JP2015105850A - Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element - Google Patents

Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element Download PDF

Info

Publication number
JP2015105850A
JP2015105850A JP2013247130A JP2013247130A JP2015105850A JP 2015105850 A JP2015105850 A JP 2015105850A JP 2013247130 A JP2013247130 A JP 2013247130A JP 2013247130 A JP2013247130 A JP 2013247130A JP 2015105850 A JP2015105850 A JP 2015105850A
Authority
JP
Japan
Prior art keywords
refractive index
medium
light
test
test object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013247130A
Other languages
Japanese (ja)
Inventor
杉本 智洋
Tomohiro Sugimoto
智洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013247130A priority Critical patent/JP2015105850A/en
Publication of JP2015105850A publication Critical patent/JP2015105850A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refractive index measurement method which measures a refractive index of an object to be tested with high accuracy.SOLUTION: In a refractive index measurement method, light from a light source 10 is divided into a test light and a reference light, and a refractive index of a specimen 80 is measured by casing interference the test light having passed through the specimen 80 with the reference light then measuring a phase difference between the test light and the reference light. The specimen 80 is placed into a first medium, and a first phase difference is measured, then the specimen 80 is placed into a second medium having a refractive index different from the refractive index of the first medium, and a second phase difference is measured. The refractive index of the specimen 80 is calculated by using the first and second phase differences and the refractive indexes of the first and second media.

Description

本発明は、屈折率計測方法および屈折率計測装置に関し、特に、モールド成型により製造される光学素子の屈折率計測に有用である。   The present invention relates to a refractive index measurement method and a refractive index measurement device, and is particularly useful for measuring the refractive index of an optical element manufactured by molding.

モールドレンズの屈折率は成型条件によって変化する。成型後のレンズの屈折率は、一般的に、プリズム形状に加工した後、最小偏角法やVブロック法で計測される。この加工作業は、手間とコストがかかる。さらに、成型後のレンズの屈折率は、加工時の応力解放によって変化する。したがって、成型後のレンズの屈折率を非破壊で計測する技術が必要である。   The refractive index of the mold lens varies depending on the molding conditions. The refractive index of the lens after molding is generally measured by the minimum deflection angle method or the V block method after processing into a prism shape. This processing work takes time and cost. Furthermore, the refractive index of the lens after molding changes due to stress release during processing. Therefore, a technique for measuring the refractive index of the molded lens in a nondestructive manner is necessary.

非特許文献1は、スペクトル領域の干渉信号を波長の関数を用いてフィッティングすることで屈折率分散曲線を算出する方法を提案している。特許文献1は、2種類の媒質それぞれにおいて被検物と媒質の光路長の和と媒質の光路長を計測し、被検物の厚みを除去して屈折率を算出している。   Non-Patent Document 1 proposes a method for calculating a refractive index dispersion curve by fitting an interference signal in a spectral region using a function of wavelength. In Patent Document 1, the sum of the optical path lengths of the test object and the medium and the optical path length of the medium are measured for each of the two types of media, and the refractive index is calculated by removing the thickness of the test object.

特開2012−083331号公報JP 2012-083331 A

H.Delbarre,C.Przygodzki,M.Tassou,D.Boucher.”High−precision index measurement in anisotropic crystals using white−light spectral interferometry.”Applied Physics B,2000,vol.70,p.45−51.H. Delbarre, C.I. Przygodzki, M .; Tassou, D.M. Boucher. "High-precise index measurement in anisotropy crystals using white-light spectral interferometry." Applied Physics B, 2000, vol. 70, p. 45-51.

非特許文献1に開示された方法では、被検物の厚みが既知である必要がある。さらに、複雑な関数である干渉信号を直接フィッティングすることは難しいため、屈折率の計測精度が低くなりやすい。また、特許文献1に開示された低コヒーレンス干渉計を用いた計測方法は、光路長を高精度に計測することが難しいため、屈折率の計測精度が低くなりやすい。   In the method disclosed in Non-Patent Document 1, the thickness of the test object needs to be known. Furthermore, since it is difficult to directly fit an interference signal that is a complex function, the measurement accuracy of the refractive index tends to be low. Moreover, since the measurement method using the low coherence interferometer disclosed in Patent Document 1 is difficult to measure the optical path length with high accuracy, the measurement accuracy of the refractive index tends to be low.

本発明は、被検物の屈折率(屈折率分散曲線)を高精度に計測することができる屈折率計測方法および屈折率計測装置を提供することを目的としている。   An object of the present invention is to provide a refractive index measuring method and a refractive index measuring apparatus capable of measuring the refractive index (refractive index dispersion curve) of a test object with high accuracy.

本発明の屈折率計測方法は、光源からの光を被検光と参照光に分割し、被検光を被検物に入射させ、前記被検物を透過した被検光と参照光を干渉させて、前記被検光と前記参照光の位相差を計測することによって前記被検物の屈折率を計測する屈折率計測方法であって、第1の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第1の位相差を計測する第1計測ステップと、前記第1の媒質の屈折率とは異なる屈折率を有する第2の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第2の位相差を計測する第2計測ステップと、前記第1の位相差と前記第2の位相差と前記第1の媒質の屈折率と前記第2の媒質の屈折率とを用いて、前記被検物の屈折率を算出する算出ステップとを含むことを特徴している。   The refractive index measurement method of the present invention divides light from a light source into test light and reference light, makes the test light incident on the test object, and interferes the test light transmitted through the test object with the reference light. A refractive index measurement method for measuring a refractive index of the test object by measuring a phase difference between the test light and the reference light, wherein the test object is disposed in a first medium. A first measurement step of measuring a first phase difference that is a phase difference between the test light transmitted through the reference light and the reference light, and the second measurement medium disposed in a second medium having a refractive index different from the refractive index of the first medium. A second measurement step of measuring a second phase difference, which is a phase difference between the test light transmitted through the test object and the reference light, the first phase difference, the second phase difference, and the first phase difference A calculating step of calculating the refractive index of the test object using the refractive index of the first medium and the refractive index of the second medium. It is.

本発明の屈折率計測装置は、光源と、前記光源からの光を被検光と参照光に分割し、被検光を被検物に入射させ、前記被検物を透過した被検光と参照光を干渉させる干渉光学系と、被検光と参照光の干渉光を検出する検出手段と、前記検出手段から出力される干渉信号を用いて被検光と参照光の位相差を算出し、該位相差に基づいて前記被検物の屈折率を算出する算出手段とを有する屈折率計測装置であって、前記算出手段は、第1の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第1の位相差と、前記第1の媒質の屈折率とは異なる屈折率を有する第2の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第2の位相差と、前記第1の媒質の屈折率と、前記第2の媒質の屈折率とを用いて、前記被検物の屈折率を算出することを特徴としている。   The refractive index measuring device of the present invention includes a light source, test light that divides light from the light source into test light and reference light, makes the test light incident on the test object, and transmits the test light. A phase difference between the test light and the reference light is calculated using an interference optical system that causes the reference light to interfere, a detection unit that detects the interference light between the test light and the reference light, and an interference signal output from the detection unit. A refractive index measuring device having a calculating means for calculating a refractive index of the test object based on the phase difference, wherein the calculating means transmits the test object disposed in the first medium. Transmitted through the test object disposed in the second medium having a first phase difference that is a phase difference between the measured light and the reference light and a refractive index different from the refractive index of the first medium. Using the second phase difference that is the phase difference between the test light and the reference light, the refractive index of the first medium, and the refractive index of the second medium, Serial is characterized by calculating the refractive index of the test object.

本発明によれば、被検物の屈折率を高精度に計測することができる屈折率計測方法および屈折率計測装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the refractive index measuring method and refractive index measuring apparatus which can measure the refractive index of a test object with high precision can be provided.

本発明の実施例1の屈折率計測装置のブロック図である。It is a block diagram of the refractive index measuring device of Example 1 of the present invention. 本発明の実施例1の屈折率計測装置によって被検物の屈折率を算出する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the refractive index of a test object by the refractive index measuring apparatus of Example 1 of this invention. 本発明の実施例1の屈折率計測装置の検出器で得られる干渉信号を示す図である。It is a figure which shows the interference signal obtained with the detector of the refractive index measuring device of Example 1 of this invention. 本発明の実施例2の屈折率計測装置のブロック図である。It is a block diagram of the refractive index measuring device of Example 2 of the present invention. 本発明の実施例3の屈折率計測装置のブロック図である。It is a block diagram of the refractive index measuring device of Example 3 of the present invention. 本発明の実施例4の光学素子の製造方法の製造工程を示す図である。It is a figure which shows the manufacturing process of the manufacturing method of the optical element of Example 4 of this invention.

以下、添付図面を参照して、本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、実施例1の屈折率計測装置のブロック図である。本実施例の屈折率計測装置は、マッハ・ツェンダー干渉計で構成されており、干渉計測を行うことによって被検物の屈折率を計測する。被検物はレンズや平板等の屈折型光学素子であり、屈折率と厚みが未知である。   FIG. 1 is a block diagram of the refractive index measuring apparatus according to the first embodiment. The refractive index measuring apparatus of the present embodiment is composed of a Mach-Zehnder interferometer, and measures the refractive index of the test object by performing interference measurement. The test object is a refractive optical element such as a lens or a flat plate, and its refractive index and thickness are unknown.

屈折率計測装置は、光源10、干渉光学系、媒質と被検物を収容可能な容器60、検出器90、コンピュータ100を有し、被検物80の屈折率を計測する。   The refractive index measurement device includes a light source 10, an interference optical system, a container 60 that can accommodate a medium and a test object, a detector 90, and a computer 100, and measures the refractive index of the test object 80.

