JP5233643B2 - Shape measuring device - Google Patents

Shape measuring device Download PDF

Info

Publication number
JP5233643B2
JP5233643B2 JP2008320808A JP2008320808A JP5233643B2 JP 5233643 B2 JP5233643 B2 JP 5233643B2 JP 2008320808 A JP2008320808 A JP 2008320808A JP 2008320808 A JP2008320808 A JP 2008320808A JP 5233643 B2 JP5233643 B2 JP 5233643B2
Authority
JP
Japan
Prior art keywords
light
optical path
measured
objective lens
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008320808A
Other languages
Japanese (ja)
Other versions
JP2010145161A (en
Inventor
軌行 石井
剛史 石田
昭俊 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2008320808A priority Critical patent/JP5233643B2/en
Publication of JP2010145161A publication Critical patent/JP2010145161A/en
Application granted granted Critical
Publication of JP5233643B2 publication Critical patent/JP5233643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多波長干渉縞を用いて被測定物の形状を測定する形状測定装置に関し、詳しくは干渉色に基づき光干渉を生じる2系統の光束の光路長差を求め、被測定物の形状を測定する形状測定装置に関するものである。   The present invention relates to a shape measuring apparatus that measures the shape of an object to be measured using multi-wavelength interference fringes, and more specifically, obtains the optical path length difference between two light fluxes that cause optical interference based on the interference color, and shapes the object to be measured. The present invention relates to a shape measuring apparatus that measures

従来、非接触かつ高精度に被測定物の形状を測定できる形状測定技術として、2光束干渉対物レンズを用いた形状測定方法が知られている。2光束干渉対物レンズを用いた形状測定方法の一例を示す特許文献1において、測定光路と参照光路とに分割された2系統の多波長光の干渉により得られた多波長干渉縞から、該2系統の光路長差を求める際に、各色光ごとのスペクトルの強度ピークが該光路長差0の位置付近で互いに少しずつずれるようにした多波長干渉縞による形状測定方法が開示されている。かかる従来技術では、前記2系統の多波長光の干渉を、2光束干渉対物レンズを用いて観察する場合、2つの参照板の光学的厚みが互いに異なるようにしている。又、特許文献1では、2つの参照板の光学的厚みの差による、干渉色のスペクトル分布において各色強度ピークが光路長差0の位置から互いに少しずつずれるようにし、このスペクトル分布の非対称性から2系統の光束の光路長差を求める場合に、その絶対値と正負の特定を行うものである。
特開2000−337836号公報
2. Description of the Related Art Conventionally, a shape measuring method using a two-beam interference objective lens is known as a shape measuring technique that can measure the shape of an object to be measured with high accuracy without contact. In Patent Document 1 showing an example of a shape measuring method using a two-beam interference objective lens, the two-wavelength interference fringes obtained by interference of two systems of multiwavelength light divided into a measurement optical path and a reference optical path There has been disclosed a shape measuring method using multi-wavelength interference fringes in which the spectrum intensity peak for each color light is shifted little by little in the vicinity of the position of the optical path length difference 0 when obtaining the optical path length difference of the system. In this conventional technique, when the interference of the two systems of multi-wavelength light is observed using a two-beam interference objective lens, the optical thicknesses of the two reference plates are made different from each other. Further, in Patent Document 1, each color intensity peak is slightly shifted from the position of the optical path length difference 0 in the spectral distribution of interference colors due to the difference in optical thickness between the two reference plates. When the optical path length difference between two light fluxes is obtained, the absolute value and positive / negative are specified.
JP 2000-337836 A

