter 303 is provided between the optical path of the 2 beam splitter 300 and the first capture unit 501, and FIG. 10 shows the second optical splitter 300 and the second capture unit ( 502) shows a configuration in which a third optical splitter 303 is provided between optical paths.
예컨대, 도 8에 따른 입체형상 측정장치는 제2 광분할기(300)와 제2 찰영부(502)의 광경로 사이에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하되, 제3 광분할기(303)로부터 반사되어 분할된 광은 상기 제3 촬영부(503)으로 조사하고, 제3 광분할기(303)를 통과되어 분할된 광은 제2 촬영부(502)로 조사되게 된다.For example, the three-dimensional shape measurement device according to FIG. 8 includes a third light splitter 303 provided between the second light splitter 300 and the optical path of the second projection unit 502; and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300. The light is split, and the split light reflected from the third beam splitter 303 is irradiated to the third capture unit 503, and the split light passing through the third beam splitter 303 is split into the second capture unit ( 502) will be investigated.
이 경우에, 도 7에 따른 입체형상 측정장치내 상기 제1 촬영부, 제2 촬영부 및 제3 촬영부에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 해당되나, 이들 중 적어도 하나를 간섭 신호가 없는 광을 촬영하도록, 각각의 카메라의 초점을 서로 상이하게 함으로써, 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없는 광을 촬영하여 측정대상물의 2차원 표면 영상을 획득하며, 상기 간섭 신호가 없는 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있도록 한다.In this case, the light photographed by the first, second, and third photographing units in the three-dimensional shape measuring device according to FIG. 7 is emitted from the light source unit 100 to form the first beam splitter 200. It corresponds to the light of the interference pattern in which the light irradiated and reflected on the surface of the measurement object through the first light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined. By setting the focus of each camera to be different from each other so that at least one of the cameras captures light without an interference signal, the photographing unit that photographs the light without an interference signal captures the light without an interference signal to obtain a two-dimensional surface image of the object to be measured. , and the light photographed by at least one selected from the remaining two photographing units excluding the photographing unit photographing the light without the interference signal is emitted from the light source unit 100 and passes through the first optical splitter 200 to measure the object. Light of an interference fringe in which the light irradiated and reflected on the surface of and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first optical splitter 200 are combined, through which the three-dimensional object to be measured is obtained. It enables the acquisition of shape information.
즉, 도 8에 따른 3개의 촬영부로 구성된 입체형상 측정장치는 제2 광분할기(300)와 제2 찰영부(502)의 광경로 사이에 추가의 광분할기로서 제3 광분할기(303)를 구비하고 이로부터 분할되어 반사되는 광을 추가의 촬영부에 의해 영상정보를 부가적으로 얻을 수 있으며, 이러한 구성으로서 본 발명은 상기 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 1 내지 n개(n은 100 이하의 자연수), 바람직하게는 1 내지 8개, 더욱 바람직하게는 1 내지 5개, 더욱 바람직하게는 1 내지 3개의 광분할기 및 이에 대응하는 추가로 구비될 각각의 촬영부를 포함할 수 있으며, 이에 따라 각각의 촬영부에서는 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광을 별도의 카메라로서 촬영할 수 있어, 이를 통해 개선된 측정 속도. 다양한 수평 분해능 및 측정 모듈의 다이나믹 레인지를 극대화 시킬 수 있는 효과가 있고, 이와는 별도로 상기 추가되는 촬영부를 포함하여 전체의 촬영부 중 적어도 하나는 간섭 신호가 없는 광을 촬영할 수 있도록 하여, 측정대상물의 2차원 표면 영상을 획득하도록 구성할 수 있으며, 이는 도 9 및 도 10에 따른 입체형상 측정장치에서도 동일하게 적용될 수 있다. That is, the three-dimensional shape measuring device composed of three photographing units according to FIG. 8 includes a third optical splitter 303 as an additional optical splitter between the optical path of the second beam splitter 300 and the second projection unit 502 And the divided and reflected light can be additionally obtained as image information by an additional photographing unit, and as such a configuration, the present invention provides an optical path of the second optical splitter 300 and the second photographing unit 502. Between 1 to n (n is a natural number of 100 or less), preferably 1 to 8, more preferably 1 to 5, still more preferably 1 to 3 optical splitters and corresponding additionally provided. It may include each photographing unit, and accordingly, in each photographing unit, the light irradiated and reflected on the surface of the object to be measured and an optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 Improved measurement speed through the ability to capture the light of the interference fringe combined with the light by a separate camera. There is an effect of maximizing various horizontal resolutions and dynamic range of the measurement module, and separately from this, at least one of the entire photographing units, including the additional photographing unit, can photograph light without an interference signal, so that the measurement object 2 It can be configured to acquire a dimensional surface image, and this can be equally applied to the three-dimensional shape measuring device according to FIGS. 9 and 10.
예컨대, 도 9에서는 상기 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이에 1 내지 n개(n은 100 이하의 자연수), 바람직하게는 1 내지 8개, 더욱 바람직하게는 1 내지 5개, 더욱 바람직하게는 1 내지 3개의 광분할기 및 이에 대응하는 추가로 구비될 각각의 촬영부를 포함할 수 있으며, 이에 따라 각각의 촬영부에서는 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광을 별도의 카메라로서 촬영하되, 상기 촬영부들 중에 적어도 하나는 간섭신호가 없는, 측정대상물의 2차원 표면 정보를 획득할 수 있도록 구성할 수 있다. For example, in FIG. 9, 1 to n (n is a natural number of 100 or less), preferably 1 to 8, more preferably 1 to n optical paths between the second optical splitter 300 and the first photographing unit 501. may include 1 to 5, more preferably 1 to 3 light splitters and each photographing unit to be additionally provided corresponding thereto, and accordingly, each photographing unit irradiates and reflects light on the surface of the object to be measured. A separate camera captures the light of the interference pattern in which the light of the optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400 is combined, and at least one of the photographing units is an interference signal It can be configured to acquire the 2D surface information of the object to be measured.
또한, 상기 도 10에서도 상기 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 1 내지 n개(n은 100 이하의 자연수), 바람직하게는 1 내지 8개, 더욱 바람직하게는 1 내지 5개, 더욱 바람직하게는 1 내지 3개의 광분할기 및 이에 대응하는 추가로 구비될 각각의 촬영부를 포함할 수 있으며, 이에 따라 각각의 촬영부에서는 측정 대상물의 표면에 조사되어 반사된 광과, 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광을 별도의 카메라로서 촬영하되, 상기 촬영부들 중에 적어도 하나는 간섭신호가 없는, 측정대상물의 2차원 표면 정보를 획득할 수 있도록 구성할 수 있다. 10, 1 to n (n is a natural number of 100 or less), preferably 1 to 8, more preferably 1 to n optical paths between the second optical splitter 300 and the second photographing unit 502. Preferably, it may include 1 to 5, more preferably 1 to 3 light splitters and each photographing unit to be additionally provided corresponding thereto. Accordingly, each photographing unit irradiates and reflects on the surface of the object to be measured. The two-dimensional surface of the object to be measured, in which at least one of the photographing units has no interference signal, while capturing the light of the interference pattern in which the light and the light of the optical path obtained by being reflected from the reference mirror 400 are combined with a separate camera. It can be configured to obtain information.
여기서, 본 발명에 따른 입체형상 측정장치가 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하는 경우에, 상기 동기화 보드(500)는 제1 촬영부 내지 제3 촬영부의 각각의 카메라의 촬영을 위해 트리거를 발생시킬 수 있고, 이에 더하여 본 발명에서 상기 제3 촬영부에 더하여 추가적으로 별도의 촬영부를 포함함으로써, 총 n개의 촬영부를 포함하는 경우에 추가적으로 포함되는 총 n개의 카메라의 촬영을 위해 트리거를 발생시킬 수 있다. Here, when the three-dimensional shape measurement device according to the present invention further includes a synchronization board 500 generating a trigger for capturing each camera included in each photographing unit, the synchronization board 500 first A trigger can be generated for each camera of the photographing unit to the third photographing unit, and in addition to this, in the present invention, by including a separate photographing unit in addition to the third photographing unit, in the case of including a total of n photographing units A trigger may be generated for photographing of a total of n additionally included cameras.
또한, 상기 입체형상 측정장치내 제3 촬영부는 제1 촬영부 및 제2 촬영부와 마찬가지로 카메라 및 튜브렌즈를 포함할 수 있다.In addition, the third capture unit in the three-dimensional shape measuring device may include a camera and a tube lens similarly to the first capture unit and the second capture unit.
또한, 상기 입체형상 측정장치가 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503)를 포함하는 경우에, 상기 입체형상 측정장치는 i) 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 간섭 신호가 없는 측정대상물의 특정한 표면 영역의 2차원 형상 정보를 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 간섭무늬의 광에 의한 영상을 다수 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 간섭무늬의 광에 의한 영상을 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득;하도록 구성될 수 있다. In addition, when the three-dimensional shape measuring device includes the first capturing unit 501, the second capturing unit 502, and the third capturing unit 503, the three-dimensional shape measuring device i) the first capturing unit 501, the second capture unit 502, and the third capture unit 503 are used to obtain 2D shape information of a specific surface area of a measurement object without an interference signal, and then the interference signal The object to be measured is emitted from the light source unit 100 through the first optical splitter 200 by using at least one of the two remaining capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without By measuring a plurality of images by the light of the interference fringes in which the light irradiated and reflected on the surface of and the light obtained by the optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400 are combined, 3 obtain dimensional shape information; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe. obtain; iii) Alternatively, while measuring a plurality of images by light of interference fringes using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503, the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again. Acquiring 3D shape information by measuring an image by light of; may be configured to.