光源10は、波長帯域の広い光源(例えば、スーパーコンティニューム光源)である。干渉光学系は、光源10からの光を、被検物を透過する光(被検光)と被検物を透過しない光(参照光)とに分割し、被検光と参照光を重ね合わせて干渉させ、その干渉光を検出器90に導光する。実施例1の干渉光学系は、複数のビームスプリッタ20、21と複数のミラー30、31、40、41、50、51を有する。   The light source 10 is a light source having a wide wavelength band (for example, a supercontinuum light source). The interference optical system divides the light from the light source 10 into light that passes through the test object (test light) and light that does not pass through the test object (reference light), and superimposes the test light and the reference light. Then, the interference light is guided to the detector 90. The interference optical system according to the first embodiment includes a plurality of beam splitters 20 and 21 and a plurality of mirrors 30, 31, 40, 41, 50 and 51.

ビームスプリッタ20、21は、例えば、キューブビームスプリッタで構成される。ビームスプリッタ20は、2つのプリズムの接合面20aにおいて、光源10からの光の一部を透過すると同時に残りを反射する。接合面20aを透過した光が参照光であり、接合面20aで反射した光が被検光である。ビームスプリッタ21は、接合面21aにおいて、参照光の一部を反射し、被検光の一部を透過する。この結果、参照光と被検光が干渉して干渉光を形成し、干渉光は検出器90に入射する。   The beam splitters 20 and 21 are constituted by, for example, cube beam splitters. The beam splitter 20 transmits part of the light from the light source 10 and reflects the rest at the joint surface 20a of the two prisms. The light transmitted through the joint surface 20a is reference light, and the light reflected by the joint surface 20a is test light. The beam splitter 21 reflects part of the reference light and transmits part of the test light at the joint surface 21a. As a result, the reference light and the test light interfere to form interference light, and the interference light enters the detector 90.

容器60は、媒質(例えば、空気や水やオイル)と被検物80を収容している。容器内における参照光の光路長と被検光の光路長は、被検物80が容器内に配置されてない状態で、一致するのが好ましい。したがって、容器60の側面(例えば、ガラス)は厚みおよび屈折率が均一で、かつ、容器60の両側面が平行であるのが望ましい。容器60内の媒質は、他媒質との交換や他媒質の添加によって、異なる屈折率を有する媒質に変更される。   The container 60 contains a medium (for example, air, water, or oil) and the test object 80. The optical path length of the reference light in the container and the optical path length of the test light preferably coincide with each other in a state where the test object 80 is not arranged in the container. Therefore, it is desirable that the side surface (for example, glass) of the container 60 has a uniform thickness and refractive index, and both side surfaces of the container 60 are parallel. The medium in the container 60 is changed to a medium having a different refractive index by exchange with another medium or addition of another medium.

媒質の屈折率は、不図示の媒質屈折率計測手段によって計測される。媒質屈折率計測手段は、例えば、媒質の温度を計測する温度計測手段と、計測した温度を媒質の屈折率に換算するコンピュータから構成される。 容器60は、不図示の温度調整機構(温度制御手段)を備えており、媒質の温度の昇降、媒質の温度分布の制御等を行うことが出来る。媒質の温度もコンピュータ100で制御される。   The refractive index of the medium is measured by a medium refractive index measuring unit (not shown). The medium refractive index measuring means is composed of, for example, a temperature measuring means for measuring the temperature of the medium and a computer for converting the measured temperature into the refractive index of the medium. The container 60 is provided with a temperature adjustment mechanism (temperature control means) (not shown), and can increase and decrease the temperature of the medium, control the temperature distribution of the medium, and the like. The temperature of the medium is also controlled by the computer 100.

ミラー40、41は、例えば、プリズム型ミラーである。ミラー50、51は、例えば、コーナーキューブリフレクターである。ミラー51は、図1の矢印の方向の駆動機構を有する。ミラー51の駆動機構は、例えば、駆動レンジの大きいステージと駆動分解能の高いピエゾ素子から構成されている。ミラー51の駆動量は、不図示の測長器(例えば、レーザ測長器やエンコーダ)によって計測される。ミラー51の駆動は、コンピュータ100によって制御されている。参照光と被検光の光路長差は、ミラー51の駆動機構によって調整することができる。   The mirrors 40 and 41 are, for example, prism type mirrors. The mirrors 50 and 51 are, for example, corner cube reflectors. The mirror 51 has a drive mechanism in the direction of the arrow in FIG. The drive mechanism of the mirror 51 is composed of, for example, a stage with a wide drive range and a piezo element with high drive resolution. The driving amount of the mirror 51 is measured by a length measuring device (not shown) (for example, a laser length measuring device or an encoder). The drive of the mirror 51 is controlled by the computer 100. The optical path length difference between the reference light and the test light can be adjusted by the drive mechanism of the mirror 51.

検出器90は、ビームスプリッタ21からの干渉光を分光し、干渉光強度を波長(周波数)の関数として検出する分光器などから構成されている。   The detector 90 includes a spectroscope that separates interference light from the beam splitter 21 and detects the interference light intensity as a function of wavelength (frequency).

コンピュータ100は、検出器90が出力する干渉信号に基づいて被検物の屈折率を算出する算出手段として機能すると共に、ミラー51の駆動量を制御する制御手段としても機能し、CPUなどから構成されている。ただし、検出器90が出力する干渉信号から被検物の屈折率を算出する算出手段と、ミラー51の駆動量や媒質の温度を制御する制御手段を、互いに異なるコンピュータによって構成することもできる。   The computer 100 functions as a calculation unit that calculates the refractive index of the test object based on the interference signal output from the detector 90, and also functions as a control unit that controls the drive amount of the mirror 51. The computer 100 includes a CPU and the like. Has been. However, the calculation means for calculating the refractive index of the test object from the interference signal output from the detector 90 and the control means for controlling the drive amount of the mirror 51 and the temperature of the medium can be configured by different computers.

干渉光学系は、被検物80が容器内に配置されてない状態で、参照光と被検光の光路長が等しくなるように調整されている。調整方法は次のとおりである。   The interference optical system is adjusted so that the optical path lengths of the reference light and the test light are equal in a state where the test object 80 is not disposed in the container. The adjustment method is as follows.

図1の屈折率計測装置において、被検物80が被検光路上に配置されない状態で参照光と被検光の干渉信号が取得される。このとき、参照光と被検光の位相差φ(λ)および干渉強度I(λ)は数式1で表される。 In the refractive index measurement apparatus of FIG. 1, an interference signal between the reference light and the test light is acquired in a state where the test object 80 is not disposed on the test light path. At this time, the phase difference φ 0 (λ) and the interference intensity I 0 (λ) between the reference light and the test light are expressed by Equation 1.

Figure 2015105850
Figure 2015105850

ただし、λは空気中の波長、Δは参照光と被検光の光路長の差、Iは参照光の強度と被検光の強度の和、γは可視度(ビジビリティ)である。数式1より、Δがゼロではないときは、干渉強度I(λ)は振動関数となる。したがって、参照光と被検光の光路長を等しくするためには、干渉信号が振動関数とならない位置にミラー51を駆動すればよい。このとき、Δがゼロになる。 Where λ is the wavelength in the air, Δ 0 is the difference in optical path length between the reference light and the test light, I 0 is the sum of the reference light intensity and the test light intensity, and γ is the visibility (visibility). From Equation 1, when Δ 0 is not zero, the interference intensity I 0 (λ) is a vibration function. Therefore, in order to make the optical path lengths of the reference light and the test light equal, the mirror 51 may be driven to a position where the interference signal does not become a vibration function. At this time, delta 0 becomes zero.

ここでは、被検光と参照光の光路長が等しくなるように調整される場合(Δ=0)について説明したが、現在のミラー51の位置がΔ0=0からどれだけシフトしているかが分かれば、被検光と参照光の光路長を等しくする必要はない。被検光と参照光の光路長が等しくなる位置(Δ=0)からのミラー51の駆動量は不図示の測長器(例えば、レーザ測長器やエンコーダ)によって測定することができる。 Here, the case where the optical path lengths of the test light and the reference light are adjusted to be equal (Δ 0 = 0) has been described, but how much the current position of the mirror 51 is shifted from Δ0 = 0. If known, it is not necessary to equalize the optical path lengths of the test light and the reference light. The driving amount of the mirror 51 from the position where the optical path lengths of the test light and the reference light are equal (Δ 0 = 0) can be measured by a length measuring device (not shown) (for example, a laser length measuring device or an encoder).

図2は、被検物80の屈折率(屈折率分散曲線)を算出する手順を示すフローチャートであり、「S」はStep(ステップ)の略である。   FIG. 2 is a flowchart showing a procedure for calculating the refractive index (refractive index dispersion curve) of the test object 80, and “S” is an abbreviation for Step.

まず、被検物80が第1の媒質(例えば、空気)中に配置される(S10)。次に、第1の媒質における参照光と被検光の第1の位相差φ(λ)が計測される(S20)。ステップS10とステップS20が第1計測ステップである。 First, the test object 80 is placed in a first medium (for example, air) (S10). Next, the first phase difference φ 1 (λ) between the reference light and the test light in the first medium is measured (S20). Steps S10 and S20 are the first measurement steps.