ところで、2光束干渉対物レンズを用いた形状測定方法において、本来的には、クリアな干渉縞を得るために、被測定物にピントが合う位置と、測定光路と参照光路との光路差が0となる位置とを一致させる必要がある。そこで、かかる関係を満たすことができるように、対物レンズと2つの参照板との相互の距離が精度良く設定され作り込みが行われている。ところが、このように精度良く作り込みがなされた対物レンズと2つの参照板を用いても、例えば被測定物に保護膜がコートされている場合や、測定光路内にガラスなどの光透過体などが挿入された場合には、被測定物にピントが合う位置と、測定光路と参照光路との光路差が0となる位置が一致せず、形状測定の精度が低下するという問題がある。   By the way, in the shape measuring method using the two-beam interference objective lens, in order to obtain a clear interference fringe, the optical path difference between the position where the object is in focus and the measurement optical path and the reference optical path is zero. It is necessary to match the position to be. In order to satisfy this relationship, the distance between the objective lens and the two reference plates is accurately set and built. However, even if the objective lens and the two reference plates that have been precisely built in this way are used, for example, when the object to be measured is coated with a protective film, or in the measurement optical path, a light transmitting body such as glass, etc. Is inserted, the position where the object to be measured is in focus and the position where the optical path difference between the measurement optical path and the reference optical path is zero do not match, and there is a problem that the accuracy of shape measurement is reduced.

より具体的には、特許文献1において、被測定物に保護膜がコートされている場合や、2光束干渉対物レンズと被測定物との間にガラスのような光透過体などが挿入された場合、測定光路の光路長が変化してしまい、スペクトル分布の非対称性が、2つの参照板の光学的厚みの差に起因する成分に、前記保護膜や光透過体による光路長変化に起因する成分が重畳されて、測定光路と参照光路との光路差の絶対値と正負の特定が不可能となってしまう。   More specifically, in Patent Document 1, when the object to be measured is coated with a protective film, a light transmitting body such as glass is inserted between the two-beam interference objective lens and the object to be measured. In this case, the optical path length of the measurement optical path is changed, and the asymmetry of the spectral distribution is caused by the optical path length change caused by the protective film or the light transmitting body due to the component caused by the difference in optical thickness between the two reference plates. Components are superimposed, and it becomes impossible to specify the absolute value and positive / negative of the optical path difference between the measurement optical path and the reference optical path.

このように、被測定物に保護膜がコートされていたり、2光束干渉対物レンズと被測定物との間にガラスのような光透過体などが挿入されたりして、被測定物にピントが合う位置と、測定光路と参照光路との光路差0となる位置とが一致しなくなった場合、従来技術によれば、別な距離寸法で作り込んだ2光束干渉対物レンズを用いるしかなく、それによりコスト高を招いていた。   In this way, the object to be measured is coated with a protective film, or a light transmitting body such as glass is inserted between the two-beam interference objective lens and the object to be measured. When the matching position and the position at which the optical path difference between the measurement optical path and the reference optical path is zero do not match, according to the prior art, a two-beam interference objective lens made with a different distance dimension can be used. Incurred high costs.

本発明は、上述の問題に鑑みてなされたものであり、観察条件に関わらず、被測定物にピントが合う位置と、測定光路と参照光路との光路差0となる位置とを一致させることができる形状測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and matches the position where the object to be measured is in focus and the position where the optical path difference between the measurement optical path and the reference optical path is zero, regardless of the observation conditions. An object of the present invention is to provide a shape measuring apparatus capable of performing

請求項1に記載の形状測定装置は、
光源と、
前記光源からの光束を集光する対物レンズと、
前記対物レンズから出射された光束を、被測定物に向かう測定光と、参照光とに分岐する分岐手段と、
前記被測定物から反射した測定光と、前記参照光とを合成して出射する合成手段と、
前記合成手段で合成された前記測定光と前記参照光を観察する観察手段と、
前記測定光の光路長を調整する調整手段と、を有し、
前記対物レンズと前記被測定物との間には、一部の光束を透過し残りの光束を反射する2枚のハーフミラーが配置されており、前記被測定物に近い側のハーフミラーが前記分岐手段を構成し、前記対物レンズに近い側のハーフミラーが前記合成手段を構成し、
前記調整手段は、相対的に変位可能な2つの楔状板材を組み合わせてなる前記ハーフミラーの少なくとも一方を含み、前記測定光は、前記2つの楔状部材の重合部を通過するようになっており、前記楔状部材の少なくとも一方を他方に対して変位させることにより、前記測定光の光路長を調整することを特徴とする。
The shape measuring apparatus according to claim 1 comprises:
A light source;
An objective lens for condensing the luminous flux from the light source;
Branching means for branching the light beam emitted from the objective lens into measurement light directed to the object to be measured and reference light;
Combining means for combining and emitting the measurement light reflected from the object to be measured and the reference light;
Observation means for observing the measurement light and the reference light synthesized by the synthesis means;
Have a, and adjusting means for adjusting the optical path length of the measuring light,
Between the objective lens and the object to be measured, two half mirrors that transmit a part of the light beam and reflect the remaining light beam are arranged, and the half mirror on the side close to the object to be measured Constituting a branching means, a half mirror closer to the objective lens constituting the combining means,
The adjusting means includes at least one of the half mirrors formed by combining two wedge-shaped plate members that can be relatively displaced, and the measurement light passes through the overlapping portion of the two wedge-shaped members, The optical path length of the measurement light is adjusted by displacing at least one of the wedge-shaped members with respect to the other .