이 경우에도, 바람직하게는 상기 기준미러(400)를 이동함으로써 상기 간섭무늬의 광에 의한 영상을 다수 측정하여 측정대상물의 3차원 형상정보를 획득 할 수 있다. Even in this case, preferably, by moving the reference mirror 400, it is possible to acquire 3D shape information of the object to be measured by measuring a plurality of light images of the interference fringes.
한편, 본 발명에 따른 입체 형상 측정장치내 제2 광분할기(300), 제2 촬영부(502), 제3 광분할기(303) 및 추가의 광분할기, 제3 촬영부(503) 및 추가의 촬영부는 종래기술에 따른 입체 형상 측정 장치와 대별되는 본 발명에서 추가된 고유의 구성요소로서, 이들을 포함함으로써, 하나의 미세구동장치와 이에 연동된 복수의 촬영부(카메라)를 이용하여, 본 발명은 측정 대상물의 높이 정보에 따라 분할된 구간별로 입체형상 측정장치의 스텝이동에 따른 스캔 과정에서, 각 스텝에서의 스캔 과정시 다수의 영상 정보를 동시에, 또는 근접한 시간차를 두고 신속히 획득함으로써, 기존의 단일 카메라에 따른 단일 영상 정보와 대비하여, 개선된 측정 속도. 다양한 수평 분해능 및 측정 모듈의 다이나믹 레인지를 극대화 시킬 수 있는 효과가 있다. Meanwhile, the second beam splitter 300, the second capture unit 502, the third beam splitter 303 and additional beam splitters, the third capture unit 503 and the additional The photographing unit is a unique component added in the present invention, which is largely differentiated from the three-dimensional shape measuring device according to the prior art. In the scanning process according to the step movement of the three-dimensional shape measuring device for each section divided according to the height information of the object to be measured, by quickly acquiring a plurality of image information simultaneously or with a close time difference during the scanning process at each step, Improved measurement speed, as opposed to single image information from a single camera. It has the effect of maximizing the dynamic range of various horizontal resolutions and measurement modules.
보다 구체적으로, 본 발명에 따른 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고, 또한, 각각의 촬영부는 각각 동일한 배율의 영상정보 또는 동일한 밝기의 영상정보를 획득할 수 있도록 구성되며, 상기 동기화 보드에서 각각의 촬영부내 카메라에 순차적으로 트리거를 발생시킴으로써, 단일의 촬영부를 가지는 경우보다 스캔속도를 증가시킬 수 있다.More specifically, the three-dimensional shape measurement apparatus according to the present invention further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and each photographing unit has the same magnification. It is configured to acquire image information or image information of the same brightness, and by sequentially generating triggers to cameras in each capturing unit in the synchronization board, the scan speed can be increased compared to the case of having a single capturing unit.
또한, 본 발명에 따른 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고, 또한, 각각의 촬영부 중 적어도 2 개는 서로 상이한 배율의 튜브 렌즈 또는 서로 상이한 배율의 카메라내 렌즈를 가짐으로써, 측정 대상물의 특정한 표면 영역간의 서로 상이한 배율의 영상을 동시에 획득할 수 있다. In addition, the three-dimensional shape measurement apparatus according to the present invention further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and at least two of each photographing unit By having tube lenses having different magnifications or lenses in the camera having different magnifications, images of different magnifications between specific surface areas of the object to be measured may be simultaneously obtained.
또한, 본 발명에 따른 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고, 또한, 각각의 촬영부 중 적어도 2 개는 측정 대상물의 특정한 표면 영역을 서로 상이한 밝기로 측정함으로써, 측정 대상물의 특정한 표면 영역간의 서로 상이한 밝기의 영상을 동시에 획득할 수 있다. 이 경우에 바람직하게는, 각각의 촬영부내 카메라가 각각 동일한 배율의 튜브 렌즈 또는 서로 동일한 배율의 카메라내 렌즈를 가질 수 있다. In addition, the three-dimensional shape measurement apparatus according to the present invention further includes a synchronization board 500 generating a trigger for shooting of each camera included in each photographing unit, and at least two of each photographing unit By measuring specific surface regions of the measurement object with different brightness, images of different brightness between specific surface regions of the measurement object may be simultaneously obtained. In this case, preferably, each camera in the imaging unit may have a tube lens having the same magnification or an intra-camera lens having the same magnification.
예컨대, 본 발명의 일실시예에 따른 2개의 촬영부로 구성된 입체형상 측정장치는 종래 기술에 따른 단일의 촬영부(카메라) 대비 두 개의 촬영부(카메라)를 구비함으로써, 스캔속도를 획기적으로 향상시킬 수 있는 효과를 가질 수 잇다. 즉, 본 발명에 따른 입체 형상 측정장치가 두 개의 촬영부(및 이에 따른 두 개의 카메라)를 구비하는 경우에, 미세구동장치가 이송함에 따라서 등간격의 미소 이동마다 동기화 보드에서 트리거를 발생시킬 수 있으며, 상기 동기화 보드에서 발생된 트리거를 각각의 두 개의 촬영부(카메라)가 번갈아가면서 받아서 영상을 획득하면 종래 기술에 따른 단일 촬영부(카메라)에 비해 거의 두 배의 빠른 속도로 측정이 가능하다. For example, a three-dimensional shape measuring device composed of two photographing units according to an embodiment of the present invention has two photographing units (cameras) compared to a single photographing unit (camera) according to the prior art, thereby dramatically improving the scan speed. can have an effect That is, when the three-dimensional shape measuring device according to the present invention includes two photographing units (and two cameras accordingly), the synchronization board can generate a trigger for every minute movement at equal intervals as the microdrive device moves. In addition, when each of the two photographing units (cameras) alternately receives the trigger generated from the synchronization board and acquires an image, it is possible to measure at almost twice the speed compared to a single photographing unit (camera) according to the prior art. .
즉, 영상측정을 위해 필요한 시간에 있어, 미세구동장치의 제어 및 이동시간과 동기화 보드 등의 제어신호는 매우 짧은 시간이 필요함에 비하여 실제의 광학 카메라 촬영의 경우에 카메라내 셔터 스피드의 한계, 연속 촬영을 위한 준비시간 등의 필요 등에 따라 실제적으로 촬영에 필요한 시간은 미세구동장치의 제어 및 이동시간에 비해 상대적으로 긴 시간에 대당되며, 본 발명에서는 미세구동장치가 이송함에 따라서 등간격의 미소 이동시 복수의 카메라를 번갈아 가면서 사용함에 따라 단일 촬영부(카메라)를 이용한 경우에 카메라 자체의 지연에 의한 문제를 해결할 수 있어, 총 필요한 영상정보의 획득시간이 획기적으로 줄어들 수 있다.That is, in the time required for image measurement, the control signals such as the control and movement time of the micro-drive device and the synchronization board require a very short time. According to the need for preparation time for shooting, etc., the time actually required for shooting is relatively long compared to the control and movement time of the micro-drive device, and in the present invention, as the micro-drive device moves, By alternately using a plurality of cameras, it is possible to solve the problem caused by the delay of the camera itself in the case of using a single photographing unit (camera), and thus the total required image information acquisition time can be drastically reduced.
예컨대, 본 발명에 따른 2개의 촬영부를 구비한 입체 형상 측정장치의 경우에 입체 형상정보를 위한 총 영상의 수로서 100장의 영상이 필요할 때, 각 촬영부내 카메라는 50장만 찍으면 되기 때문에서 단일의 촬영부(카메라)를 사용할 때 보다 영상획득시간이 거의 반정도로 줄어들 수 있는 장점을 가진다.For example, in the case of a three-dimensional shape measuring device having two photographing units according to the present invention, when 100 images are required as the total number of images for three-dimensional shape information, the camera in each photographing unit only needs to take 50 images, so a single photograph is taken. It has the advantage that the image acquisition time can be reduced by almost half compared to the case of using a camera (camera).
또한, 본 발명에 따른 입체 형상 측정장치는 복수의 촬영부(카메라)를 통해 종래 기술에 따른 단일의 촬영부(카메라)만을 포함하는 입체 형상 측정장치에 비해 다양한 수평 분해능 및 측정 모듈의 다이나믹 레인지를 극대화 시킬 수 있는 효과가 있다.In addition, the three-dimensional shape measuring device according to the present invention has a variety of horizontal resolution and dynamic range of the measurement module compared to the three-dimensional shape measuring device including only a single photographing unit (camera) according to the prior art through a plurality of photographing units (cameras). There is an effect that can be maximized.
