JP2021113832A - Surface shape measurement method - Google Patents

Surface shape measurement method Download PDF

Info

Publication number
JP2021113832A
JP2021113832A JP2021081714A JP2021081714A JP2021113832A JP 2021113832 A JP2021113832 A JP 2021113832A JP 2021081714 A JP2021081714 A JP 2021081714A JP 2021081714 A JP2021081714 A JP 2021081714A JP 2021113832 A JP2021113832 A JP 2021113832A
Authority
JP
Japan
Prior art keywords
light
measurement
surface shape
interference
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021081714A
Other languages
Japanese (ja)
Other versions
JP7093915B2 (en
Inventor
秀樹 森井
Hideki Morii
秀樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2021081714A priority Critical patent/JP7093915B2/en
Publication of JP2021113832A publication Critical patent/JP2021113832A/en
Application granted granted Critical
Publication of JP7093915B2 publication Critical patent/JP7093915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a surface shape measurement method capable of shortening whole measurement time.SOLUTION: A surface shape measurement method for measuring a surface shape of a measurement object P from brightness information of interference light obtained by an imaging part 16 while changing an optical path length of measurement light emitted to each point of a measured surface S includes: first light sources 40 and 240 for emitting white light for surface shape measurement; and a second light source 41 for emitting longer light of a coherence region than white light or a bandpass filter 243 for transmitting light having a narrow wavelength width. A surface shape measurement method and a surface shape measurement device include: an interference region acquisition step of acquiring an interference fringe at a longer image acquisition interval than an image acquisition interval in a surface shape measurement step using the long light of the coherence region; a scanning region determination step of determining a scanning range using brightness information of the acquired interference fringe; and a surface shape measurement step of measuring a surface shape within a scanning region determined in the scanning range determination step.SELECTED DRAWING: Figure 5

Description

本発明は、表面形状測定方法および表面形状測定装置に係り、特に、走査型白色干渉計を用いて非接触で測定対象物の表面の形状を測定する表面形状測定方法に関する。 The present invention relates to a surface shape measuring method and a surface shape measuring device, and more particularly to a surface shape measuring method for measuring the surface shape of an object to be measured in a non-contact manner using a scanning white interferometer.

表面形状測定装置は、測定対象物の被測定面の3次元形状を測定する装置であり、走査型白色干渉計を用いたものが知られている。走査型白色干渉計は、干渉計を用いて測定対象物の被測定面の3次元形状を非接触により測定する。 The surface shape measuring device is a device that measures the three-dimensional shape of the surface to be measured of the object to be measured, and is known to use a scanning white interferometer. The scanning white interferometer uses an interferometer to measure the three-dimensional shape of the surface to be measured of the object to be measured in a non-contact manner.

干渉計は、光学顕微鏡の構成要素としての対物レンズと、対物レンズと被測定面との間に配置されるビームスプリッタと、参照ミラーとを有する。白色光源から干渉計に入射した白色光は、対物レンズを透過してビームスプリッタにより測定光と参照光とに分割され、測定光は被測定面に照射され、参照光は参照ミラーに照射される。そして、被測定面から戻る測定光と参照ミラーから戻る参照光とが重ね合わされて干渉光が生成され、その干渉光が対物レンズを通過して干渉計からCCDカメラへと出射される。 The interferometer has an objective lens as a component of an optical microscope, a beam splitter arranged between the objective lens and the surface to be measured, and a reference mirror. The white light incident on the interferometer from the white light source passes through the objective lens and is split into the measurement light and the reference light by the beam splitter, the measurement light is applied to the surface to be measured, and the reference light is applied to the reference mirror. .. Then, the measurement light returning from the surface to be measured and the reference light returning from the reference mirror are superposed to generate interference light, and the interference light passes through the objective lens and is emitted from the interference meter to the CCD camera.

これにより、CCDカメラの撮像面には、干渉縞像が結像され、その干渉縞像が干渉縞としてCCDカメラの撮像素子により取得される。そして、干渉計を被測定面に対して高さ方向に変位させながら干渉縞を取得し、干渉縞の各画素について輝度値が最大値を示すときの変位量を検出することで被測定面の各点の相対的な高さが測定される。 As a result, an interference fringe image is formed on the image pickup surface of the CCD camera, and the interference fringe image is acquired by the image sensor of the CCD camera as interference fringes. Then, the interference fringes are acquired while the interference meter is displaced with respect to the surface to be measured in the height direction, and the amount of displacement when the brightness value shows the maximum value for each pixel of the interference fringes is detected to detect the amount of displacement of the surface to be measured. The relative height of each point is measured.

このように、上述のような走査型白色干渉計においては、干渉縞を取得する際、走査型白色干渉計を高さ方向に走査させながら行うが、測定の準備として、干渉縞が観察可能な位置へ垂直走査軸を駆動するフォーカシング過程が必要となる。フォーカシング過程として、干渉縞が観察可能な光学系のピント位置に測定対象物の被測定面がくるように測定走査軸を駆動する焦点調整、表面形状測定の際の高さ方向の走査範囲を適切に決定することが行われる。フォーカシングを行い、高さ方向の走査範囲を適切に決定しないと、干渉縞が生成されない範囲も測定することになり、測定に時間がかかっていた。また、測定時間の短縮のためには、測定準備の時間を短縮することも重要であり、そのためには、フォーカシングの時間も短縮することが重要である。 As described above, in the scanning white interferometer as described above, when the interference fringes are acquired, the scanning white interferometer is scanned in the height direction, but the interference fringes can be observed in preparation for the measurement. A focusing process is required to drive the scanning axis perpendicular to the position. As the focusing process, focus adjustment that drives the measurement scanning axis so that the surface to be measured comes to the focus position of the optical system where interference fringes can be observed, and the scanning range in the height direction when measuring the surface shape are appropriate. The decision is made. If focusing is not performed and the scanning range in the height direction is not properly determined, the range in which interference fringes are not generated will also be measured, which takes a long time to measure. Further, in order to shorten the measurement time, it is important to shorten the measurement preparation time, and for that purpose, it is also important to shorten the focusing time.

光を用いた非接触形状測定機においては、使用する対物レンズの視野等の制限により、一回の測定で測定可能な範囲に制限が多く、複数の測定を行い、後でそれらの測定データを接続する手法(スティッチング)が知られている。複数測定を接続するスティッチングにおいては、測定を複数回行うため、特に、測定時間が掛かっていた。このような課題に対して、目視にて干渉縞の消失を確認した後、測定範囲を設定する、あるいは、予備走査を行い、干渉縞の生成および消失を確認した後、測定範囲を設定することが行われている。しかしながら、これらの場合においても、測定準備に時間が掛かり、形状測定に掛かる全体の時間を大幅に減少させることはできていなかった。 In a non-contact shape measuring machine using light, there are many restrictions on the range that can be measured by one measurement due to the limitation of the field of view of the objective lens used, so multiple measurements are performed and the measurement data are collected later. The method of connecting (stitching) is known. In stitching in which a plurality of measurements are connected, the measurement is performed a plurality of times, so that the measurement time is particularly long. For such a problem, the measurement range is set after visually confirming the disappearance of the interference fringes, or the measurement range is set after confirming the generation and disappearance of the interference fringes by performing preliminary scanning. Is being done. However, even in these cases, it takes time to prepare for measurement, and the total time required for shape measurement cannot be significantly reduced.

例えば、下記の特許文献1には、隣接する撮像領域との重複領域の平均値に基づいて、次の測定位置におけるZ軸方向の移動範囲を求める形状測定装置が記載されている。また、特許文献2には、干渉縞を撮像するカメラとは別に、焦点調整のためのカメラを別途設置する方法が記載されている。 For example, Patent Document 1 below describes a shape measuring device that obtains a moving range in the Z-axis direction at the next measurement position based on an average value of an overlapping region with an adjacent imaging region. Further, Patent Document 2 describes a method of separately installing a camera for focus adjustment in addition to a camera that captures interference fringes.

特開2014−202651号公報Japanese Unexamined Patent Publication No. 2014-202651 特開2016−136091号公報Japanese Unexamined Patent Publication No. 2016-136091

しかしながら、特許文献1に記載されている形状測定装置では、撮像した領域と、隣接する次に撮像する領域との重複範囲に基づいてZ軸方向の移動範囲を設定しているため、隣接する領域において、段差部を有する場合は、その段差部の高さに対応することができない場合があった。また、カメラを別途設置する方法は装置コストの増加につながるため、得策な方法とは言えなかった。 However, in the shape measuring device described in Patent Document 1, since the moving range in the Z-axis direction is set based on the overlapping range between the imaged region and the adjacent next imaged region, the adjacent regions are adjacent to each other. In the case where the stepped portion is provided, it may not be possible to correspond to the height of the stepped portion. In addition, the method of installing a camera separately is not a good method because it leads to an increase in equipment cost.

本発明はこのような事情に鑑みてなされたものであり、表面形状測定を行う際の垂直走査範囲を高い確率で推定することができ、かつ、短時間で決定することができ、また、焦点調整も短時間で行うことができる表面形状測定方法および表面形状測定装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and the vertical scanning range when measuring the surface shape can be estimated with a high probability, can be determined in a short time, and has a focus. It is an object of the present invention to provide a surface shape measuring method and a surface shape measuring device capable of performing adjustment in a short time.

上記目的を達成するために、本発明に係る表面形状測定方法は、測定対象物を支持する支持部と、可干渉領域の長さの異なる光を発生させる光源部と、光源部からの光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得し測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える表面形状測定装置を用いた表面形状測定方法であって、光源部から出射された可干渉領域の長い光を用いて、被測定面の各点に照射される測定光の光路長を変化させながら、干渉縞を取得する干渉縞取得工程と、干渉縞取得工程で測定された干渉縞の輝度情報から、測定光の軸方向に対する干渉縞の生成する範囲を推定し、測定光の軸方向の走査範囲を決定する走査範囲決定工程と、光源部から出射された可干渉領域の短い光を用いて、被測定面の各点に照射される測定光の光路長を走査範囲決定工程で決定した走査範囲内で変化させながら干渉縞を取得し、測定対象物の表面形状を測定する表面形状測定工程と、を有し、干渉縞取得工程の画像取得間隔が、表面形状測定工程の画像取得間隔より長い。 In order to achieve the above object, the surface shape measuring method according to the present invention uses a support portion that supports the object to be measured, a light source portion that generates light having different lengths of the coherent region, and light from the light source portion. The measurement light is divided into a measurement light and a reference light, and the measurement light is irradiated to the measured surface of the object to be measured, and the reference light is irradiated to the reference surface. Interference fringes are acquired from the brightness information of the interference portion that generates the interfered interference light and the interference light between the measurement light and the reference light applied to each point on the surface to be measured, and the surface shape data of the object to be measured is acquired. A surface shape measuring method using a surface shape measuring device including a surface shape acquiring unit and an optical unit having a surface shape acquiring unit, and using light having a long coherent region emitted from a light source unit, each of the surfaces to be measured is used. From the interference fringe acquisition step of acquiring the interference fringes while changing the optical path length of the measurement light applied to the point and the brightness information of the interference fringes measured in the interference fringe acquisition step, the interference fringes in the axial direction of the measurement light Each point on the surface to be measured is irradiated using the scanning range determination step of estimating the generated range and determining the scanning range of the measurement light in the axial direction and the short light of the coherent region emitted from the light source unit. The interference fringe acquisition step includes a surface shape measurement step of acquiring interference fringes while changing the optical path length of the measurement light within the scanning range determined in the scanning range determination step and measuring the surface shape of the object to be measured. The image acquisition interval is longer than the image acquisition interval in the surface shape measurement step.

本発明の表面形状測定方法によれば、測定対象物の表面形状を測定する前に、表面形状を測定する際の、光学部の走査範囲を決定することで、測定時間を短くすることができる。また、光学部の走査範囲を決定するための画像取得間隔を、表面形状測定工程の画像取得間隔より長くしているので、短い時間で画像の取得を行うことができる。また、画像取得間隔を長くすることで、干渉縞による明暗が生成している領域において、干渉縞による輝度値の変化が小さい場合がある。本発明においては、表面形状測定工程の走査範囲を決定する予備走査を可干渉領域の長い光を用いることで、画像取得間隔が長くなっても、干渉縞の生成している領域内で、干渉縞の発生を確認することができる。また、可干渉領域の長い光を用いることで、発光波長幅が短くなるので、光路長の変化に対する干渉縞の輝度値の変化率が大きくなる。したがって、干渉縞の生成を確認することができる値以上の位置で画像を取得することができ、干渉縞の生成する範囲を高い確率で推定することができる。このように、走査範囲を短時間で決定することができ、表面形状の測定も短時間で測定することができるので、表面形状測定全体として、測定時間を短くすることができる。 According to the surface shape measuring method of the present invention, the measurement time can be shortened by determining the scanning range of the optical unit when measuring the surface shape before measuring the surface shape of the object to be measured. .. Further, since the image acquisition interval for determining the scanning range of the optical unit is longer than the image acquisition interval in the surface shape measurement step, the image can be acquired in a short time. Further, by lengthening the image acquisition interval, the change in the luminance value due to the interference fringes may be small in the region where the light and darkness due to the interference fringes is generated. In the present invention, by using light having a long interference region for preliminary scanning for determining the scanning range in the surface shape measurement process, interference occurs in the region where interference fringes are generated even if the image acquisition interval is long. The occurrence of fringes can be confirmed. Further, by using light having a long coherent region, the emission wavelength width is shortened, so that the rate of change of the luminance value of the interference fringes with respect to the change of the optical path length becomes large. Therefore, the image can be acquired at a position equal to or higher than the value at which the generation of the interference fringes can be confirmed, and the range in which the interference fringes are generated can be estimated with high probability. In this way, the scanning range can be determined in a short time, and the surface shape can be measured in a short time. Therefore, the measurement time can be shortened as a whole surface shape measurement.

本発明に係る形状測定方法の一態様は、走査範囲決定工程は、干渉縞取得工程で測定された被測定面の各点に対応する表面形状取得部の複数の画素から選択された基準画素と、基準画素の周辺画素の少なくとも1つの画素と、の輝度情報から決定することが好ましい。 In one aspect of the shape measuring method according to the present invention, the scanning range determination step includes reference pixels selected from a plurality of pixels of the surface shape acquisition portion corresponding to each point of the surface to be measured measured in the interference fringe acquisition step. It is preferable to determine from the luminance information of at least one pixel of the peripheral pixels of the reference pixel.

この態様によれば、基準画素のみでなく、その周辺画素も用いて走査範囲を決定しているので、干渉縞の生成する範囲を高い確率で推定することができる。 According to this aspect, since the scanning range is determined not only by the reference pixel but also by the peripheral pixels thereof, the range in which the interference fringes are generated can be estimated with high probability.

本発明に係る形状測定方法の一態様は、周辺画素は、基準画素からの距離が異なる画素をランダムに選択することが好ましい。 In one aspect of the shape measuring method according to the present invention, it is preferable to randomly select pixels having different distances from the reference pixel as peripheral pixels.

この態様によれば、選択する周辺画素を基準画素からの距離がランダムに異なる画素を選択することで、被測定面の形状が、段差部を有する場合、あるいは、極端に傾斜している場合など、高さの変位が大きい場合などにおいても、干渉縞の生成する位置を安定して推定することができる。 According to this aspect, by selecting pixels whose distances from the reference pixels are randomly different from the peripheral pixels to be selected, the shape of the surface to be measured has a stepped portion, or is extremely inclined. Even when the height displacement is large, the position where the interference fringes are generated can be stably estimated.

本発明に係る形状測定方法の一態様は、走査範囲決定工程は、基準画素および周辺画素の輝度値の変化の絶対値の和が、所定の値以上の領域を含む範囲を走査範囲として決定することが好ましい。 In one aspect of the shape measuring method according to the present invention, in the scanning range determination step, a range in which the sum of the absolute values of the changes in the brightness values of the reference pixel and the peripheral pixels includes a region including a predetermined value or more is determined as the scanning range. Is preferable.