被検物80が被検光路上に配置されているとき、図1の検出器90で計測されるスペクトル領域の干渉信号は図3のようになる。図3の(a)、(b)は、媒質の屈折率が異なる条件で計測された干渉信号である。図3(a)は、第1の媒質における干渉信号を示しており、図3(b)は、第2の媒質(例えば、水)における干渉信号を示している。第1の媒質における参照光と被検光の第1の位相差φ(λ)は数式2で表される。 When the test object 80 is arranged on the test optical path, the interference signal in the spectral region measured by the detector 90 in FIG. 1 is as shown in FIG. 3A and 3B are interference signals measured under conditions where the refractive index of the medium is different. 3A shows an interference signal in the first medium, and FIG. 3B shows an interference signal in the second medium (for example, water). The first phase difference φ 1 (λ) between the reference light and the test light in the first medium is expressed by Equation 2.

Figure 2015105850
Figure 2015105850

ただし、nsample(λ)は被検物の位相屈折率であり、n medium(λ)は第1の媒質の位相屈折率であり、Lは被検物の幾何学厚みである。図3のλは、位相差φ(λ)が極値をとる波長を示している。λ付近の波長では干渉信号の周期が長くなるため、干渉信号が計測しやすい。一方、λから離れた波長では干渉信号の周期が短くなるため、干渉信号が密になりすぎて分解できない可能性がある。もし、λが計測範囲から外れている場合は、ミラー51を駆動してΔを調整すればよい。 Here, n sample (λ) is the phase refractive index of the test object, n 1 medium (λ) is the phase refractive index of the first medium, and L is the geometric thickness of the test object. Λ 0 in FIG. 3 indicates a wavelength at which the phase difference φ (λ) takes an extreme value. Since the period of the interference signal becomes longer at wavelengths near λ 0 , the interference signal is easy to measure. On the other hand, since the period of the interference signal is shortened at a wavelength away from λ 0 , the interference signal may be too dense to be decomposed. If λ 0 is out of the measurement range, the mirror 51 may be driven to adjust Δ 0 .

第1の位相差φ(λ)は、例えば、次のような位相シフト法を用いて計測することができる。ミラー51を微小量ずつ駆動させながら干渉信号が取得される。ミラー51の位相シフト量(=駆動量×2π/λ)がδ(k=0,1,・・・,M−1)のときの干渉強度I(λ)は数式3で表される。 The first phase difference φ 1 (λ) can be measured using, for example, the following phase shift method. An interference signal is acquired while driving the mirror 51 minutely. The interference intensity I k (λ) when the phase shift amount (= drive amount × 2π / λ) of the mirror 51 is δ k (k = 0, 1,..., M−1) is expressed by Equation 3. .

Figure 2015105850
Figure 2015105850

第1の位相差φ(λ)は、位相シフト量δ、干渉強度I(λ)を用いて数式4で算出される。位相差の算出精度を高める指針は、位相シフト量δをできるだけ小さくし、駆動ステップ数Mをできるだけ大きくすることである。算出された位相差は2πで畳み込まれている。したがって、2πの位相とびをつなぎ合わせる作業(アンラッピング)が必要である。尚、位相シフト法で得られた位相差は、2πの整数倍の任意性(未知のオフセット項)を含む。第1の位相差が計測されるときに、第1の媒質の温度も計測されて第1の媒質の位相屈折率n medium(λ)が算出される。 The first phase difference φ 1 (λ) is calculated by Equation 4 using the phase shift amount δ k and the interference intensity I k (λ). Guidelines to enhance the accuracy of calculation of the phase difference, and minimize the phase shift amount [delta] k, is to maximize the number of drive steps M. The calculated phase difference is convolved with 2π. Therefore, an operation (unwrapping) for connecting 2π phase jumps is necessary. Note that the phase difference obtained by the phase shift method includes arbitraryness (unknown offset term) that is an integer multiple of 2π. When the first phase difference is measured, the temperature of the first medium is also measured, and the phase refractive index n 1 medium (λ) of the first medium is calculated.

Figure 2015105850
Figure 2015105850

次に、第1の媒質の屈折率とは異なる屈折率を有する第2の媒質(例えば、水)中に、被検物80が配置される(S30)。そして、第2の媒質における参照光と被検光の第2の位相差φ(λ)が計測される(S40)。第2の位相差φ(λ)は、第1の位相差φ(λ)と同様に、位相シフト法を用いて計測される。第2の位相差が計測されるときに、第2の媒質の温度も計測されて第2の媒質の位相屈折率n medium(λ)が算出される。ステップS30とステップS40が第2計測ステップである。 Next, the test object 80 is placed in a second medium (for example, water) having a refractive index different from that of the first medium (S30). Then, the second phase difference φ 2 (λ) between the reference light and the test light in the second medium is measured (S40). Similar to the first phase difference φ 1 (λ), the second phase difference φ 2 (λ) is measured using the phase shift method. When the second phase difference is measured, the temperature of the second medium is also measured, and the phase refractive index n 2 medium (λ) of the second medium is calculated. Steps S30 and S40 are second measurement steps.

最後に、第1の位相差φ(λ)と第2の位相差φ(λ)と第1の媒質の屈折率と第2の媒質の屈折率を用いて被検物の屈折率(屈折率分散曲線)が算出される(算出ステップS50)。被検物の屈折率の算出方法の詳細は、以下のとおりである。 Finally, using the first phase difference φ 1 (λ), the second phase difference φ 2 (λ), the refractive index of the first medium, and the refractive index of the second medium, the refractive index of the test object ( (Refractive index dispersion curve) is calculated (calculation step S50). Details of the method of calculating the refractive index of the test object are as follows.

第1の位相差φ(λ)を数式5でフィッティングすると、整数mおよび分散式の係数A(k=1,2,・・・,6)が得られる。第2の位相差φ(λ)を数式6でフィッティングすると、整数mおよび分散式の係数B(k=1,2,・・・,6)が得られる。つまり、第1の位相差φ(λ)から得られる被検物80の位相屈折率n sample(λ)および第2の位相差φ(λ)から得られる被検物80の位相屈折率n sample(λ)が算出される。ここでは、位相屈折率の関数として、コーシーの分散式が用いられているが、他の屈折率分散式(例えば、セルマイヤーの分散式)でもよい。 When the first phase difference φ 1 (λ) is fitted by Equation 5, an integer m 1 and a coefficient A k (k = 1, 2,..., 6) of the dispersion equation are obtained. When the second phase difference φ 2 (λ) is fitted by Equation 6, an integer m 2 and a coefficient B k (k = 1, 2,..., 6) of the dispersion equation are obtained. That is, the phase refraction of the test object 80 obtained from the phase refractive index n 1 sample (λ) and the second phase difference φ 2 (λ) of the test object 80 obtained from the first phase difference φ 1 (λ). The rate n 2 sample (λ) is calculated. Here, the Cauchy dispersion formula is used as a function of the phase refractive index, but another refractive index dispersion formula (for example, a Selmeier dispersion formula) may be used.

Figure 2015105850
Figure 2015105850

Figure 2015105850
Figure 2015105850

第1の位相差および第2の位相差の未知のオフセット項は、それぞれ2πm、2πmで表現されている。被検物80の厚みLは未知の量であるため、数式5、数式6では、厚みの仮定値L+ΔLが使用されている。厚み仮定値L+ΔLと真値Lとの差分ΔLが、厚み誤差である。厚み仮定値として、例えば、被検物の設計厚みが使用さればよい。数式5、数式6では、第1の媒質における光路長差Δと第2の媒質における光路長差Δが、等しいと仮定しているが、異なってもよい。 The unknown offset terms of the first phase difference and the second phase difference are expressed by 2πm 1 and 2πm 2 , respectively. Since the thickness L of the test object 80 is an unknown quantity, the assumed value L + ΔL of the thickness is used in Equations 5 and 6. A difference ΔL between the assumed thickness value L + ΔL and the true value L is a thickness error. As the assumed thickness value, for example, the design thickness of the test object may be used. Equation 5 In Equation 6, the optical path length difference delta 0 in the optical path length difference delta 0 second medium in the first medium, it is assumed to be equal or different.

厚み仮定値が真値と等しい場合(ΔL=0)を考える。このとき、第1の位相差φ(λ)から得られる被検物の位相屈折率n sample(λ)および第2の位相差φ(λ)から得られる被検物の位相屈折率n sample(λ)は、被検物の位相屈折率の真値nsample(λ)と等しくなる。 Consider the case where the assumed thickness value is equal to the true value (ΔL = 0). At this time, the phase refractive index of the test object obtained from the phase refractive index n 1 sample (λ) and the second phase difference φ 2 (λ) of the test object obtained from the first phase difference φ 1 (λ). n 2 sample (λ) is equal to the true value n sample (λ) of the phase refractive index of the test object.

次に、厚み仮定値が真値Lから誤差を持つ場合(ΔL≠0)を考える。このとき、数式5、数式6のフィッティングで得られる位相屈折率n sample(λ)、n sample(λ)は、厚み誤差ΔLによる屈折率誤差Δn(λ)、Δn(λ)を持つため、被検物の位相屈折率の真値nsample(λ)と異なる。屈折率誤差Δn(λ)、Δn(λ)は、数式7で表される。 Next, consider a case where the assumed thickness value has an error from the true value L (ΔL ≠ 0). In this case, Equation 5, phase index obtained by fitting Equation 6 n 1 sample (λ), n 2 sample (λ) is the refractive index due to the thickness error ΔL error Δn 1 (λ), Δn 2 (λ) Therefore, it is different from the true value n sample (λ) of the phase refractive index of the test object. Refractive index errors Δn 1 (λ) and Δn 2 (λ) are expressed by Equation 7.