이를 보다 구체적으로 설명하면, 본 발명에 따른 2 개의 촬영부(카메라)로 구성된 입체형상 측장장치에 있어, 각각의 촬영부(카메라)에 따른 영상배율이 다른 경우에 대해 설명하면, 상기 제1 촬영부(501)는 고배율을 촬영하고 상기 제2 촬영부(502)는 저배율을 촬영하여, 서로 배율이 상이한 촬영부(카메라)를 가지는 경우에, 미세구동장치의 이동에 따라서 등간격의 미소 이동마다 동기화 보드(500)가 각각의 카메라의 촬영을 위해 트리거를 발생시키고, 이때 각각의 카메라가 그 트리거에 따라 각각 동시에 영상을 획득함으로써, 한 번의 스캔으로 제1 촬영부(501)에서는 좁은 면적에 대한 고배율의 영상정보를 제공할 수 있고, 제2 촬영부(502)에서는 넓은 면적에 대한 저배율의 영상정보를 제공할 수 있도록 구성하여 측정 대상물의 특정한 표면 영역의 다른 배율의 영상을 동시에 획득 할 수 있는 장점이 있다.Explaining this in more detail, according to the present invention In a three-dimensional shape measuring device composed of two photographing units (cameras), the case in which the image magnification is different according to each photographing unit (camera) is described. 2 The photographing unit 502 photographs at a low magnification, and in the case of having photographing units (cameras) having different magnifications, the synchronization board 500 photographs each camera at every minute movement at equal intervals according to the movement of the micro-drive device. A trigger is generated, and at this time, each camera simultaneously acquires an image according to the trigger, so that the first photographing unit 501 can provide high-magnification image information for a small area with one scan. The second photographing unit 502 is configured to provide low-magnification image information for a large area, and thus has the advantage of simultaneously acquiring images of different magnifications of a specific surface area of the object to be measured.
또한, 본 발명에 따른 2개의 촬영부로 구성된 입체형상 측장장치에서 각각의 촬영부(카메라)에 따른 영상의 밝기가 다른 경우에 대해 설명하면, 상기 제1 촬영부(501)는 어두운 영상을 촬영하고 상기 제2 촬영부(502)는 이보다 밝은 영상을 촬영할 수 있도록 구성하여, 영상의 밝기를 서로 다르게 측정한 촬영부(카메라)를 가지는 경우에, 미세구동장치의 이동에 따라서 등간격의 미소 이동마다 동기화 보드(500)가 각각의 카메라의 촬영을 위해 트리거를 발생시키고, 이때 각각의 카메라가 그 트리거에 따라 각각 동시에 영상을 획득함으로써, 제1 촬영부(501)에서는 카메라의 노출시간을 짧게 촬영(또는, 밝기 조절 필터(예 : ND 필터) 등을 사용하여 촬영)하여 노출이 부족하도록 촬영된 영상정보를 제공할 수 있고, 상기 제2 촬영부(502)에서는 카메라의 노출시간을 길게 촬영(또는, 밝기 조절 필터(예 : ND 필터) 등을 사용하지 않고 촬영)하여 노출이 많은 영상정보를 제공할 수 있도록 구성하여 측정 대상물의 특정한 표면 영역내의 다양한 밝기를 갖는 영상을 동시에 획득 할 수 있어, 이를 통하여 측정 대상물내 특정 영역에서의 반사율이 다른 영역이 있는 경우에 이를 측정할 수 있으며, 이를 통한 다이나믹 레인지를 극대화 시킬 수 있는 효과가 있다.In addition, in the three-dimensional shape measuring device composed of two photographing units according to the present invention, when the brightness of the image according to each photographing unit (camera) is different, the first photographing unit 501 captures a dark image, When the second photographing unit 502 is configured to capture a brighter image and has a photographing unit (camera) that measures the brightness of the image differently, each small movement at equal intervals according to the movement of the micro-drive device. The synchronization board 500 generates a trigger for each camera to shoot, and at this time, each camera simultaneously acquires an image according to the trigger, so that the first capture unit 501 shortens the exposure time of the camera ( Alternatively, it is possible to provide information on an image captured so that the exposure is insufficient by using a brightness control filter (eg, ND filter), etc., and the second capture unit 502 takes a long exposure time of the camera (or , It is configured to provide high-exposure image information by taking pictures without using a brightness control filter (eg, ND filter), etc., so that images with various brightness within a specific surface area of the measurement object can be acquired at the same time. Through this, it is possible to measure this when there is a different area of the reflectance in a specific area within the measurement object, and through this, there is an effect of maximizing the dynamic range.
또한, 본 발명에 따른 입체형상 측정장치는, 적어도 하나의 촬영부는 측정대상물의 3차원 형상정보를 획득하기 위해 간섭신호를 포함하는 광을 측정하여 다수의 영상정보를 획득하고, 이와는 별개로 또 다른 하나 이상의 촬영부는 간섭신호가 없이 깨끗한 측정 대상물의 2차원 형상 정보를 추가적으로 얻음으로써, 상기 간섭신호를 포함하지 않는 광의 경우에 영상의 이미지가 간섭무늬를 포함하지 않음으로써, 측정대상물의 표면상태를 보다 깨끗하고 선명하게 얻을 수 있어, 작업자가 보다 선명한 측정 대상물의 2차원 이미지를 활용할 수 있는 장점을 가진다.In addition, in the three-dimensional shape measurement apparatus according to the present invention, at least one photographing unit obtains a plurality of image information by measuring light including an interference signal in order to obtain three-dimensional shape information of a measurement object, and separately from this, another One or more photographing units additionally obtain 2D shape information of a clean object to be measured without an interference signal, and in the case of light that does not contain the interference signal, the image of the image does not include an interference fringe, thereby making the surface state of the object to be measured more clearly. Since it can be obtained cleanly and clearly, the operator has the advantage of being able to utilize a clearer two-dimensional image of the object to be measured.
이를 도 11을 통해 설명하면, 도 11은 본 발명에 따른 입체 형상 측정장치에 의해 얻어지는 간섭신호가 있는 경우와 간섭신호가 없는 경우의 영상 정보를 나타낸 사진으로서, 보다 상세하게는, 본 발명의 일실시예에 따른 2개의 촬영부로 구성된 입체형상 측정장치에 있어서, 제1 촬영부내 카메라에 의해 간섭신호를 포함하는 광에 의해 얻어지는 영상(우측 영상) 및 제2 촬영부내 카메라에 의해 간섭신호를 포함하지 않는 광에 의해 얻어지는 영상(좌측 영상)을 각각 나타낸 사진이다.11, FIG. 11 is a photograph showing image information obtained by the three-dimensional shape measuring device according to the present invention when there is an interference signal and when there is no interference signal, and more specifically, one of the present invention In the three-dimensional shape measuring device composed of two photographing units according to the embodiment, an image (right image) obtained by light containing an interference signal by a camera in the first photographing unit and not including an interference signal by a camera in the second photographing unit It is a photograph showing each image (left image) obtained by the light not showing.
상기 도 11에서 나타난 바와 같이, 상기 제2 촬영부(502)에서는 간섭신호를 포함하지 않음으로써, 측정대상물의 2차원 정보를 보다 명확하고 깨끗하게 얻을 수 있으며, 이를 통해 사용자가 측정 대상물의 정보를 보다 명확히 인지한 상태에서, 측정대상물의 3차원 형상정보를 얻기위해서, 상기 제1 촬영부(501)에서는 간섭신호를 포함하는 측정대상물의 영상 정보를 얻고 이후에 상기 기준미러(400)를 이동하면서, 상기 또 다른 위치에서 간섭신호를 포함하는 측정대상물의 영상 정보를 얻고 이들을 종합하여 측정 대상물의 3차원 형상 정보를 획득할 수 있다.As shown in FIG. 11, since the second capture unit 502 does not include an interference signal, it is possible to obtain 2D information of the object to be measured more clearly and cleanly, through which the user can obtain more information about the object to be measured. In a clearly recognized state, in order to obtain 3D shape information of the measurement object, the first photographing unit 501 obtains image information of the measurement object including the interference signal and then moves the reference mirror 400, 3D shape information of the measurement object may be obtained by obtaining image information of the measurement object including the interference signal from the other location and synthesizing them.
한편, 본 발명에 따른 입체형상 측정장치가 제2 광분할기(300)와 제2 촬영부(502)를 포함하는 경우에, 이는 상기 제2 광분할기(300)와 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, 상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되도록 입체형상 측정장치를 구성할 수 있다. On the other hand, when the three-dimensional shape measuring device according to the present invention includes the second light splitter 300 and the second capture unit 502, this is By additionally providing a reflective mirror 350 between optical paths, the light split and irradiated from the second light splitter 300 is reflected by the reflective mirror 350 and irradiated to the second photographing unit 502 in a three-dimensional manner. A shape measuring device can be configured.
이를 도 12 및 도 13을 참조하여 설명하면, 도 12는 본 발명의 또 다른 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하며, 제2 광분할기(300)와 제2촬영부(502) 사이에 반사미러(350)를 포함하는 입체형상 측정장치의 구성을 나타낸 도면으로서, 상기 반사미러(350)의 도입을 통해 제2 촬영부의 위치를 변경할 수 있어, 입체 형상 측정장치의 전체 구조 또는 형상을 변경할 수 있다. 12 and 13, FIG. 12 shows that the second optical splitter 300 is located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention, As a diagram showing the configuration of a three-dimensional shape measuring device including a reflective mirror 350 between the second beam splitter 300 and the second capturing unit 502, the second capturing unit through the introduction of the reflective mirror 350 Since the position can be changed, the overall structure or shape of the three-dimensional shape measuring device can be changed.