この態様は、走査範囲決定工程において、走査範囲を決定する方法の一態様を示すものであり、基準画素と周辺画素の輝度値の変化量の和が所定の値以上を示す垂直走査位置を含む範囲を測定する走査範囲として決定することができる。このように、基準画素によっては、干渉縞とサンプリング位置の関係で干渉縞の生成が確認できなかったとしても、周辺画素との関係で干渉縞の生成を確認することができれば、表面形状測定工程の走査範囲とすることができる。 This aspect shows one aspect of the method of determining the scanning range in the scanning range determining step, and includes a vertical scanning position in which the sum of the changes in the brightness values of the reference pixel and the peripheral pixels is equal to or more than a predetermined value. It can be determined as a scanning range for measuring the range. In this way, depending on the reference pixel, even if the generation of the interference fringes cannot be confirmed due to the relationship between the interference fringes and the sampling position, if the generation of the interference fringes can be confirmed in relation to the peripheral pixels, the surface shape measurement step. Can be the scanning range of.

本発明に係る形状測定方法の一態様は、干渉縞取得工程、走査範囲決定工程、および、表面形状測定工程を行った後、支持部と光学部との位置を相対的に移動させる移動工程と、移動工程後の被測定面に対して、干渉縞取得工程、走査範囲決定工程、および、表面形状測定工程を行うことで、複数の表面形状データを取得する繰り返し工程と、複数の表面形状データを接続し、測定対象物の広範囲表面形状データを取得する接続工程と、を有することが好ましい。 One aspect of the shape measuring method according to the present invention is a moving step of relatively moving the positions of the support portion and the optical portion after performing the interference fringe acquisition step, the scanning range determination step, and the surface shape measuring step. , A repeating step of acquiring a plurality of surface shape data by performing an interference fringe acquisition step, a scanning range determination step, and a surface shape measurement step on the surface to be measured after the moving step, and a plurality of surface shape data. It is preferable to have a connection step of connecting the above and acquiring a wide range of surface shape data of the object to be measured.

本発明によれば、表面形状測定工程の走査範囲を決定することで、表面形状測定工程の時間を短縮することができる。したがって、表面形状測定全体の測定時間を短くすることができるので、測定対象物の表面が広範囲であり、複数の表面形状データを取得し、接続する、所謂、スティッチングにより測定対象物全領域の表面形状データを取得する場合に、短時間で測定することができ効果的である。 According to the present invention, the time of the surface shape measuring step can be shortened by determining the scanning range of the surface shape measuring step. Therefore, since the measurement time of the entire surface shape measurement can be shortened, the surface of the object to be measured is wide, and a plurality of surface shape data are acquired and connected, so-called stitching of the entire area of the object to be measured. When acquiring surface shape data, it is effective because it can be measured in a short time.

上記目的を達成するために、本発明に係る表面形状測定方法は、測定対象物を支持する支持部と、可干渉領域の長さの異なる光を発生させる光源部と、光源部からの光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得し測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える表面形状測定装置を用いた表面形状測定方法であって、光源部から出射された可干渉領域の長い光を用いて、被測定面の各点に照射される測定光の光路長を変化させながら、干渉縞を取得する干渉縞取得工程と、干渉縞取得工程で測定された干渉縞の位置に光学部の焦点位置が合うように調整する焦点調整工程と、光源部から出射された可干渉領域の短い光を用いて、被測定面の各点に照射される測定光の光路長を走査範囲決定工程で決定した走査範囲内で変化させながら干渉縞を取得し、測定対象物の表面形状を測定する表面形状測定工程と、を有し、干渉縞取得工程の画像取得間隔が、表面形状測定工程の画像取得間隔より長い。 In order to achieve the above object, the surface shape measuring method according to the present invention uses a support portion that supports the object to be measured, a light source portion that generates light having different lengths of the coherent region, and light from the light source portion. The measurement light is divided into a measurement light and a reference light, and the measurement light is irradiated to the measured surface of the object to be measured, and the reference light is irradiated to the reference surface. Interference fringes are acquired from the brightness information of the interference portion that generates the interfered interference light and the interference light between the measurement light and the reference light applied to each point on the surface to be measured, and the surface shape data of the object to be measured is acquired. A surface shape measuring method using a surface shape measuring device including a surface shape acquiring unit and an optical unit having a surface shape acquiring unit, and using light having a long coherent region emitted from a light source unit, each of the surfaces to be measured is used. While changing the optical path length of the measurement light applied to the point, adjust so that the focal position of the optical unit matches the position of the interference fringes measured in the interference fringe acquisition step of acquiring the interference fringes and the interference fringe acquisition step. Using the focus adjustment step and the short light in the coherent region emitted from the light source, the optical path length of the measurement light emitted to each point on the surface to be measured is changed within the scanning range determined in the scanning range determination step. However, it has a surface shape measuring step of acquiring interference fringes and measuring the surface shape of the object to be measured, and the image acquisition interval of the interference fringe acquisition step is longer than the image acquisition interval of the surface shape measuring step.

本発明の表面形状測定方法によれば、光学部のピント位置を合わせる焦点調整工程に用いる干渉縞の取得を、表面形状測定工程の画像取得間隔より長い画像取得間隔で行っているので、短い時間で焦点調整工程を行うことができる。したがって、表面形状測定全体の時間を短縮することができる。また、焦点調整工程に用いる干渉縞の取得を可干渉領域の長い光を用いて行うことで、画像取得間隔を長くしても干渉が確認される複数の画像を取得することができる。したがって、焦点調整に必要な干渉縞を容易、かつ正確に見つけ出すことができる。 According to the surface shape measuring method of the present invention, the interference fringes used in the focus adjustment step of focusing the optical portion are acquired at an image acquisition interval longer than the image acquisition interval of the surface shape measuring step, so that a short time is required. The focus adjustment process can be performed with. Therefore, the time for the entire surface shape measurement can be shortened. Further, by acquiring the interference fringes used in the focus adjustment step using light having a long interference region, it is possible to acquire a plurality of images in which interference is confirmed even if the image acquisition interval is lengthened. Therefore, the interference fringes required for focus adjustment can be easily and accurately found.

本発明に係る形状測定方法の一態様は、干渉縞取得工程、焦点調整工程、および、表面形状測定工程を行った後、支持部と光学部との位置を相対的に移動させる移動工程と、移動工程後の被測定面に対して、干渉縞取得工程、走査範囲決定工程、および、表面形状測定工程を行うことで、複数の表面形状データを取得する繰り返し工程と、複数の表面形状データを接続し、測定対象物の広範囲表面形状データを取得する接続工程と、を有することが好ましい。 One aspect of the shape measuring method according to the present invention includes a moving step of relatively moving the positions of the support portion and the optical portion after performing the interference fringe acquisition step, the focus adjusting step, and the surface shape measuring step. A repetitive process of acquiring a plurality of surface shape data and a plurality of surface shape data by performing an interference fringe acquisition step, a scanning range determination step, and a surface shape measurement step on the surface to be measured after the moving step. It is preferable to have a connection step of connecting and acquiring a wide range surface shape data of the object to be measured.

焦点調整工程を短時間で行うことができるので、測定対象物の表面が広範囲であり、複数の表面形状データを取得し、接続する、所謂、スティッチングにより測定対象物全領域の表面形状データを取得する場合に、表面形状測定全体を短時間で行うことができ効果的である。 Since the focus adjustment step can be performed in a short time, the surface of the object to be measured is wide, and a plurality of surface shape data are acquired and connected, so-called stitching is performed to obtain the surface shape data of the entire area of the object to be measured. When acquiring, it is effective because the entire surface shape measurement can be performed in a short time.

本発明に係る形状測定方法の一態様は、光源部は、白色光を出射する第1の光源と、白色光より可干渉領域の長い光を出射する第2の光源と、を備え、干渉縞取得工程を第2の光源を用いて行い、表面形状測定工程を第1の光源を用いて行うことが好ましい。 In one aspect of the shape measuring method according to the present invention, the light source unit includes a first light source that emits white light and a second light source that emits light having a longer interference region than the white light, and interference fringes. It is preferable that the acquisition step is performed using a second light source and the surface shape measuring step is performed using a first light source.

この態様は、光源部の一例を示したものであり、光源を第1の光源と第2の光源の2種類設けることで、可干渉領域の長い第2の光源からの光を予備走査用に、可干渉領域の短い白色光を表面形状測定用に用いることができる。 This aspect shows an example of a light source unit, and by providing two types of light sources, a first light source and a second light source, light from a second light source having a long coherent region can be used for preliminary scanning. , White light having a short coherent region can be used for surface shape measurement.

本発明に係る形状測定方法の一態様は、光源部は、白色光を出射する第1の光源と、白色光から波長幅の狭い光を透過させるバンドパスフィルタと、を備え、干渉縞取得工程を、バンドパスフィルタを透過した光を用いて行い、表面形状測定工程を、白色光を用いて行うことが好ましい。 In one aspect of the shape measuring method according to the present invention, the light source unit includes a first light source that emits white light and a bandpass filter that transmits light having a narrow wavelength width from the white light, and is a step of acquiring interference fringes. Is preferably performed using light transmitted through a bandpass filter, and the surface shape measuring step is preferably performed using white light.

この態様は、光源部の一例を示したものであり、バンドパスフィルタの透過の有無により、可干渉領域の異なる光を発生させることができ、予備走査用と、表面形状測定用に用いることができる。 This aspect shows an example of the light source unit, and can generate light having different coherent regions depending on the presence or absence of transmission of the bandpass filter, and can be used for preliminary scanning and surface shape measurement. can.

上記目的を達成するために、本発明に係る表面形状測定装置は、測定対象物を支持する支持部と、白色光を出射する第1の光源、および、白色光より可干渉領域の長い光を出射する第2の光源を備える光源部と、光源部からの光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に対応する複数の画素を有し、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得し測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備え、第2の光源を用いて、被測定面の各点に照射される測定光の光路長を変化させながら、干渉縞を取得する干渉縞取得動作と、干渉縞取得動作で測定された干渉縞の輝度情報から、測定光の軸方向に対する干渉縞の生成する範囲を推定し、測定光の軸方向の走査範囲を決定する走査範囲決定動作と、干渉縞取得動作により測定された干渉縞の位置に光学部のピント位置が合うように調整する焦点調整動作と、の測定準備動作プログラムを制御する測定準備制御部と、を有する。 In order to achieve the above object, the surface shape measuring device according to the present invention emits a support portion that supports the object to be measured, a first light source that emits white light, and light having an interference region longer than that of the white light. The light source unit provided with the second light source to be emitted, the light from the light source unit is divided into the measurement light and the reference light, and the measurement light is irradiated to the measured surface of the measurement object, and the reference light is irradiated to the reference surface. It has an interference unit that generates interference light that interferes with the measurement light returning from the surface to be measured and the reference light returning from the reference surface, and a plurality of pixels corresponding to each point of the surface to be measured. A surface shape acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point and acquires the surface shape data of the object to be measured, and an optical unit having the optical unit. The interference fringe acquisition operation for acquiring interference fringes and the brightness of the interference fringes measured by the interference fringe acquisition operation while changing the optical path length of the measurement light applied to each point on the surface to be measured using the light source of 2. From the information, the range in which the interference fringes are generated in the axial direction of the measurement light is estimated, and the scanning range determination operation for determining the scanning range in the axial direction of the measurement light and the position of the interference fringes measured by the interference fringe acquisition operation are optically measured. It has a focus adjustment operation that adjusts the focus position of the unit, and a measurement preparation control unit that controls a measurement preparation operation program.

本発明の表面形状測定装置によれば、表面形状を測定する前の干渉縞取得動作、走査範囲決定動作、および、焦点調整動作の測定準備動作プログラムを制御する測定準備制御部を有し、測定対象物の表面形状を測定する前に、表面形状を測定する際の、光学部の走査範囲を決定している。したがって、表面形状測定を行う際の測定時間を短くすることができる。また、可干渉領域の長さが異なる光を出射する第1の光源と第2の光源とを備え、表面形状測定の走査範囲を決定する予備走査を可干渉領域の長い光を出射する第2の光源を用いることで、発光波長幅が短くなるので、光路長の変化に対する干渉縞の輝度値の変化率が大きくなる。したがって、予備走査の時間を短くするために、干渉縞取得動作の画像取得間隔を長くしても、干渉縞の生成している領域内で、干渉縞の生成を確認することができる値以上の位置で画像を取得することができ、干渉縞の生成する範囲を高い確率で推定することができる。さらに、可干渉距離の長い光を用いることで、画像取得間隔を長くしても、複数の位置で干渉縞の位置を確認することができるので、焦点調整の時間も短くすることができる。このように、走査範囲の決定および焦点調整を短時間で行うことができ、表面形状の測定も短時間で測定することができるので、表面形状測定全体として、測定時間を短くすることができる。 According to the surface shape measuring device of the present invention, it has a measurement preparation control unit that controls a measurement preparation operation program for interference fringe acquisition operation, scanning range determination operation, and focus adjustment operation before measuring the surface shape. Before measuring the surface shape of the object, the scanning range of the optical unit when measuring the surface shape is determined. Therefore, the measurement time when measuring the surface shape can be shortened. Further, a second light source that emits light having a different length of the coherent region and a second light source are provided, and a preliminary scan that determines the scanning range of the surface shape measurement is performed to emit light having a long coherent region. Since the emission wavelength width is shortened by using the light source of the above, the rate of change of the brightness value of the interference fringes with respect to the change of the optical path length becomes large. Therefore, even if the image acquisition interval of the interference fringe acquisition operation is lengthened in order to shorten the preliminary scanning time, the value is equal to or greater than the value at which the generation of the interference fringes can be confirmed in the region where the interference fringes are generated. The image can be acquired at the position, and the range in which the interference fringes are generated can be estimated with high probability. Further, by using light having a long coherence distance, the positions of the interference fringes can be confirmed at a plurality of positions even if the image acquisition interval is lengthened, so that the focus adjustment time can be shortened. In this way, the scanning range can be determined and the focus can be adjusted in a short time, and the surface shape can be measured in a short time. Therefore, the measurement time can be shortened as a whole for the surface shape measurement.

上記目的を達成するために、本発明に係る表面形状測定装置は、測定対象物を支持する支持部と、白色光を出射する第1の光源、および、白色光から波長幅の狭い光を透過させるバンドパスフィルタを備える光源部と、光源部からの白色光、または、バンドパスフィルタを透過した光を測定光と参照光とに分割して測定光を測定対象物の被測定面に照射するとともに、参照光を参照面に照射し、被測定面から戻る測定光と参照面から戻る参照光とを干渉させた干渉光を生成する干渉部と、被測定面の各点に対応する複数の画素を有し、被測定面の各点に照射された測定光と参照光との干渉光の輝度情報から干渉縞を取得し測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備え、バンドパスフィルタを透過した光を用いて、被測定面の各点に照射される測定光の光路長を変化させながら、干渉縞を取得する干渉縞取得動作と、干渉縞取得動作で測定された干渉縞の輝度情報から、測定光の軸方向に対する干渉縞の生成する範囲を推定し、測定光の軸方向の走査範囲を決定する走査範囲決定動作と、干渉縞取得動作により測定された干渉縞の位置に光学部のピント位置が合うように調整する焦点調整動作と、の測定準備動作プログラムを制御する測定準備制御部と、を有する。 In order to achieve the above object, the surface shape measuring apparatus according to the present invention transmits a support portion that supports an object to be measured, a first light source that emits white light, and light having a narrow wavelength width from the white light. The white light from the light source unit and the white light from the light source unit, or the light transmitted through the band pass filter is divided into measurement light and reference light, and the measurement light is applied to the surface to be measured of the object to be measured. At the same time, an interference unit that irradiates the reference surface with the reference light and generates interference light in which the measurement light returning from the measured surface and the reference light returning from the reference surface interfere with each other, and a plurality of interference parts corresponding to each point on the measured surface. A surface shape acquisition unit that has pixels and acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light applied to each point on the surface to be measured and acquires the surface shape data of the object to be measured. An interference fringe acquisition operation that acquires interference fringes while changing the optical path length of the measurement light that is applied to each point on the surface to be measured by using the light that has passed through the bandpass filter. From the brightness information of the interference fringes measured by the interference fringe acquisition operation, the scanning range determination operation for estimating the range in which the interference fringes are generated with respect to the axial direction of the measurement light and determining the scanning range in the axial direction of the measurement light, and the interference fringes It has a focus adjustment operation that adjusts the focus position of the optical unit to the position of the interference fringes measured by the acquisition operation, and a measurement preparation control unit that controls the measurement preparation operation program.