Figure 2015105850
Figure 2015105850

厚み仮定値が厚み誤差ΔLを持つ場合、位相屈折率n sample(λ)とn sample(λ)の差分は、数式8で表される。 When the assumed thickness value has a thickness error ΔL, the difference between the phase refractive indexes n 1 sample (λ) and n 2 sample (λ) is expressed by Equation 8.

Figure 2015105850
Figure 2015105850

厚み仮定値が厚み誤差ΔLを持たなければ、位相屈折率n sample(λ)とn sample(λ)の差分はゼロになる。したがって、位相屈折率n sample(λ)とn sample(λ)が等しくなるように、厚み仮定値が選択されればよい。そのとき選択された厚み仮定値が被検物80の厚みとなり、そのとき算出された位相屈折率n sample(λ)、n sample(λ)が、被検物80の位相屈折率分散曲線nsample(λ)となる。なお、被検物80の厚みは、位相屈折率n sample(λ)とn sample(λ)の差分をほぼゼロとするものであれば良く、位相屈折率n sample(λ)とn sample(λ)を完全に等しくするものでなくても良い。 If the assumed thickness value does not have a thickness error ΔL, the difference between the phase refractive indices n 1 sample (λ) and n 2 sample (λ) is zero. Therefore, the assumed thickness value may be selected so that the phase refractive indexes n 1 sample (λ) and n 2 sample (λ) are equal. The assumed thickness value selected at that time is the thickness of the test object 80, and the calculated phase refractive indexes n 1 sample (λ) and n 2 sample (λ) are the phase refractive index dispersion curves of the test object 80. n sample (λ). The thickness of the test object 80 may be any thickness as long as the difference between the phase refractive indexes n 1 sample (λ) and n 2 sample (λ) is substantially zero, and the phase refractive indexes n 1 sample (λ) and n 2 sample (λ) may not be completely equal.

以上のようにして、第1の位相差と第2の位相差と第1の媒質の屈折率と第2の媒質の屈折率とを用いて、被検物80の屈折率(屈折率分散曲線)が算出される(算出ステップS50)。   As described above, the refractive index (refractive index dispersion curve) of the test object 80 is obtained using the first phase difference, the second phase difference, the refractive index of the first medium, and the refractive index of the second medium. ) Is calculated (calculation step S50).

算出ステップS50における被検物80の屈折率(屈折率分散曲線)の算出方法は、次の方法でもよい。   The calculation method of the refractive index (refractive index dispersion curve) of the test object 80 in the calculation step S50 may be the following method.

まず、数式5、数式6のフィッティングによって、第1の位相差φ(λ)、第2の位相差φ(λ)から、それぞれ、未知のオフセット項2πm、2πmが分離される。φ(λ)から2πmを分離した項Φ(λ)と、φ(λ)から2πmを分離した項Φ(λ)を用いると、数式9のように、位相屈折率n sample(λ)、n sample(λ)が算出される。 First, the unknown offset terms 2πm 1 and 2πm 2 are separated from the first phase difference φ 1 (λ) and the second phase difference φ 2 (λ) by the fitting of Equations 5 and 6, respectively. When a term Φ 1 (λ) that separates 2πm 1 from φ 1 (λ) and a term Φ 2 (λ) that separates 2πm 2 from φ 2 (λ) are used, a phase index n 1 sample (λ) and n 2 sample (λ) are calculated.

Figure 2015105850
Figure 2015105850

第1の位相差から得られる被検物の位相屈折率n sample(λ)と第2の位相差から得られる被検物の位相屈折率n sample(λ)が等しくなるとき、数式9の上式右辺と下式右辺も等しくなる。n sample(λ)−n sample(λ)→0とき、ΔL→0となり、数式9の上式右辺と下式右辺は等しくなる。数式9の上式右辺と下式右辺を等号で結ぶと、厚み仮定値L+ΔLが数式10で算出される。 When the phase refractive index n 1 sample (λ) of the specimen obtained from the first phase difference is equal to the phase refractive index n 2 sample (λ) of the specimen obtained from the second phase difference, Equation 9 The right side of the upper expression and the right side of the lower expression are also equal. When n 1 sample (λ) −n 2 sample (λ) → 0, ΔL → 0, and the upper right side of Expression 9 and the right side of the lower expression are equal. When the upper right side of the formula 9 and the right side of the lower formula are connected by an equal sign, the assumed thickness value L + ΔL is calculated by the formula 10.

Figure 2015105850
Figure 2015105850

数式10で得られる厚み仮定値L+ΔLは、真値Lと等しい(つまり、ΔL=0)。数式10で得られる厚み仮定値L+ΔLを数式9に代入すると、数式11のように被検物80の位相屈折率分散曲線nsample(λ)が得られる。 The assumed thickness value L + ΔL obtained by Expression 10 is equal to the true value L (that is, ΔL = 0). Substituting the assumed thickness value L + ΔL obtained by Equation 10 into Equation 9, the phase refractive index dispersion curve n sample (λ) of the test object 80 is obtained as shown in Equation 11.

Figure 2015105850
Figure 2015105850

以上のように、第1の位相差から得られる被検物の位相屈折率と第2の位相差から得られる被検物の位相屈折率が等しくなるように、数式9、数式10、数式11を用いて、被検物の位相屈折率分散曲線が算出される。   As described above, Formula 9, Formula 10, Formula 11 so that the phase refractive index of the test object obtained from the first phase difference is equal to the phase refractive index of the test object obtained from the second phase difference. Is used to calculate the phase refractive index dispersion curve of the test object.

Φ(λ)、Φ(λ)は、第1の位相差φ(λ)、第2の位相差φ(λ)から、未知のオフセット項2πm、2πmを分離しさえすればいいため、数式5、数式6が用いられなくてもよい。Φ(λ)、Φ(λ)は、定数項を含まない関数で表現できるため、例えば、数式5、数式6の代わりに数式12のような関数のフィッティングを用いて、Φ(λ)、Φ(λ)は抽出できる。 Φ 1 (λ) and Φ 2 (λ) can even separate the unknown offset terms 2πm 1 and 2πm 2 from the first phase difference φ 1 (λ) and the second phase difference φ 2 (λ). Therefore, Equations 5 and 6 may not be used. Since Φ 1 (λ) and Φ 2 (λ) can be expressed by a function that does not include a constant term, for example, by using function fitting like Formula 12 instead of Formula 5 and Formula 6, Φ 1 (λ ), Φ 2 (λ) can be extracted.

Figure 2015105850
Figure 2015105850

2πm、2πmは、フィッティングによる分離の代わりに、第1の位相差φ(λ)、第2の位相差φ(λ)を波長に関して微分することによって除去できる。第1の位相差の微分dφ(λ)/dλ、第2の位相差の微分φ(λ)/dλは、数式13で表される。 2πm 1 and 2πm 2 can be removed by differentiating the first phase difference φ 1 (λ) and the second phase difference φ 2 (λ) with respect to the wavelength, instead of separation by fitting. A differential dφ 1 (λ) / dλ of the first phase difference and a differential φ 2 (λ) / dλ of the second phase difference are expressed by Expression 13.

Figure 2015105850
Figure 2015105850

ただし、ng1 sample(λ)は第1の位相差から得られる被検物の群屈折率であり、ng2 sample(λ)は第2の位相差から得られる被検物の群屈折率である。ng1 medium(λ)は第1の媒質の群屈折率であり、ng2 medium(λ)は第2の媒質の群屈折率である。数式13を変形すると、被検物の群屈折率ng1 sample(λ)、ng2 sample(λ)が、数式14で表される。 Where n g1 sample (λ) is the group refractive index of the test object obtained from the first phase difference, and n g2 sample (λ) is the group refractive index of the test object obtained from the second phase difference. is there. n g1 medium (λ) is the group refractive index of the first medium, and n g2 medium (λ) is the group refractive index of the second medium. By transforming Equation 13, the group index n g1 sample of the object (λ), n g2 sample ( λ) is expressed by Equation 14.

Figure 2015105850
Figure 2015105850

数式14で算出されるng1 sample(λ)とng2 sample(λ)が等しくなるような厚み仮定値L+ΔLが被検物の厚みとなる。そのときのng1 sample(λ)とng2 sample(λ)が被検物の群屈折率分散曲線n sample(λ)と等しくなる。もしくは、数式10、数式11の作業と同様に、数式14の上式右辺と下式右辺の等式から得られる厚み仮定値L+ΔLを算出し、数式14に代入することで被検物の群屈折率分散曲線n sample(λ)が算出される(数式15)。 The assumed thickness value L + ΔL that makes n g1 sample (λ) and n g2 sample (λ) calculated by Expression 14 equal is the thickness of the test object. At this time, n g1 sample (λ) and n g2 sample (λ) are equal to the group refractive index dispersion curve ng sample (λ) of the test object. Alternatively, similar to the operations of Equations 10 and 11, the assumed thickness value L + ΔL obtained from the equation of the upper right side and the lower right side of Equation 14 is calculated and substituted into Equation 14 to obtain the group refraction of the test object. The rate dispersion curve ng sample (λ) is calculated (Formula 15).