여기서, 본 발명에 따른 상기 반사미러(350)는 상기 제2 광분할기(300)와 이격되어 위치하며, 제2 광분할기(300)로부터 반사되어 분할된 광을 제2 촬영부(502)로 반사하는 역할을 하게 된다.Here, the reflection mirror 350 according to the present invention is positioned apart from the second light splitter 300, and reflects the divided light reflected from the second light splitter 300 to the second photographing unit 502. will play a role
또한, 도 13은 본 발명의 또 다른 일실시예에 따른, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하며, 제2 광분할기(300)와 제2촬영부(502) 사이에 반사미러(350)를 포함하는, 리닉 타입의 입체형상 측정장치의 구성을 나타낸 도면으로서, 도 12에서와 마찬가지로 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하며, 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400)를 구비하여, 상기 제1 촬영부(501)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 통과하여 분할된 광을 촬영하며, 상기 제2 촬영부(502)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 반사하여 분할된 후, 상기 반사미러(350)로부터 반사된 광을 촬영하며, 이 때, 상기 제1 촬영부 및 제2 촬영부에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 해당하며, 상기 제1 촬영부 및 제2 촬영부 중 하나는 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 나머지 하나는 간섭신호를 포함하는 측정 대상물의 특정한 표면 영역의 3차원 형상 정보를 획득하도록 구성할 수 있다.13 shows that the second optical splitter 300 is located in the upper optical path of the first optical splitter 200 according to another embodiment of the present invention, and the second optical splitter 300 and the second optical splitter 300 This is a diagram showing the configuration of a linic-type three-dimensional shape measuring device including a reflection mirror 350 between photographing units 502, in which the second beam splitter 300 is the first beam splitter 200, as in FIG. A reference mirror 400 located in an optical path in an upper direction of and facing the light source unit and located in the other direction of the first optical splitter 200 is provided, so that the first photographing unit 501 is the first optical splitter 200 passes through the second beam splitter 300 and captures the split light, and the second photographing unit 502 is irradiated from the first beam splitter 200 and passes through the second beam splitter 300 After being divided by reflection, the light reflected from the reflective mirror 350 is photographed. At this time, the light captured by the first photographing unit and the second photographing unit is emitted from the light source unit 100, respectively, to capture the first image. The light of the interference pattern in which the light irradiated and reflected on the surface of the object to be measured through the light splitter 200 and the light obtained by the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined. , wherein one of the first capture unit and the second capture unit acquires 2D shape information of a specific surface area of the measurement object without an interference signal, and the other acquires 2D shape information of a specific surface area of the measurement object including an interference signal. It can be configured to acquire 3D shape information of.
즉, 본 발명에 따른 입체형상 측정장치가 제1 광분할기, 제2 광분할기(300), 제1 촬영부 및 제2 촬영부(502)를 포함하며, 상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비하는 경우에, 본 발명은 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공할 수 있다. That is, the three-dimensional shape measuring device according to the present invention includes a first beam splitter, a second beam splitter 300, a first capture unit and a second capture unit 502, and the second beam splitter 300 and the second beam splitter 300 2 In the case of additionally providing a reflection mirror 350 between the optical paths of the photographing unit 502, the present invention emits light, and the light source unit 100 positioned in one direction of the first light splitter; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned on the other side of the first beam splitter 200 facing the light source unit; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object that has passed through the first light splitter 200; It is located in the optical path in the lower direction of the light splitter 200, and the light reflected from the surface of the object to be measured is irradiated, splitting the light in the direction of the first light splitter 200 and the second photographing unit 502, respectively; a second light splitter 300; and a second capture unit 502 that captures the light reflected from the second beam splitter 300, wherein any one selected from the first capture unit 501 and the second capture unit 502 is included. The light photographed in is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained, and the photograph is taken by the other one selected from the first photographing unit 501 and the second photographing unit 502. The light emitted from the light source unit 100, passed through the first light splitter 200, irradiated onto the surface of the object to be measured and reflected, and reflected from the reference mirror 400 through the first light splitter 200. It is possible to provide a three-dimensional shape measuring device characterized in that it is possible to obtain three-dimensional shape information of a measurement object through the light of the interference fringe obtained by combining the light by the optical path obtained by this.
예컨대, 상기 제1 촬영부(501)는 간섭신호가 있는 광을 촬영하여 다수의 영상을 얻음으로써, 측정 대상물의 3차원 형상 정보를 획득하고, 상기 제2 촬영부(502)는 간섭신호가 없는 광을 촬영하여 이를 통해 측정 대상물의 2차원 형상 정보를 획득하도록 할 수 있으며, 또는 앞서 기재된 바와 반대로 각각의 촬영부가 간섭신호를 포함하거나 포함하지 않는 광을 촬영하도록 구성할 수 있다. For example, the first photographing unit 501 acquires 3D shape information of a measurement object by capturing a plurality of images by photographing light having an interference signal, and the second photographing unit 502 acquires information on the 3D shape of an object without an interference signal. 2D shape information of the object to be measured may be obtained by photographing light, or as described above, each photographing unit may photograph light including or not including an interference signal.
또한, 상기 반사미러(350)을 포함하는 입체형상 측정장치의 일 실시예로서, 본 발명은 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); 상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); 상기 제1 광분할기(200)와 측정 대상물(700) 사이 또는 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, 상기 입체형상 측정장치는 측정 대상물의 표면으로부터 반사되고 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 반사미러(350) 방향으로 각각 광을 분할하며, 상기 제1 광분할기(200)와 제1 촬영부(501)사이의 광경로에 위치하는 제2 광분할기(300); 상기 제2 광분할기(300)와 이격되어 위치하며, 제2 광분할기(300)로부터 반사되어 분할된 광을 하기 제2 촬영부(502)로 반사하는 반사미러(350); 및 상기 반사미러(350)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함함으로써, 상기 제1 촬영부(501)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 통과하여 분할된 광을 촬영하며, 상기 제2 촬영부(502)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 반사하여 분할된 후, 상기 반사미러(350)로부터 반사된 광을 촬영하며, 상기 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치를 제공할 수 있다. In addition, as an embodiment of the three-dimensional shape measuring device including the reflective mirror 350, the present invention emits light, and is located in one direction of the first light splitter, the light source unit 100; A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ; a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or in the other direction of the first beam splitter 200; And a first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200; The light reflected from the surface and divided through the first beam splitter 200 is irradiated, splitting the light in the direction of the first photographing unit 501 and the reflection mirror 350, respectively, and the first beam splitter 200 ) and the second optical splitter 300 located in the optical path between the first photographing unit 501; a reflection mirror 350 positioned apart from the second beam splitter 300 and reflecting split light reflected from the second beam splitter 300 to a second capture unit 502; and a second photographing unit 502 for photographing the light reflected from the reflection mirror 350, so that the first photographing part 501 is irradiated from the first light splitter 200 to capture the second light After passing through the splitter 300 and photographing the divided light, the second photographing unit 502 is irradiated from the first light splitter 200 and is divided by reflecting the second light splitter 300, and then the reflection Photographing the light reflected from the mirror 350, the three-dimensional shape measuring device further includes a synchronization board 500 generating a trigger for photographing of each camera included in each photographing unit, and the first photographing device The light photographed by any one selected from the unit 501 and the second photographing unit 502 is emitted from the light source unit 100, passes through the first light splitter 200, and is reflected on the surface of the object to be measured. Light of an interference fringe in which light from an optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400 is combined, through which three-dimensional shape information of the object to be measured can be obtained, The light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained. It is possible to provide a three-dimensional shape measuring device that does.
또한, 본 발명에 따른 입체형상 측정장치가 제1 광분할기(200), 제2 광분할기(300), 제3 광분할기(303), 제1 촬영부, 제2 촬영부(502) 및 제3 촬영부(503)를 포함하는 경우에, 이는 상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, 상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되거나; 또는, 상기 제3 광분할기(303)과 제3 촬영부(503)의 광경로사이에 반사미러(350’)를 추가적으로 구비함으로써, 상기 제3 광분할기(303)로부터 분할되어 조사되는 광은 상기 반사미러(350’)에 의해 반사되어 제3 촬영부(503)로 조사되도록 구성할 수 있다.In addition, the three-dimensional shape measuring device according to the present invention includes a first light splitter 200, a second light splitter 300, a third light splitter 303, a first capture unit, a second capture unit 502, and a third light splitter. In the case of including the photographing unit 503, this is achieved by additionally providing a reflection mirror 350 between the optical path of the second optical splitter 300 and the second photographing unit 502, so that the second optical splitter 300 The light divided from ) and irradiated is reflected by the reflective mirror 350 and irradiated to the second photographing unit 502; Alternatively, by additionally providing a reflection mirror 350' between the optical path of the third optical splitter 303 and the third photographing unit 503, the light split from the third optical splitter 303 and irradiated is It may be configured to be reflected by the reflection mirror 350' and irradiated to the third photographing unit 503.