本発明によれば、例え被測定物に保護膜がコートされたり、2光束干渉対物レンズと被測定物との間にガラスのような光透過体などが挿入されたりしても、前記調整手段により前記測定光の光路長を調整することができるので、被測定物にピントが合う位置と、測定光路と参照光路との光路差0となる位置とを一致させることができるため、合成光に基づく高品質な干渉縞等を観察することができる。   According to the present invention, even if the object to be measured is coated with a protective film or a light transmitting body such as glass is inserted between the two-beam interference objective lens and the object to be measured, the adjusting means Since the optical path length of the measurement light can be adjusted, the position where the object to be measured is in focus can be matched with the position where the optical path difference between the measurement optical path and the reference optical path is zero, so that the combined light High quality interference fringes and the like can be observed.

又、前記調整手段は、相対的に変位可能な2つの楔状板材を組み合わせてなる前記ハーフミラーの少なくとも一方を含み、前記測定光は、前記2つの楔状部材の重合部を通過するようになっており、前記楔状部材の少なくとも一方を他方に対して変位させることにより、前記測定光の光路長を調整することを特徴とするので、例えば前記楔状部材を光軸直交方向に変位させることで、前記ハーフミラーの厚さを変化させ、それにより前記測定光の光路長を任意に変化させることができる。 Also, pre-Symbol adjusting means comprises a combination of two wedge-shaped plate material capable displaced relatively comprise at least one of the half mirror, the measuring light is adapted to pass through the overlapping portion of the two wedge-shaped members Since the optical path length of the measurement light is adjusted by displacing at least one of the wedge-shaped members with respect to the other, for example, by displacing the wedge-shaped member in the optical axis orthogonal direction, By changing the thickness of the half mirror, the optical path length of the measurement light can be arbitrarily changed.

請求項に記載の形状測定装置は、請求項に記載の発明において、前記楔状部材の少なくとも一方を駆動するアクチュエータを有することを特徴とする。但し、前記楔状部材の少なくとも一方は手動にて相対変位させても良い。 According to a second aspect of the present invention, in the invention according to the first aspect , the shape measuring apparatus includes an actuator that drives at least one of the wedge-shaped members. However, at least one of the wedge-shaped members may be manually displaced.

請求項に記載の形状測定装置は、請求項に記載の発明において、前記調整手段は、板厚又は材質の異なるハーフミラーを含み、特定の板厚又は材質を有するハーフミラーに交換することにより、前記測定光の光路長を調整することを特徴とするので、特に複雑な機構を必要とすることなく、簡便に前記測定光の光路長を変化させることができる。尚、特定の板厚又は材質を有するハーフミラーは、手動で交換しても良いし、回転可能なターレットに複数のハーフミラーを搭載し、ターレットを回転させることで機械的に交換するようにしても良い。 According to a third aspect of the present invention, in the shape measuring apparatus according to the first aspect , the adjusting means includes a half mirror having a different plate thickness or material, and is replaced with a half mirror having a specific plate thickness or material. Therefore, the optical path length of the measurement light can be easily changed without requiring a particularly complicated mechanism. A half mirror having a specific thickness or material may be replaced manually, or a plurality of half mirrors may be mounted on a rotatable turret and mechanically replaced by rotating the turret. Also good.