Figure 2015105850
Figure 2015105850

以上のように、第1の位相差から得られる被検物の群屈折率と第2の位相差から得られる被検物の群屈折率が等しくなるように、被検物の群屈折率分散曲線が算出される。群屈折率分散曲線から位相屈折率分散曲線を算出する方法は、次のとおりである。   As described above, the group refractive index dispersion of the test object is set so that the group refractive index of the test object obtained from the first phase difference is equal to the group refractive index of the test object obtained from the second phase difference. A curve is calculated. The method for calculating the phase refractive index dispersion curve from the group refractive index dispersion curve is as follows.

位相屈折率N(λ)と群屈折率N(λ)は、数式16のような関係をもつ。ただし、Cは積分定数である。 The phase refractive index N p (λ) and the group refractive index N g (λ) have a relationship as shown in Expression 16. However, C is an integral constant.

Figure 2015105850
Figure 2015105850

数式16からわかるとおり、位相屈折率N(λ)から群屈折率N(λ)への算出は一通りだが、群屈折率N(λ)から位相屈折率N(λ)への算出は、積分定数Cの任意性がある。位相屈折率N(λ)は、群屈折率N(λ)のみの情報から算出することはできない。 As can be seen from Equation 16, the calculation from the phase refractive index N p (λ) to the group refractive index N g (λ) is one way, but from the group refractive index N g (λ) to the phase refractive index N p (λ). The calculation has an arbitrary integration constant C. The phase refractive index N p (λ) cannot be calculated from information on the group refractive index N g (λ) alone.

そこで、被検物の群屈折率n sample(λ)から位相屈折率nsample(λ)への算出は、積分定数Cの仮定が必要である。例えば、被検物の積分定数Csampleは、被検物の元となった母材の積分定数Cglassと等しいと仮定する。母材の積分定数Cglassは、硝材製造元が提供する母材の位相屈折率の値を用いて算出することができる。この積分定数Cglassと数式16を用いて、被検物の群屈折率n sample(λ)から位相屈折率nsample(λ)を算出することが可能である。 Therefore, calculation of the group refractive index ng sample (λ) of the test object to the phase refractive index n sample (λ) requires the assumption of an integration constant C. For example, it is assumed that the integration constant C sample of the test object is equal to the integration constant C glass of the base material from which the test object is based. The integral constant C glass of the base material can be calculated using the phase refractive index value of the base material provided by the glass material manufacturer. Using this integration constant C glass and Equation 16, the phase refractive index n sample (λ) can be calculated from the group refractive index ng sample (λ) of the test object.

積分定数Cの算出の代わりに、位相屈折率と群屈折率の差分や比を用いた方法が適用できる。差分を用いる位相屈折率算出方法や比を用いる位相屈折率算出方法は、それぞれ数式17で表される。ここでは、母材の位相屈折率がN(λ)、母材の群屈折率がN(λ)で表されている。 Instead of calculating the integration constant C, a method using a difference or ratio between the phase refractive index and the group refractive index can be applied. The phase refractive index calculation method using the difference and the phase refractive index calculation method using the ratio are expressed by Expression 17, respectively. Here, the phase refractive index of the base material is represented by N p (λ), and the group refractive index of the base material is represented by N g (λ).

Figure 2015105850
Figure 2015105850

屈折率分散曲線の算出精度向上の指針は、第1の媒質と第2の媒質の屈折率差を大きくとることである。本実施例では、第1の位相差から得られる被検物の屈折率と第2の位相差から得られる被検物の屈折率を等しくするように被検物の厚みを選択(算出)し、被検物の屈折率(屈折率分散曲線)を算出する。したがって、屈折率分散曲線の算出精度は、被検物の厚みの算出精度に依存する。被検物厚みを算出する式である数式10、数式15の分母は、第1の媒質と第2の媒質の屈折率の差分量である。したがって、第1の媒質と第2の媒質の屈折率差が大きいほど、被検物の厚みの算出精度が向上し、屈折率分散曲線の算出精度も向上する。   A guideline for improving the calculation accuracy of the refractive index dispersion curve is to increase the refractive index difference between the first medium and the second medium. In this embodiment, the thickness of the specimen is selected (calculated) so that the refractive index of the specimen obtained from the first phase difference is equal to the refractive index of the specimen obtained from the second phase difference. The refractive index (refractive index dispersion curve) of the test object is calculated. Therefore, the calculation accuracy of the refractive index dispersion curve depends on the calculation accuracy of the thickness of the test object. The denominators of Equations 10 and 15, which are equations for calculating the thickness of the test object, are the difference amounts of the refractive indexes of the first medium and the second medium. Therefore, as the difference in refractive index between the first medium and the second medium is larger, the accuracy of calculating the thickness of the test object is improved, and the accuracy of calculating the refractive index dispersion curve is also improved.

媒質の温度分布によって、媒質の屈折率分布が生じるため、算出される被検物の屈折率に誤差が生じる。したがって、媒質の温度分布が発生しないように温度調整機構(温度調整手段)で媒質の温度分布を制御するのが望ましい。また、媒質の屈折率分布による誤差は、屈折率分布の量がわかれば補正できるため、媒質の屈折率分布を計測するための波面計測装置(波面計測手段)を有することが望ましい。   Since the refractive index distribution of the medium is generated by the temperature distribution of the medium, an error occurs in the calculated refractive index of the test object. Therefore, it is desirable to control the temperature distribution of the medium with a temperature adjusting mechanism (temperature adjusting means) so that the temperature distribution of the medium does not occur. Further, since the error due to the refractive index distribution of the medium can be corrected if the amount of the refractive index distribution is known, it is desirable to have a wavefront measuring device (wavefront measuring means) for measuring the refractive index distribution of the medium.

本実施例では、容器60内の媒質の交換、または他媒質の添加によって、第1の媒質と第2の媒質の屈折率を変化させている。その代わりに、第1の媒質を収納する容器と第2の媒質を収納する容器を準備し、容器ごと交換してもよい。   In this embodiment, the refractive index of the first medium and the second medium is changed by exchanging the medium in the container 60 or adding another medium. Instead, a container for storing the first medium and a container for storing the second medium may be prepared and replaced together.

本実施例では、ミラー51による機械的な位相シフトと検出器90による分光の組み合わせで位相差を計測した。その代わりに、ヘテロダイン干渉法を用いてもよい。ヘテロダイン干渉法を用いる場合、その干渉計は、例えば、光源直後に分光器を配置して疑似単色光を射出し、音響光学素子で参照光と被検光の間に周波数差を発生させ、干渉信号をフォトダイオード等の検出器で計測する。そして、分光器で波長を走査しながら各波長で位相差を算出する。   In this embodiment, the phase difference is measured by a combination of mechanical phase shift by the mirror 51 and spectroscopy by the detector 90. Instead, heterodyne interferometry may be used. When heterodyne interferometry is used, the interferometer, for example, arranges a spectroscope immediately after the light source and emits pseudo-monochromatic light, generates a frequency difference between the reference light and the test light by the acousto-optic device, and causes interference. The signal is measured with a detector such as a photodiode. Then, the phase difference is calculated at each wavelength while scanning the wavelength with a spectroscope.

本実施例では、波長帯域の広い光源10として、スーパーコンティニューム光源を用いた。その代わりに、スーパールミネッセントダイオード(SLD)やハロゲンランプ、短パルスレーザー等が使われてもよい。波長を走査する場合には、広帯域光源と分光器の組み合わせの代わりに、波長掃引光源が使用されてもよい。   In this embodiment, a supercontinuum light source is used as the light source 10 having a wide wavelength band. Instead, a super luminescent diode (SLD), a halogen lamp, a short pulse laser, or the like may be used. When scanning the wavelength, a wavelength swept light source may be used instead of the combination of the broadband light source and the spectroscope.

本実施例では、マッハ・ツェンダー干渉計の構成をとっているが、代わりにマイケルソン干渉計の構成でもよい。また、本実施例では、屈折率や位相差を波長の関数として算出しているが、代わりに周波数の関数として算出してもよい。   In this embodiment, a Mach-Zehnder interferometer is used, but a Michelson interferometer may be used instead. In this embodiment, the refractive index and the phase difference are calculated as a function of wavelength, but may be calculated as a function of frequency instead.

本実施例では、干渉信号から位相差を算出し、比較的単純な関数である位相差に対してフィッティングするため、フィッティング精度が高い。本実施例は、数式13〜15を用いればフィッティング作業を省くことも可能である。さらに、本実施例は、被検物の厚みを算出することができる。以上のとおり、本実施例の屈折率計測装置によれば、被検物の厚みが未知でも被検物の屈折率(屈折率分散曲線)を高精度に計測することができる。   In this embodiment, since the phase difference is calculated from the interference signal and fitting is performed for the phase difference which is a relatively simple function, the fitting accuracy is high. In the present embodiment, the fitting work can be omitted by using Equations 13-15. Further, in this embodiment, the thickness of the test object can be calculated. As described above, according to the refractive index measuring apparatus of the present embodiment, the refractive index (refractive index dispersion curve) of the test object can be measured with high accuracy even if the thickness of the test object is unknown.

図4は、実施例2の屈折率計測装置のブロック図である。媒質の屈折率を計測する干渉計が実施例1の屈折率計測装置に追加されている。実施例1と同様の構成については、同一の符号を付して説明する。   FIG. 4 is a block diagram of the refractive index measuring apparatus according to the second embodiment. An interferometer that measures the refractive index of the medium is added to the refractive index measurement apparatus of the first embodiment. The same configurations as those in the first embodiment will be described with the same reference numerals.