이를 도 14 및 도 15를 참조하여 설명하면, 도 14는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되며, 상기 제3 광분할기(303)와 제2 촬영부(502) 사이에 반사미러(350)을 포함하는 입체형상 측정장치의 구성을 나타낸 도면으로서, 이는 상기 제2 광분할기(300)와 반사미러(350)의 광경로 사이에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하되, 제3 광분할기(303)로부터 반사되어 분할된 광은 상기 제3 촬영부(503)으로 조사하고, 제3 광분할기(303)를 통과되어 분할된 광은 상기 반사미러(350)로 조사하도록 구성된다.14 and 15, FIG. 14 is composed of three photographing units according to another embodiment of the present invention, and the second optical splitter 300 is located above the first optical splitter 200. Located in the directional optical path, a third optical splitter 303 is provided between the optical path of the second optical splitter 300 and the second capturing unit 502, and the third optical splitter 303 and the second capturing unit 502 are provided. 502 is a diagram showing the configuration of a three-dimensional shape measuring device including a reflection mirror 350, which is a third optical splitter provided between the optical path of the second optical splitter 300 and the reflecting mirror 350. (303); and a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the third beam splitter 303 captures the light emitted from the second beam splitter 300. The light is divided, and the divided light reflected from the third beam splitter 303 is irradiated to the third photographing unit 503, and the divided light passing through the third beam splitter 303 is divided into the reflection mirror 350. ) is configured to investigate.
또한, 도 15는 본 발명의 또 다른 일실시예에 따른, 3개의 촬영부로 구성되며, 제2 광분할기(300)가 제1 광분할기(200)의 상부 방향 광경로에 위치하고, 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이에 제3 광분할기(303)가 구비되며, 상기 제3 광분할기(303)와 제3 촬영부(503) 사이에 반사미러(350’)을 포함하는 입체형상 측정장치의 구성을 나타낸 도면으로서, 도 15에 따른 반사미러(350’)의 도입을 통해 제3 촬영부(503)의 위치를 변경할 수 있어, 입체 형상 측정장치의 전체 구조 또는 형상을 변경할 수 있다. 15 is composed of three photographing units according to another embodiment of the present invention, the second optical splitter 300 is located in the upper optical path of the first optical splitter 200, and the second optical splitter A third beam splitter 303 is provided between the optical path of the optical path of the optical path 300 and the second capture unit 502, and a reflection mirror 350' is provided between the third optical splitter 303 and the third capture unit 503. As a diagram showing the configuration of a three-dimensional shape measuring device including a), the position of the third photographing unit 503 can be changed through the introduction of the reflection mirror 350' according to FIG. 15, and the overall structure of the three-dimensional shape measuring device Or the shape can be changed.
이 경우에, 본 발명의 일 실시예로서, 상기 입체형상 측정장치는 제2 광분할기(300)와 반사미러(350)의 광경로 사이에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며, 상기 입체형상 측정장치내 동기화 보드(500)는 제3 촬영부내 포함된 카메라의 촬영을 위해 트리거를 발생시킬 수 있으며, 상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하되, 제3 광분할기(303)로부터 반사되어 분할된 광은 상기 제3 촬영부(503)으로 조사하고, 제3 광분할기(303)를 통과되어 분할된 광은 상기 반사미러(350)로 조사하며, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며, 또한, 상기 간섭무늬의 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있다. In this case, as an embodiment of the present invention, the three-dimensional shape measuring device includes a third light splitter 303 provided between the optical path of the second light splitter 300 and the reflection mirror 350; And a third photographing unit 503 for photographing the light reflected and split from the third beam splitter 303, wherein the synchronization board 500 in the three-dimensional shape measuring device includes a camera included in the third photographing unit. A trigger may be generated for the photographing of, and the third beam splitter 303 splits the light irradiated from the second beam splitter 300, and the divided light reflected from the third beam splitter 303 The light irradiated to the third capture unit 503, passed through the third beam splitter 303, and split is irradiated to the reflection mirror 350, and the first capture unit 501 and the second capture unit 502 ) And the light photographed by at least one selected from the third photographing unit 503 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200 and reflected light, It is the light of the interference fringe in which the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 is combined, through which the three-dimensional shape information of the object to be measured can be obtained. The light captured by at least one selected from the remaining two imaging units excluding the imaging unit that photographs the light of the interference fringe is light without an interference signal, through which 2D shape information of the object to be measured can be obtained.
여기서, 본 발명에 따른 상기 반사미러(350, 350’)는 상기 제2 광분할기(300) 또는 제3 광분할기(300)와 이격되어 위치하며, 제2 광분할기(300)로부터 반사되어 분할된 광을 제2 촬영부(502)로 반사(350, 도 14 참조)하거나 또는 제3 광분할기(303)로부터 반사되어 분할된 광을 제3 촬영부(503)로 반사(350’, 도 15 참조)하는 역할을 하게 된다. Here, the reflective mirrors 350 and 350' according to the present invention are positioned apart from the second light splitter 300 or the third light splitter 300, and are reflected from the second light splitter 300 and divided. The light is reflected to the second capture unit 502 (350, see FIG. 14) or the divided light reflected from the third beam splitter 303 is reflected to the third capture unit 503 (350′, see FIG. 15). ) will play a role.
본 발명에 따른 입체형상 측정장치내 상기 반사미러(350, 350’)는 상기 도 12 내지 도 15에 따른 반사미러의 위치 이외에도, 제2 광분할기(300) 및 제3 광분할기(303)의 위치에 따른 다양한 조합 및, 미켈슨 타입, 미라우 타입 및 리닉 타입에 따라 다양하게 변형될 수 있다. The reflective mirrors 350 and 350' in the three-dimensional shape measuring device according to the present invention are the positions of the second optical splitter 300 and the third optical splitter 303 in addition to the positions of the reflective mirrors according to FIGS. 12 to 15. It can be variously modified according to various combinations and Michelson type, Mirau type, and Linic type according to.
또한, 본 발명에서의 입체형상 측정장치가 상기 반사미러(350, 350’)를 포함하는 경우에, 이는 상기 기준미러(400)의 이동을 위해 미세구동장치(600)를 추가적으로 포함할 수 있고, 상기 각각의 촬영부는 카메라 및 튜브렌즈를 각각 포함할 수 있다.In addition, when the three-dimensional shape measuring device in the present invention includes the reflective mirrors 350 and 350', it may additionally include a micro-drive device 600 to move the reference mirror 400, Each of the photographing units may include a camera and a tube lens, respectively.
또한, 상기 입체형상 측정장치가 제1 광분할기(200), 제2 광분할기(300), 제1 촬영부 및 제2 촬영부(502)를 포함하는 경우에, 상기 입체형상 측정장치는 i) 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 기준미러(400)를 이동하면서, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득;하도록 구성될 수 있다. In addition, when the three-dimensional shape measurement device includes the first light splitter 200, the second light splitter 300, the first and second capture units 502, the three-dimensional shape measurement device i) After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal by using either the first capture unit 501 or the second capture unit 502, the reference mirror 400 is moved. While using the other one of the first capture unit 501 and the second capture unit 502, the light emitted from the light source unit 100 passes through the first light splitter 200 and is irradiated onto the surface of the object to be measured and reflected. Obtaining 3D shape information or ; ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502; iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. obtain; can be configured to.
또한, 본 발명에 따른 상기 입체형상 측정장치가 제1 광분할기(200), 제2 광분할기(300), 제3 광분할기(303), 제1 촬영부, 제2 촬영부(502) 및 제3 촬영부(503)를 포함하는 경우에, 이는 i) 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, 상기 기준미러(400)를 이동하면서, In addition, the three-dimensional shape measuring device according to the present invention includes a first light splitter 200, a second light splitter 300, a third light splitter 303, a first capture unit, a second capture unit 502, and a second light splitter 502. In the case of including 3 capture units 503, this is i) the interference signal is generated by using at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503. After acquiring the 2D shape information of the specific surface area of the object to be measured, while moving the reference mirror 400,
상기 간섭 신호가 없는 측정대상물의 특정한 표면 영역의 2차원 형상 정보를 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나; ii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 간섭무늬의 광에 의한 영상을 다수 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; iii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 간섭무늬의 광에 의한 영상을 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득;할 수 있다. The first beam splitter 200 is emitted from the light source unit 100 by using at least one of the two remaining capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without the interference signal. Measurement of multiple images of light of interference fringes in which the light irradiated and reflected on the surface of the measurement object through the first optical splitter 200 and the optical path obtained by being reflected from the reference mirror 400 through the first optical splitter 200 are combined By doing so, obtaining three-dimensional shape information; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe. obtain; iii) Alternatively, while measuring a plurality of images by light of interference fringes using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503, the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again. Obtaining 3D shape information by measuring an image by light of; can be obtained.