請求項に記載の形状測定装置は、請求項1〜のいずれかに記載の発明において、前記観察手段は、前記合成光を撮像する撮像素子と、前記撮像素子からの信号を演算する演算装置とを有することを特徴とする。前記対物レンズに入射する入射光は、前記分岐手段で2系統の光束に分割され、一方は被測定物で反射された測定光として、他方は光路長が既知の参照光として、前記合成手段で合成された後、前記撮像装置に取り込まれる。よって、前記撮像装置からの信号に応じた画像と干渉縞に基づいて、前記演算装置で演算処理することで、前記被測定物の形状を求めることができる。
The shape measuring apparatus according to a fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the observation unit calculates an image sensor that images the combined light and a signal from the image sensor. And a device. Incident light incident on the objective lens is split into two light beams by the branching unit, one as measurement light reflected by the object to be measured, the other as reference light having a known optical path length, and the combining unit. After being synthesized, it is taken into the imaging device. Therefore, the shape of the object to be measured can be obtained by performing arithmetic processing with the arithmetic device based on the image and the interference fringes according to the signal from the imaging device.

本発明によれば、観察条件に関わらず、被測定物にピントが合う位置と、測定光路と参照光路との光路差0となる位置とを一致させることができる形状測定装置を提供することが可能になる。   According to the present invention, it is possible to provide a shape measuring apparatus that can match the position where the object to be measured is focused and the position where the optical path difference between the measurement optical path and the reference optical path is zero, regardless of the observation conditions. It becomes possible.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図1は、本実施の形態の形状測定装置を示す概略図であるが、鏡筒等は省略している。図1において、検査光として、光源20から出射された発散光は、照明光学系21を通り、更にビームスプリッタ24で反射して、2光束干渉対物レンズ系OBJに入射する。2光束干渉対物レンズOBJは、光源20からの光束を入射して、参照光と、被測定物14に向かう測定光の2系統に分岐し、更に被測定物14からの反射光を、参照光と合成して出射する機能を有する。2光束干渉対物レンズ系OBJから出射された合成光は、ビームスプリッタ24を通過し、センサレンズ23により集光されて、固体撮像素子であるCCDセンサ22の受光面に入射する。CCDセンサ22で得られた画像データは、パソコン等の演算部25に出力され、演算部25で演算処理を行うことで、被測定物14の形状データが得られ、形状測定が可能となり、不図示の付属モニタで観察できる。CCDセンサ22と演算手段25とで観察手段を構成する。尚、形状測定の原理と画像データに基づく演算については、例えば特開2000−337836号公報等に詳細に記載されているため、以下に説明しない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a shape measuring apparatus according to the present embodiment, but a lens barrel and the like are omitted. In FIG. 1, divergent light emitted from a light source 20 as inspection light passes through an illumination optical system 21, is further reflected by a beam splitter 24, and enters a two-beam interference objective lens system OBJ. The two-beam interference objective lens OBJ receives the light beam from the light source 20 and branches it into two systems of reference light and measurement light toward the object to be measured 14, and further reflects the reflected light from the object to be measured 14 to the reference light. And has a function of emitting light. The combined light emitted from the two-beam interference objective lens system OBJ passes through the beam splitter 24, is collected by the sensor lens 23, and enters the light receiving surface of the CCD sensor 22 that is a solid-state imaging device. The image data obtained by the CCD sensor 22 is output to a calculation unit 25 such as a personal computer, and the calculation unit 25 performs calculation processing to obtain the shape data of the object 14 to be measured. It can be observed with the attached monitor shown. The CCD sensor 22 and the calculation means 25 constitute an observation means. The principle of the shape measurement and the calculation based on the image data are described in detail in, for example, Japanese Patent Application Laid-Open No. 2000-337836 and will not be described below.

図2は、2光束干渉対物レンズ系OBJの断面図である。図3は、ハーフミラー12の拡大図である。図2において、2光束干渉対物レンズ系OBJは、円筒状の鏡筒15内に、対物レンズ10と、2枚のハーフミラー11,12とを収容している。対物レンズ10側の第1ハーフミラー(合成手段)11は、光軸に直交する平行平板であって、下面に半透過膜を蒸着している。一方、被測定物14側の第2ハーフミラー(分岐手段)12は、斜面同士を対面させた2つの楔状部材12a、12bを有している。但し、第2ハーフミラー12を平行平板とし、第1ハーフミラー11を2つの楔状部材で構成しても良い。   FIG. 2 is a sectional view of the two-beam interference objective lens system OBJ. FIG. 3 is an enlarged view of the half mirror 12. In FIG. 2, the two-beam interference objective lens system OBJ houses an objective lens 10 and two half mirrors 11 and 12 in a cylindrical barrel 15. The first half mirror (combining means) 11 on the objective lens 10 side is a parallel flat plate orthogonal to the optical axis, and a semi-transmissive film is deposited on the lower surface. On the other hand, the second half mirror (branching means) 12 on the measured object 14 side has two wedge-shaped members 12a and 12b whose slopes face each other. However, the second half mirror 12 may be a parallel plate, and the first half mirror 11 may be constituted by two wedge-shaped members.