本発明の表面形状測定装置によれば、表面形状を測定する前の干渉縞取得動作、走査範囲決定動作、および、焦点調整動作の測定準備動作プログラムを制御する測定準備制御部を有し、測定対象物の表面形状を測定する前に、表面形状を測定する際の、光学部の走査範囲を決定している。したがって、表面形状測定を行う際の測定時間を短くすることができる。また、表面形状測定の走査範囲を決定する予備走査を、バンドパスフィルタを透過させて可干渉領域の長い光を用いることで、発光波長幅が短くなり、光路長の変化に対する干渉縞の輝度値の変化率が大きくなる。したがって、予備走査の時間を短くするために、干渉縞取得動作の画像取得間隔を長くしても、干渉縞の生成している領域内で、干渉縞の生成を確認することができる値以上の位置で画像を取得することができ、干渉縞の生成する範囲を高い確率で推定することができる。さらに、可干渉距離の長い光を用いることで、画像取得間隔を長くしても、複数の位置で干渉縞の位置を確認することができるので、焦点調整の時間も短くすることができる。このように、走査範囲の決定および焦点調整を短時間で行うことができ、表面形状の測定も短時間で測定することができるので、表面形状測定全体として、測定時間を短くすることができる。 According to the surface shape measuring device of the present invention, it has a measurement preparation control unit that controls a measurement preparation operation program for interference fringe acquisition operation, scanning range determination operation, and focus adjustment operation before measuring the surface shape. Before measuring the surface shape of the object, the scanning range of the optical unit when measuring the surface shape is determined. Therefore, the measurement time when measuring the surface shape can be shortened. Further, by using light having a long coherent region through the bandpass filter for the preliminary scan for determining the scanning range of the surface shape measurement, the emission wavelength width is shortened and the brightness value of the interference fringes with respect to the change in the optical path length. The rate of change of is large. Therefore, even if the image acquisition interval of the interference fringe acquisition operation is lengthened in order to shorten the preliminary scanning time, the value is equal to or greater than the value at which the generation of the interference fringes can be confirmed in the region where the interference fringes are generated. The image can be acquired at the position, and the range in which the interference fringes are generated can be estimated with high probability. Further, by using light having a long coherence distance, the positions of the interference fringes can be confirmed at a plurality of positions even if the image acquisition interval is lengthened, so that the focus adjustment time can be shortened. In this way, the scanning range can be determined and the focus can be adjusted in a short time, and the surface shape can be measured in a short time. Therefore, the measurement time can be shortened as a whole for the surface shape measurement.

本発明の表面形状測定方法および表面形状測定装置によれば、測定対象物の表面形状を測定する前に、表面形状を測定する際の走査範囲を短時間で決定することができ、かつ、高い確率で走査範囲を推定することができ、かつ、焦点調整も短時間で行うことができるので、表面形状の測定全体の時間を短時間で行うことができる。 According to the surface shape measuring method and the surface shape measuring apparatus of the present invention, the scanning range for measuring the surface shape can be determined in a short time and is high before measuring the surface shape of the object to be measured. Since the scanning range can be estimated with probability and the focus can be adjusted in a short time, the entire surface shape measurement can be performed in a short time.

第1実施形態に係る表面形状測定方法に用いられる表面形状測定装置の全体構成図である。It is an overall block diagram of the surface shape measuring apparatus used in the surface shape measuring method which concerns on 1st Embodiment. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図である。It is a figure which showed the pixel arrangement of the interference fringes on the xy coordinate of the image pickup surface of an image pickup device. 干渉部のz位置と輝度値との関係および干渉縞曲線を例示した図である。It is a figure which illustrated the relationship between the z position of the interference part and the luminance value, and the interference fringe curve. 被測定面の異なる点の異なるz座標値と干渉縞曲線との関係を例示した図である。It is a figure which exemplifies the relationship between the different z coordinate values of the different points of the measured surface, and the interference fringe curve. 異なる光源を用いてサンプリング間隔を長くした場合の画像取得位置と干渉縞曲線の関係を例示した図である。It is a figure exemplifying the relationship between the image acquisition position and the interference fringe curve when the sampling interval is lengthened by using different light sources. 第1実施形態の表面形状測定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the surface shape measuring method of 1st Embodiment. 第1実施形態の予備走査のフローチャートを示す図である。It is a figure which shows the flowchart of the preliminary scanning of 1st Embodiment. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、基準画素の設定例を示した図である。It is a figure which showed the pixel arrangement of the interference fringes on the xy coordinate of the image pickup surface of the image pickup element, and is the figure which showed the setting example of the reference pixel. 可干渉領域の異なる光を用いて画像取得間隔を長くした場合に取得できる画像の違いを説明する図である。It is a figure explaining the difference of the image which can be acquired when the image acquisition interval is lengthened by using the light which has a different coherence region. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素の選択例を示した図である。It is a figure which showed the pixel arrangement of the interference fringes on the xy coordinate of the image pickup surface of an image pickup element, and is the figure which showed the selection example of the peripheral pixel. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素の他の選択例を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of an image pickup element, and is the figure which showed the other selection example of the peripheral pixel. 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図であり、周辺画素のさらに他の選択例を示した図である。It is a figure which showed the pixel array of the interference fringes on the xy coordinate of the image pickup surface of the image pickup element, and is the figure which showed the other selection example of the peripheral pixel. 基準画素および周辺画素の輝度値を用いて測定範囲を決定する例を示す図である。It is a figure which shows the example which determines the measurement range using the luminance value of a reference pixel and the peripheral pixel. 第2実施形態に係る表面形状測定方法に用いられる表面形状測定装置の全体構成図である。It is an overall block diagram of the surface shape measuring apparatus used in the surface shape measuring method which concerns on 2nd Embodiment. バンドパスフィルタ透過前後の光学特性を説明する図である。It is a figure explaining the optical characteristic before and after the bandpass filter transmission. 第2実施形態の表面形状測定方法のフローチャートを示す図である。It is a figure which shows the flowchart of the surface shape measuring method of 2nd Embodiment. 第2実施形態の予備走査のフローチャートを示す図である。It is a figure which shows the flowchart of the preliminary scanning of 2nd Embodiment.

以下、添付図面に従って本発明の表面形状測定方法および表面形状測定装置の好ましい実施の形態について詳説する。 Hereinafter, preferred embodiments of the surface shape measuring method and the surface shape measuring device of the present invention will be described in detail with reference to the accompanying drawings.

[第1実施形態]
図1は、第1実施形態に係る表面形状測定方法に用いられる表面形状測定装置の例を示す全体構成図である。
[First Embodiment]
FIG. 1 is an overall configuration diagram showing an example of a surface shape measuring device used in the surface shape measuring method according to the first embodiment.

同図における表面形状測定装置1は、マイケルソン型の干渉計を用いて測定対象物の表面形状等を非接触により3次元測定する所謂、マイケルソン型の走査型白色干渉計(顕微鏡)であり、測定対象物Pの干渉画像を取得する光学部2と、測定対象物Pが載置されるステージ10と、光学部2の各制御や光学部2により取得された干渉画像に基づいて各種演算処理を行うパーソナルコンピュータ等の演算処理装置からなる処理部18などを備える。 The surface shape measuring device 1 in the figure is a so-called Michaelson type scanning white interferometer (microscope) that measures the surface shape of an object to be measured three-dimensionally by non-contact using a Michaelson type interferometer. , Various calculations based on the optical unit 2 that acquires the interferometry image of the measurement object P, the stage 10 on which the measurement object P is placed, each control of the optical unit 2, and the interferometry image acquired by the optical unit 2. A processing unit 18 or the like including an arithmetic processing device such as a personal computer that performs processing is provided.

なお、本実施の形態では、マイケルソン型の走査型白色干渉計の例で説明するが、周知のミロー型の走査型白色干渉計であってもよい。また、測定対象物Pが配置される測定空間において、互いに直交する水平方向の2つの座標軸をx軸(紙面に直交する軸)とy軸(紙面に平行する軸)とし、x軸およびy軸に直交する鉛直方向の座標軸をz軸(測定光軸方向)とする。z軸は、後述する測定光軸Z−0に平行である。 In the present embodiment, the example of the Michelson type scanning white interferometer will be described, but a well-known Millow type scanning white interferometer may be used. Further, in the measurement space where the measurement object P is arranged, the two horizontal coordinate axes orthogonal to each other are set as the x-axis (the axis orthogonal to the paper surface) and the y-axis (the axis parallel to the paper surface), and the x-axis and the y-axis. The coordinate axis in the vertical direction orthogonal to is defined as the z-axis (measurement optical axis direction). The z-axis is parallel to the measurement optical axis Z-0, which will be described later.

ステージ10は、x軸およびy軸に略平行する平坦な上面であって測定対象物Pを支持する支持部であって、測定対象物Pを載置するステージ面10Sを有する。また、ステージ10は、ステージ面10Sの水平面に対する傾斜角度(z軸に対する傾斜角度)を変更する傾斜角度変更手段を有しており、ステージ面10S(ステージ10)は、傾斜角度変更手段により、x軸に平行なx回転軸30の周りとy軸に平行なy回転軸32の周りに回転可能に設けられる。そして、ステージ面10Sは、xアクチュエータ34の駆動によりx回転軸30周りに回転し、yアクチュエータ36の駆動によりy回転軸32周りに回転する。 The stage 10 is a flat upper surface substantially parallel to the x-axis and the y-axis and is a support portion that supports the measurement object P, and has a stage surface 10S on which the measurement object P is placed. Further, the stage 10 has an inclination angle changing means for changing the inclination angle (inclination angle with respect to the z-axis) of the stage surface 10S with respect to the horizontal plane, and the stage surface 10S (stage 10) is x by the inclination angle changing means. It is rotatably provided around the x-rotating shaft 30 parallel to the axis and around the y-rotating shaft 32 parallel to the y-axis. Then, the stage surface 10S rotates around the x-rotation axis 30 by driving the x-actuator 34, and rotates around the y-rotation axis 32 by driving the y-actuator 36.

なお、xアクチュエータ34およびyアクチュエータ36のように本明細書においてアクチュエータという場合には、ピエゾアクチュエータやモータなどの任意の駆動装置を示す。 In addition, when the term "actuator" is used in the present specification as in the case of the x-actuator 34 and the y-actuator 36, it means an arbitrary driving device such as a piezo actuator or a motor.

ステージ面10Sに対向する位置、即ち、ステージ10の上側には、不図示の筐体により一体的に収容保持された光学部2が配置される。 An optical unit 2 integrally housed and held by a housing (not shown) is arranged at a position facing the stage surface 10S, that is, on the upper side of the stage 10.

光学部2は、x軸に平行な光軸Z−1を有する光源部12と、z軸に平行な光軸Z−0(以下、「測定光軸Z−0」と言う)を有する干渉部14および撮影部16とを有する。光源部12の光軸Z−1は、干渉部14および撮影部16の光軸Z−0に対して直交し、干渉部14と撮影部16との間において光軸Z−0と交差する。なお、光軸Z−1は、必ずしもx軸と平行でなくてもよい。 The optical unit 2 is an interference unit having a light source unit 12 having an optical axis Z-1 parallel to the x-axis and an optical axis Z-0 (hereinafter referred to as “measurement optical axis Z-0”) parallel to the z-axis. It has a 14 and a photographing unit 16. The optical axis Z-1 of the light source unit 12 is orthogonal to the optical axis Z-0 of the interference unit 14 and the photographing unit 16, and intersects the optical axis Z-0 between the interference unit 14 and the photographing unit 16. The optical axis Z-1 does not necessarily have to be parallel to the x-axis.

光源部12は、測定対象物Pを照明する照明光として、表面形状を測定する波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する第1の光源40と、第1の光源40より可干渉領域の長い光を出射する、予備走査として測定準備に用いられる第2の光源41を有する。また、第1の光源40および第2の光源41から拡散して出射された照明光を略平行な光束に変換するコレクタレンズ42を有する。第1の光源40または第2の光源41、および、コレクタレンズ42の各々の中心とする軸は光源部12の光軸Z−1として同軸上に配置される。なお、図1においては、第1の光源40とコレクタレンズ42が同軸上に配置した図を示している。第2の光源41を使用する場合は、不図示の光源変更手段により、第2の光源41をコレクタレンズ42と同軸上に配置する。 The light source unit 12 has a first light source 40 and a first light source 40 that emit white light (low coherence light with less coherence) having a wide wavelength width for measuring the surface shape as illumination light for illuminating the object P to be measured. It has a second light source 41 used for measurement preparation as a preliminary scan, which emits light having a longer interfering region than the light source 40. It also has a collector lens 42 that converts the illumination light diffused and emitted from the first light source 40 and the second light source 41 into a substantially parallel luminous flux. The central axes of the first light source 40 or the second light source 41 and the collector lens 42 are coaxially arranged as the optical axis Z-1 of the light source unit 12. Note that FIG. 1 shows a diagram in which the first light source 40 and the collector lens 42 are arranged coaxially. When the second light source 41 is used, the second light source 41 is arranged coaxially with the collector lens 42 by a light source changing means (not shown).

第1の光源40としては、発光ダイオード(LED:Light emitting diode)、スーパールミネッセントダイオード(SLD:Superluminescent diode)、ASE(Amplified spontaneous emission)光源(自然放射光増幅光源)などの低コヒーレンス光源を用いることができる。発光波長幅としては、20nmから100nmの光源を用いることが好ましい。中心波長は特に限定されないが、入手性の高い赤外、660nm付近(赤色)、または、可視光での被測定物観察と相性のよい白色ダイオードの550nm付近に中心波長を有する光源を用いることが好ましい。 As the first light source 40, a low coherence light source such as a light emitting diode (LED), a superluminescent diode (SLD), or an ASE (Amplified spontaneous emission) light source (amplified spontaneous emission light source) is used. Can be used. As the emission wavelength width, it is preferable to use a light source of 20 nm to 100 nm. The center wavelength is not particularly limited, but it is possible to use a light source having a center wavelength in the highly available infrared region, around 660 nm (red), or in the vicinity of 550 nm of a white diode that is compatible with observation of the object to be measured with visible light. preferable.

また、第2の光源41としては、レーザーダイオード(LD:Laser diode)などのレーザー光源を用いることができる。発光波長幅は、5nm以下の光源を用いることが好ましい。中心波長は特に限定されないが、第1の光源40の中心波長に近い波長を用いることが好ましい。 Further, as the second light source 41, a laser light source such as a laser diode (LD) can be used. It is preferable to use a light source having an emission wavelength width of 5 nm or less. The center wavelength is not particularly limited, but it is preferable to use a wavelength close to the center wavelength of the first light source 40.

この光源部12から出射された照明光は、干渉部14と撮影部16との間に配置され、光軸Z−1と測定光軸Z−0とが交差する位置に配置されたハーフミラー等のビームスプリッタ44に入射する。そして、ビームスプリッタ44(ビームスプリッタ44の平坦な光分割面(反射面))で反射した照明光が測定光軸Z−0に沿って進行して干渉部14に入射する。 The illumination light emitted from the light source unit 12 is arranged between the interference unit 14 and the photographing unit 16, and is a half mirror or the like arranged at a position where the optical axis Z-1 and the measurement optical axis Z-0 intersect. It is incident on the beam splitter 44 of the above. Then, the illumination light reflected by the beam splitter 44 (the flat light dividing surface (reflecting surface) of the beam splitter 44) travels along the measurement optical axis Z-0 and is incident on the interference portion 14.

干渉部14は、マイケルソン型干渉計により構成され、光源部12から入射した照明光を測定光と参照光とに分割する。そして、測定光を測定対象物Pに照射すると共に、参照光を参照ミラー52に照射し、測定対象物Pから戻る測定光と参照ミラー52から戻る参照光とを干渉させた干渉光を生成する。 The interference unit 14 is composed of a Michelson type interferometer, and divides the illumination light incident from the light source unit 12 into measurement light and reference light. Then, the measurement object P is irradiated with the measurement light, and the reference light is irradiated to the reference mirror 52 to generate interference light in which the measurement light returning from the measurement object P and the reference light returning from the reference mirror 52 interfere with each other. ..