또한, 본 발명에서의 입체형상 측정장치가 상기 반사미러(350, 350’)를 포함하는 경우에, 상기 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함할 수 있으며, 이 경우에 각각의 촬영부는 각각 동일한 배율의 영상정보 또는 동일한 밝기의 영상정보를 획득할 수 있도록 구성되며, 상기 동기화 보드에서 각각의 촬영부내 카메라에 순차적으로 트리거를 발생시킴으로써, 단일의 촬영부를 가지는 경우보다 스캔속도를 증가시킬 수 있거나, 또는 각각의 촬영부 중 적어도 2 개는 서로 상이한 배율의 튜브 렌즈 또는 서로 상이한 배율의 카메라내 렌즈를 가짐으로써, 측정 대상물의 특정한 표면 영역의 서로 상이한 배율의 영상을 동시에 획득할 수 있거나, 각각의 촬영부 중 적어도 2 개는 측정 대상물의 특정한 표면 영역을 서로 상이한 밝기로 측정함으로써, 측정 대상물의 특정한 표면 영역의 서로 상이한 밝기의 영상을 동시에 획득할 수 있다. In addition, when the three-dimensional shape measuring device in the present invention includes the reflective mirrors 350 and 350', the three-dimensional shape measuring device synchronizes generating a trigger for shooting of each camera included in each photographing unit. It may further include a board 500. In this case, each photographing unit is configured to obtain image information of the same magnification or image information of the same brightness, and sequentially from the synchronization board to the camera in each photographing unit. By generating a trigger, the scan speed can be increased compared to the case of having a single imaging unit, or at least two of each imaging unit have tube lenses of different magnifications or intra-camera lenses of different magnifications, thereby measuring Images of different magnifications of a specific surface area of the object can be acquired simultaneously, or at least two of each photographing unit measures the specific surface area of the measurement object with different brightness, so that different magnifications of the specific surface area of the measurement object can be obtained. Brightness images can be acquired simultaneously.
이상으로 본 발명은 도면에 도시된 실시 예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정해져야 할 것이다.The present invention has been described above with reference to the embodiments shown in the drawings, but this is only exemplary, and those skilled in the art can make various modifications and equivalent other embodiments. you will understand the point. Therefore, the technical protection scope of the present invention should be defined by the claims below.
본 발명에 따른 입체형상 측정장치는 기존의 단일 카메라에 따른 단일 3차원 형상 정보와 대비하여 측정대상에 대해서 2차원 정보 및 3차원 정보의 측정이 가능함으로써, 측정대상물의 특정 영역에서의 관측이 보다 효율적이면서도 편리하고 신속하게 이루어질 수 있어, 입체 형상정보 측정이 요구되는 산업분야에서 입체 형상 정보를 얻기 위한 전체적 측정시간을 감소시킬 수 있음과 동시에 사용자에게 보다 효율적인 3차원 형상정보를 측정할 수 있는 여건을 제공할 수 있다.The three-dimensional shape measuring device according to the present invention enables measurement of two-dimensional information and three-dimensional information about a measurement object compared to single three-dimensional shape information according to a conventional single camera, so that observation in a specific area of the measurement object is more accurate. It can be done efficiently, conveniently and quickly, reducing the overall measurement time to obtain three-dimensional shape information in industrial fields that require measurement of three-dimensional shape information, and at the same time enabling users to measure more efficient three-dimensional shape information can provide.

Claims (20)

  1. 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); a light source unit 100 that emits light and is positioned in one direction of the first light splitter;
    상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
    상기 제1 광분할기(200)와 측정 대상물(700) 사이, 또는 상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or opposite the light source unit to the other side of the first beam splitter 200; and
    상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, In the three-dimensional shape measurement device comprising a; first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200;
    상기 입체형상 측정장치는, 상기 제1 광분할기(200)의 상부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사되어 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할하거나; 또는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 The three-dimensional shape measurement device is located in the upper optical path of the first light splitter 200, and the light reflected from the surface of the object to be measured and split through the first light splitter 200 is irradiated, Splitting the light in the directions of the photographing unit 501 and the second photographing unit 502, respectively; Alternatively, it is located in the lower optical path of the first optical splitter 200, and the light reflected from the surface of the object to be measured is irradiated in the direction of the first optical splitter 200 and the second capturing unit 502, respectively. a second light splitter 300 that splits the light; and
    상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, Further comprising a second photographing unit 502 for photographing the light reflected from the second beam splitter 300,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며,The light photographed by any one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치. The light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200. It is the light of the interference fringe in which the reflected light and the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined, through which the 3D shape information of the object to be measured can be obtained. A three-dimensional shape measuring device characterized in that it can.
  2. 제1항에 있어서, According to claim 1,
    상기 입체형상 측정장치는 제2 광분할기(300)와 제1 촬영부(501)의 광경로 사이; 또는 제2 광분할기(300)와 제2 촬영부(502)의 광경로 사이; 에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며,The three-dimensional shape measurement device may include between the optical path of the second optical splitter 300 and the first photographing unit 501; or between the optical path of the second optical splitter 300 and the second photographing unit 502; a third light splitter 303 provided in; And a third photographing unit 503 for photographing the divided light reflected from the third beam splitter 303,
    상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하여 상기 제3 촬영부(503)으로 조사하며,The third beam splitter 303 splits the light emitted from the second beam splitter 300 and irradiates it to the third capture unit 503,
    상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며,The light captured by at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503 is light without an interference signal, through which the 2D shape information of the object to be measured is obtained. can be obtained,
    또한, 상기 간섭 신호가 없는 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치. In addition, the light photographed by at least one selected from the remaining two photographing units excluding the photographing unit photographing the light without the interference signal is emitted from the light source unit 100 and passed through the first optical splitter 200 to the surface of the measurement object. It is the light of the interference pattern in which the light irradiated and reflected is combined with the light from the optical path obtained by passing through the first light splitter 200 and being reflected from the reference mirror 400, through which the 3D shape information of the object to be measured is obtained. A three-dimensional shape measuring device characterized in that it can obtain.
  3. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 기준미러(400)의 이동을 위해 미세구동장치(600)를 추가적으로 포함하는 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measurement device, characterized in that it additionally comprises a micro-drive device (600) for the movement of the reference mirror (400).
  4. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 입체형상 측정장치는 미켈슨 타입, 미라우 타입 및 리닉 타입 중에서 선택되는 어느 하나의 타입인 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measuring device is characterized in that the three-dimensional shape measuring device is any one type selected from the Michelson type, Mirau type and Linik type.
  5. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하는 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measuring device further comprises a synchronization board (500) generating a trigger for shooting of each camera included in each photographing unit.
  6. 제1항 또는 제2항에 있어서,According to claim 1 or 2,
    상기 각각의 촬영부는 카메라 및 튜브렌즈를 각각 포함하는 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measuring device, characterized in that each of the photographing unit includes a camera and a tube lens, respectively.
  7. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 제1항에서의 제1 광분할기(200) 및 제2 광분할기(300)는 각각 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나이고,The first light splitter 200 and the second light splitter 300 in claim 1 are each one of a cubic type, a pellicle type, or a plate type,
    제2항에서의 제1 광분할기(200) 내지 제3 광분할기(300)는 각각 큐픽(Cubic)형, 박막(Pellicle)형 또는 평판형(Plate) 중 어느 하나 인 것을 특징으로 하는 입체형상 측정장치.The first to third beam splitters 200 to 300 in claim 2 are three-dimensional shapes, each of which is a Cubic type, a Pellicle type, or a Plate type. Device.
  8. 제1항에 있어서,According to claim 1,
    상기 입체형상 측정장치는, The three-dimensional shape measuring device,
    i) 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, i) After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal using either the first capture unit 501 or the second capture unit 502,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나;Obtaining 3D shape information by measuring a plurality of light images of interference fringes using the other one of the first capturing unit 501 and the second capturing unit 502;
    ii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나;ii) Alternatively, after acquiring 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502;
    iii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 하는 입체형상 측정장치. iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. Obtaining; three-dimensional shape measuring device characterized in that.
  9. 제2항에 있어서, According to claim 2,
    상기 입체형상 측정장치는 The three-dimensional shape measuring device
    i) 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, i) 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503. After obtaining
    상기 간섭 신호가 없는 측정대상물의 특정한 표면 영역의 2차원 형상 정보를 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나;3D shape information is obtained by measuring a plurality of images by light of interference fringes using at least one of the remaining two capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without the interference signal. or obtain;
    ii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 간섭무늬의 광에 의한 영상을 다수 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe. obtain;
    iii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 간섭무늬의 광에 의한 영상을 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 하는 입체형상 측정장치. iii) Alternatively, while measuring a plurality of images by light of interference fringes using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503, the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again. Obtaining three-dimensional shape information by measuring an image by light of the; three-dimensional shape measuring device characterized in that.
  10. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 간섭신호가 없는 광을 촬영하는 촬영부내 카메라와, 간섭신호를 포함하는 광을 촬영하는 촬영부내 카메라는 각각의 카메라의 초점을 서로 상이하게 함으로써, 상기 간섭신호가 없는 광을 촬영하는 촬영부에서 간섭신호가 없게 되는 것을 특징으로 하는 입체형상 측정장치. A camera in the photographing unit for photographing light without the interference signal and a camera in the photographing unit for photographing light including the interference signal are different in focus from each other, in the photographing unit for photographing the light without the interference signal. A three-dimensional shape measuring device characterized in that there is no interference signal.
  11. 제1항에 있어서, According to claim 1,
    상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, By additionally providing a reflection mirror 350 between the optical path of the second optical splitter 300 and the second photographing unit 502,
    상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되는 것을 특징으로 하는 입체형상 측정장치. The three-dimensional shape measuring device, characterized in that the light split and irradiated from the second beam splitter 300 is reflected by the reflection mirror 350 and irradiated to the second photographing unit 502.