図2に示す状態で、楔状部材12a、12bの重合部は光軸に直交する平行平板状になり(重合部の上面と下面が平行になるの意味)、対物レンズ10に近い側の楔状部材12bの上面には、半透過膜を蒸着している。   In the state shown in FIG. 2, the overlapping portions of the wedge-shaped members 12 a and 12 b are parallel flat plates orthogonal to the optical axis (meaning that the upper surface and the lower surface of the overlapping portions are parallel), and the wedge-shaped members on the side closer to the objective lens 10. A semi-transmissive film is deposited on the upper surface of 12b.

図2において、鏡筒15は側面に開口15aを有し、開口15aにアクチュエータ16を配置している。アクチュエータ16は、例えば圧電素子(ピエゾアクチュエータ)からなり、外部からの電力の供給により、図3に点線で示すように、鏡筒15に固定された楔状部材12aに対して、楔状部材12bを光軸直交方向に変位させるように機能する。アクチュエータ16としては、ピエゾアクチュエータの他に、モータや手動で操作可能なネジを駆動源として用いてもよい。   In FIG. 2, the lens barrel 15 has an opening 15a on a side surface, and an actuator 16 is disposed in the opening 15a. The actuator 16 is composed of, for example, a piezoelectric element (piezo actuator). By supplying electric power from the outside, the actuator 16 illuminates the wedge-shaped member 12b with respect to the wedge-shaped member 12a fixed to the lens barrel 15 as indicated by a dotted line in FIG. It functions to be displaced in the direction perpendicular to the axis. As the actuator 16, in addition to the piezoelectric actuator, a motor or a screw that can be manually operated may be used as a drive source.

2光束干渉対物レンズ系OBJの機能について、図2を参照して説明する。光源20(図1)から、2光束干渉対物レンズ系OBJに入射した光束は、対物レンズ10で収束光Lに変換され、第1ハーフミラー11を通過し、第2ハーフミラー12の上面で一部の光束(参照光という)L1が反射され、第1ハーフミラー11に戻って反射された後、第2ハーフミラー12に戻って反射され、再度第1ハーフミラー11に向かう。一方、第2ハーフミラー12を透過した残りの光束(測定光という)L2は、被測定物14の表面で反射して、再び第2ハーフミラー12を透過して、第1ハーフミラー11に向かう。よって、参照光L1と測定光L2は、第1ハーフミラー11で合成され、光路長が等しい部分は干渉縞が生じることとなる、かかる合成光は、対物レンズ10を通過して、2光束干渉対物レンズ系OBJから出射した後、CCDセンサ22の受光面に結像することにより、その干渉縞が観察されることとなる。従って、本来的には、被測定物14の表面にピントが合う位置と、参照光L1と測定光L2の光路長差が0となる位置が一致するように、対物レンズ10と、ハーフミラー11,12の位置が決められる。   The function of the two-beam interference objective lens system OBJ will be described with reference to FIG. A light beam incident on the two-beam interference objective lens system OBJ from the light source 20 (FIG. 1) is converted into convergent light L by the objective lens 10, passes through the first half mirror 11, and reaches the upper surface of the second half mirror 12. Part of the light beam (referred to as reference light) L1 is reflected, reflected back to the first half mirror 11, then reflected back to the second half mirror 12, and again toward the first half mirror 11. On the other hand, the remaining light beam L <b> 2 (measurement light) L <b> 2 that has passed through the second half mirror 12 is reflected by the surface of the DUT 14, passes through the second half mirror 12 again, and travels toward the first half mirror 11. . Therefore, the reference light L1 and the measurement light L2 are combined by the first half mirror 11, and an interference fringe is generated in a portion where the optical path length is equal. The combined light passes through the objective lens 10 and interferes with two beams. After exiting from the objective lens system OBJ, the interference fringes are observed by forming an image on the light receiving surface of the CCD sensor 22. Therefore, originally, the objective lens 10 and the half mirror 11 are arranged so that the position where the surface of the object to be measured 14 is in focus and the position where the optical path length difference between the reference light L1 and the measuring light L2 is zero match. , 12 are determined.