干渉部14は、集光作用を有する対物レンズ50と、光を反射する参照面であって平坦な反射面を有する参照ミラー52と、光を分割する平坦なビームスプリッタ54と、を有する。対物レンズ50、参照ミラー52、およびビームスプリッタ54の各々の中心とする軸は干渉部14の光軸Z−0として同軸上に配置される。参照ミラー52の反射面は、ビームスプリッタ54の側方位置に、測定光軸Z−0と平行に配置される。 The interference unit 14 includes an objective lens 50 having a condensing action, a reference mirror 52 which is a reference surface for reflecting light and has a flat reflecting surface, and a flat beam splitter 54 for splitting light. The central axes of the objective lens 50, the reference mirror 52, and the beam splitter 54 are coaxially arranged as the optical axis Z-0 of the interference unit 14. The reflecting surface of the reference mirror 52 is arranged at a lateral position of the beam splitter 54 in parallel with the measurement optical axis Z-0.

光源部12から干渉部14に入射した照明光は、対物レンズ50により集光作用を受けた後、ビームスプリッタ54に入射する。 The illumination light incident on the interference unit 14 from the light source unit 12 is focused by the objective lens 50 and then incident on the beam splitter 54.

ビームスプリッタ54は、例えばハーフミラーであり、ビームスプリッタ54に入射した照明光は、ビームスプリッタ54を透過する測定光と、ビームスプリッタ54の光分割面で反射する参照光とに分割される。 The beam splitter 54 is, for example, a half mirror, and the illumination light incident on the beam splitter 54 is split into a measurement light that passes through the beam splitter 54 and a reference light that is reflected by the light splitting surface of the beam splitter 54.

ビームスプリッタ54を透過した測定光は、測定対象物Pの被測定面Sに照射された後、被測定面Sから干渉部14へと戻り、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54を透過した測定光が対物レンズ50に入射する。 The measurement light transmitted through the beam splitter 54 is applied to the surface S to be measured of the object P to be measured, then returns from the surface S to be measured to the interference portion 14, and is incident on the beam splitter 54 again. Then, the measurement light transmitted through the beam splitter 54 is incident on the objective lens 50.

一方、ビームスプリッタ54で反射した参照光は、参照ミラー52の光反射面で反射した後、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54で反射した参照光が対物レンズ50に入射する。 On the other hand, the reference light reflected by the beam splitter 54 is reflected by the light reflecting surface of the reference mirror 52 and then incidents on the beam splitter 54 again. Then, the reference light reflected by the beam splitter 54 is incident on the objective lens 50.

これによって、干渉部14から測定対象物Pの被測定面Sに照射されて干渉部14に戻る測定光と、参照ミラー52で反射した参照光とが重ね合わされた干渉光が生成され、その干渉光が対物レンズ50により集光作用を受けた後、干渉部14から撮影部16に向けて出射される。 As a result, interference light is generated in which the measurement light that is irradiated from the interference unit 14 to the surface S to be measured of the measurement object P and returns to the interference unit 14 and the reference light reflected by the reference mirror 52 are superimposed, and the interference is generated. After the light is focused by the objective lens 50, it is emitted from the interference unit 14 toward the photographing unit 16.

また、照明光が測定光と参照光とに分割された後、測定光と参照光とが重ね合わされるまでの測定光と参照光の各々が通過した光路の光学的距離を、測定光の光路長および参照光の光路長といい、それらの差を測定光と参照光の光路長差というものとする。 Further, after the illumination light is divided into the measurement light and the reference light, the optical path of the optical path through which each of the measurement light and the reference light passes until the measurement light and the reference light are superimposed is determined by the optical path of the measurement light. The length and the optical path length of the reference light are called, and the difference between them is called the optical path length difference between the measurement light and the reference light.

また、干渉部14は、光学部2においてz軸方向に直線移動可能に設けられる。そして、干渉部アクチュエータ56の駆動により対物レンズ50、およびビームスプリッタ54がz軸方向に移動する。これにより、対物レンズ50の焦点面の位置(高さ)がz軸方向に移動すると共に、被測定面Sとビームスプリッタ54との距離が変化することで測定光の光路長が変化し、測定光と参照光との光路長差が変化する。 Further, the interference unit 14 is provided in the optical unit 2 so as to be linearly movable in the z-axis direction. Then, the objective lens 50 and the beam splitter 54 move in the z-axis direction by driving the interference unit actuator 56. As a result, the position (height) of the focal plane of the objective lens 50 moves in the z-axis direction, and the distance between the surface S to be measured and the beam splitter 54 changes, so that the optical path length of the measurement light changes, and the measurement is performed. The optical path length difference between the light and the reference light changes.

撮影部16は、被測定面Sの各点に照射された測定光と参照光との干渉光の輝度情報から測定対象物Pの表面形状データを取得する表面形状取得部であり、例えばCCD(Charge Coupled Device)カメラに相当し、CCD型の撮像素子60と、結像レンズ62とを有する。撮像素子60と結像レンズ62の各々の中心とする軸は撮影部16の光軸Z−0として同軸上に配置される。なお、撮像素子60は、CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子等、任意の撮像手段を用いることができる。 The image pickup unit 16 is a surface shape acquisition unit that acquires surface shape data of the measurement object P from the brightness information of the interference light between the measurement light and the reference light applied to each point of the surface S to be measured, and is, for example, a CCD (CCD). It corresponds to a Charge Coupled Device) camera and has a CCD type image sensor 60 and an image lens 62. The central axes of the image sensor 60 and the image lens 62 are coaxially arranged as the optical axis Z-0 of the photographing unit 16. As the image pickup device 60, any imaging means such as a CMOS (Complementary Metal Oxide Semiconductor) type image pickup device can be used.

干渉部14から出射された干渉光は、上述のビームスプリッタ44に入射し、ビームスプリッタ44を透過した干渉光が撮影部16に入射する。 The interference light emitted from the interference unit 14 is incident on the beam splitter 44 described above, and the interference light transmitted through the beam splitter 44 is incident on the imaging unit 16.

撮影部16に入射した干渉光は、結像レンズ62により撮像素子60の撮像面60Sに干渉像を結像する。ここで、結像レンズ62は、測定対象物Pの被測定面Sの光軸Z−0周辺の領域に対する干渉像を高倍率に拡大して撮像素子60の撮像面60Sに結像する。 The interference light incident on the photographing unit 16 forms an interference image on the image pickup surface 60S of the image pickup element 60 by the imaging lens 62. Here, the imaging lens 62 magnifies an interference image with respect to a region around the optical axis Z-0 of the surface S to be measured of the measurement object P at a high magnification and forms an image on the imaging surface 60S of the image sensor 60.

また、結像レンズ62は、干渉部14の対物レンズ50の焦点面上における点を、撮像素子60の撮像面上の像点として結像する。即ち、撮影部16は、対物レンズ50の焦点面の位置にピントが合うように(合焦するように)設計されている。 Further, the imaging lens 62 forms an image of a point on the focal plane of the objective lens 50 of the interference unit 14 as an image point on the imaging surface of the image pickup device 60. That is, the photographing unit 16 is designed so that the position of the focal plane of the objective lens 50 is in focus (focused).

なお、以下において、測定対象物Pの焦点面のz軸方向の位置を単に「ピント位置」、または、「撮影部16のピント位置」というものとする。 In the following, the position of the focal plane of the object P to be measured in the z-axis direction is simply referred to as the “focus position” or the “focus position of the photographing unit 16”.

撮像素子60の撮像面60Sに結像された干渉像は、撮像素子60により電気信号に変換されて干渉画像として取得される。そして、その干渉画像は、処理部18に与えられる。 The interference image formed on the image pickup surface 60S of the image pickup element 60 is converted into an electric signal by the image pickup element 60 and acquired as an interference image. Then, the interference image is given to the processing unit 18.

以上のように光源部12、干渉部14、および撮影部16等により構成される光学部2は、全体が一体的としてz軸方向に直進移動可能に設けられる。例えば、光学部2は、z軸方向に沿って立設された不図示のz軸ガイド部に直進移動可能に支持される。そして、zアクチュエータ70の駆動により光学部2全体がz軸方向に直進移動する。これにより、干渉部14をz軸方向に移動させる場合よりも、撮影部16のピント位置をz軸方向に大きく移動させることができ、例えば、測定対象物Pの厚さ等に応じて撮影部16のピント位置を適切な位置に調整することができる。 As described above, the optical unit 2 including the light source unit 12, the interference unit 14, the photographing unit 16, and the like is provided as an integral body so as to be movable in the z-axis direction in a straight line. For example, the optical unit 2 is supported by a z-axis guide unit (not shown) erected along the z-axis direction so as to be movable in a straight line. Then, the entire optical unit 2 moves linearly in the z-axis direction by driving the z-actuator 70. As a result, the focus position of the imaging unit 16 can be moved more in the z-axis direction than when the interference unit 14 is moved in the z-axis direction. For example, the imaging unit can be moved according to the thickness of the measurement object P or the like. The focus position of 16 can be adjusted to an appropriate position.

処理部18は、測定対象物Pの被測定面Sの表面形状を測定する際に、干渉部アクチュエータ56を制御して光学部2の干渉部14をz軸方向に移動させながら撮影部16の撮像素子60から干渉画像を順次取得する。そして、取得した干渉画像に基づいて被測定面Sの3次元形状データを被測定面Sの表面形状を示すデータとして取得する。 When measuring the surface shape of the surface S to be measured of the object P to be measured, the processing unit 18 controls the interference unit actuator 56 to move the interference unit 14 of the optical unit 2 in the z-axis direction while moving the interfering unit 14 of the optical unit 2 in the z-axis direction. Interference images are sequentially acquired from the image sensor 60. Then, based on the acquired interference image, the three-dimensional shape data of the surface S to be measured is acquired as data indicating the surface shape of the surface S to be measured.

ここで、処理部18が干渉縞に基づいて被測定面Sの3次元形状データを取得する処理について説明する。 Here, a process in which the processing unit 18 acquires the three-dimensional shape data of the surface S to be measured based on the interference fringes will be described.

撮影部16の撮像素子60は、x軸およびy軸からなるxy平面(水平面)に沿って2次元的に配列された多数の受光素子(画素)からなり、各画素において受光される干渉像の輝度値、即ち、撮像素子60により取得される干渉画像の各画素の輝度値は、各画素に対応する被測定面Sの各点で反射した測定光と参照光との光路長差に応じた干渉光の強度(輝度情報)を示す。 The image sensor 60 of the photographing unit 16 is composed of a large number of light receiving elements (pixels) two-dimensionally arranged along the xy plane (horizontal plane) composed of the x-axis and the y-axis, and is an interference image received by each pixel. The brightness value, that is, the brightness value of each pixel of the interference image acquired by the image sensor 60 corresponds to the difference in optical path length between the measurement light reflected at each point of the measured surface S corresponding to each pixel and the reference light. Indicates the intensity of interference light (brightness information).

ここで、図2に示すように、干渉画像(撮像素子60の撮像面)のm列目、n列目の画素を(m、n)と表すものとする。そして、画素(m、n)のx軸方向に関する位置(以下、x軸方向に関する位置を「x位置」という)を示すx座標値をx(m、n)と表し、y軸方向に関する位置(以下、y軸方向に関する位置を「y位置」という)を示すy座標値をy(m、n)と表すものとする。 Here, as shown in FIG. 2, the pixels in the m-th row and the n-th row of the interference image (imaging surface of the image pickup device 60) are represented as (m, n). Then, the x-coordinate value indicating the position of the pixel (m, n) in the x-axis direction (hereinafter, the position in the x-axis direction is referred to as “x position”) is expressed as x (m, n), and the position in the y-axis direction (hereinafter, the position in the y-axis direction). Hereinafter, the y coordinate value indicating the position in the y-axis direction is referred to as “y position”) is represented by y (m, n).

また、画素(m、n)に対応する測定対象物Pの被測定面S上の点のx位置を示すx座標値をX(m,n)と表し、y位置を示すy座標値をY(m,n)と表すものとし、また、その点をxy座標値により(X(m,n),Y(m,n))と表すものとする。なお、画素(m,n)に対応する被測定面S上の点とは、ピントが合っている状態において画素(m,n)の位置に像点が結像される被測定面S上の点を意味する。 Further, the x-coordinate value indicating the x-position of the point on the measured surface S of the measurement object P corresponding to the pixel (m, n) is represented by X (m, n), and the y-coordinate value indicating the y-position is Y. It shall be expressed as (m, n), and the point shall be expressed as (X (m, n), Y (m, n)) by the xy coordinate value. The point on the measured surface S corresponding to the pixel (m, n) is the point on the measured surface S on which the image point is formed at the position of the pixel (m, n) in the focused state. Means a point.

このとき、撮像素子60により取得される干渉画像の画素(m,n)の輝度値は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差に応じた大きさを示す。 At this time, the brightness values of the pixels (m, n) of the interference image acquired by the image sensor 60 are the points (X (m, n), Y (X (m, n), Y ( The magnitude corresponding to the optical path length difference between the measurement light and the reference light irradiated to m, n)) is shown.

即ち、図1の干渉部アクチュエータ56により干渉部14をz軸方向に移動させて光学部2(撮影部16)に対する干渉部14の相対的なz軸方向の位置(以下、「z位置」という)を変位させると、撮影部16のピント位置(対物レンズ50の焦点面)もz軸方向に移動し、ピント位置も干渉部14と同じ変位量で変位する。また、ピント位置が変位すると、被測定面Sの各点に照射される測定光の光路長も変化する。 That is, the interference unit 14 is moved in the z-axis direction by the interference unit actuator 56 in FIG. 1, and the position of the interference unit 14 relative to the optical unit 2 (photographing unit 16) in the z-axis direction (hereinafter referred to as “z position”). ) Is displaced, the focus position of the photographing unit 16 (the focal plane of the objective lens 50) also moves in the z-axis direction, and the focus position is also displaced by the same displacement amount as that of the interference unit 14. Further, when the focus position is displaced, the optical path length of the measurement light applied to each point of the surface S to be measured also changes.

そして、干渉部14をz軸方向に移動させてピント位置を変位させながら、即ち、測定光の光路長を変化させながら、撮像素子60から干渉画像を順次取得して干渉画像の任意の画素(m,n)の輝度値を検出する。 Then, while moving the interference unit 14 in the z-axis direction to displace the focus position, that is, while changing the optical path length of the measurement light, the interference images are sequentially acquired from the image sensor 60, and any pixel of the interference image ( The brightness value of m, n) is detected.

ここで、処理部18は、干渉部14の所定の基準位置からの変位量(干渉部14のz位置)を、ポテンショメータやエンコーダなどの不図示の位置検出手段からの検出信号により検出することができる。または、位置検出手段を使用することなく干渉部14のz位置を制御する場合、例えば、干渉部アクチュエータ56に与える駆動信号により一定変位量ずつ干渉部14を移動させる場合には、その総変位量により検出することができる。 Here, the processing unit 18 can detect the displacement amount of the interference unit 14 from a predetermined reference position (z position of the interference unit 14) by a detection signal from a position detecting means (not shown) such as a potentiometer or an encoder. can. Alternatively, when controlling the z position of the interference unit 14 without using the position detecting means, for example, when moving the interference unit 14 by a constant displacement amount by a drive signal given to the interference unit actuator 56, the total displacement amount. Can be detected by.

そして、干渉部14が基準位置のときのピント位置のz位置を測定空間におけるz座標の基準位置(原点位置)として、かつ、干渉部14の基準位置からの変位量をピント位置のz座標値として取得することができる。なお、z座標値は、原点位置よりも高い位置(撮影部16に近づく位置)を正側、低い位置(ステージ面10Sに近づく位置)を負側とする。また、干渉部14の基準位置、即ち、z座標の原点位置は任意のz位置に設定、変更することができる。 Then, the z position of the focus position when the interference unit 14 is the reference position is set as the reference position (origin position) of the z coordinate in the measurement space, and the displacement amount of the interference unit 14 from the reference position is the z coordinate value of the focus position. Can be obtained as. The z coordinate value has a positive side at a position higher than the origin position (a position closer to the photographing unit 16) and a negative side at a lower position (a position closer to the stage surface 10S). Further, the reference position of the interference unit 14, that is, the origin position of the z coordinate can be set or changed to an arbitrary z position.