  12. 제2항에 있어서, According to claim 2,
    상기 제2 광분할기(300)과 제2 촬영부(502)의 광경로사이에 반사미러(350)를 추가적으로 구비함으로써, 상기 제2 광분할기(300)로부터 분할되어 조사되는 광은 상기 반사미러(350)에 의해 반사되어 제2 촬영부(502)로 조사되거나;By additionally providing a reflective mirror 350 between the optical path of the second optical splitter 300 and the second photographing unit 502, the light split and irradiated from the second optical splitter 300 is reflected through the reflective mirror ( 350) and irradiated to the second photographing unit 502;
    또는, 상기 제3 광분할기(303)과 제3 촬영부(503)의 광경로사이에 반사미러(350’)를 추가적으로 구비함으로써, 상기 제3 광분할기(303)로부터 분할되어 조사되는 광은 상기 반사미러(350’)에 의해 반사되어 제3 촬영부(503)로 조사되는 것;을 특징으로 하는 입체형상 측정장치. Alternatively, by additionally providing a reflection mirror 350' between the optical path of the third optical splitter 303 and the third photographing unit 503, the light split from the third optical splitter 303 and irradiated is A three-dimensional shape measuring device characterized by being reflected by the reflection mirror 350' and irradiated to the third photographing unit 503.
  13. 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); a light source unit 100 that emits light and is positioned in one direction of the first light splitter;
    상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
    상기 광원부에 대향하여 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및 a reference mirror 400 positioned on the other side of the first beam splitter 200 facing the light source unit; and
    상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서, In the three-dimensional shape measurement device comprising a; first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200;
    상기 입체형상 측정장치는 상기 제1 광분할기(200)의 하부방향 광경로에 위치하여, 측정 대상물의 표면으로부터 반사된 광이 조사되어, 상기 제1 광분할기(200) 및 하기 제2 촬영부(502) 방향으로 각각 광을 분할;하는 제2 광분할기(300); 및 The three-dimensional shape measurement device is located in the lower optical path of the first light splitter 200, and the light reflected from the surface of the object to be measured is irradiated, and the first light splitter 200 and the second photographing unit ( 502) a second light splitter 300 splitting light in each direction; and
    상기 제2 광분할기(300)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함하며, Further comprising a second photographing unit 502 for photographing the light reflected from the second beam splitter 300,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있으며,The light photographed by any one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치.The light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200. It is the light of the interference fringe in which the reflected light and the light by the light path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined, through which the 3D shape information of the object to be measured can be obtained. A three-dimensional shape measuring device characterized in that it can.
  14. 광을 방출하며, 하기 제1 광분할기의 일측 방향에 위치하는 광원부(100); a light source unit 100 that emits light and is positioned in one direction of the first light splitter;
    상기 광원부(100)로부터 방출된 광을 측정 대상물(700) 방향으로 분할하며, 또한 측정 대상물의 표면으로부터의 반사광을 하기 제1 촬영부(501)방향으로 분할하여 통과시키는 제1 광분할기(200); A first beam splitter 200 that splits the light emitted from the light source unit 100 in the direction of the object to be measured 700, and splits and passes reflected light from the surface of the object to be measured in the direction of the first photographing unit 501 ;
    상기 제1 광분할기(200)와 측정 대상물(700) 사이 또는 제1 광분할기(200)의 타측 방향에 위치하는 기준 미러(400); 및a reference mirror 400 positioned between the first beam splitter 200 and the object to be measured 700 or in the other direction of the first beam splitter 200; and
    상기 제1 광분할기(200)를 통과한, 측정 대상물의 표면으로부터의 반사광을 촬영하는 제1 촬영부(501);를 포함하는 입체형상 측정장치에 있어서,In the three-dimensional shape measurement device comprising a; first photographing unit 501 for photographing the reflected light from the surface of the measurement object passing through the first light splitter 200;
    상기 입체형상 측정장치는 측정 대상물의 표면으로부터 반사되고 제1 광분할기(200)를 거쳐 분할된 광이 조사되어, 상기 제1 촬영부(501) 및 하기 반사미러(350) 방향으로 각각 광을 분할하며, 상기 제1 광분할기(200)와 제1 촬영부(501)사이의 광경로에 위치하는 제2 광분할기(300); The three-dimensional shape measuring device irradiates light that is reflected from the surface of the object to be measured and divided through the first beam splitter 200, and splits the light in the direction of the first photographing unit 501 and the reflection mirror 350, respectively. and a second optical splitter 300 located in an optical path between the first optical splitter 200 and the first photographing unit 501;
    상기 제2 광분할기(300)와 이격되어 위치하며, 제2 광분할기(300)로부터 반사되어 분할된 광을 하기 제2 촬영부(502)로 반사하는 반사미러(350); 및 a reflection mirror 350 positioned apart from the second beam splitter 300 and reflecting split light reflected from the second beam splitter 300 to a second photographing unit 502; and
    상기 반사미러(350)로부터 반사된 광을 촬영하는 제2 촬영부(502)를 추가로 포함함으로써, By further comprising a second photographing unit 502 for photographing the light reflected from the reflection mirror 350,
    상기 제1 촬영부(501)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 통과하여 분할된 광을 촬영하며,The first photographing unit 501 captures the divided light emitted from the first light splitter 200 and passing through the second light splitter 300;
    상기 제2 촬영부(502)는 상기 제1 광분할기(200)로부터 조사되어 제2 광분할기(300)를 반사하여 분할된 후, 상기 반사미러(350)로부터 반사된 광을 촬영하며, The second photographing unit 502 captures the light reflected from the first beam splitter 200, reflected from the second beam splitter 300, divided, and reflected from the reflection mirror 350;
    상기 입체형상 측정장치는 각각의 촬영부내 포함된 각각의 카메라의 촬영을 위해 트리거를 발생시키는 동기화 보드(500)을 추가로 포함하고,The three-dimensional shape measurement device further includes a synchronization board 500 for generating a trigger for shooting of each camera included in each photographing unit,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 어느 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며, Light captured by any one selected from the first capture unit 501 and the second capture unit 502 is emitted from the light source unit 100 and irradiated onto the surface of the measurement object through the first light splitter 200. It is the light of the interference fringe in which the reflected light and the light from the optical path obtained by being reflected from the reference mirror 400 through the first light splitter 200 are combined, through which the 3D shape information of the object to be measured is obtained. can do,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중에서 선택되는 나머지 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치. The light photographed by the other one selected from the first photographing unit 501 and the second photographing unit 502 is light without an interference signal, through which two-dimensional shape information of the object to be measured can be obtained. A three-dimensional shape measuring device.
  15. 제14항에 있어서, According to claim 14,
    상기 입체형상 측정장치는 제2 광분할기(300)와 반사미러(350)의 광경로 사이에 구비되는 제3 광분할기(303); 및 상기 제3 광분할기(303)로부터 반사되어 분할되는 광을 촬영하는 제3 촬영부(503)를 추가로 포함하며,The three-dimensional shape measuring device includes a third optical splitter 303 provided between the optical path of the second optical splitter 300 and the reflection mirror 350; And a third photographing unit 503 for photographing the divided light reflected from the third beam splitter 303,
    상기 입체형상 측정장치내 동기화 보드(500)는 제3 촬영부내 포함된 카메라의 촬영을 위해 트리거를 발생시킬 수 있으며,The synchronizing board 500 in the three-dimensional shape measurement device may generate a trigger for shooting by a camera included in the third shooting unit,
    상기 제3 광분할기(303)는 제2 광분할기(300)로부터 조사된 광을 분할하되, 제3 광분할기(303)로부터 반사되어 분할된 광은 상기 제3 촬영부(503)으로 조사하고, 제3 광분할기(303)를 통과되어 분할된 광은 상기 반사미러(350)로 조사하며,The third beam splitter 303 splits the light emitted from the second beam splitter 300, and the divided light reflected from the third beam splitter 303 is irradiated to the third capture unit 503, The split light passing through the third light splitter 303 is irradiated to the reflection mirror 350,
    상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나에서 촬영되는 광은 각각 상기 광원부(100)로부터 방출되어 제1 광분할기(200)를 거쳐 측정 대상물의 표면에 조사되어 반사된 광과, 상기 제1 광분할기(200)를 거쳐 상기 기준미러(400)에서 반사됨으로써 얻어지는 광경로에 의한 광이 합쳐진 간섭무늬의 광으로서, 이를 통해 측정 대상물의 3차원 형상 정보를 획득할 수 있으며,Light captured by at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503 is emitted from the light source unit 100, respectively, to form a first beam splitter 200. Light of an interference fringe in which light irradiated and reflected on the surface of the object to be measured through and reflected from the reference mirror 400 through the first light splitter 200 is combined with light from an optical path, which is measured through 3D shape information of the object can be acquired,
    또한, 상기 간섭무늬의 광을 촬영하는 촬영부를 제외한 나머지 두 개의 촬영부 중에서 선택되는 적어도 하나에서 촬영되는 광은 간섭신호가 없는 광으로서, 이를 통해 측정 대상물의 2차원 형상 정보를 획득할 수 있는 것을 특징으로 하는 입체형상 측정장치. In addition, the light photographed by at least one selected from the remaining two photographing units excluding the photographing unit photographing the light of the interference fringe is light without an interference signal, through which the two-dimensional shape information of the object to be measured can be obtained. Characterized by a three-dimensional shape measuring device.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 13 to 15,
    상기 기준미러(400)의 이동을 위해 미세구동장치(600)를 추가적으로 포함하는 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measurement device, characterized in that it additionally comprises a micro-drive device (600) for the movement of the reference mirror (400).