ここで、被測定物14に、空気と屈折率が異なる保護膜13がコートされている場合を考える。かかる場合、保護膜13の厚さに応じて測定光L2の光路長が変化するため、被測定物14の膜下の表面にピントが合う位置と、参照光L1と測定光L2の光路長差が0となる位置が一致しなくなる。   Here, a case is considered where the object to be measured 14 is coated with a protective film 13 having a refractive index different from that of air. In such a case, since the optical path length of the measuring light L2 changes according to the thickness of the protective film 13, the position where the surface under the film of the object to be measured 14 is in focus and the optical path length difference between the reference light L1 and the measuring light L2 The position where becomes 0 does not match.

かかる場合、本実施の形態によれば、被測定物14の膜下の表面にピントが合う位置において、参照光L1と測定光L2の2系統の光路差が0となるように、CCDセンサ22からの信号に基づく画像を観察しながら、アクチュエータ16を駆動して楔状部材12bを光軸直交方向に移動させることができる。これにより、図3に示すように、空気と屈折率が異なる楔状部材12a、12bの重合部の厚さが変化(Δ)するので、かかる重合部を通過する測定光L2の距離が変化し、これにより測定光L2の光路長を変えることができる。具体的には、被測定物14に保護膜13がコートされている場合には、第2ハーフミラー12の厚さを薄くする。尚、図3から明らかであるが、楔状部材12bを光軸直交方向に移動させると、参照光L1の光路長も変化する。しかしながら、一方の光路長が長くなると、他方の光路長が短くなるので、光路差が0となる位置は一義的に決まる。   In such a case, according to the present embodiment, the CCD sensor 22 is configured such that the optical path difference between the two systems of the reference light L1 and the measuring light L2 becomes 0 at the position where the surface under the film of the object to be measured 14 is in focus. While observing an image based on the signal from the actuator 16, the actuator 16 can be driven to move the wedge-shaped member 12 b in the direction perpendicular to the optical axis. Thereby, as shown in FIG. 3, since the thickness of the overlapping portion of the wedge-shaped members 12a and 12b having a refractive index different from that of air changes (Δ), the distance of the measurement light L2 passing through the overlapping portion changes, Thereby, the optical path length of the measurement light L2 can be changed. Specifically, when the protective film 13 is coated on the device under test 14, the thickness of the second half mirror 12 is reduced. As is apparent from FIG. 3, when the wedge-shaped member 12b is moved in the direction perpendicular to the optical axis, the optical path length of the reference light L1 also changes. However, if one of the optical path lengths becomes longer, the other optical path length becomes shorter, so the position where the optical path difference becomes 0 is uniquely determined.

このように、測定光L2の光路長が変化するのは、被測定物14に保護膜13がコートされている場合に限られず、例えば被測定物14と2光束干渉対物レンズ系OBJとの間に、ガラスのような光透過体が挿入されたような場合でもあり得るが、かかる場合にも、楔状部材12bを光軸直交方向に移動させることで光路長調整は可能である。又、移動させるのは、被測定物14に近い側の楔状部材12aでも良い。更に、測定光の光路長を固定した上で、参照光の光路長を変更して、光路差0を実現しても良い。   As described above, the optical path length of the measurement light L2 is not limited to the case where the object to be measured 14 is coated with the protective film 13, but for example, between the object to be measured 14 and the two-beam interference objective lens system OBJ. In addition, there may be a case where a light transmitting body such as glass is inserted, but also in this case, the optical path length can be adjusted by moving the wedge-shaped member 12b in the direction perpendicular to the optical axis. Further, the wedge-shaped member 12a on the side close to the device under test 14 may be moved. Furthermore, the optical path difference of 0 may be realized by changing the optical path length of the reference light after fixing the optical path length of the measuring light.