光源10から射出された光は、ビームスプリッタ22で透過光と反射光に分割される。透過光は、被検物80の屈折率を計測するための干渉光学系へ進み、反射光は、媒質の屈折率を計測するための干渉光学系へと導かれる。反射光は、ビームスプリッタ23でさらに透過光(媒質参照光)と反射光(媒質被検光)に分割される。   The light emitted from the light source 10 is split into transmitted light and reflected light by the beam splitter 22. The transmitted light proceeds to the interference optical system for measuring the refractive index of the test object 80, and the reflected light is guided to the interference optical system for measuring the refractive index of the medium. The reflected light is further divided into transmitted light (medium reference light) and reflected light (medium test light) by the beam splitter 23.

ビームスプリッタ23で反射した媒質被検光は、ミラー42、52で反射した後に、容器60の側面および媒質を透過し、ミラー33で反射されてビームスプリッタ24に至る。ビームスプリッタ23を透過した媒質参照光は、ミラー32、43、53で反射した後に、補償板61を透過してビームスプリッタ24へ至る。ビームスプリッタ24へ至った媒質参照光と媒質被検光は、干渉して干渉光を形成し、分光器等で構成される検出部91で検出される。検出器91で検出された信号は、コンピュータ100に送られる。   The medium test light reflected by the beam splitter 23 is reflected by the mirrors 42 and 52, passes through the side surface of the container 60 and the medium, is reflected by the mirror 33, and reaches the beam splitter 24. The medium reference light transmitted through the beam splitter 23 is reflected by the mirrors 32, 43, and 53, then passes through the compensation plate 61 and reaches the beam splitter 24. The medium reference light and the medium test light that have reached the beam splitter 24 interfere with each other to form interference light, which is detected by the detection unit 91 configured by a spectroscope or the like. A signal detected by the detector 91 is sent to the computer 100.

補償板61は、容器60の側面による屈折率分散の影響を補正する役割を担い、容器60の側面と同一材料かつ同一厚み(=容器60の側面の厚み×2)で構成される。補償板61は、容器60内が空のとき、媒質被検光と媒質参照光の各波長それぞれの光路長差を等しくする効果を有する。   The compensation plate 61 plays a role of correcting the influence of refractive index dispersion due to the side surface of the container 60 and is made of the same material and the same thickness as the side surface of the container 60 (= thickness of the side surface of the container 60 × 2). The compensation plate 61 has an effect of equalizing the optical path length difference between the wavelengths of the medium test light and the medium reference light when the container 60 is empty.

ミラー53は、ミラー51と同様の駆動機構を有しており、図4の矢印の方向に駆動する。ミラー53の駆動は、コンピュータ100で制御される。   The mirror 53 has a drive mechanism similar to that of the mirror 51, and is driven in the direction of the arrow in FIG. The drive of the mirror 53 is controlled by the computer 100.

本実施例の被検物80の位相屈折率算出手順は、次のとおりである。   The procedure for calculating the phase refractive index of the test object 80 of the present embodiment is as follows.

まず、被検物80が第1の媒質(例えば、位相屈折率が1.5程度のオイル)中に配置される(S10)。第1の媒質において第1の位相差が計測される(S20)。ステップS10とステップS20が第1計測ステップである。第1の位相差が計測されるときに、媒質の屈折率を計測するための干渉計を用いて、第1の媒質における媒質参照光と媒質被検光の位相差η(λ)も計測される。第1の媒質における媒質参照光と媒質被検光の位相差η(λ)およびその微分dη(λ)/dλは、数式18で表される。 First, the test object 80 is placed in a first medium (for example, oil having a phase refractive index of about 1.5) (S10). The first phase difference is measured in the first medium (S20). Steps S10 and S20 are the first measurement steps. When the first phase difference is measured, the phase difference η 1 (λ) between the medium reference light and the medium test light in the first medium is also measured using an interferometer for measuring the refractive index of the medium. Is done. The phase difference η 1 (λ) between the medium reference light and the medium test light in the first medium and its differential dη 1 (λ) / dλ are expressed by Equation 18.

Figure 2015105850
Figure 2015105850

ただし、Ltankは容器60の側面間の距離(媒質被検光の媒質内の光路長)、Δは媒質参照光と媒質被検光の光路長差であり、既知の量である。第1の媒質の位相屈折率n medium(λ)は、被検物の位相屈折率n sample(λ)を算出する方法と同様に、数式18のη(λ)の関係式をフィッティングすることで得られる。第1の媒質の群屈折率ng1 medium(λ)は、数式18のdη(λ)/dλの関係式を変形することで得られる。 Where L tank is the distance between the side surfaces of the container 60 (the optical path length in the medium of the medium test light), and Δ is the optical path length difference between the medium reference light and the medium test light, which is a known amount. The phase refractive index n 1 medium (λ) of the first medium is obtained by fitting the relational expression of η 1 (λ) in Expression 18 in the same manner as the method of calculating the phase refractive index n 1 sample (λ) of the test object. It is obtained by doing. The group refractive index n g1 medium (λ) of the first medium can be obtained by modifying the relational expression dη 1 (λ) / dλ in Expression 18.

次に、被検物80が第2の媒質(例えば、位相屈折率が1.7程度のオイル)中に配置される(S30)。第2の媒質において第2の位相差が計測される(S40)。ステップS30とステップS40が第2計測ステップである。第2の位相差が計測されるときに、媒質の屈折率を計測するための干渉計を用いて、第2の媒質における媒質参照光と媒質被検光の位相差も計測される。第2の媒質における媒質参照光と媒質被検光の位相差から、第2の媒質の屈折率が算出される。最後に、第1の位相差と第2の位相差と第1の媒質の屈折率と第2の媒質の屈折率とを用いて被検物80の屈折率(屈折率分散曲線)が算出される(算出ステップS50)。算出ステップS50において、第1の位相差から得られる被検物の屈折率と第2の位相差から得られる被検物の屈折率が等しくなるように被検物の屈折率(屈折率分散曲線)が算出される。   Next, the test object 80 is placed in a second medium (for example, oil having a phase refractive index of about 1.7) (S30). The second phase difference is measured in the second medium (S40). Steps S30 and S40 are second measurement steps. When the second phase difference is measured, the phase difference between the medium reference light and the medium test light in the second medium is also measured using an interferometer for measuring the refractive index of the medium. The refractive index of the second medium is calculated from the phase difference between the medium reference light and the medium test light in the second medium. Finally, the refractive index (refractive index dispersion curve) of the test object 80 is calculated using the first phase difference, the second phase difference, the refractive index of the first medium, and the refractive index of the second medium. (Calculation step S50). In calculation step S50, the refractive index of the test object (refractive index dispersion curve) is set so that the refractive index of the test object obtained from the first phase difference is equal to the refractive index of the test object obtained from the second phase difference. ) Is calculated.

図5は、実施例3の屈折率計測装置のブロック図である。波面が2次元センサ(波面計測手段)を用いて計測される。媒質の屈折率を計測するために、屈折率および形状が既知のガラスプリズム(基準被検物)が被検光の光路上に配置されている。実施例1、実施例2と同様の構成については、同一の符号を付して説明する。   FIG. 5 is a block diagram of the refractive index measuring apparatus according to the third embodiment. The wavefront is measured using a two-dimensional sensor (wavefront measuring means). In order to measure the refractive index of the medium, a glass prism (reference test object) having a known refractive index and shape is arranged on the optical path of the test light. The same configurations as those in the first and second embodiments will be described with the same reference numerals.

光源10から射出された光は、分光器95で分光され、疑似単色光となってピンホール110に入射する。ピンホール110へ入射させる疑似単色光の波長は、コンピュータ100で制御される。ピンホール110を透過して発散光となった光は、コリメータレンズ120で平行光にコリメートされる。コリメート光は、ビームスプリッタ25で透過光(参照光)と反射光(被検光)に分割される。   The light emitted from the light source 10 is split by the spectroscope 95 and enters the pinhole 110 as pseudo-monochromatic light. The wavelength of the pseudo-monochromatic light incident on the pinhole 110 is controlled by the computer 100. The light that has passed through the pinhole 110 and becomes divergent light is collimated into parallel light by the collimator lens 120. The collimated light is split by the beam splitter 25 into transmitted light (reference light) and reflected light (test light).

ビームスプリッタ25を透過した参照光は、容器60内の媒質を透過した後、ミラー31で反射してビームスプリッタ26へ至る。ミラー31は、図5の矢印方向の駆動機構を有し、コンピュータ100で制御される。   The reference light that has passed through the beam splitter 25 passes through the medium in the container 60, is reflected by the mirror 31, and reaches the beam splitter 26. The mirror 31 has a drive mechanism in the direction of the arrow in FIG. 5 and is controlled by the computer 100.

ビームスプリッタ25で反射された被検光は、ミラー30で反射して、媒質と被検物80とガラスプリズム130を収容している容器60に入射する。被検光の一部の光は媒質および被検物80を透過する。被検光の一部の光は媒質およびガラスプリズム130を透過する。被検光の残りの光は媒質のみを透過する。容器60を透過したそれぞれの光は、ビームスプリッタ26において参照光と干渉して干渉光を形成し、結像レンズ121を介して検出器92(例えば、CCDやCMOSセンサ)で検出される。検出器92で検出された干渉信号は、コンピュータ100に送られる。   The test light reflected by the beam splitter 25 is reflected by the mirror 30 and enters the container 60 that houses the medium, the test object 80, and the glass prism 130. Part of the test light passes through the medium and the test object 80. Part of the test light passes through the medium and the glass prism 130. The remaining light of the test light is transmitted only through the medium. Each light transmitted through the container 60 interferes with the reference light in the beam splitter 26 to form interference light, and is detected by the detector 92 (for example, CCD or CMOS sensor) through the imaging lens 121. The interference signal detected by the detector 92 is sent to the computer 100.