  17. 제13항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 13 to 15,
    상기 입체형상 측정장치는 미켈슨 타입, 미라우 타입 및 리닉 타입 중에서 선택되는 어느 하나의 타입인 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measuring device is characterized in that the three-dimensional shape measuring device is any one type selected from the Michelson type, Mirau type and Linik type.
  18. 제13항 내지 제15항 중 어느 한 항에 있어서,According to any one of claims 13 to 15,
    상기 각각의 촬영부는 카메라 및 튜브렌즈를 각각 포함하는 것을 특징으로 하는 입체형상 측정장치.The three-dimensional shape measuring device, characterized in that each of the photographing unit includes a camera and a tube lens, respectively.
  19. 제13항 또는 제14항에 있어서,According to claim 13 or 14,
    상기 입체형상 측정장치는 The three-dimensional shape measuring device
    i) 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, i) After obtaining 2D shape information of a specific surface area of a measurement object without an interference signal using either the first capture unit 501 or the second capture unit 502,
    상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나;Obtaining 3D shape information by measuring a plurality of light images of interference fringes using the other one of the first capturing unit 501 and the second capturing unit 502;
    ii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나;ii) Alternatively, after obtaining 3D shape information by measuring a plurality of images of light of interference fringes using any one of the first and second capture units 501 and 502, the first Acquisition of 2D shape information of a specific surface region of a measurement object without an interference signal by using the other one of the photographing unit 501 and the second photographing unit 502;
    iii) 또는, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 어느 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 제1 촬영부(501) 및 제2 촬영부(502) 중 나머지 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 하는 입체형상 측정장치. iii) Alternatively, while measuring a plurality of images by light of an interference fringe using any one of the first and second capture units 501 and 502, the first and second capture units 501 and 502 Using the other one of the photographing units 502, 2D shape information of a specific surface area of the measurement object without an interference signal is obtained, and then, 3D shape information is obtained by measuring an image of the interference fringe by light again. Obtaining; three-dimensional shape measuring device characterized in that.
  20. 제15항에 있어서,According to claim 15,
    상기 입체형상 측정장치는 The three-dimensional shape measuring device
    i) 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득한 후, i) 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one selected from among the first capture unit 501, the second capture unit 502, and the third capture unit 503. After obtaining
    상기 간섭 신호가 없는 측정대상물의 특정한 표면 영역의 2차원 형상 정보를 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득하거나;3D shape information is obtained by measuring a plurality of images by light of interference fringes using at least one of the remaining two capturing units except for the capturing unit that captures the 2D shape information of the specific surface area of the measurement object without the interference signal. or obtain;
    ii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정함으로써, 3차원 형상정보를 획득한 후, 상기 간섭무늬의 광에 의한 영상을 다수 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하거나; ii) or, by using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503 to measure a plurality of images by light of interference fringes, 3D After obtaining the shape information, 2D shape information of a specific surface area of the object to be measured without an interference signal is obtained by using at least one of the two remaining photographing units except for the photographing unit that captures a plurality of images by light of the interference fringe. obtain;
    iii) 또는, 상기 제1 촬영부(501), 제2 촬영부(502) 및 제3 촬영부(503) 중에서 선택되는 적어도 하나를 이용하여 간섭무늬의 광에 의한 영상을 다수 측정하는 도중에, 상기 간섭무늬의 광에 의한 영상을 촬영한 촬영부를 제외한 나머지 두 개의 촬영부 중 적어도 하나를 이용하여, 간섭신호가 없는 측정 대상물의 특정한 표면 영역의 2차원 형상 정보를 획득하고, 이후에 다시 상기 간섭무늬의 광에 의한 영상을 측정하여 3차원 형상정보를 획득하는 것;을 특징으로 하는 입체형상 측정장치. iii) Alternatively, while measuring a plurality of images by light of interference fringes using at least one selected from the first capture unit 501, the second capture unit 502, and the third capture unit 503, the 2D shape information of a specific surface area of a measurement object without an interference signal is obtained by using at least one of the remaining two imaging units except for the imaging unit that captures the image of the light of the interference pattern, and then the interference fringes again. Obtaining three-dimensional shape information by measuring an image by light of the; three-dimensional shape measuring device characterized in that.
PCT/KR2022/020107 2021-12-23 2022-12-12 Three-dimensional shape measurement device for acquiring multiple pieces of image information WO2023121094A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0186134 2021-12-23
KR20210186134 2021-12-23
KR10-2022-0036938 2022-03-24
KR1020220036938A KR20230096797A (en) 2021-12-23 2022-03-24 Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image

Publications (1)

Publication Number Publication Date
WO2023121094A1 true WO2023121094A1 (en) 2023-06-29

Family

ID=86903258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020107 WO2023121094A1 (en) 2021-12-23 2022-12-12 Three-dimensional shape measurement device for acquiring multiple pieces of image information

Country Status (1)

Country Link
WO (1) WO2023121094A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329975A (en) * 2005-04-27 2006-12-07 Mitsutoyo Corp Interferometer and method of calibrating the interferometer
KR100681884B1 (en) * 2006-02-13 2007-02-12 (주)펨트론 Apparatus for measurement of surface profile and control method thereof
KR20080032680A (en) * 2006-10-09 2008-04-16 선문대학교 산학협력단 Optical system and method for measuring shape of three dimensions using the system
CN102589463A (en) * 2012-01-10 2012-07-18 合肥工业大学 Two-dimensional and three-dimensional integrated imaging measurement system
KR101239409B1 (en) * 2012-07-12 2013-03-05 주식회사 엠엠티 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
KR101458890B1 (en) * 2013-02-21 2014-11-07 (주)에이앤아이 A three dimensional shape measuring apparatus
KR20230036950A (en) * 2021-09-08 2023-03-15 ㈜넥센서 Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image through a single scan

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329975A (en) * 2005-04-27 2006-12-07 Mitsutoyo Corp Interferometer and method of calibrating the interferometer
KR100681884B1 (en) * 2006-02-13 2007-02-12 (주)펨트론 Apparatus for measurement of surface profile and control method thereof
KR20080032680A (en) * 2006-10-09 2008-04-16 선문대학교 산학협력단 Optical system and method for measuring shape of three dimensions using the system
CN102589463A (en) * 2012-01-10 2012-07-18 合肥工业大学 Two-dimensional and three-dimensional integrated imaging measurement system
KR101239409B1 (en) * 2012-07-12 2013-03-05 주식회사 엠엠티 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
KR101458890B1 (en) * 2013-02-21 2014-11-07 (주)에이앤아이 A three dimensional shape measuring apparatus
KR20230036950A (en) * 2021-09-08 2023-03-15 ㈜넥센서 Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image through a single scan

Similar Documents

Publication Publication Date Title
US7545505B2 (en) Device and method for a combined interferometry and image-based determination of geometry, especially for use in micro system engineering
US8614415B2 (en) Defect inspection method of fine structure object and defect inspection apparatus
WO2015080480A1 (en) Wafer image inspection apparatus
WO2013036076A2 (en) Device and method for measuring three-dimensional shapes using amplitude of a projection grid
WO2017213464A1 (en) Structured illumination microscopy system using digital micromirror device and time-complex structured illumination, and operation method therefor
US8836943B2 (en) Workpiece alignment device
US20050030528A1 (en) Confocal wafer-inspection system
WO2018066868A1 (en) Device for measuring three-dimensional shape and method for measuring same
WO2017023107A1 (en) Light detection and ranging device
WO2011126219A2 (en) Image acquisition method and system for object to be measured using confocal microscope structure
WO2020004838A1 (en) Vibration-resistant white light interference microscope and method for removing vibration effect thereof
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
KR102285818B1 (en) Apparatus for monitoring three-dimensional shape of target object capable of auto focusing in real time
WO2019088370A1 (en) Device for inspecting large area high speed object
WO2010134669A1 (en) 3d shape measurement apparatus
WO2023121094A1 (en) Three-dimensional shape measurement device for acquiring multiple pieces of image information
JP2005202092A (en) Focusing point detecting method and optical microscope using the same
KR101920349B1 (en) Apparatus for monitoring three-dimensional shape of target object
KR20230036950A (en) Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image through a single scan
WO2021020604A1 (en) Measurement apparatus and measurement method for thickness and refractive index of multi-layer thin film, using angle-resolved spectral interference image according to polarization
KR20230096797A (en) Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image
JP4788968B2 (en) Focal plane tilt type confocal surface shape measuring device
WO2017142154A1 (en) Photographing apparatus and photographing method
WO2011126220A2 (en) Image acquisition method for object to be measured using confocal microscope structure
WO2017159938A1 (en) Imaging method and object alignment method using imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911727

Country of ref document: EP

Kind code of ref document: A1