尚、光路長の調整としては、上述したように2つの楔状部材からなるハーフミラーを用いる代わりに、厚みや屈折率などが異なるハーフミラーを複数種類用意しておき、被測定物の保護膜の厚さ等に応じて、被測定物の膜下の表面にピントが合う位置において、参照光と測定光の2系統の光路差が0となるように、適切なハーフミラーを選択して交換しながら用いることが考えられる。このように、ハーフミラー入れ換え可能な構造とすることで、連続的な調整はできないが、楔状部材を移動させるアクチュエータ等が不要となるため、装置の小型化が実現できる。   As described above, in order to adjust the optical path length, instead of using a half mirror made of two wedge-shaped members as described above, a plurality of types of half mirrors having different thicknesses and refractive indexes are prepared, and the protective film of the object to be measured is prepared. Depending on the thickness, etc., select and replace an appropriate half mirror so that the optical path difference between the two systems of the reference light and measurement light becomes 0 at the position where the surface under the film of the object to be measured is in focus. It is possible to use it. As described above, the structure capable of replacing the half mirror cannot be continuously adjusted, but an actuator or the like for moving the wedge-shaped member is not required, and thus the apparatus can be reduced in size.

本実施の形態の形状測定装置を示す概略図である。It is the schematic which shows the shape measuring apparatus of this Embodiment. 2光束干渉対物レンズ系OBJの断面図である。It is sectional drawing of the two-beam interference objective lens system OBJ. 図3は、ハーフミラー12の拡大図である。FIG. 3 is an enlarged view of the half mirror 12.

符号の説明Explanation of symbols

10…対物レンズ
11…第1ハーフミラー
12…第2ハーフミラー
12a…楔状部材
12b…楔状部材
13…被測定物保護膜
14…被測定物
15…鏡筒
16…アクチュエータ
20…検査光光源
21…照明光学系
22…CCDセンサ
23…集光レンズ
24…ビームスプリッタ
25…演算部

DESCRIPTION OF SYMBOLS 10 ... Objective lens 11 ... 1st half mirror 12 ... 2nd half mirror 12a ... Wedge-like member 12b ... Wedge-like member 13 ... Measured object protection film 14 ... Measured object 15 ... Lens barrel 16 ... Actuator 20 ... Inspection light source 21 ... Illumination optical system 22 ... CCD sensor 23 ... Condensing lens 24 ... Beam splitter 25 ... Calculation unit

Claims (4)

光源と、
前記光源からの光束を集光する対物レンズと、
前記対物レンズから出射された光束を、被測定物に向かう測定光と、参照光とに分岐する分岐手段と、
前記被測定物から反射した測定光と、前記参照光とを合成して出射する合成手段と、
前記合成手段で合成された前記測定光と前記参照光を観察する観察手段と、
前記測定光の光路長を調整する調整手段と、を有し、
前記対物レンズと前記被測定物との間には、一部の光束を透過し残りの光束を反射する2枚のハーフミラーが配置されており、前記被測定物に近い側のハーフミラーが前記分岐手段を構成し、前記対物レンズに近い側のハーフミラーが前記合成手段を構成し、
前記調整手段は、相対的に変位可能な2つの楔状板材を組み合わせてなる前記ハーフミラーの少なくとも一方を含み、前記測定光は、前記2つの楔状部材の重合部を通過するようになっており、前記楔状部材の少なくとも一方を他方に対して変位させることにより、前記測定光の光路長を調整することを特徴とする形状測定装置。
A light source;
An objective lens for condensing the luminous flux from the light source;
Branching means for branching the light beam emitted from the objective lens into measurement light directed to the object to be measured and reference light;
Combining means for combining and emitting the measurement light reflected from the object to be measured and the reference light;
Observation means for observing the measurement light and the reference light synthesized by the synthesis means;
Have a, and adjusting means for adjusting the optical path length of the measuring light,
Between the objective lens and the object to be measured, two half mirrors that transmit a part of the light beam and reflect the remaining light beam are arranged, and the half mirror on the side close to the object to be measured Constituting a branching means, a half mirror closer to the objective lens constituting the combining means,
The adjusting means includes at least one of the half mirrors formed by combining two wedge-shaped plate members that can be relatively displaced, and the measurement light passes through the overlapping portion of the two wedge-shaped members, A shape measuring apparatus for adjusting an optical path length of the measuring light by displacing at least one of the wedge-shaped members with respect to the other .
前記楔状部材の少なくとも一方を駆動するアクチュエータを有することを特徴とする請求項に記載の形状測定装置。 The shape measuring apparatus according to claim 1 , further comprising an actuator that drives at least one of the wedge-shaped members. 前記調整手段は、板厚又は材質の異なるハーフミラーを含み、特定の板厚又は材質を有するハーフミラーに交換することにより、前記測定光の光路長を調整することを特徴とする請求項に記載の形状測定装置。 Said adjusting means includes a different half mirror having the plate thickness or material, by exchanging a half mirror having a certain thickness or material, to claim 1, characterized by adjusting the optical path length of the measurement light The shape measuring apparatus described. 前記観察手段は、前記合成光を撮像する撮像素子と、前記撮像素子からの信号を演算する演算装置とを有することを特徴とする請求項1〜のいずれかに記載の形状測定装置。 It said observation means includes: an imaging device for imaging the combined light, the shape measuring apparatus according to any one of claims 1-3, characterized in that with a calculating device for calculating a signal from the imaging device.
JP2008320808A 2008-12-17 2008-12-17 Shape measuring device Expired - Fee Related JP5233643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320808A JP5233643B2 (en) 2008-12-17 2008-12-17 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008320808A JP5233643B2 (en) 2008-12-17 2008-12-17 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2010145161A JP2010145161A (en) 2010-07-01
JP5233643B2 true JP5233643B2 (en) 2013-07-10