検出器92は、被検物80およびガラスプリズム130の位置と共役位置に配置されている。被検物80と媒質の位相屈折率が異なると、被検物80を透過した光は発散光や収束光になる。その発散光(収束光)が被検物80以外を透過した光と交差する場合は、被検物80の後方(検出器92側)にアパーチャ等を配置して、迷光をカットすればよい。ガラスプリズム130を透過した光と参照光の干渉縞が密になりすぎないように、ガラスプリズムは、媒質の位相屈折率とほぼ等しい位相屈折率を有するものが好ましい。被検光と参照光の光路長は、被検物80およびガラスプリズム130が被検光路上に配置されていない状態で、等しくなるように調整されている。   The detector 92 is arranged at a conjugate position with the position of the test object 80 and the glass prism 130. If the phase index of refraction between the test object 80 and the medium is different, the light transmitted through the test object 80 becomes divergent light or convergent light. When the divergent light (converged light) intersects with light transmitted through other than the test object 80, an aperture or the like may be arranged behind the test object 80 (detector 92 side) to cut stray light. The glass prism preferably has a phase refractive index substantially equal to the phase refractive index of the medium so that the interference fringes between the light transmitted through the glass prism 130 and the reference light do not become too dense. The optical path lengths of the test light and the reference light are adjusted to be equal in a state where the test object 80 and the glass prism 130 are not arranged on the test light path.

本実施例の被検物80の位相屈折率算出手順は、次のとおりである。   The procedure for calculating the phase refractive index of the test object 80 of the present embodiment is as follows.

まず、被検物80が第1の媒質中に配置される(S10)。分光器95による波長走査と、ミラー31の駆動機構を用いた位相シフト法により、第1の媒質において第1の位相差および第1の媒質の屈折率が計測される(S20)。ステップS10とステップS20が第1計測ステップである。次に、被検物80が第2の媒質中に配置される(S30)。第2の媒質において第2の位相差および第2の媒質の屈折率が計測される(S40)。ステップS30とステップS40が第2計測ステップである。最後に、第1の位相差と第2の位相差と第1の媒質の屈折率と第2の媒質の屈折率とを用いて被検物80の屈折率(屈折率分散曲線)が算出される(算出ステップS50)。算出ステップS50において、第1の位相差から得られる被検物の屈折率と第2の位相差から得られる被検物の屈折率が等しくなるように被検物の屈折率(屈折率分散曲線)が算出される。   First, the test object 80 is placed in the first medium (S10). The first phase difference and the refractive index of the first medium are measured in the first medium by the wavelength scanning by the spectroscope 95 and the phase shift method using the drive mechanism of the mirror 31 (S20). Steps S10 and S20 are the first measurement steps. Next, the test object 80 is placed in the second medium (S30). The second phase difference and the refractive index of the second medium are measured in the second medium (S40). Steps S30 and S40 are second measurement steps. Finally, the refractive index (refractive index dispersion curve) of the test object 80 is calculated using the first phase difference, the second phase difference, the refractive index of the first medium, and the refractive index of the second medium. (Calculation step S50). In calculation step S50, the refractive index of the test object (refractive index dispersion curve) is set so that the refractive index of the test object obtained from the first phase difference is equal to the refractive index of the test object obtained from the second phase difference. ) Is calculated.

実施例1〜3にて説明した屈折率計測装置および屈折率計測方法を用いた屈折率の計測結果をレンズ等の光学素子の製造方法にフィードバックすることも可能である。   It is also possible to feed back the measurement result of the refractive index using the refractive index measuring device and the refractive index measuring method described in the first to third embodiments to a method for manufacturing an optical element such as a lens.

図6には、モールド成型を利用した光学素子の製造工程の例を示している。   FIG. 6 shows an example of a manufacturing process of an optical element using molding.

光学素子は、光学素子の設計工程、金型の設計工程および該金型を用いた光学素子のモールド成型工程を経て製造される。成型された光学素子は、その形状精度が評価され、精度不足である場合は金型を補正して再度モールド成型を行う。形状精度が良好であれば、該光学素子の光学性能が評価される。この光学性能の評価工程に、本発明の屈折率計測方法を組み込むことで、モールド成型される光学素子を精度良く量産することができる。
なお、光学性能が低い場合は、光学面を補正した光学素子を設計し直す。
The optical element is manufactured through an optical element design process, a mold design process, and an optical element molding process using the mold. The molded optical element is evaluated for its shape accuracy, and when the accuracy is insufficient, the mold is corrected and molded again. If the shape accuracy is good, the optical performance of the optical element is evaluated. By incorporating the refractive index measurement method of the present invention into this optical performance evaluation step, it is possible to accurately mass-produce molded optical elements.
If the optical performance is low, the optical element whose optical surface is corrected is redesigned.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention.

10 光源
60 容器
80 被検物
90 検出器
100 コンピュータ
DESCRIPTION OF SYMBOLS 10 Light source 60 Container 80 Test object 90 Detector 100 Computer

Claims (15)

光源からの光を被検光と参照光に分割し、被検光を被検物に入射させ、前記被検物を透過した被検光と参照光を干渉させて、前記被検光と前記参照光の位相差を計測することによって前記被検物の屈折率を計測する屈折率計測方法であって、
第1の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第1の位相差を計測する第1計測ステップと、
前記第1の媒質の屈折率とは異なる屈折率を有する第2の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第2の位相差を計測する第2計測ステップと、
前記第1の位相差と前記第2の位相差と前記第1の媒質の屈折率と前記第2の媒質の屈折率とを用いて、前記被検物の屈折率を算出する算出ステップとを含むことを特徴とする屈折率計測方法。
The light from the light source is divided into the test light and the reference light, the test light is incident on the test object, the test light transmitted through the test object and the reference light are interfered, and the test light and the reference light A refractive index measurement method for measuring a refractive index of the test object by measuring a phase difference of reference light,
A first measurement step of measuring a first phase difference that is a phase difference between the test light transmitted through the test object arranged in the first medium and the reference light;
A second phase difference that is a phase difference between the test light transmitted through the test object arranged in the second medium having a refractive index different from the refractive index of the first medium and the reference light is measured. A second measurement step;
Using the first phase difference, the second phase difference, the refractive index of the first medium, and the refractive index of the second medium to calculate a refractive index of the test object; A method for measuring a refractive index, comprising:
前記算出ステップにおいて、前記第1の位相差から得られる前記被検物の屈折率と前記第2の位相差から得られる前記被検物の屈折率が等しくなるような前記被検物の厚みを算出し、該被検物の厚みを用いて、前記被検物の屈折率を算出することを特徴とする請求項1に記載の屈折率計測方法。   In the calculating step, the thickness of the test object is such that the refractive index of the test object obtained from the first phase difference is equal to the refractive index of the test object obtained from the second phase difference. The refractive index measurement method according to claim 1, wherein the refractive index of the test object is calculated using the thickness of the test object. 前記第1計測ステップと前記第2計測ステップにおいて、媒質の温度を計測し、計測された媒質の温度を媒質の屈折率に換算することによって、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ計測することを特徴とする請求項1または2に記載の屈折率計測方法。   In the first measurement step and the second measurement step, the temperature of the medium is measured, and the measured temperature of the medium is converted into the refractive index of the medium, whereby the refractive index of the first medium and the second The refractive index measurement method according to claim 1, wherein the refractive index of the medium is measured. 前記第1計測ステップと前記第2計測ステップにおいて、媒質中に屈折率及び形状が既知の基準被検物を配置し、前記基準被検物に光を入射させて前記基準被検物の透過波面を計測し、前記基準被検物の屈折率および形状と前記基準被検物の透過波面に基づいて、媒質の屈折率を算出することによって、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ計測することを特徴とする請求項1または2に記載の屈折率計測方法。   In the first measurement step and the second measurement step, a reference test object having a known refractive index and shape is arranged in a medium, and light is incident on the reference test object to transmit a transmitted wavefront of the reference test object. And calculating the refractive index of the medium based on the refractive index and shape of the reference specimen and the transmitted wavefront of the reference specimen, thereby calculating the refractive index of the first medium and the second refractive index. The refractive index measurement method according to claim 1, wherein the refractive index of the medium is measured. 前記第1計測ステップと前記第2計測ステップにおいて、前記光源からの光を媒質被検光と媒質参照光に分割し、媒質被検光を媒質に入射させ、媒質を透過した媒質被検光と媒質参照光を干渉させた干渉光を計測し、媒質参照光と媒質被検光の位相差に基づいて媒質の屈折率を算出することによって、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ計測することを特徴とする請求項1または2に記載の屈折率計測方法。   In the first measurement step and the second measurement step, the light from the light source is divided into medium test light and medium reference light, the medium test light is incident on the medium, and the medium test light transmitted through the medium By measuring the interference light obtained by causing the medium reference light to interfere, and calculating the refractive index of the medium based on the phase difference between the medium reference light and the medium test light, the refractive index of the first medium and the second refractive index are calculated. The refractive index measurement method according to claim 1, wherein the refractive index of the medium is measured. 前記第1の媒質の屈折率分布と前記第2の媒質の屈折率分布を計測することを特徴とする請求項1乃至5のいずれか1項に記載の屈折率計測方法。   The refractive index measurement method according to claim 1, wherein the refractive index distribution of the first medium and the refractive index distribution of the second medium are measured. 前記第1の媒質の温度分布と前記第2の媒質の温度分布を制御することを特徴とする請求項1乃至6のいずれか1項に記載の屈折率計測方法。   The refractive index measurement method according to any one of claims 1 to 6, wherein the temperature distribution of the first medium and the temperature distribution of the second medium are controlled. 光源と、前記光源からの光を被検光と参照光に分割し、被検光を被検物に入射させ、前記被検物を透過した被検光と参照光を干渉させる干渉光学系と、被検光と参照光の干渉光を検出する検出手段と、前記検出手段から出力される干渉信号を用いて被検光と参照光の位相差を算出し、該位相差に基づいて前記被検物の屈折率を算出する算出手段とを有する屈折率計測装置であって、
前記算出手段は、第1の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第1の位相差と、前記第1の媒質の屈折率とは異なる屈折率を有する第2の媒質中に配置された前記被検物を透過した被検光と参照光の位相差である第2の位相差と、前記第1の媒質の屈折率と、前記第2の媒質の屈折率とを用いて、前記被検物の屈折率を算出することを特徴とする屈折率計測装置。
A light source, an interference optical system that divides light from the light source into test light and reference light, causes the test light to enter the test object, and causes the test light transmitted through the test object to interfere with the reference light; A detection means for detecting interference light between the test light and the reference light; a phase difference between the test light and the reference light is calculated using an interference signal output from the detection means; and the detection target is calculated based on the phase difference. A refractive index measuring device having a calculating means for calculating a refractive index of a specimen,
The calculation means is different from a first phase difference which is a phase difference between the test light transmitted through the test object arranged in the first medium and the reference light, and a refractive index of the first medium. A second phase difference which is a phase difference between the test light transmitted through the test object disposed in the second medium having a refractive index and the reference light, the refractive index of the first medium, the first A refractive index measuring apparatus that calculates the refractive index of the test object using the refractive index of the second medium.
前記算出手段は、前記第1の位相差から得られる前記被検物の屈折率と前記第2の位相差から得られる前記被検物の屈折率が等しくなるような前記被検物の厚みを算出し、該被検物の厚みを用いて、前記被検物の屈折率を算出することを特徴とする請求項8に記載の屈折率計測装置。   The calculation means calculates the thickness of the test object such that the refractive index of the test object obtained from the first phase difference is equal to the refractive index of the test object obtained from the second phase difference. The refractive index measuring apparatus according to claim 8, wherein the refractive index of the test object is calculated using the thickness of the test object. 媒質の温度を計測する温度計測手段を有し、
前記算出手段は、前記温度計測手段により計測された媒質の温度を媒質の屈折率に換算することによって、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ算出することを特徴とする請求項8または9に記載の屈折率計測装置。
Having a temperature measuring means for measuring the temperature of the medium;
The calculating means calculates the refractive index of the first medium and the refractive index of the second medium by converting the temperature of the medium measured by the temperature measuring means into the refractive index of the medium. The refractive index measuring device according to claim 8 or 9, characterized by the above.
屈折率および形状が既知の基準被検物と、
媒質中に配置された前記基準被検物に入射させた光の透過波面を計測する波面計測手段を有し、
前記算出手段は、前記基準被検物の屈折率および形状と前記基準被検物の透過波面に基づいて、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ算出することを特徴とする請求項8または9に記載の屈折率計測装置。
A reference specimen with a known refractive index and shape; and
Having wavefront measuring means for measuring a transmitted wavefront of light incident on the reference specimen placed in a medium;
The calculation means calculates the refractive index of the first medium and the refractive index of the second medium based on the refractive index and shape of the reference specimen and the transmitted wavefront of the reference specimen, respectively. The refractive index measuring device according to claim 8 or 9, wherein
前記光源からの光を媒質被検光と媒質参照光に分割し、媒質被検光を媒質に入射させ、媒質を透過した媒質被検光と媒質参照光を干渉させる干渉光学系と、
媒質被検光と媒質参照光の干渉光を検出する検出手段を有し、
前記算出手段は、媒質参照光と媒質被検光の位相差に基づいて、前記第1の媒質の屈折率と前記第2の媒質の屈折率をそれぞれ算出することを特徴とする請求項8または9に記載の屈折率計測装置。
An interference optical system that divides light from the light source into medium test light and medium reference light, makes the medium test light incident on the medium, and causes the medium test light transmitted through the medium to interfere with the medium reference light;
Detecting means for detecting interference light between the medium test light and the medium reference light;
9. The calculation unit according to claim 8, wherein the calculation unit calculates a refractive index of the first medium and a refractive index of the second medium based on a phase difference between the medium reference light and the medium test light. The refractive index measuring apparatus according to 9.
前記第1の媒質の屈折率分布と前記第2の媒質の屈折率分布を計測する波面計測手段を有することを特徴とする請求項8乃至12のいずれか1項に記載の屈折率計測装置。   The refractive index measuring device according to any one of claims 8 to 12, further comprising: a wavefront measuring unit that measures the refractive index distribution of the first medium and the refractive index distribution of the second medium. 前記第1の媒質の温度分布と前記第2の媒質の温度分布を制御する温度制御手段を有することを特徴とする請求項8乃至13のいずれか1項に記載の屈折率計測装置。   14. The refractive index measurement apparatus according to claim 8, further comprising a temperature control unit configured to control a temperature distribution of the first medium and a temperature distribution of the second medium. 光学素子をモールド成型するステップと、
請求項1乃至7のいずれか1項に記載の屈折率計測方法を用いて前記光学素子の屈折率を計測することによって、成型された光学素子を評価するステップと、を有することを特徴とする光学素子の製造方法。
Molding the optical element;
And a step of evaluating the molded optical element by measuring the refractive index of the optical element using the refractive index measurement method according to claim 1. A method for manufacturing an optical element.
JP2013247130A 2013-11-29 2013-11-29 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element Pending JP2015105850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247130A JP2015105850A (en) 2013-11-29 2013-11-29 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247130A JP2015105850A (en) 2013-11-29 2013-11-29 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element

Publications (1)

Publication Number Publication Date
JP2015105850A true JP2015105850A (en) 2015-06-08

Family

ID=53436039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247130A Pending JP2015105850A (en) 2013-11-29 2013-11-29 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element

Country Status (1)

Country Link
JP (1) JP2015105850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248623A (en) * 2015-06-10 2016-12-21 佳能株式会社 Refractive index measurement method, measurement apparatus and Optical element manufacturing method
CN109883995A (en) * 2019-03-05 2019-06-14 中国计量大学 The measuring system and method for non-uniform dielectric field based on Hartmann's ray tracing
CN109883994A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing
CN109883993A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing
CN109883996A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028726A (en) * 1988-06-27 1990-01-12 Asahi Optical Co Ltd Measurement of refractive index of lens
JPH10206281A (en) * 1997-01-24 1998-08-07 Ricoh Co Ltd Method and apparatus for measurement of distribution of refractive index
JP2011247687A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of refraction factor
JP2012083331A (en) * 2010-09-16 2012-04-26 Canon Inc Refractive index measuring method and refractive index measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028726A (en) * 1988-06-27 1990-01-12 Asahi Optical Co Ltd Measurement of refractive index of lens
JPH10206281A (en) * 1997-01-24 1998-08-07 Ricoh Co Ltd Method and apparatus for measurement of distribution of refractive index
JP2011247687A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of refraction factor
JP2012083331A (en) * 2010-09-16 2012-04-26 Canon Inc Refractive index measuring method and refractive index measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248623A (en) * 2015-06-10 2016-12-21 佳能株式会社 Refractive index measurement method, measurement apparatus and Optical element manufacturing method
CN109883995A (en) * 2019-03-05 2019-06-14 中国计量大学 The measuring system and method for non-uniform dielectric field based on Hartmann's ray tracing
CN109883994A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing
CN109883993A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing
CN109883996A (en) * 2019-03-05 2019-06-14 中国计量大学 The measurement method of non-uniform dielectric field based on Hartmann's ray tracing

Similar Documents

Publication Publication Date Title
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
KR101390721B1 (en) Measuring method of refractive index and measuring apparatus of refractive index
JP6167117B2 (en) Optical sensor
JP2017003434A (en) Method of measuring refractive index, measuring device, and method of manufacturing optical element
KR101812541B1 (en) Temperature measuring method and storage medium
JP2015105850A (en) Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
JP6157241B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP6207383B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP2018004409A (en) Refractive index measurement method, refractive index measurement device, and method of manufacturing optical element
JP4208069B2 (en) Refractive index and thickness measuring apparatus and measuring method
JP2015099133A (en) Measurement method and measurement device for thickness
JP6700699B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
US20170315053A1 (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
KR102570084B1 (en) The thickness measurement method using a three-dimensional reflectance surface
JP2015010920A (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
KR101108693B1 (en) Refractive index measurement device based on white light interferometry and method thereof
KR102079588B1 (en) Method measuring thickness and refractive index of planar samples based on fabry-perot interferometer
JP2007114206A (en) Method for precision measurement of group refractive index of optical material
JP5894464B2 (en) Measuring device
JP2015210241A (en) Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element
JP2013186117A (en) Refractive index measurement method and refractive index measurement apparatus
JP2016109595A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
JP2007183297A (en) Method and device for precisely measuring group refractive index of optical material
JP2009236554A (en) Method, apparatus, and system for evaluation and calibration of dual-wavelength laser interferometer
JP2005106699A (en) Instrument and method for measuring refractive index and thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003