図3の(A)〜(C)は、干渉部14の測定対象物Pの被測定面Sに近接した位置からz軸方向に上昇させながら撮影部16の撮像素子60から画像を取得したときの干渉部14のz位置と輝度値との関係を示した図である。 3 (A) to 3 (C) of FIG. It is a figure which showed the relationship between the z position of the interference part 14 and a luminance value.

図3の(A)のように、測定光の光路長L1が参照光の光路長L2より小さいと干渉は小さく、輝度値は略一定となる。そして、図3の(B)のように、測定光の光路長L1と参照光の光路長L2とが同じ、即ち光路長差が0となる場合に干渉が大きくなり、最も大きな輝度値を示す。さらに、図3(C)のように、測定光の光路長L1が参照光の光路長L2よりも大きいと再び干渉は小さくなり、輝度値は略一定となる。これにより、図3の(D)に示す干渉縞曲線Qに沿った輝度値が得られる。 As shown in FIG. 3A, when the optical path length L1 of the measurement light is smaller than the optical path length L2 of the reference light, the interference is small and the brightness value is substantially constant. Then, as shown in FIG. 3B, when the optical path length L1 of the measurement light and the optical path length L2 of the reference light are the same, that is, when the optical path length difference becomes 0, the interference becomes large and the maximum luminance value is shown. .. Further, as shown in FIG. 3C, when the optical path length L1 of the measurement light is larger than the optical path length L2 of the reference light, the interference becomes small again and the brightness value becomes substantially constant. As a result, the luminance value along the interference fringe curve Q shown in FIG. 3D can be obtained.

即ち、任意の画素(m,n)における干渉縞曲線Qは、その画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差が所定値より大きい場合には略一定の輝度値を示し、光路長差がその所定値より小さいときには、光路長差が減少するにつれて輝度値が振動すると共にその振幅が大きくなる。 That is, the interference fringe curve Q at an arbitrary pixel (m, n) is located at a point (X (m, n), Y (m, n)) on the surface to be measured S corresponding to the pixel (m, n). When the optical path length difference between the irradiated measurement light and the reference light is larger than the predetermined value, a substantially constant luminance value is shown, and when the optical path length difference is smaller than the predetermined value, the luminance value increases as the optical path length difference decreases. As it vibrates, its amplitude increases.

したがって、図3の(D)に示すように、干渉縞曲線Qは、測定光と参照光との光路長が一致したときに(光路長差が0のときに)、最大値を示すと共に、その干渉縞曲線Qの包絡線における最大値を示す。 Therefore, as shown in FIG. 3D, the interference fringe curve Q shows the maximum value when the optical path lengths of the measurement light and the reference light match (when the optical path length difference is 0), and also shows the maximum value. The maximum value in the envelope of the interference fringe curve Q is shown.

また、被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長は、撮影部16のピント位置が被測定面S上の点(X(m,n),Y(m,n))のz位置に一致したときに一致する。 Further, the optical path length between the measurement light and the reference light applied to the points (X (m, n), Y (m, n)) on the measurement surface S is such that the focus position of the photographing unit 16 is the measurement surface S. It matches when it matches the z position of the upper point (X (m, n), Y (m, n)).

したがって、干渉縞曲線Qが最大値を示すとき(または干渉縞曲線Qの包絡線が最大値を示すとき)のピント位置は、被測定面S上の点(X(m,n),Y(m,n))のz位置に一致しており、そのときのピント位置のz座標値は、被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Therefore, when the interference fringe curve Q shows the maximum value (or when the envelope of the interference fringe curve Q shows the maximum value), the focus position is the point (X (m, n), Y ( It matches the z-position of m, n)), and the z-coordinate value of the focus position at that time is the z-coordinate of the point (X (m, n), Y (m, n)) on the surface S to be measured. Indicates a value.

以上のことから、処理部18は、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に移動させながら(測定光の光路長を変化させながら)、撮像素子60から干渉画像を順次取得し、各画素(m,n)の輝度値をピント位置のz座標値に対応付けて取得する。即ち、ピント位置をz軸方向に走査しながら干渉画像の各画素(m,n)の輝度値を取得する。そして、各画素(m,n)について、図3(D)のような干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を、各画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値Z(m,n)として検出する。 From the above, the processing unit 18 moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 to move the focus position in the z-axis direction (while changing the optical path length of the measurement light), while the image sensor Interference images are sequentially acquired from 60, and the brightness values of each pixel (m, n) are acquired in association with the z-coordinate value of the focus position. That is, the brightness values of each pixel (m, n) of the interference image are acquired while scanning the focus position in the z-axis direction. Then, for each pixel (m, n), the z coordinate value of the focus position when the brightness value of the interference fringe curve Q as shown in FIG. 3D shows the maximum value corresponds to each pixel (m, n). It is detected as the z-coordinate value Z (m, n) of the point (X (m, n), Y (m, n)) on the surface to be measured S.

なお、Z(m,n)は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。 Note that Z (m, n) indicates the z coordinate value of the point (X (m, n), Y (m, n)) on the measured surface S corresponding to the pixel (m, n).

また、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出する方法は周知であり、どのような方法を採用してもよい。例えば、ピント位置の微小間隔ごとのz座標値において干渉画像を取得することで、各画素(m,n)について、図3(D)のような干渉縞曲線Qを実際に描画することができる程度に輝度値を取得することができ、取得した輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Further, a method for detecting the z-coordinate value of the focus position when the luminance value of the interference fringe curve Q indicates the maximum value is well known, and any method may be adopted. For example, by acquiring an interference image at the z-coordinate value for each minute interval of the focus position, the interference fringe curve Q as shown in FIG. 3D can be actually drawn for each pixel (m, n). The brightness value can be acquired to a certain extent, and by detecting the z-coordinate value of the focus position when the acquired brightness value indicates the maximum value, the focus position when the brightness value of the interference fringe curve Q indicates the maximum value. The z-coordinate value of can be detected.

または、ピント位置の各z座標値において取得した輝度値に基づいて最小二乗法等により干渉縞曲線Qを推測し、または、干渉縞曲線Qの包絡線を推測し、その推測した干渉縞曲線Qまたは包絡線に基づいて輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。 Alternatively, the interference fringe curve Q is estimated by the minimum square method or the like based on the brightness value acquired at each z coordinate value of the focus position, or the envelope of the interference fringe curve Q is estimated and the estimated interference fringe curve Q is estimated. Alternatively, by detecting the z-coordinate value of the focus position when the brightness value shows the maximum value based on the envelope, the z-coordinate value of the focus position when the brightness value of the interference fringe curve Q shows the maximum value is detected. be able to.

以上のようにして、処理部18は、干渉画像(撮像素子60の撮像面60S)の各画素(m,n)に対応する被測定面S上の各点(X(m,n),Y(m,n))のz座標値Z(m,n)を検出することで、被測定面S上の各点(X(m,n),Y(m,n))の相対的な高さを検出することができる。 As described above, the processing unit 18 has each point (X (m, n), Y) on the measured surface S corresponding to each pixel (m, n) of the interference image (imaging surface 60S of the image sensor 60). By detecting the z-coordinate value Z (m, n) of (m, n)), the relative height of each point (X (m, n), Y (m, n)) on the surface to be measured S is Can be detected.

そして、被測定面S上の各点のx座標値X(m,n)、y座標値Y(m,n)、およびz座標値Z(m,n)を被測定面Sの3次元形状データ(表面形状を示すデータ)として取得することができる。 Then, the x-coordinate values X (m, n), y-coordinate values Y (m, n), and z-coordinate values Z (m, n) of each point on the measured surface S are the three-dimensional shapes of the measured surface S. It can be acquired as data (data indicating the surface shape).

例えば、図4に示すようにx軸方向に並ぶ3つの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3が相違する場合に、ピント位置をz軸方向に走査しながら干渉画像のそれらの画素の輝度値を取得すると、それらの画素の各々に関してピント位置がz座標値Z1、Z2、Z3のときに輝度値が最大値を示す干渉縞曲線Q1、Q2、Q3が取得される。したがって、それらの干渉縞曲線Q1、Q2、Q3の輝度値が最大値を示すときのピント位置のz座標値を検出することで、それらの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3を検出することができる。このようにして、被測定面Sの3次元形状データを取得することにより、測定対象物Pの表面形状測定を行う。 For example, as shown in FIG. 4, when the z-coordinate values Z1, Z2, and Z3 at three points on the measured surface S corresponding to the three pixels arranged in the x-axis direction are different, the focus position is scanned in the z-axis direction. While acquiring the brightness values of those pixels of the interference image, the interference fringe curves Q1, Q2, and Q3 showing the maximum brightness values when the focus position is the z coordinate values Z1, Z2, and Z3 for each of those pixels. Is obtained. Therefore, by detecting the z-coordinate value of the focus position when the luminance values of the interference fringe curves Q1, Q2, and Q3 show the maximum values, z at three points on the measured surface S corresponding to those pixels The coordinate values Z1, Z2, and Z3 can be detected. In this way, the surface shape of the object P to be measured is measured by acquiring the three-dimensional shape data of the surface S to be measured.

上述のように測定対象物Pの表面形状測定を行う際に、測定前の準備作業として、表面形状測定におけるz軸方向の走査範囲を決定する予備走査を行う。表面形状測定のz軸方向の走査範囲を適切に決定することで、干渉縞の発生しない範囲で表面形状測定を行うことを省略できるので、測定時間を短縮することができる。この予備走査は、できるだけ短時間で行うことが表面形状の測定効率を向上させるうえで好ましい。また、干渉縞が観察可能な位置へ光学部2全体のピント(焦点)を位置合わせする焦点調整についても短時間で行うことが好ましい。 When measuring the surface shape of the object P to be measured as described above, as a preparatory work before the measurement, a preliminary scan for determining the scanning range in the z-axis direction in the surface shape measurement is performed. By appropriately determining the scanning range of the surface shape measurement in the z-axis direction, it is possible to omit performing the surface shape measurement in a range where interference fringes do not occur, so that the measurement time can be shortened. It is preferable to perform this preliminary scanning in the shortest possible time in order to improve the measurement efficiency of the surface shape. Further, it is preferable to perform the focus adjustment in a short time to adjust the focus of the entire optical unit 2 to a position where the interference fringes can be observed.

しかし、表面形状の測定効率を向上させるために測定準備を短時間で行うには、光学部2での画像取得間隔(画像サンプリング間隔)を広くする必要がある。しかしながら、画像取得間隔を広くすると、干渉縞の探索が難しくなる。図5は、異なる光源を用いて、サンプリング間隔を長くした場合の画像取得位置と干渉縞曲線との関係を例示した図である。表面測定に用いられる第1の光源40を用いて、z軸方向(垂直走査軸方向)に上昇させながら、短いサンプリング間隔で画像を取得すると、図5(a)に示す干渉縞曲線Qが得られるとする。しかしながら、図5(a)に示すサンプリング間隔で画像を取得すると、輝度値の変化が少ない位置でのみ画像の取得が行われ、輝度値が大きくなる位置では、サンプリングが行われず、干渉縞の生成が確認できない場合がある。 However, in order to prepare for measurement in a short time in order to improve the measurement efficiency of the surface shape, it is necessary to widen the image acquisition interval (image sampling interval) in the optical unit 2. However, if the image acquisition interval is widened, it becomes difficult to search for interference fringes. FIG. 5 is a diagram illustrating the relationship between the image acquisition position and the interference fringe curve when the sampling interval is lengthened by using different light sources. When an image is acquired at short sampling intervals while raising in the z-axis direction (vertical scanning axis direction) using the first light source 40 used for surface measurement, the interference fringe curve Q shown in FIG. 5A is obtained. It is supposed to be done. However, when the image is acquired at the sampling interval shown in FIG. 5A, the image is acquired only at the position where the change in the luminance value is small, and the sampling is not performed at the position where the luminance value is large, and interference fringes are generated. May not be confirmed.

本実施形態においては、予備走査および焦点調整と表面形状測定とで異なる光源を用い、予備走査および焦点調整に用いられる光源を表面形状測定に用いられる光源より、可干渉領域の長い高コヒーレンス光源を用いることで、表面形状測定におけるz軸方向の走査範囲を適切に決定する。図5(b)は、第2の光源41を用いて画像を取得した時の画像取得位置と干渉縞曲線の関係を例示した図である。図5(b)に示すように、高コヒーレンス光源を用いることで、干渉縞の明暗が出現する範囲、すなわち、可干渉領域を拡大することができるので、サンプリング間隔を広げても干渉縞の位置を確認することができる。また、発光波長幅が短いので、垂直走査軸方向の移動(光路長の変化)に対する干渉強度の変化率が大きくなる。したがって、サンプリング間隔を波長幅の整数倍としなければ、干渉縞の生成している領域内で、異なる干渉強度を取得することができ、干渉縞の生成を確認することができる値以上の位置で画像を取得することができる。したがって、サンプリング間隔を長くしても、干渉縞の生成している領域を推定することができ、この領域を含むように、走査範囲を決定することができる。 In the present embodiment, different light sources are used for the preliminary scanning and the focus adjustment and the surface shape measurement, and the light source used for the preliminary scanning and the focus adjustment is a high coherence light source having a longer coherence region than the light source used for the surface shape measurement. By using it, the scanning range in the z-axis direction in the surface shape measurement is appropriately determined. FIG. 5B is a diagram illustrating the relationship between the image acquisition position and the interference fringe curve when an image is acquired using the second light source 41. As shown in FIG. 5B, by using a high coherence light source, the range in which the light and darkness of the interference fringes appear, that is, the coherent region can be expanded, so that the position of the interference fringes can be expanded even if the sampling interval is widened. Can be confirmed. Further, since the emission wavelength width is short, the rate of change of the interference intensity with respect to the movement in the vertical scanning axis direction (change in the optical path length) becomes large. Therefore, if the sampling interval is not an integral multiple of the wavelength width, different interference intensities can be obtained within the region where the interference fringes are generated, and at a position equal to or higher than the value at which the generation of the interference fringes can be confirmed. Images can be acquired. Therefore, even if the sampling interval is lengthened, the region where the interference fringes are generated can be estimated, and the scanning range can be determined so as to include this region.

本発明の実施の形態の表面形状測定装置1の処理部18には、干渉波長領域の長い光を用いて被測定面Sの各点に照射される測定光の光路長を変化させながら、干渉縞を取得する干渉縞取得動作と、干渉縞取得動作で測定された干渉縞の輝度情報から、測定光の軸方向に対する干渉縞の生成する範囲を推定し、測定光の軸方向の走査範囲を決定する走査範囲決定動作と、干渉縞取得動作により測定された干渉縞の位置に光学部2のピント位置があうように調整する焦点調整動作と、の測定準備動作プログラムを制御する測定準備制御部18Aが内蔵される構成とする。 The processing unit 18 of the surface shape measuring device 1 according to the embodiment of the present invention interferes while changing the optical path length of the measurement light applied to each point of the surface S to be measured by using light having a long interference wavelength region. From the interference fringe acquisition operation for acquiring fringes and the brightness information of the interference fringes measured by the interference fringe acquisition operation, the range in which the interference fringes are generated with respect to the axial direction of the measurement light is estimated, and the scanning range in the axial direction of the measurement light is determined. Measurement preparation control unit that controls the measurement preparation operation program of the scanning range determination operation to be determined and the focus adjustment operation that adjusts the focus position of the optical unit 2 to the position of the interference fringes measured by the interference fringe acquisition operation. The configuration is such that 18A is built in.

図6は、本実施形態の表面形状測定方法の一例を示すフローチャート図であり、図7は、予備走査の一例を示すフローチャート図である。 FIG. 6 is a flowchart showing an example of the surface shape measuring method of the present embodiment, and FIG. 7 is a flowchart showing an example of preliminary scanning.

表面形状測定方法は、図6に示すように、先ず、測定対象物をステージ10上に載置する(ステップS10)。 In the surface shape measuring method, as shown in FIG. 6, first, the object to be measured is placed on the stage 10 (step S10).

次に、処理部18は、干渉縞(撮像素子60の撮像面)の全ての画素について取得される干渉縞曲線の輝度値が適切な大きさとなるように測定光量などの調整を行う(ステップS12)。即ち、光源部12の第1の光源40の強さ、撮像素子60における電子シャッタの速度(電荷蓄積時間の長さ)、撮像素子60により得られる画像信号に対するゲインなどを調整する。 Next, the processing unit 18 adjusts the amount of measured light and the like so that the brightness values of the interference fringe curves acquired for all the pixels of the interference fringes (imaging surface of the image sensor 60) have an appropriate magnitude (step S12). ). That is, the strength of the first light source 40 of the light source unit 12, the speed of the electronic shutter in the image sensor 60 (the length of the charge accumulation time), the gain on the image signal obtained by the image sensor 60, and the like are adjusted.

次に、表面形状の測定(ステップS20)の測定走査範囲(干渉部14をz軸方向に移動させる範囲)が短くなるように、予備走査を行う(ステップS14)。このステップは、予め測定対象物の表面形状の概要を把握することで、測定走査範囲を必要最小限に短くするものである。予備走査については、図7を用いて説明する。 Next, preliminary scanning is performed so that the measurement scanning range (range in which the interference portion 14 is moved in the z-axis direction) of the surface shape measurement (step S20) is shortened (step S14). In this step, the measurement scanning range is shortened to the minimum necessary by grasping the outline of the surface shape of the object to be measured in advance. Preliminary scanning will be described with reference to FIG.

予備走査は、先ず、不図示の光源変更手段を用いて、光源を第2の光源41に切り替える(ステップS30)。すでに、光源として第2の光源41が配置されている場合は、この工程は省略できる。 In the preliminary scan, first, the light source is switched to the second light source 41 by using a light source changing means (not shown) (step S30). If the second light source 41 is already arranged as the light source, this step can be omitted.

次に、図8に示すように、基準画素を選択する(ステップS32)。測定準備制御部18Aは、図8に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞の生成および消失の基準とする基準画素100を予め設定する。基準画素は、本実施形態の場合には、予備走査の前に予め決められた画素とした。しかし、測定準備制御部18Aが図1の表示部20に表示する図8のような干渉縞(撮像素子60の撮像面60S)における画素配列の画素を参照しながら操作者が入力部22により指定するようにしてもよい。 Next, as shown in FIG. 8, a reference pixel is selected (step S32). As shown in FIG. 8, the measurement preparation control unit 18A presets the reference pixel 100 as a reference for the generation and disappearance of the interference fringes on the xy coordinates of the image pickup surface 60S of the image pickup element 60. In the case of this embodiment, the reference pixel is a predetermined pixel before the preliminary scan. However, the operator designates the measurement preparation control unit 18A by the input unit 22 while referring to the pixels of the pixel array on the interference fringe (imaging surface 60S of the image pickup device 60) as shown in FIG. 8 displayed on the display unit 20 of FIG. You may try to do it.

次に、干渉部14をz軸方向に規定範囲で走査駆動を行い、干渉縞取得工程を行う(ステップS34)。この工程においては、干渉縞をサンプリングする間隔(画像取得間隔)を、後述する表面形状測定工程における画像取得間隔より長い間隔で行う。この画像取得間隔を長くすることで、予備走査の時間を短縮することができる。本発明においては、予備走査を行う際に、可干渉領域の広い光源を用いることで、干渉縞の生成、消失を高い確率で推定することができ、走査範囲を決定することができる。画像取得間隔の上限は、表面形状の概要を把握することができれば特に限定されないが、波長の整数倍とすると、干渉縞曲線における輝度値の変化が同じになるため、整数倍は避けることが好ましい。なお、ここでは、規定範囲とは、光学部2に対する干渉部14のz軸方向の移動によるピント位置のz軸方向の最大走査範囲をいう。 Next, the interference unit 14 is scanned and driven in the z-axis direction within a specified range to perform an interference fringe acquisition step (step S34). In this step, the interval for sampling the interference fringes (image acquisition interval) is longer than the image acquisition interval in the surface shape measurement step described later. By lengthening the image acquisition interval, the time for preliminary scanning can be shortened. In the present invention, by using a light source having a wide coherent region when performing preliminary scanning, the generation and disappearance of interference fringes can be estimated with high probability, and the scanning range can be determined. The upper limit of the image acquisition interval is not particularly limited as long as the outline of the surface shape can be grasped, but if it is an integral multiple of the wavelength, the change in the luminance value in the interference fringe curve is the same, so it is preferable to avoid the integer multiple. .. Here, the defined range means the maximum scanning range of the focus position in the z-axis direction due to the movement of the interference unit 14 with respect to the optical unit 2 in the z-axis direction.

測定準備制御部18Aは、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に走査しながら(即ち、測定光の光路長を変化させながら)撮像素子60から干渉縞を順次取得し、各画素の輝度値をピント位置のz座標値に対応付けて取得する。 The measurement preparation control unit 18A moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 to scan the focus position in the z-axis direction (that is, while changing the optical path length of the measurement light) from the image sensor 60. The interference fringes are sequentially acquired, and the brightness value of each pixel is acquired in association with the z-coordinate value of the focus position.

各画素の輝度値を取得したら、基準画素の輝度値から表面形状測定工程の垂直走査方向の測定走査範囲を決定する走査範囲決定工程を行う(ステップS36)。 After acquiring the luminance value of each pixel, a scanning range determination step of determining the measurement scanning range in the vertical scanning direction of the surface shape measuring step from the luminance value of the reference pixel is performed (step S36).

ここで、本発明と一般的なオートフォーカスとの違いについて説明する。一般的なオートフォーカスでは、測定対象物が焦点位置に近い場合に、測定対象物表面の模様によるコントラストが上昇することを用いて隣接ピクセル間の輝度値の差異を利用する。しかしながら、この手法は、サンプリング間隔を広げることは可能であるが、例えばオプティカルフラットのような平滑面に対しては、効果が無く、さらに、干渉縞の生成、消失の幅を検知することができないので、予備走査としては機能しない。確実に測定対象物の表面形状を取得するためには、干渉縞の生成、消失が生じる範囲において、表面形状を測定することが必要である。 Here, the difference between the present invention and general autofocus will be described. In general autofocus, when the object to be measured is close to the focal position, the difference in luminance value between adjacent pixels is used by increasing the contrast due to the pattern on the surface of the object to be measured. However, although this method can widen the sampling interval, it has no effect on a smooth surface such as an optical flat, and it is not possible to detect the width of the generation and disappearance of interference fringes. Therefore, it does not function as a preliminary scan. In order to reliably obtain the surface shape of the object to be measured, it is necessary to measure the surface shape within the range in which interference fringes are generated and disappear.

図6に戻り、予備走査(ステップS14)により、測定走査範囲を決定した後、処理部18は、予備走査により干渉縞が生成していることが推定される焦点位置へ光学部2を移動する焦点調整工程を行う(ステップS16)。 Returning to FIG. 6, after determining the measurement scanning range by the preliminary scanning (step S14), the processing unit 18 moves the optical unit 2 to the focal position where it is estimated that the interference fringes are generated by the preliminary scanning. The focus adjustment step is performed (step S16).

表面形状測定前の焦点調整についても、表面形状の測定効率を向上させるため、短時間で行う必要がある。そのためには、光学部2での画像取得間隔(画像サンプリング間隔)を広くする必要がある。図9は、可干渉領域の異なる光を用いて画像取得間隔を長くした場合に取得できる画像の違いを説明する図である。図9(A)が可干渉領域の短い光を用いて画像取得を行った図であり、図9(B)が可干渉領域の長い光を用いて画像取得を行った図である。 Focus adjustment before surface shape measurement also needs to be performed in a short time in order to improve the surface shape measurement efficiency. For that purpose, it is necessary to widen the image acquisition interval (image sampling interval) in the optical unit 2. FIG. 9 is a diagram for explaining the difference in images that can be acquired when the image acquisition interval is lengthened by using light having different coherent regions. FIG. 9A is a diagram in which an image is acquired using light having a short coherent region, and FIG. 9B is a diagram in which an image is acquired using light having a long coherent region.

図9(A)に示すように、可干渉領域の短い光を用いて、画像取得間隔を長くした場合、1枚の画像では、干渉が観察されるものの、他の3枚では干渉が確認されない。これは、白色干渉計の場合には、焦点の合うz軸方向の範囲は非常に小さく(例えば3μm程度)、画像取得間隔(画像サンプリング間隔)を広くすると、干渉縞が出現するz軸位置が限定されるため、干渉縞の位置を確認するのが困難となる。 As shown in FIG. 9A, when the image acquisition interval is lengthened by using light having a short coherent region, interference is observed in one image, but no interference is confirmed in the other three images. .. This is because in the case of a white interferometer, the range in the z-axis direction in focus is very small (for example, about 3 μm), and when the image acquisition interval (image sampling interval) is widened, the z-axis position where interference fringes appear is Due to the limitation, it is difficult to confirm the position of the interference fringes.

これに対し、図9(B)に示すように、可干渉領域の長い光を用いることで、画像取得間隔が長くなっても、干渉縞が取得できる画像を増やすことができる。図9(B)においては、4枚の全ての画像において干渉縞を観察することができる。干渉縞が観察できる画像を増やすことで、焦点調整に必要な干渉縞位置を検出することができる。 On the other hand, as shown in FIG. 9B, by using light having a long coherent region, it is possible to increase the number of images in which interference fringes can be acquired even if the image acquisition interval is long. In FIG. 9B, interference fringes can be observed in all four images. By increasing the number of images in which the interference fringes can be observed, the position of the interference fringes required for focus adjustment can be detected.

次に、測定準備制御部18Aは、ピント位置のz座標値に対応付けられた輝度値に基づいて、干渉縞曲線を取得する。また、測定準備制御部18Aは、取得した干渉縞曲線に基づいて、輝度値が最大値(包絡線の最大値)を示すときのピント位置のz座標値を求める。続いて、測定した干渉縞曲線をz座標値と輝度値との関係を表したグラフ上に描画した画像を表示部20に表示する。また、その干渉縞曲線において輝度値が最大値を示すときのピント位置のz座標値と、ピント位置の走査範囲の中心位置となるz座標値とを容易に把握できるように表示することが好ましい。 Next, the measurement preparation control unit 18A acquires the interference fringe curve based on the luminance value associated with the z-coordinate value of the focus position. Further, the measurement preparation control unit 18A obtains the z-coordinate value of the focus position when the luminance value shows the maximum value (maximum value of the envelope) based on the acquired interference fringe curve. Subsequently, the display unit 20 displays an image of the measured interference fringe curve drawn on a graph showing the relationship between the z-coordinate value and the brightness value. Further, it is preferable to display the z-coordinate value of the focus position when the luminance value shows the maximum value in the interference fringe curve and the z-coordinate value which is the center position of the scanning range of the focus position so that it can be easily grasped. ..

次に、検出した干渉縞位置に光学部2のピント位置を合わせる焦点調整を行う。即ち、基準画素100の干渉縞曲線において、輝度値が最大値を示すときのピント位置のz座標値が、干渉部アクチュエーダ56の駆動によるピント位置の走査範囲の中心位置となるz座標値に一致するように、図1のzアクチュエータ70を駆動して光学部2全体をz軸方向に移動させる。換言すると、ピント位置の走査範囲の中心位置となるz位置(z座標値)と、基準画素に対応する被測定面S状の点のz位置(z座標値)と、が一致するように光学部2全体のz軸方向の位置を調整する。これにより、光学部2を焦点位置に合わせることができる。 Next, the focus adjustment is performed so that the focus position of the optical unit 2 is adjusted to the detected interference fringe position. That is, in the interference fringe curve of the reference pixel 100, the z-coordinate value of the focus position when the brightness value shows the maximum value matches the z-coordinate value which is the center position of the scanning range of the focus position driven by the interference unit actuator 56. As such, the z actuator 70 of FIG. 1 is driven to move the entire optical unit 2 in the z-axis direction. In other words, the z position (z coordinate value), which is the center position of the scanning range of the focus position, and the z position (z coordinate value) of the S-shaped point to be measured corresponding to the reference pixel are optically matched. The position of the entire part 2 in the z-axis direction is adjusted. As a result, the optical unit 2 can be aligned with the focal position.

このように、可干渉領域の長い光を用いて焦点調整を行うことで、画像取得間隔を長くしても、干渉縞を観察できる画像を増やすことができるので、干渉縞を容易に探索して、焦点調整に必要な干渉縞位置を検出することができ、見つけた干渉縞の位置で焦点を合わせることができる。画像取得間隔を長くすることで、時間を短縮することができるので、表面形状測定全体として時間を短縮することができる。 By adjusting the focus using light with a long coherent region in this way, it is possible to increase the number of images in which interference fringes can be observed even if the image acquisition interval is lengthened. , The position of the interference fringe required for focus adjustment can be detected, and the focus can be adjusted at the position of the found interference fringe. By lengthening the image acquisition interval, the time can be shortened, so that the time can be shortened as a whole for the surface shape measurement.

なお、図9においては、画像取得間隔を図5に示す干渉縞曲線の位置より長くしているが、予備走査を行う際に取得した干渉縞を用いて、焦点調整を行うことができる。 Although the image acquisition interval is longer than the position of the interference fringe curve shown in FIG. 5 in FIG. 9, the focus adjustment can be performed by using the interference fringes acquired during the preliminary scanning.

次に、光源を表面形状測定用の第1の光源40に切り替える(ステップS18)。第1の光源40に切り替えた後、処理部18は、予備走査により決定した測定走査範囲で、測定対象物Pの表面形状の測定を行う表面形状測定工程を行う(ステップS20)。表面形状の測定方法としては、測定対象物Pの被測定面Sの各点に照射される測定光の光路長を変化させながら撮影部16により取得される干渉縞に基づいて被測定面Sの各点のz軸方向の干渉縞位置を検出することで測定対象物Pの表面形状を測定する方法であれば、どのような方法でもよい。 Next, the light source is switched to the first light source 40 for measuring the surface shape (step S18). After switching to the first light source 40, the processing unit 18 performs a surface shape measuring step of measuring the surface shape of the measurement object P within the measurement scanning range determined by the preliminary scanning (step S20). As a method for measuring the surface shape, the measured surface S is measured based on the interference fringes acquired by the photographing unit 16 while changing the optical path length of the measurement light applied to each point of the measured surface S of the measurement object P. Any method may be used as long as it is a method of measuring the surface shape of the object P to be measured by detecting the position of the interference fringes in the z-axis direction of each point.

本実施形態によれば、サンプリング間隔を狭くすることで時間のかかる表面形状測定において、予備走査により走査範囲を決定しているので、測定時間を短縮することができる。 According to the present embodiment, in the surface shape measurement that takes time by narrowing the sampling interval, the scanning range is determined by the preliminary scanning, so that the measurement time can be shortened.

次に、ステップS22で、測定対象物全領域の表面形状データを取得していない場合はステップS14に戻り、ステージ10を移動させ(移動工程)、予備走査(ステップS14)から表面形状の測定(ステップS20)を行い、測定対象物全領域の表面形状データを取得する(繰り返し工程)。 Next, in step S22, if the surface shape data of the entire region of the object to be measured has not been acquired, the process returns to step S14, the stage 10 is moved (movement step), and the surface shape is measured from the preliminary scanning (step S14) (step S14). Step S20) is performed to acquire surface shape data of the entire region of the object to be measured (repetition step).

測定対象物全領域の表面形状データを取得した後、ステップS24の工程として、表面形状データを接続することで、広範囲表面形状データを作成し(接続工程)、最後に、処理部18は、表面形状の測定結果を表示部20などに出力する。または、1つの撮像面で測定対象物の表面形状を測定できる場合は、接続工程を行うことなく、表面形状の測定結果を表示部20などに出力する。 After acquiring the surface shape data of the entire region of the object to be measured, a wide range of surface shape data is created by connecting the surface shape data as the step of step S24 (connection step), and finally, the processing unit 18 performs the surface. The shape measurement result is output to the display unit 20 or the like. Alternatively, when the surface shape of the object to be measured can be measured with one imaging surface, the measurement result of the surface shape is output to the display unit 20 or the like without performing the connection step.

なお、図6に示す表面形状測定方法においては、表面形状測定を行う際のZ軸方向の走査範囲を決定する予備走査と、焦点位置に光学部を移動する焦点調整工程の両方を行う方法で説明したが、予備走査および焦点調整工程のいずれかを行うことも本実施形態の一つの態様である。 In the surface shape measuring method shown in FIG. 6, both a preliminary scanning for determining the scanning range in the Z-axis direction when measuring the surface shape and a focus adjusting step for moving the optical portion to the focal position are performed. As described above, it is also one aspect of the present embodiment that any of the preliminary scanning and the focusing step is performed.

また、上述した走査範囲決定工程(ステップS36)においては、基準画素の輝度値から表面形状測定工程の走査範囲を決定しているが、基準画素の輝度値では干渉縞の生成が十分に確認できない場合、または、干渉縞の生成している位置を確認して、測定を行う走査範囲の精度を高めたい場合は、基準画素の周辺画素の輝度値も用いることで、高い精度で垂直走査方向の測定走査範囲を決定することができる。 Further, in the scanning range determination step (step S36) described above, the scanning range of the surface shape measurement step is determined from the brightness value of the reference pixel, but the generation of interference fringes cannot be sufficiently confirmed by the brightness value of the reference pixel. In this case, or if you want to check the position where the interference fringes are generated and improve the accuracy of the scanning range for measurement, you can also use the brightness values of the peripheral pixels of the reference pixel to achieve high accuracy in the vertical scanning direction. The measurement scan range can be determined.

図10〜12は、基準画素100と、基準画素100の周辺画素102の選択方法を示す図である。図10は、基準画素100に隣接する画素のみを周辺画素102として用いる例である。また、図11は、基準画素100から等間隔で周辺画素102を選択する例である。図12は、周辺画素102を基準画素100からの距離がランダムになるように選択する例である。 10 to 12 are diagrams showing a method of selecting the reference pixel 100 and the peripheral pixels 102 of the reference pixel 100. FIG. 10 is an example in which only the pixels adjacent to the reference pixel 100 are used as the peripheral pixels 102. Further, FIG. 11 is an example in which peripheral pixels 102 are selected at equal intervals from the reference pixel 100. FIG. 12 is an example in which the peripheral pixels 102 are selected so that the distance from the reference pixel 100 is random.

基準画素の周辺画素を選択する方法は特に限定されない。例えば、図10〜12に示す選択方法で選択することができる。ただし、予備走査は、サンプリング間隔を広くしているので、図10または図11に示すように、周辺画素102を、基準画素100から一定距離にある画素とした場合、例えば、基準画素から選択した周辺画素に対応する測定対象物の表面形状が段差部を有するなど、z軸方向の変位が大きい場合、予備走査において、干渉縞の生成が確認できない場合がある。図12に示すように、基準画素100からランダムに周辺画素102を選択し、複数の周辺画素102の情報を利用し統計的に処理することで、安定して表面形状の概要の推定が可能となる。なお、周辺画素とは、図10に示すように、基準画素に隣接する隣接画素、および、図11、12に示すように基準画素から数画素離れた位置にある近傍画素をいう。 The method of selecting the peripheral pixels of the reference pixel is not particularly limited. For example, it can be selected by the selection method shown in FIGS. 10 to 12. However, since the sampling interval is widened in the preliminary scanning, when the peripheral pixels 102 are pixels at a certain distance from the reference pixel 100 as shown in FIG. 10 or 11, for example, they are selected from the reference pixels. When the displacement in the z-axis direction is large, such as when the surface shape of the measurement object corresponding to the peripheral pixels has a stepped portion, the generation of interference fringes may not be confirmed in the preliminary scanning. As shown in FIG. 12, by randomly selecting peripheral pixels 102 from the reference pixel 100 and statistically processing using the information of the plurality of peripheral pixels 102, it is possible to stably estimate the outline of the surface shape. Become. The peripheral pixels refer to adjacent pixels adjacent to the reference pixel as shown in FIG. 10 and neighboring pixels located several pixels away from the reference pixel as shown in FIGS. 11 and 12.

また、周辺画素を選択し、これらに統計処理を施すことで、測定走査範囲を決定しているが、一般的に予備走査を実施する際には、カメラのフレームレートを最大限高速になるように設定する。そのため、撮像面内の全画素に対して統計処理を実施しようとすると、処理がフレームの時間間隔内に収まらない問題が発生する。そのため、基準画素の選択、基準画素の周辺画素を選択し、これらに統計処理を施すことで、予備走査の時間を短縮している。 In addition, the measurement scanning range is determined by selecting peripheral pixels and performing statistical processing on them. Generally, when performing preliminary scanning, the frame rate of the camera should be maximized. Set to. Therefore, when trying to perform statistical processing on all the pixels in the imaging surface, there arises a problem that the processing does not fit within the time interval of the frame. Therefore, the pre-scanning time is shortened by selecting the reference pixel and the peripheral pixels of the reference pixel and performing statistical processing on them.

周辺画素を用いて、走査範囲決定工程を行う場合、基準画素および周辺画素の輝度値に統計処理を施すことで、走査範囲を決定する。統計処理の一例として、例えば、次のように単純和を取ることで、決定することができる。 When the scanning range determination step is performed using peripheral pixels, the scanning range is determined by performing statistical processing on the brightness values of the reference pixel and the peripheral pixels. As an example of statistical processing, it can be determined by taking a simple sum as follows.

予備走査を行う際の基準画素、および、選択した周辺画素の輝度値をx(i:ピクセル番号)、干渉縞が生成していない領域での平均的な輝度値を<x>とすると、i番目の画素に対する干渉縞による輝度値の変化は、Δx=|x−<x>|で表される。 Let x i (i: pixel number) be the brightness value of the reference pixel and the selected peripheral pixel when performing preliminary scanning, and let <x> be the average brightness value in the area where no interference fringes are generated. The change in the luminance value due to the interference fringes with respect to the i-th pixel is represented by Δx = | x i − <x> |.

そして、統計処理として、これらの値の単純和Σ(Δx)=Σ|x−<x>|を求める。この単純和を、光学部の垂直位置を走査しながら(z方向に移動させながら)計
算を行い、単純和が所定の値以上の領域を含む範囲を、表面形状を測定する走査範囲として決定することができる。単純和を計算する際は、閾値を設けて、この閾値以下の輝度値の変化を示すものは単純和の計算に使用しないようにすることもできる。
Then, as statistical processing, the simple sum Σ (Δx i ) = Σ i | x i − <x> | of these values is obtained. This simple sum is calculated while scanning the vertical position of the optical unit (moving in the z direction), and the range including the region where the simple sum is equal to or more than a predetermined value is determined as the scanning range for measuring the surface shape. be able to. When calculating the simple sum, a threshold value may be set so that a value indicating a change in the luminance value below the threshold value is not used in the calculation of the simple sum.

図13は、基準画素および周辺画素の輝度値を用いて測定範囲を決定する例を示す図である。基準画素の輝度値の変化を、光学部2を垂直方向に走査しながら測定すると、例えば、図13の基準画素に示すような、輝度値の変化を示す。予備走査においては、サンプリング間隔が、表面形状測定よりも広いため、干渉縞による明暗が生成している領域内においても、輝度値の変化Δxが小さい値を示す場合がある。 FIG. 13 is a diagram showing an example in which a measurement range is determined using the luminance values of the reference pixel and the peripheral pixels. When the change in the brightness value of the reference pixel is measured while scanning the optical unit 2 in the vertical direction, for example, the change in the brightness value as shown in the reference pixel in FIG. 13 is shown. In the preliminary scan, since the sampling interval is wider than the surface shape measurement, the change Δx i of the luminance value may show a small value even in the region where the light and darkness due to the interference fringes is generated.

周辺画素1〜3は、基準画素からの距離がランダムになるように選択した周辺画素の輝度値の変化(Δx)を示す。図13においては省略しているが、さらに、複数の周辺画素の輝度値の変化の単純和を示す。単純和を求め、グラフ化することで、基準画素およびその周辺画素での垂直方向(z軸方向)における輝度値の変化量を求めることができ、この範囲を含むように、表面測定の垂直方向の走査範囲を決定することができる。このように、基準画素で十分な輝度値の変化が確認できなくても、周辺画素の輝度値の変化を用いることで、表面形状の垂直方向の位置を推定することができ、走査範囲を決定することができる。 Peripheral pixels 1 to 3 indicate changes (Δx) in the brightness value of the peripheral pixels selected so that the distance from the reference pixel is random. Although omitted in FIG. 13, a simple sum of changes in the luminance values of the plurality of peripheral pixels is further shown. By obtaining the simple sum and graphing it, the amount of change in the brightness value in the vertical direction (z-axis direction) of the reference pixel and its peripheral pixels can be obtained, and the vertical direction of the surface measurement is included so as to include this range. Scanning range can be determined. In this way, even if a sufficient change in the brightness value cannot be confirmed with the reference pixel, the vertical position of the surface shape can be estimated by using the change in the brightness value of the peripheral pixels, and the scanning range is determined. can do.

統計処理として、単純和を用いる方法以外に、輝度値変化の出現頻度分布を作成し、出現頻度が特定の範囲に含まれる範囲を本測定の範囲として決定することができる、また、統計処理の方法としては、1種類に限定されず、複数種類を組み合わせて用いることもできる。 As statistical processing, in addition to the method using simple sum, it is possible to create an appearance frequency distribution of luminance value change and determine a range in which the appearance frequency is included in a specific range as the range of this measurement. The method is not limited to one type, and a plurality of types may be used in combination.

なお、上記では、予備走査において周辺画素を用いる方法で説明したが、焦点調整工程において、周辺画素を用いることもできる。この場合。基準画素および周辺画素の各々について取得した干渉縞曲線に基づいて、輝度値が最大値(包絡線の最大値)を示すときのピント位置のz座標値を求める。そして、そのz座標値が最も大きくなる(最も突出した位置となる)1つの画素を選出する。これにより、被測定面Sに傷などの凹みが生じている場合に、その凹みの部分に対応した画素が選出されないようにすることができる。基準画素、および、周辺画素から1つの画素を選出した後は、この選出した画素に基づいて、上述した焦点調整工程を行うことで、光学部2のピント位置が干渉縞の位置に会うように調整することができる。 In the above description, the method of using peripheral pixels in the preliminary scanning has been described, but peripheral pixels can also be used in the focus adjustment step. in this case. Based on the interference fringe curves acquired for each of the reference pixel and the peripheral pixel, the z-coordinate value of the focus position when the luminance value shows the maximum value (maximum value of the envelope) is obtained. Then, one pixel having the largest z-coordinate value (the most prominent position) is selected. As a result, when the surface S to be measured has a dent such as a scratch, the pixel corresponding to the dent portion can be prevented from being selected. After selecting one pixel from the reference pixel and the peripheral pixels, the focus adjustment step described above is performed based on the selected pixels so that the focus position of the optical unit 2 meets the position of the interference fringes. Can be adjusted.

また、図6に示すフローチャート図では、測定対象物の各撮像面ごとに、予備走査、表面形状測定を行っているが、予備走査を測定対象物の全領域に対して行った後、光源を切替え、表面形状の測定を測定対象物の全領域に対して行ってもよい。 Further, in the flowchart shown in FIG. 6, the preliminary scan and the surface shape measurement are performed for each imaging surface of the measurement object. However, after the preliminary scan is performed on the entire area of the measurement object, the light source is turned on. Switching and surface shape measurement may be performed on the entire area of the object to be measured.

[第2実施形態]
図14は、第2実施形態に係る表面形状測定方法に用いられる表面形状測定装置の例を示す全体構成図である。第2実施形態の表面形状測定装置200は、測定対象物Pの干渉画像を取得する光学部202の光源部212が、測定対象物Pを照明する照明光として波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する第1の光源240と、第1の光源240からの白色光(測定用の光)を予備走査に用いられる光のみを透過させるバンドパスフィルタ243と、を備える点が第1実施形態の表面形状測定装置と異なっている。
[Second Embodiment]
FIG. 14 is an overall configuration diagram showing an example of a surface shape measuring device used in the surface shape measuring method according to the second embodiment. In the surface shape measuring device 200 of the second embodiment, the light source unit 212 of the optical unit 202 that acquires the interference image of the measurement object P is white light having a wide wavelength width (interferable) as the illumination light for illuminating the measurement object P. A first light source 240 that emits low-coherence light with less property, and a bandpass filter 243 that transmits white light (light for measurement) from the first light source 240 only to light used for preliminary scanning. It is different from the surface shape measuring device of the first embodiment in that it is provided.

第2実施形態においては、第1の光源240から出射された光を、バンドパスフィルタ243の透過の有無により、表面形状測定用の光と、予備走査用の光と、に使い分ける。第1の光源240としては、発光ダイオード、半導体レーザー、ハロゲンランプ、高輝度放電ランプなど、任意の種類の発光体を用いることができる。 In the second embodiment, the light emitted from the first light source 240 is used properly as light for surface shape measurement and light for preliminary scanning depending on the presence or absence of transmission of the bandpass filter 243. As the first light source 240, any kind of light emitting body such as a light emitting diode, a semiconductor laser, a halogen lamp, and a high-intensity discharge lamp can be used.

また、バンドパスフィルタ243は、予備測定用の可干渉領域の広い光を得ることができれば、特に限定されず、比較的狭い透過特性を有するバンドパスフィルタを用いることが好ましい。 Further, the bandpass filter 243 is not particularly limited as long as light having a wide interferable region for preliminary measurement can be obtained, and it is preferable to use a bandpass filter having a relatively narrow transmission characteristic.

図15は、光源から出射される光の波長特性(a)、バンドパスフィルタの透過特性(b)、バンドパスフィルタ透過後の光の波長特性(c)を示す。第1の光源240から出射される光は、表面形状測定に用いられる光であり、図15(a)に示すように、発光波長領域の広い、低コヒーレンス光である。図15(b)に示すフィルタ透過特性を有するバンドパスフィルタ243を用いることで、バンドパスフィルタ透過後の光を図15(c)に示す波長特性の光とすることができる。図15(c)に示すような、波長幅の狭い光とすることで、予備走査用の光を得ることができる。 FIG. 15 shows the wavelength characteristic (a) of the light emitted from the light source, the transmission characteristic (b) of the bandpass filter, and the wavelength characteristic (c) of the light after passing through the bandpass filter. The light emitted from the first light source 240 is light used for surface shape measurement, and as shown in FIG. 15A, is low coherence light having a wide emission wavelength region. By using the bandpass filter 243 having the filter transmission characteristic shown in FIG. 15B, the light after being transmitted through the bandpass filter can be the light having the wavelength characteristic shown in FIG. 15C. Light for preliminary scanning can be obtained by using light having a narrow wavelength width as shown in FIG. 15 (c).

第2実施形態の表面形状測定装置によれば、表面形状測定用の光源と予備走査用の光源の2つの光源を備える必要がなくなるため、低コスト、かつ、簡易な構成で、予備走査時間の短縮、測定範囲の決定を行うことができる。 According to the surface shape measuring device of the second embodiment, it is not necessary to provide two light sources, a light source for surface shape measurement and a light source for preliminary scanning. Therefore, the cost is low, the configuration is simple, and the preliminary scanning time is reduced. It can be shortened and the measurement range can be determined.

なお、第2実施形態の表面形状測定装置の光源部212以外の構成は、第1実施形態の表面形状測定装置と同じであるため、光源部12、撮影部16などの構成については省略する。 Since the configuration of the surface shape measuring device of the second embodiment other than the light source unit 212 is the same as that of the surface shape measuring device of the first embodiment, the configurations of the light source unit 12, the photographing unit 16, and the like are omitted.

次に、第2実施形態の表面形状測定装置を用いた表面形状測定方法について説明する。図16は、第2実施形態の表面形状測定方法の一例を示すフローチャート図であり、図17は予備走査の一例を示すフローチャート図である。 Next, a surface shape measuring method using the surface shape measuring device of the second embodiment will be described. FIG. 16 is a flowchart showing an example of the surface shape measuring method of the second embodiment, and FIG. 17 is a flowchart showing an example of preliminary scanning.

測定対象物のステージ10への載置(ステップS50)、測定光量などの調整(ステップS52)については、第1実施形態のステップS10、ステップS12と同様の方法により行うことができる。 The placement of the object to be measured on the stage 10 (step S50) and the adjustment of the amount of light to be measured (step S52) can be performed by the same method as in steps S10 and S12 of the first embodiment.

次に、予備走査を行う(ステップS54)。予備走査については、図17を用いて説明する。予備走査は、まず、バンドパスフィルタ243を第1の光源240の光源光路内へ移動させる(ステップS70)。すでに、バンドパスフィルタ243が光源光路内に配置されている場合は、この工程を省略できる。 Next, a preliminary scan is performed (step S54). Preliminary scanning will be described with reference to FIG. In the preliminary scan, first, the bandpass filter 243 is moved into the light source optical path of the first light source 240 (step S70). If the bandpass filter 243 is already arranged in the light source optical path, this step can be omitted.

基準画素の取得(ステップS72)、干渉縞の取得(ステップS74)、z軸方向の走査範囲の決定(ステップS76)についても、第1実施形態のステップS32からステップS36と同様に行うことができる。z軸方向の走査範囲の決定(ステップS76)は、第1実施形態と同様に、選択した基準画素のみで決定してもよいし、その周辺画素を用いてもよい。また、用いる周辺画素の選択方法についても、第1実施形態と同様の方法により行うことができる。 The acquisition of the reference pixel (step S72), the acquisition of the interference fringes (step S74), and the determination of the scanning range in the z-axis direction (step S76) can also be performed in the same manner as in steps S32 to S36 of the first embodiment. .. The determination of the scanning range in the z-axis direction (step S76) may be determined using only the selected reference pixel or peripheral pixels thereof, as in the first embodiment. Further, the method of selecting the peripheral pixels to be used can be the same as that of the first embodiment.

図16に戻り、予備走査(ステップS54)により、測定走査範囲を決定した後、処理部18は、予備走査により干渉縞が生成していることが推定される焦点位置へ光学部2を移動する焦点調整工程を行う(ステップS56)。焦点調整工程についても第1実施形態と同様の方法より行うことができる。また、バンドパスフィルタ243を光源光路外へ移動させる(ステップS58)。 Returning to FIG. 16, after determining the measurement scanning range by the preliminary scanning (step S54), the processing unit 18 moves the optical unit 2 to the focal position where it is estimated that the interference fringes are generated by the preliminary scanning. The focus adjustment step is performed (step S56). The focus adjustment step can also be performed by the same method as in the first embodiment. Further, the bandpass filter 243 is moved out of the light source optical path (step S58).

次に、処理部18は、予備走査により決定した測定走査範囲で、測定対象物Pの表面形状の測定を行う表面形状測定工程を行う(ステップS60)。表面形状の測定方法としては、測定対象物Pの被測定面Sの各点に照射される測定光の光路長を変化させながら撮影部16により取得される干渉縞に基づいて被測定面Sの各点のz軸方向の干渉縞位置を検出することで測定対象物Pの表面形状を測定する方法であれば、どのような方法でもよい。 Next, the processing unit 18 performs a surface shape measuring step of measuring the surface shape of the object P to be measured within the measurement scanning range determined by the preliminary scanning (step S60). As a method for measuring the surface shape, the measured surface S is measured based on the interference fringes acquired by the photographing unit 16 while changing the optical path length of the measurement light applied to each point of the measured surface S of the measurement object P. Any method may be used as long as it is a method of measuring the surface shape of the object P to be measured by detecting the position of the interference fringes in the z-axis direction of each point.

第2実施形態の方法においても、サンプリング間隔を狭くすることで時間のかかる表面形状測定において、予備走査により走査範囲を決定しているので、測定時間を短縮することができる。 Also in the method of the second embodiment, in the surface shape measurement which takes time by narrowing the sampling interval, the scanning range is determined by the preliminary scanning, so that the measurement time can be shortened.

ステップS62で、測定対象物全領域の表面形状データを取得していない場合はステップS54に戻り、ステージ10を移動させ(移動工程)、予備走査(ステップS54)から表面形状の測定(ステップS60)を行い、測定対象物全領域の表面形状データを取得する(繰り返し工程)。 If the surface shape data of the entire region of the object to be measured has not been acquired in step S62, the process returns to step S54, the stage 10 is moved (movement step), and the surface shape is measured from the preliminary scanning (step S54) (step S60). To acquire surface shape data of the entire area of the object to be measured (repeated process).

測定対象物全領域の表面形状データを取得した後、ステップS64の工程として、広範囲表面形状データを作成する工程(接続工程)、表面形状の測定結果を表示部20などに出力する工程については、第1実施形態と同様である。 After acquiring the surface shape data of the entire area of the object to be measured, as the step S64, the step of creating a wide range surface shape data (connection step) and the step of outputting the surface shape measurement result to the display unit 20 or the like are described. It is the same as the first embodiment.

なお、第2実施形態についても、図16に示すフローチャート図では、測定対象物の各撮像面ごとに、予備走査、表面形状測定を行っているが、予備走査を測定対象物の全領域に対して行った後、バンドパスフィルタ243を光源光路外へ移動させ、表面形状の測定を測定対象物の全領域に対して行ってもよい。 Also in the second embodiment, in the flowchart shown in FIG. 16, preliminary scanning and surface shape measurement are performed for each imaging surface of the measurement object, but preliminary scanning is performed on the entire region of the measurement object. After that, the bandpass filter 243 may be moved out of the light source optical path, and the surface shape may be measured for the entire region of the object to be measured.

1、200…表面形状測定装置、2、202…光学部、10…ステージ、10S…ステージ面、12、212…光源部、14…干渉部、16…撮影部、18…処理部、18A…測定準備制御部、20…表示部、22…入力部、30…x回転軸、32…y回転軸、34…xアクチュエータ、36…yアクチュエータ、40、240…第1の光源、41…第2の光源、42…コレクタレンズ、44、54…ビームスプリッタ、50…対物レンズ、52…参照ミラー、56…干渉部アクチュエータ、60…撮像素子、60S…撮像面、62…結像レンズ、70…zアクチュエータ、100…基準画素、102…周辺画素、243…バンドパスフィルタ、L1、L2…光路長、P…測定対象物、Q…干渉縞曲線、S…被測定面、Z−0、Z−1…光軸 1,200 ... Surface shape measuring device, 2,202 ... Optical unit, 10 ... Stage, 10S ... Stage surface, 12,212 ... Light source unit, 14 ... Interference unit, 16 ... Imaging unit, 18 ... Processing unit, 18A ... Measurement Preparation control unit, 20 ... display unit, 22 ... input unit, 30 ... x rotation axis, 32 ... y rotation axis, 34 ... x actuator, 36 ... y actuator, 40, 240 ... first light source, 41 ... second Light source, 42 ... Collector lens, 44, 54 ... Beam splitter, 50 ... Objective lens, 52 ... Reference mirror, 56 ... Interference part actuator, 60 ... Imaging element, 60S ... Imaging surface, 62 ... Imaging lens, 70 ... z actuator , 100 ... Reference pixel, 102 ... Peripheral pixel, 243 ... Band path filter, L1, L2 ... Optical path length, P ... Measurement target, Q ... Interference fringe curve, S ... Measured surface, Z-0, Z-1 ... optical axis

Claims (2)

測定対象物を支持する支持部と、
可干渉領域の長さの異なる光を発生させる光源部と、前記光源部からの光を測定光と参照光とに分割して前記測定光を前記測定対象物の被測定面に照射するとともに、前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部と、前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度情報から干渉縞を取得し前記測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える表面形状測定装置を用いた表面形状測定方法であって、
前記光源部から出射された可干渉領域の長い光を用いて、前記被測定面の各点に照射される前記測定光の光路長を変化させながら、前記干渉縞を取得する干渉縞取得工程と、
前記干渉縞取得工程で測定された干渉縞の輝度情報から、前記測定光の軸方向に対する干渉縞の生成する範囲を推定し、前記測定光の軸方向の走査範囲を決定する走査範囲決定工程と、
前記光源部から出射された可干渉領域の短い光を用いて、前記被測定面の各点に照射される前記測定光の光路長を前記走査範囲決定工程で決定した走査範囲内で変化させながら干渉縞を取得し、前記測定対象物の表面形状を測定する表面形状測定工程と、を有する表面形状測定方法。
A support part that supports the object to be measured and
A light source unit that generates light having a different length of the interferable region and the light from the light source unit are divided into a measurement light and a reference light, and the measurement light is applied to the surface to be measured of the measurement object. The reference surface is irradiated with the reference light, and the interference portion that generates the interference light in which the measurement light returning from the measurement surface and the reference light returning from the reference surface interfere with each other and each point of the measurement surface are irradiated. Surface shape measurement including an optical unit having a surface shape acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light and acquires surface shape data of the measurement object. It is a surface shape measurement method using an apparatus.
An interference fringe acquisition step of acquiring the interference fringes while changing the optical path length of the measurement light applied to each point of the surface to be measured by using the light having a long coherent region emitted from the light source unit. ,
From the luminance information of the interference fringes measured in the interference fringe acquisition step, the scanning range determination step of estimating the range in which the interference fringes are generated with respect to the axial direction of the measurement light and determining the scanning range in the axial direction of the measurement light. ,
Using the short light in the coherent region emitted from the light source unit, the optical path length of the measurement light applied to each point on the surface to be measured is changed within the scanning range determined in the scanning range determination step. A surface shape measuring method comprising a surface shape measuring step of acquiring interference fringes and measuring the surface shape of the object to be measured.
測定対象物を支持する支持部と、
可干渉領域の長さの異なる光を発生させる光源部と、前記光源部からの光を測定光と参照光とに分割して前記測定光を前記測定対象物の被測定面に照射するとともに、前記参照光を参照面に照射し、前記被測定面から戻る測定光と前記参照面から戻る前記参照光とを干渉させた干渉光を生成する干渉部と、前記被測定面の各点に照射された前記測定光と前記参照光との干渉光の輝度情報から干渉縞を取得し前記測定対象物の表面形状データを取得する表面形状取得部と、を有する光学部と、を備える表面形状測定装置を用いた表面形状測定方法であって、
前記光源部から出射された可干渉領域の長い光を用いて、前記被測定面の各点に照射される前記測定光の光路長を変化させながら、前記干渉縞を取得する干渉縞取得工程と、
前記干渉縞取得工程で測定された干渉縞の輝度情報から、前記測定光の軸方向に対する干渉縞の生成する範囲を推定し、前記測定光の軸方向の走査範囲を決定する走査範囲決定工程と、
前記干渉縞取得工程で測定された干渉縞の位置に前記光学部の焦点位置が合うように調整する焦点調整工程と、
前記光源部から出射された可干渉領域の短い光を用いて、前記被測定面の各点に照射される前記測定光の光路長を前記走査範囲決定工程で決定した走査範囲内で変化させながら干渉縞を取得し、前記測定対象物の表面形状を測定する表面形状測定工程と、を有する表面形状測定方法。
A support part that supports the object to be measured and
A light source unit that generates light having a different length of the interferable region and the light from the light source unit are divided into a measurement light and a reference light, and the measurement light is applied to the surface to be measured of the measurement object. The reference surface is irradiated with the reference light, and the interference portion that generates the interference light in which the measurement light returning from the measurement surface and the reference light returning from the reference surface interfere with each other and each point of the measurement surface are irradiated. Surface shape measurement including an optical unit having a surface shape acquisition unit that acquires interference fringes from the brightness information of the interference light between the measurement light and the reference light and acquires surface shape data of the measurement object. It is a surface shape measurement method using an apparatus.
An interference fringe acquisition step of acquiring the interference fringes while changing the optical path length of the measurement light applied to each point of the surface to be measured by using the light having a long coherent region emitted from the light source unit. ,
From the luminance information of the interference fringes measured in the interference fringe acquisition step, the scanning range determination step of estimating the range in which the interference fringes are generated with respect to the axial direction of the measurement light and determining the scanning range in the axial direction of the measurement light. ,
A focus adjustment step of adjusting the position of the interference fringes measured in the interference fringe acquisition step so that the focal position of the optical unit is aligned with the position of the interference fringes.
Using the short light in the coherent region emitted from the light source unit, the optical path length of the measurement light applied to each point on the surface to be measured is changed within the scanning range determined in the scanning range determination step. A surface shape measuring method comprising a surface shape measuring step of acquiring interference fringes and measuring the surface shape of the object to be measured.
JP2021081714A 2017-03-08 2021-05-13 Surface shape measurement method Active JP7093915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021081714A JP7093915B2 (en) 2017-03-08 2021-05-13 Surface shape measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044138A JP6887141B2 (en) 2017-03-08 2017-03-08 Surface shape measuring method and surface shape measuring device
JP2021081714A JP7093915B2 (en) 2017-03-08 2021-05-13 Surface shape measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017044138A Division JP6887141B2 (en) 2017-03-08 2017-03-08 Surface shape measuring method and surface shape measuring device

Publications (2)

Publication Number Publication Date
JP2021113832A true JP2021113832A (en) 2021-08-05
JP7093915B2 JP7093915B2 (en) 2022-07-01

Family

ID=63591150

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017044138A Active JP6887141B2 (en) 2017-03-08 2017-03-08 Surface shape measuring method and surface shape measuring device
JP2021081714A Active JP7093915B2 (en) 2017-03-08 2021-05-13 Surface shape measurement method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017044138A Active JP6887141B2 (en) 2017-03-08 2017-03-08 Surface shape measuring method and surface shape measuring device

Country Status (1)

Country Link
JP (2) JP6887141B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357925B1 (en) * 2019-03-29 2022-02-04 에이치비솔루션㈜ Device for measuring height of sample surface using interferogram of wlsi
CN115406368A (en) * 2022-08-04 2022-11-29 华侨大学 Large-range curved surface circular hole measuring method
CN115077386B (en) * 2022-08-19 2022-12-16 南京木木西里科技有限公司 Full-automatic measuring device, system and measuring method for hydrosol surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292240A (en) * 2007-05-23 2008-12-04 Olympus Corp Three-dimensional shape observation device
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
US8780334B1 (en) * 2011-12-14 2014-07-15 Zygo Corporation Topographical profiling with coherence scanning interferometry
JP2014228527A (en) * 2013-05-27 2014-12-08 株式会社ミツトヨ Image measurement device
US20160027194A1 (en) * 2014-07-25 2016-01-28 Mitutoyo Corporation Method for measuring a high accuracy height map of a test surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292240A (en) * 2007-05-23 2008-12-04 Olympus Corp Three-dimensional shape observation device
JP2010237183A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Low coherence interferometer and optical microscope
US8780334B1 (en) * 2011-12-14 2014-07-15 Zygo Corporation Topographical profiling with coherence scanning interferometry
JP2014228527A (en) * 2013-05-27 2014-12-08 株式会社ミツトヨ Image measurement device
US20160027194A1 (en) * 2014-07-25 2016-01-28 Mitutoyo Corporation Method for measuring a high accuracy height map of a test surface
JP2016031368A (en) * 2014-07-25 2016-03-07 株式会社ミツトヨ Method for measuring high accuracy height map of test surface

Also Published As

Publication number Publication date
JP7093915B2 (en) 2022-07-01
JP2018146497A (en) 2018-09-20
JP6887141B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7093915B2 (en) Surface shape measurement method
JP6029394B2 (en) Shape measuring device
JP6661221B2 (en) System, method, and computer program for 3D contour data collection and caries detection
KR100753885B1 (en) Image obtaining apparatus
KR100939537B1 (en) System for measuring surface shape and method for measuring the same
US20160113742A1 (en) Confocal surface topography measurement with fixed focal positions
TWI467127B (en) Means, observation means and an image processing method for measuring the shape of
JP6417645B2 (en) Alignment method for surface profile measuring device
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
EP2813809A1 (en) Device and method for measuring the dimensions of an objet and method for producing an item using said device
CN107121084B (en) Measurement method measurement program
JP6279048B2 (en) Shape measuring device
JP6037254B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2023176026A (en) Method for determining scan range
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP7085725B2 (en) Surface shape measuring device and surface shape measuring method
JP6820516B2 (en) Surface shape measurement method
JP6882651B2 (en) Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device
JP6362058B2 (en) Test object measuring apparatus and article manufacturing method
JP6880396B2 (en) Shape measuring device and shape measuring method
JP6820515B2 (en) Surface shape measuring device and surface shape measuring method
JP6047764B2 (en) White interferometer, image processing method, and image processing program
JP5086655B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP7304513B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
JP2021124429A (en) Scanning measurement method and scanning measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220602

R150 Certificate of patent or registration of utility model

Ref document number: 7093915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150