Family

ID=42565760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320808A Expired - Fee Related JP5233643B2 (en) 2008-12-17 2008-12-17 Shape measuring device

Country Status (1)

Country Link
JP (1) JP5233643B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759698B (en) * 2018-08-02 2020-02-14 淮阴师范学院 Low-coherence light interference measuring method and device for mirror surface spacing of multi-mirror lens group
WO2024057455A1 (en) * 2022-09-14 2024-03-21 株式会社日立ハイテク Optical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337836A (en) * 1999-05-31 2000-12-08 Fuji Photo Optical Co Ltd Shape measuring method with multi-wavelength interference fringe
JP2001004336A (en) * 1999-06-21 2001-01-12 Nikon Corp Oblique incidence interferometer
JP4192038B2 (en) * 2003-06-04 2008-12-03 東レエンジニアリング株式会社 Surface shape and / or film thickness measuring method and apparatus
JP2005274236A (en) * 2004-03-23 2005-10-06 Fujinon Corp Path-matching path interferometer device
JP4810693B2 (en) * 2007-02-09 2011-11-09 富士フイルム株式会社 Lightwave interference measurement device
JP5057848B2 (en) * 2007-05-17 2012-10-24 東レエンジニアリング株式会社 Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film

Also Published As

Publication number Publication date
JP2010145161A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
JP6044315B2 (en) Displacement measuring method and displacement measuring apparatus
JP5172040B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP5168168B2 (en) Refractive index measuring device
WO2013084557A1 (en) Shape-measuring device
EP1840502B1 (en) Optical interferometer for measuring changes in thickness
US7466427B2 (en) Vibration-resistant interferometer apparatus
JP5648961B2 (en) Spectral characteristic measuring apparatus and calibration method thereof
JP2009162539A (en) Light wave interferometer apparatus
JP2022540988A (en) On-chip wafer alignment sensor
Ruprecht et al. Confocal micro-optical distance sensor: principle and design
JP6512673B2 (en) Eccentricity measuring device and eccentricity measuring method
JP2010237183A (en) Low coherence interferometer and optical microscope
JP5756733B2 (en) Interferometric film thickness meter
JP5233643B2 (en) Shape measuring device
JP2001091223A (en) Spacing measuring method and device
EP2718666A1 (en) Coupled multi-wavelength confocal systems for distance measurements
EP2278264B1 (en) Probe microscope
JP2009198205A (en) Interferometer
JP6743788B2 (en) Displacement sensor
JP4810693B2 (en) Lightwave interference measurement device
JP2007093288A (en) Light measuring instrument and light measuring method
JP2005274236A (en) Path-matching path interferometer device
JP2004354317A (en) Interferometer for measuring sagittal
JP2009244227A (en) Light wave interference measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees