JP2010223459A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2010223459A
JP2010223459A JP2009069132A JP2009069132A JP2010223459A JP 2010223459 A JP2010223459 A JP 2010223459A JP 2009069132 A JP2009069132 A JP 2009069132A JP 2009069132 A JP2009069132 A JP 2009069132A JP 2010223459 A JP2010223459 A JP 2010223459A
Authority
JP
Japan
Prior art keywords
temperature
magnetic field
refrigerant
electromagnetic induction
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009069132A
Other languages
English (en)
Other versions
JP4826643B2 (ja
Inventor
Hidehiko Kinoshita
英彦 木下
Takeshi Yamada
剛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009069132A priority Critical patent/JP4826643B2/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to CN2010800127619A priority patent/CN102348943A/zh
Priority to PCT/JP2010/001942 priority patent/WO2010106805A1/ja
Priority to KR1020117024510A priority patent/KR101233903B1/ko
Priority to EP10753301A priority patent/EP2410262A1/en
Priority to RU2011142193/06A priority patent/RU2484390C1/ru
Priority to AU2010225944A priority patent/AU2010225944B2/en
Priority to US13/256,480 priority patent/US20120006040A1/en
Publication of JP2010223459A publication Critical patent/JP2010223459A/ja
Application granted granted Critical
Publication of JP4826643B2 publication Critical patent/JP4826643B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】起動時の能力を迅速に確保しつつ、起動後のオーバーシュートを小さく抑えるコトが可能な空気調和装置を提供する。
【解決手段】圧縮機21と、磁性体管F2が外周を構成している冷媒配管Fを有する冷凍サイクルを利用する空気調和装置1であって、コイル68、圧力センサ29a、および、制御部11を備えている。コイル68は、磁性体管F2を誘導加熱するための磁界を発生させる。圧力センサ29aは、冷凍サイクルの少なくとも一部の高圧側の冷媒圧力を検知する。制御部11は、冷凍サイクルが暖房運転を実行している時においてコイル68による磁界の発生を最大供給電力Mmaxとする状態を、圧縮機21の周波数が所定最低周波数Qmin以上の時から開始して圧力センサ29aが検知する圧力が目標高圧圧力Phに到達するまで行い。到達した時点以降は、最大供給電力Mmaxよりも低い定常供給電力M2を出力の上限として制約をかけた運転を行う。
【選択図】図17

Description

本発明は、空気調和装置に関する。
暖房運転可能な空気調和装置について、暖房能力を増大させる目的で冷媒加熱機能を備えたものが提案されている。
例えば、以下に示す特許文献1(特開2000−97510号公報)に記載の空気調和機では、冷媒加熱器に流入した冷媒をガスバーナーによって加熱することで暖房能力を増大させている。
ここで、この特許文献1(特開2000−97510号公報)に記載の空気調和機では、暖房運転時に、冷媒の温度が上昇し過ぎて保護動作が頻繁に行われてしまうことを防止するために、サーミスタの検知値に基づいてガスバーナーの燃焼量を調節する技術が提案されている。
上述の特許文献1に記載の技術では、保護動作の頻度を抑えるだけであり、起動時と起動後との負荷の違いに着目した制御はなんら提案されていない。
例えば、空気調和装置の起動時には周囲の温度と設定温度との差が大きく、迅速に設定温度に近づけることが望まれる、他方、起動時と起動後の負荷が異なる場合には、目標値を大きく超えるオーバーシュートが生じてしまうおそれがある。
なお、冷媒の加熱方式が電磁誘導加熱方式である場合には、加熱速度が速いため、上述のオーバーシュートは特に問題となりやすい。
本発明は上述した点に鑑みてなされたものであり、本発明の課題は、起動時の能力を迅速に確保しつつ、起動後のオーバーシュートを小さく抑えるコトが可能な空気調和装置を提供することにある。
第1発明に係る空気調和装置は冷媒配管および/または冷媒配管中を流れる冷媒と熱的接触をする部材の誘導加熱を行い、冷媒を循環させる圧縮機構を含んだ冷凍サイクルを利用する、空気調和装置であって、磁界発生部、冷媒状態量検知部、および、制御部を備えている。磁界発生部は、誘導加熱の加熱対象部分を誘導加熱するための磁界を発生させる。冷媒状態量検知部は、冷凍サイクルの少なくとも一部である所定状態量検知部分を流れる冷媒に関する状態量を検知する。ここでの状態量は、例えば、温度および圧力等の少なくともいずれか一方が含まれる。制御部は、起動時磁界発生制御および起動後磁界発生制御を行う。起動時磁界発生制御では、制御部は、冷凍サイクルで暖房運転を行う起動時において、磁界発生部による出力を所定最大出力とする状態を、圧縮機構が駆動状態となっている時から開始して冷媒状態量検知部が検知する状態量が第1所定目標状態量に到達した時に終了させる。起動後磁界発生制御では、制御部は、所定最大出力よりも低い第1磁界制限基準値を磁界発生部の出力の上限として制約をかける状態を、起動時磁界発生制御が終了した後に行う。なお、ここで「冷凍サイクルが暖房運転を実行している時」には、例えば、除霜運転等の運転は含まれない。また、ここでの電磁誘導加熱ユニットによる加熱としては、例えば、冷媒配管と熱的接触をしている発熱部材を電磁誘導加熱する場合、冷媒配管中を流れる冷媒と熱的接触をしている発熱部材を電磁誘導加熱する場合、および、冷媒配管の少なくとも一部を構成する発熱部材を電磁誘導加熱する場合、が少なくとも含まれる。
この空気調和装置では、起動時における磁界発生部の出力が最大となるようにする起動時磁界発生制御を行うことで、暖房運転の起動開始からユーザに暖かい空気が提供されるまでに要する時間を短縮化させることが可能になる。起動後磁界発生制御においては磁界発生部による出力を上げ過ぎることによる制御のオーバーシュートを小さく抑えることが可能になる。これにより、ユーザに対する暖かい空気の供給を迅速に開始させつつ制御のオーバーシュートを小さく抑えることが可能になる。
第2発明の空気調和装置は、第1発明の空気調和装置において、誘導加熱の加熱対象部分は、磁性体材料を含んでいる。
この空気調和装置では、磁性体材料を含んでいる部分を対象として、磁界発生部が磁界を生じさせるため、電磁誘導による発熱効率を効率的に行うことが可能になる。
第3発明の空気調和装置は、第1発明または第2発明の空気調和装置において、所定状態量検知部分は、磁界発生部によって磁界が生じている部分である。
この空気調和装置では、電磁誘導加熱による迅速な温度変化を把握することができるようになるため、制御の応答性を向上させることが可能になる。
第4発明の空気調和装置は、第1発明から第3発明のいずれかの空気調和装置において、冷媒状態量検知部が検知する状態量は、所定状態量検知部分を流れる冷媒に関する温度および圧力の少なくとも何れか一方である。
この空気調和装置では、冷凍サイクルの状態制御のために用いられる各種センサを利用してここでの検知を行うことが可能になる。
第5発明の空気調和装置は、第1発明から第4発明のいずれかの空気調和装置において、冷媒状態量検知部は、所定状態量検知部分を流れる冷媒に関する温度を検知する温度検知部である。制御部は、起動後磁界発生制御では、温度検知部が検知する温度が目標維持温度で維持されるように磁界発生部による出力値もしくは出力頻度をPI制御する起動後磁界発生PI制御を行う。なお、ここでの目標維持温度は、第1所定目標温度と同一温度であってもよい。
この空気調和装置では、所定状態量検知部分を通過する冷媒の状態変化に起因する温度変化よりも、電磁誘導加熱による温度変化の方が一般に急激になる。ここでは、このように電磁誘導加熱によって急激に温度変化する場合であっても、磁界発生部に発生させる磁界の大きさおよび/または磁界発生部に磁界を発生させる頻度をPI制御することで、温度検知部が検知する温度を第2所定目標温度で安定させることが可能になる。
第6発明の空気調和装置は、第1発明から第5発明のいずれかの空気調和装置において、冷媒状態量検知部は、所定状態量検知部分を流れる冷媒に関する温度を検知する温度検知部である。制御部は、磁界レベル増加条件を満たした後に起動時磁界発生制御を実行する。この磁界レベル増加条件とは、磁界発生部に発生させる磁界のレベルを所定最大出力よりも低い範囲内で上げるもしくは下げるという磁界レベル変化処理を行うことで温度検知部の検知温度に変化があることもしくは温度検知部が温度変化を検知することである。
電磁誘導加熱を行った場合であっても温度検知部が温度変化を検出できない場合には、温度検知部の取付状態が不安定であったり外れていたりするおそれがある。
これに対して、この空気調和装置では、このように温度検知部の取付状態が不安定であったり外れていたりした場合には、温度変化が十分に生じずに磁界レベル増加条件を満たすことが無い。このため、制御部は、所定最大出力よりも低いレベルになるように磁界の発生が制限され、高いレベルでの磁界の発生が行われないため、機器の信頼性を向上させることができている。磁界レベル増加条件を満たした場合には、磁界発生部による磁界の発生によって誘導加熱の加熱対象部分が発熱しており、温度検知部の設置状態が良好であり、誘導加熱の加熱対象部分の温度を的確に認識できていることを把握することができる。これにより、電磁誘導加熱による異常な温度上昇によって機器にダメージが生ずることを抑制することが可能となり、機器の信頼性を向上させることが可能になる。
第7発明の空気調和装置は、第6発明の空気調和装置において、磁界レベル変化処理で出力される最大の磁界レベルは、第1磁界制限基準値よりも小さい値である。
この空気調和装置では、温度検知部の取付状態が良好であることが確認されていない段階で第1磁界制限基準値程度の大きさの磁界による電磁誘導加熱を防止させることが可能になる。
第8発明の空気調和装置は、第1発明から第7発明のいずれかの空気調和装置において、冷媒状態量検知部は、所定状態量検知部分を流れる冷媒に関する温度を検知する温度検知部である。制御部は、流動条件を満たした後に、磁界レベル増加条件の判定を実行する。流動条件とは、第1圧縮機構状態と第1圧縮機構状態よりも出力レベルの高い第2圧縮機構状態との圧縮機構の出力が異なる両方の圧縮機構状態を圧縮機構に実現させた際に、第1圧縮機構状態と第2圧縮機構状態とで温度検知部の検知温度に変化があることである。なお、第1圧縮機構状態には、圧縮機構が停止している状態が含まれる。
この空気調和装置では、流動条件を満たしていない場合には冷媒の流れが不足していることになり、磁界レベル増加条件を判定するためのレベルでの磁界発生部による出力であっても、異常温度上昇を生じさせてしまうおそれがある。これに対して、この空気調和装置では、所定状態量検知部分を通過する冷媒の流れを確保しつつ磁界レベル増加条件の判定を実行することができるため、機器の信頼性を維持したままで磁界レベル増加条件の判断を行うことが可能になる。
第9発明の空気調和装置は、第1発明から第8発明のいずれかの空気調和装置において、冷媒状態量検知部は、所定状態量検知部分を流れる冷媒に関する温度を検知する温度検知部である。制御部は、起動後磁界発生制御を開始した後であって、冷凍サイクルに暖房運転とは異なる除霜運転を実行させている時には、磁界発生部の出力の上限を所定最大出力として、温度検知部の検知温度に基づいて磁界発生部による出力を制御する除霜運転出力制御を行う。
この空気調和装置では、起動時磁界発生制御と同様に磁界発生部による出力を高くすることができるため、除霜処理を迅速化させることが可能になる。
第10発明の空気調和装置は、第9発明の空気調和装置において、制御部は、除霜運転出力制御時には、温度検知部が検知する温度が第1所定目標温度よりも低い第2所定目標温度で維持されるようにPI制御する除霜PI制御を行う。
この空気調和装置では、除霜運転時には、起動時磁界発生制御の時と比べて温度の異常上昇が生じにくいため、温度検知部の検知温度を第2所定目標温度として起動時磁界発生制御の第1所定目標温度よりも低くすることで、除霜運転時のオーバーシュートを低減させることが可能になる。
第11発明の空気調和装置は、第1発明から第10発明のいずれかの空気調和装置において、冷媒状態量検知部は、所定状態量検知部分を流れる冷媒に関する温度を検知する温度検知部である。温度検知部に対して弾性力を与える弾性部材をさらに備えている。温度検知部は、弾性部材による前記弾性力によって所定状態量検知部分に圧接している。
この空気調和装置では、電磁誘導加熱が行われる場合には、一般に、冷凍サイクルにおいて冷媒の循環状況が変化することによる温度上昇よりも、急激な温度上昇が生じやすい。
これに対して、この空気調和装置では、弾性部材によって所定状態量検知部分に対して圧接した状態を維持されているため、温度検知部の応答性をより良好にすることができる。これにより、応答性を向上させた制御を行うことが可能になる。
第1発明の空気調和装置では、ユーザに対する暖かい空気の供給を迅速に開始させつつ制御のオーバーシュートを小さく抑えることが可能になる。
第2発明の空気調和装置では、電磁誘導による発熱効率を効率的に行うことが可能になる。
第3発明の空気調和装置では、制御の応答性を向上させることが可能になる。
第4発明の空気調和装置では、冷凍サイクルの状態制御のために用いられる各種センサを利用してここでの検知を行うことが可能になる。
第5発明の空気調和装置では、温度検知部が検知する温度を第2所定目標温度で安定させることが可能になる。
第6発明の空気調和装置では、電磁誘導加熱による異常な温度上昇によって機器にダメージが生ずることを抑制することが可能となり、機器の信頼性を向上させることが可能になる。
第7発明の空気調和装置では、温度検知部の取付状態が良好であることが確認されていない段階で第1磁界制限基準値程度の大きさの磁界による電磁誘導加熱を防止させることが可能になる。
第8発明の空気調和装置では、機器の信頼性を維持したままで磁界レベル増加条件の判断を行うことが可能になる。
第9発明の空気調和装置では、除霜処理を迅速化させることが可能になる。
第10発明の空気調和装置では、除霜運転時のオーバーシュートを低減させることが可能になる。
第11発明の空気調和装置では、応答性を向上させた制御を行うことが可能になる。
本発明の一実施形態にかかる空気調和装置の冷媒回路図である。 室外機の正面側を含む外観斜視図である。 室外機の内部配置構成斜視図である。 室外機の内部配置構成の背面側を含む外観斜視図である。 室外機の機械室の内部構造を示す全体前方斜視図である。 室外機の機械室の内部構造を示す斜視図である。 室外機の底板と室外熱交換器との斜視図である。 室外機の送風機構を取り除いた状態での平面図である。 室外機の底板とホットガスバイパス回路との配置関係を示す平面図である。 電磁誘導加熱ユニットの外観斜視図である。 電磁誘導加熱ユニットから遮蔽カバーを取り除いた状態を示す外観斜視図である。 電磁誘導サーミスタの外観斜視図である。 ヒューズの外観斜視図である。 電磁誘導サーミスタおよびヒューズの取付状態を示す概略断面図である。 電磁誘導加熱ユニットの断面構成図である。 遮蔽カバーを設けた状態で生じる磁束の様子を示す図である。 電磁誘導加熱制御のタイムチャートを示す図である。 流動条件判定処理のフローチャートを示す図である。 センサ外れ検知処理のフローチャートを示す図である。 急速高圧化処理のフローチャートを示す図である。 定常出力処理のフローチャートを示す図である。 デフロスト処理のフローチャートを示す図である。 他の実施形態(A)にかかる電磁誘導サーミスタの取付位置を示す図である。 他の実施形態(F)の冷媒配管の説明図である。 他の実施形態(G)の冷媒配管の説明図である。 他の実施形態(H)のコイルと冷媒配管との配置例を示す図である。 他の実施形態(H)のボビン蓋の配置例を示す図である。 他の実施形態(H)のフェライトケースの配置例を示す図である。
以下、図面を参照しつつ、本発明の一実施形態における電磁誘導加熱ユニット6を備えた空気調和装置1を例に挙げて説明する。
<1−1>空気調和装置1
図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。
冷媒回路10は、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管F、吸入管G、ホットガスバイパス回路H、分岐配管Kおよび合流配管Jを有している。室内側ガス管Bおよび室外側ガス管Eは、ガス状態の冷媒が多く通過するものではあるが、通過する冷媒をガス冷媒に限定しているものではない。室内側液管Cおよび室外側液管Dは、液状態の冷媒が多く通過するものではあるが、通過する冷媒を液冷媒に限定しているものではない。
吐出管Aは、圧縮機21と四路切換弁22とを接続している。
室内側ガス管Bは、四路切換弁22と室内熱交換器41とを接続している。この室内側ガス管Bの途中には、通過する冷媒の圧力を検知する圧力センサ29aが設けられている。
室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。
室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。
室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。
アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている(図15参照)。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管で構成されている。なお、上記銅管の周囲を覆う管の材質はSUS430に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、磁性体材料としては、例えば、フェライト系、マルテンサイト系、オーステナイト系の3種およびこれらの種類を組み合わせたものが例として挙げられるが、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管F配管を構成する材料中に含有されることで存在していてもよい。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。
吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、途中に冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
分岐配管Kは、室外熱交換器23の一部を構成しており、熱交換を行うための有効表面積を増大させるために、室外熱交換器23のガス側出入口23eから伸びる冷媒配管が後述する分岐合流点23kで複数本に分岐した配管である。この分岐配管Kは、分岐合流点23kから合流分岐点23jまでそれぞれ独立して延びている第1分岐配管K1、第2分岐配管K2および第3分岐配管K3を有しており、これらの各分岐配管K1、K2、K3は合流分岐点23jで合流している。なお、合流配管J側から見ると、合流分岐点23jで分岐して分岐配管Kが延びている。
合流配管Jは、室外熱交換器23の一部を構成しており、合流分岐点23jから室外熱交換器23の液側出入口23dまで伸びている配管である。合流配管Jは、冷房運転時に室外熱交換器23から流れ出る冷媒の過冷却度を統一させることができるとともに、暖房運転時に室外熱交換器23の下端近傍に着霜した氷を解凍させることができる。合流配管Jは、各分岐配管K1、K2、K3の断面積の略3倍の断面積を有しており、通過冷媒量が、各分岐配管K1、K2、K3の略3倍になっている。
四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。
室外熱交換器23は、ガス側出入口23e、液側出入口23d、分岐合流点23k、合流分岐点23j、分岐配管K、合流配管Jおよび熱交フィン23zを有している。ガス側出入口23eは、室外熱交換器23の室外側ガス管E側の端部に位置しており、室外側ガス管Eと接続される。液側出入口23dは、室外熱交換器23の室外側液管D側の端部に位置しており、室外側液管Dと接続される。分岐合流点23kは、ガス側出入口23eから伸びる配管を分岐させており、流れる冷媒の方向に応じて冷媒を分岐もしくは合流させることができる。分岐配管Kは、分岐合流点23kにおける各分岐部分から複数本伸びている。合流分岐点23jは、分岐配管Kを合流させており、流れる冷媒の方向に応じて冷媒を合流もしくは分岐させることができる。合流配管Jは、合流分岐点23jから液側出入口23dまで伸びている。熱交フィン23zは、板状のアルミフィンが板厚方向に複数枚並んで、所定の間隔で配置されて構成されている。分岐配管Kおよび合流配管Jは、いずれも、熱交フィン23zを共通の貫通対象としている。具体的には、分岐配管Kおよび合流配管Jは、共通の熱交フィン23zの異なる部分で板圧方向に貫通して配置されている。この室外熱交換器23に対して、室外ファン26の空気流れ方向風下側には、室外の気温を検知する室外気温センサ29bが設けられている。また、室外熱交換器23には、分岐配管空気調和装置を流れる冷媒温度を検知する室外熱交温度センサ29cが設けられている。
室内機4内には、室内温度を検知する室内温度センサ43が設けられている。また、室内熱交換器41には、室外電動膨張弁24が接続されている室内側液管C側の冷媒温度を検知する室内熱交温度センサ44が設けられている。
室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90が接続されている。
<1−2>室外機2
図2に、室外機2の正面側の外観斜視図を示す。図3に、室外熱交換器23および室外ファン26との位置関係についての斜視図を示す。図4に、室外熱交換器23の背面側の斜視図を示す。
室外機2は、天板2a、底板2b、フロントパネル2c、左側面パネル2d、右側面パネル2fおよび背面パネル2eによって構成される略直方体形状の室外機ケーシングによって外表面を構成している。
室外機2は、室外熱交換器23および室外ファン26等が配置されており左側面パネル2d側である送風機室と、圧縮機21や電磁誘導加熱ユニット6が配置されており右側面パネル2f側である機械室と、に仕切り板2hを介して区切られている。また、室外機2は、底板2bに対して螺着されることで固定され、室外機2の最下端部を右側と左側において構成する室外機支持台2gを有している。なお、電磁誘導加熱ユニット6は、機械室のうちの左側面パネル2dおよび天板2aの近傍である上方の位置に配置されている。ここで、上述した室外熱交換器23の熱交フィン23zは、略水平方向に板厚方向が向くようにしつつ、板厚方向に複数並んで配置されている。合流配管Jは、室外熱交換器23の熱交フィン23zのうち最も下の部分において、熱交フィン23zを厚み方向に貫通することで配置されている。ホットガスバイパス回路Hは、室外ファン26および室外熱交換器23の下方を沿うように配置されている。
<1−3>室外機2の内部構造
図5に、室外機2の機械室の内部構造を示す全体前方斜視図を示す。図6に、室外機2の機械室の内部構造を示す斜視図を示す。図7に、室外熱交換器23と底板2bとの配置関係についての斜視図を示す。
室外機2の仕切り板2hは、室外熱交換器23および室外ファン26等が配置されている送風機室と、電磁誘導加熱ユニット6、圧縮機21およびアキュームレータ25等が配置されている機械室と、を区切るように前方から後方に向けて上端から下端に掛けて仕切っている。圧縮機21およびアキュームレータ25は、室外機2の機械室の下方の空間に配置されている。そして、電磁誘導加熱ユニット6、四路切換弁22および室外制御部12は、室外機2の機械室の上方の空間であって、圧縮機21やアキュームレータ25等の上の空間に配置されている。室外機2を構成する機能要素であって機械室に配置されている圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、図1において示した冷媒回路10による冷凍サイクルを実行するように、吐出管A、室内側ガス管B、室外側液管D、室外側ガス管E、アキューム管F、ホットガスバイパス回路H等を介して接続されている。ここで、ホットガスバイパス回路Hは、後述するように、第1バイパス部分H1〜第9バイパス部分H9の、9つの部分が繋がって構成されており、ホットガスバイパス回路Hに冷媒が流れる際は、第1バイパス部分H1から順番に第9バイパス部分H9に向かう方向に流れる。
<1−4>合流配管Jおよび分岐配管K
図7に示す合流配管Jは、上述したように、断面積が、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の各配管の断面積相当の面積を有しているため、室外熱交換器23のうち、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分では、合流配管Jよりも熱交換有効表面積を増大させることができている。また、合流配管Jの部分には、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分と比較して、大量の冷媒がまとまって集中的に流れているため、室外熱交換器23の下方における氷の成長をより効果的に抑制させることができている。ここで、合流配管Jは、図7に示すように、第1合流配管部分J1、第2合流配管部分J2、第3合流配管部分J3および第4合流配管部分J4が互いに接続されることで構成されている。そして、室外熱交換器23のうち分岐配管Kを流れてきた冷媒は、合流分岐点23jにおいて合流され、冷媒回路10における冷媒の流れを1つにまとめられた状態で、室外熱交換器23の最下端部分を一往復するように配置されている。ここで、第1合流配管部分J1は、合流分岐点23jから室外熱交換器23の最縁部に配置された熱交フィン23zまで延びている。第2合流配管部分J2は、第1合流配管部分J1の端部から複数枚の熱交フィン23zを貫通するように延びている。また、第4合流配管部分J4は、第2合流配管部分J2と同様に、複数枚の熱交フィン23zを貫通するように延びている。第3合流配管部分J3は、第2合流配管部分J2と第4合流配管部分J4とを室外熱交換器23の端部において接続するU字管である。冷房運転時には、冷媒回路10における冷媒の流れは、分岐配管Kにおいて複数に分かれている流れを合流配管Jが1つにまとめることになるため、たとえ分岐配管Kを流れる冷媒の合流分岐点23jの直前部分における過冷却度が分岐配管Kを構成する個々の配管を流れる冷媒毎に異なっていたとしても、合流配管Jにおいて冷媒流れを1つにできることため、室外熱交換器23の出口の過冷却度を整えることができる。そして、暖房運転時おいてデフロスト運転をする場合には、ホットガスバイパス弁27を開けて、圧縮機21から吐出した温度の高い冷媒を、室外熱交換器23の他の部分より先に、室外熱交換器23の下端に設けられている合流配管Jに供給することができる。このため、室外熱交換器23の下方近傍に着霜した氷を効果的に解凍させることができる。
<1−5>ホットガスバイパス回路H
図8に、室外機2の送風機構を取り除いた状態での平面図を示す。図9に、室外機2の底板とホットガスバイパス回路Hとの配置関係について平面図で示す。
ホットガスバイパス回路Hは、図8および図9に示すように、第1バイパス部分H1〜第8バイパス部分H8を有している。ここで、ホットガスバイパス回路Hは、吐出管Aから分岐点A1で分岐してホットガスバイパス弁27まで延びており、このホットガスバイパス弁27からさらに延びる部分が第1バイパス部分H1である。第2バイパス部分H2は、第1バイパス部分H1の端部から、背面側近傍において送風機室側に延びている。第3バイパス部分H3は、第2バイパス部分H2の端部から、正面側に向けて延びている。第4バイパス部分H4は、第3バイパス部分H3の端部から、機械室側とは反対側である左側に向けて延びている。第5バイパス部分H5は、第4バイパス部分H4の端部から、背面側に向けて、室外機ケーシングの背面パネル2eとの間に間隔が確保できる部分まで延びている。第6バイパス部分H6は、第5バイパス部分H5の端部から、機械室側である右側であってかつ背面側に向けて延びている。第7バイパス部分H7は、第6バイパス部分H6の端部から、機械室側である右側に向けて送風機室内を延びている。第8バイパス部分H8は、第7バイパス部分H7の端部から、機械室内を延びている。第9バイパス部分H9は、第8バイパス部分H8の端部から、キャピラリーチューブ28に至るまで延びている。このホットガスバイパス回路Hは、上述したように、ホットガスバイパス弁27が開けられた状態で、第1バイパス部分H1から順番に、第9バイパス部分H9に向けて冷媒を流していく。このため、圧縮機21から延びている吐出管Aの分岐点A1で分岐する冷媒は、第9バイパス部分H9を流れる冷媒よりも先に、第1バイパス部分H1側を流れる。このため、ホットガスバイパス回路Hを流れる冷媒は、全体として見ると、第4バイパス部分H4を流れた後の冷媒が第5〜第8バイパス部分H8へと流れていくため、第4バイパス部分H4を流れる冷媒温度のほうが、第5〜第8バイパス部分H8を流れる冷媒温度よりも高温となりやすい流れ方向を採用している。
このように、ホットガスバイパス回路Hは、室外機ケーシングの底板2bのうち、室外ファン26の下方および室外熱交換器23の下方の部分近傍を通過するように配置されている。このため、ヒータ等の別熱源を利用することなく、ホットガスバイパス回路Hが通過する部分近傍を、圧縮機21の吐出管Aから分岐して供給される高温冷媒によって暖めることができる。よって、底板2bの上側が雨水や室外熱交換器23において生じたドレン水によって濡れることがあっても、底板2bのうち室外ファン26の下方および室外熱交換器23の下方において氷が成長してしまうことを抑制することができる。これにより、室外ファン26の駆動が氷によって妨げられる状況や室外熱交換器23の表面が氷で覆われて熱交換効率が低減してしまう状況を回避することができている。また、ホットガスバイパス回路Hは、吐出管Aの分岐点A1で分岐した後、室外熱交換器23の下を通過する前に、室外ファン26の下を通過するように配置されている。このため、室外ファン26の下方における氷の成長をより優先的に防止することができる。
<1−6>電磁誘導加熱ユニット6
図10に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図11に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図12に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。
電磁誘導加熱ユニット6は、アキューム管Fのうち発熱部分である磁性体管F2を径方向外側から覆うように配置されており、電磁誘導加熱によって磁性体管F2を発熱させる。このアキューム管Fの発熱部分は、内側の銅管F1と外側の磁性体管F2とを有する二重管構造となっている。
電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、電磁誘導サーミスタ14およびヒューズ15等を備えている。
第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1〜第4フェライトケース71〜74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、図12に示す電磁誘導サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、図13に示すヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している。電磁誘導サーミスタ14は、図12に示すように、電磁誘導サーミスタ検知部14a、外側突起14b、側面突起14cおよび電磁誘導サーミスタ検知部14aの検知結果を信号にして制御部11まで伝える電磁誘導サーミスタ配線14dを有している。電磁誘導サーミスタ検知部14aは、アキューム管Fの外表面の湾曲形状に沿うような形状を有しており、実質的な接触面積を有している。ヒューズ15は、図16に示すように、ヒューズ検知部15a、非対称形状15bおよびヒューズ検知部15aの検知結果を信号にして制御部11まで伝えるヒューズ配線15dを有している。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板18に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図14に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、電磁誘導サーミスタ14およびヒューズ15が取り付けられる。ここで、電磁誘導サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、電磁誘導サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71〜第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図15のアキューム管Fおよび電磁誘導加熱ユニット6の断面図および図16の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。
<1−7>電磁誘導加熱制御
上述した電磁誘導加熱ユニット6は、冷凍サイクルを暖房運転させる場合に暖房運転を開始させる起動時、暖房能力補助時、および、デフロスト運転を行う時にアキューム管Fの磁性体管F2を発熱させる制御を行う。
以下、起動時に関する説明を行う。
コントローラ90に対してユーザから暖房運転指示が入力された場合に、制御部11は、暖房運転を開始させる。暖房運転が開始されると、制御部11は、圧縮機21が起動した後であって圧力センサ29aが検知する圧力が39kg/cm2まで上昇するのを待って、室内ファン42を駆動させる。これにより、室内熱交換器41を通過する冷媒が暖まっていない段階で、暖まっていない室内に空気流れを生じさせてしまうことによるユーザの不快感を防止している。ここで、圧縮機21が起動して圧力センサ29aが検知する圧力が39kg/cm2まで上昇するまでの時間を短くするために、電磁誘導加熱ユニット6を用いた電磁誘導加熱を行う。この電磁誘導加熱では、アキューム管Fの温度が急上昇するため、電磁誘導加熱を開始させる前に、電磁誘導加熱を開始してよい状況になったか否かを判定する制御を制御部11が行う。このような判定として、図17のタイムチャートに示すように、流動条件判定処理と、センサ外れ検知処理と、急速高圧化処理等がある。
<1−8>流動条件判定処理
電磁誘導加熱を行う際に、アキューム管Fに冷媒が流れていない状況では、加熱負荷は、アキューム管Fのうち電磁誘導加熱ユニット6が取り付けられている部分に滞留している冷媒だけになってしまう。このようにアキューム管Fに冷媒が流れていない状況で、電磁誘導加熱ユニット6による電磁誘導加熱を行ってしまうと、アキューム管Fの温度が冷凍機油を劣化させてしまうほどに異常上昇してしまう。また、電磁誘導加熱ユニット6自体も温度が上昇してしまい、機器の信頼性を低下させてしまう。このため、ここでは、このようにアキューム管Fに冷媒が流れていない状況で電磁誘導加熱ユニット6による電磁誘導加熱が行われることが無いように、電磁誘導加熱を開始する前の段階でアキューム管Fに冷媒が流れていることを確認する流動条件判定処理を行う。
流動条件判定処理では、図18のフローチャートに示すように、以下の各処理が行われる。
ステップS11では、制御部11は、コントローラ90が、ユーザから、冷房運転ではなく、暖房運転の指令を受け付けたか否か判断する。電磁誘導加熱ユニット6による冷媒加熱は、暖房運転が行われる環境下で必要になるため、このような判断を行う。
ステップS12では、制御部11は、圧縮機21の起動を開始させ、圧縮機21の周波数を徐々に上げていく。
ステップS13では、制御部11は、圧縮機21の周波数が所定最低周波数Qminに到達したか否かを判断し、到達していると判断した場合には、ステップS14に以降する。
ステップS14では、制御部11は、流動条件判定処理を開始して、圧縮機21の周波数が所定最低周波数Qminに到達した時(図17の点a参照)の電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを格納し、タイマ95による流動検知時間のカウントを開始する。この圧縮機21の周波数が所定最低周波数Qminに達していない状態では、アキューム管Fおよび室外熱交換器23を流れる冷媒は、気液二相状態であって飽和温度で一定温度に保たれているため、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度は、飽和温度で一定であり、変化しない。しかし、しばらくして圧縮機21の周波数が上昇していき、室外熱交換器23内およびアキューム管F内の冷媒圧力がさらに低下していき、飽和温度が低下し始めることで、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度も低下し始める。なお、ここでは、圧縮機21の吸入側に対して、室外熱交換器23の方が、アキューム管Fよりも下流側に存在しているため、アキューム管Fを通過する冷媒の温度が下がり始めるタイミングよりも、室外熱交換器23を通過している冷媒温度が低下し始めるタイミングのほうが早い(図17の点bおよび点c参照)。
ステップS15では、制御部11は、タイマ95のカウント開始から10秒間の流動検知時間が経過したか否かを判断し、流動検知時間が経過していた場合にはステップS16に移行する。他方、流動検知時間が未だ経過していない場合は、ステップS15を繰り返す。
ステップS16では、制御部11は、流動検知時間が経過したときの、室外熱交換器23内およびアキューム管F内の冷媒温度が低下した状態での、電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを取得し、ステップS17に移行する。
ステップS17では、制御部11は、ステップS16で取得した電磁誘導サーミスタ14の検出温度が、ステップS14で格納した電磁誘導サーミスタ14の検出温度データよりも3℃以上低下しているか否か、および、ステップS16で取得した室外熱交温度センサ29cの検知温度が、ステップS14で格納した室外熱交温度センサ29cの検知温度データよりも3℃以上低下しているか否かを判断する。すなわち、流動検知時間中に冷媒温度の低下を検出できたか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれか一方が3℃以上低下している場合には、アキューム管Fに冷媒が流れている状態であり、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理、もしくは、センサ外れ検知処理等に移行する。
他方、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれもが3℃以上低下していない場合には、ステップS18に移行する。
ステップS18では、制御部11は、アキューム管Fを流れている冷媒量が電磁誘導加熱ユニット6による誘導加熱を行うには不十分であるとして、制御部11が、コントローラ90の表示画面に流動異常表示を出力する。
<1−9>センサ外れ検知処理
センサ外れ検知処理は、電磁誘導サーミスタ14がアキューム管Fに取り付けられて空気調和装置1の据え付けが終了した後(据え付けが終了した後、電磁誘導加熱ユニット6に電力を供給しているブレーカが落ちた後も含む)であって、初めて暖房運転が開始される際に行う、電磁誘導サーミスタ14の取付状態を確認するための処理である。具体的には、上述の流動条件判定処理においてアキューム管F内の冷媒の流動量が確保されていると判断された後であって、かつ、電磁誘導加熱ユニット6の出力を最大限にして利用する起動時の急速高圧化処理を行う前に、制御部11が、センサ外れ検知処理を行う。
空気調和装置1の搬入作業時には、予期しない振動等が加わることで電磁誘導サーミスタ14の取付状態が不安定になったり外れてしまったりすることがあり、搬入して初めて電磁誘導加熱ユニット6を稼働させる場合には、特に、その信頼性が求められ、搬入して初めての電磁誘導加熱ユニット6の稼働が適正に行われた場合には、その後の稼働も安定して行われることがある程度予測できる。このため、上述のタイミングでセンサ外れ検知処理が行われる。
センサ外れ検知処理では、図19のフローチャートに示すように、以下の各処理が行われる。
ステップS21では、制御部11は、流動条件判定処理によって確認されたアキューム管Fでの冷媒流動量もしくはそれ以上の冷媒流動量を確保しつつ、流動検知時間が終了した時点(=センサ外れ検知時間の開始時点)での電磁誘導サーミスタ14の検知温度データ(図17の点d参照)を格納しつつ、電磁誘導加熱ユニット6のコイル68に電力供給を開始する。ここでの電磁誘導加熱ユニット6のコイル68に対する電力の供給は、所定の最大供給電力Mmax(2kW)よりも小さな出力である50%の出力の外れ検知供給電力M1(1kW)で、センサ外れ検知時間としての20秒間だけ行われる。この段階では、未だ電磁誘導サーミスタ14の取付状態が良好であることが確認されていない段階であるため、アキューム管Fが異常な温度上昇をしているにもかかわらず、電磁誘導サーミスタ14がこの異常な温度上昇を検出できないことによってヒューズ15を損傷してしまったり、電磁誘導加熱ユニット6の樹脂製の部材を溶かしてしまったりすることが無いように、出力を50%に抑えている。また、同時に、電磁誘導加熱ユニット6による連続加熱時間が最大連続出力時間の10分を超えることが無いように予め設定しているため、制御部11は、電磁誘導加熱ユニット6による出力を継続している間の経過時間をタイマ95によってカウントし始める。なお、電磁誘導加熱ユニット6のコイル68に対する電力の供給と、コイル68が周囲に生じさせる磁界の大きさとは相関関係がある値である。
ステップS22では、制御部11は、センサ外れ検知時間が終了したか否か判断する。センサ外れ検知時間が終了している場合には、ステップS23に移行する。他方、センサ外れ検知時間が未だ終了していない場合には、ステップS22を繰り返す。
ステップS23では、制御部11は、センサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度を取得し(図17の点e参照)、ステップS24に移行する。
ステップS24では、制御部11は、ステップS23で取得したセンサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度が、ステップS21で格納したセンサ外れ検知時間の開始時点での電磁誘導サーミスタ14の検出温度データよりも10℃以上上昇しているか否かを判断する。すなわち、センサ外れ検知時間中に電磁誘導加熱ユニット6による誘導加熱によって冷媒温度が10℃以上上昇しているか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合には、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認できたと判断してセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に移行する。
ステップS25では、制御部11は、センサ外れリトライ処理の回数をカウントする。リトライ回数が10回未満である場合にはステップS26に移行し、リトライ回数が10回を超えている場合にはステップS26に移行することなくステップS27に移行する。
ステップS26では、制御部11は、センサ外れリトライ処理を実行する。ここでは、さらに30秒経過した時点での電磁誘導サーミスタ14の検知温度データ(図17には示していない)を格納しつつ、電磁誘導加熱ユニット6のコイル68に外れ検知供給電力M1での電力供給を20秒間行い、ステップS22、23同様の処理を行い、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合にはセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に戻る。
ステップS27では、制御部11は、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が不安定もしくは良好でないと判断して、コントローラ90の表示画面にセンサ外れ異常表示を出力する。
<1−10>急速高圧化処理
流動条件判定処理と、センサ外れ検知処理とを終えて、アキューム管Fにおける十分な冷媒の流動が確保され、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認した状態で、制御部11は、急速高圧化処理を開始する。
ここでは、電磁誘導加熱ユニット6による誘導加熱を、高い出力で行ったとしても、アキューム管Fを異常温度上昇させることがないことが確認されているため、空気調和装置1の信頼性を向上できている。
急速高圧化処理では、図20のフローチャートに示すように、以下の各処理が行われる。
ステップS31では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を、上述のセンサ外れ検知処理のときのように50%に出力制限した外れ検知供給電力M1とすることなく、所定の最大供給電力Mmax(2kW)とする。ここでの電磁誘導加熱ユニット6による出力は、圧力センサ29aが、所定の目標高圧圧力Prに達するまで継続して行う。
この空気調和装置1の冷凍サイクルにおける高圧異常上昇を防止させるために、圧力センサ29aが異常高圧圧力Prを検知した場合に、制御部11は、圧縮機21を強制的に停止する。この急速高圧処理の際の目標高圧圧力Phは、この異常高圧圧力Prよりも小さな圧力値である別個の閾値として設けられている。
ステップS32では、制御部11は、センサ外れ検知処理のステップS21でカウントを開始した電磁誘導加熱ユニット6の最大連続出力時間の10分を経過しているか否かを判断する。ここで、最大連続出力時間を経過していない場合には、ステップS33に以降する。他方、最大連続出力時間を経過している場合には、ステップS34に以降する。
ステップS33では、制御部11は、圧力センサ29aの検知圧力が目標高圧圧力Phに達したか否か判断する。ここで、目標高圧圧力Phに達している場合には、ステップS34に移行する。他方、ここで、目標高圧圧力Phに達していない場合には、ステップS32を繰り返す。
ステップS34では、制御部11は、室内ファン42の駆動を開始させ、急速高圧化処理を終え、定常出力処理に移行する。
ここでは、ステップS33からステップS34に以降された場合には、ユーザに対して十分に暖かい調和空気を提供できる状態になった状況で室内ファン42が稼働し始める。ステップS34からステップS34に以降した場合には、ユーザに対して十分な暖かい調和空気を提供できる状態に至っていないが、ある程度の暖かい調和空気を提供できる状態であって暖房運転開始からの経過時間が長くなりすぎない範囲で温風の提供を開始させることができるようになる。
<1−11>定常出力処理
定常出力処理では、外れ検知供給電力M1(1kW)以上であって最大供給電力Mmax(2kW)以下の出力である定常供給電力M2(1.4kW)を固定出力値として、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃で位置されるように、電磁誘導加熱ユニット6の電力供給頻度をPI制御する。
定常出力処理では、図21のフローチャートに示すように、以下の各処理が行われる。
ステップS41では、制御部11は、電磁誘導サーミスタ14の検知温度を格納し、ステップS42に移行する。
ステップS42では、制御部11は、ステップS41で格納した電磁誘導サーミスタ14の検知温度を、起動時目標アキューム管温度の80℃と比較して、電磁誘導サーミスタ14の検知温度が、起動時目標アキューム管温度の80℃よりも所定温度だけ低い所定維持温度以下となったか否かを判断する。所定維持温度以下となっている場合には、ステップS43に移行する。所定維持温度以下になっていない場合には、ステップS41を繰り返す。
ステップS43では、制御部11は、最近の電磁誘導加熱ユニット6への電力供給を終えた時からの経過時間を把握する。
ステップS44では、制御部11は、連続して30秒間定常供給電力M2(1.4kW)で一定に保ったままで電磁誘導加熱ユニット6に電力を供給することを1セットとして、このセットの頻度を、ステップS43で把握した経過時間が長ければ長い程頻度を上げる、PI制御を行う。
<1−12>デフロスト処理
上述の定常出力処理を継続している際に、室外熱交換器23の室外熱交センサ29cの検知温度が所定値以下になった場合に、室外熱交換器23に付着している霜を溶かす運転であるデフロスト処理を行う。具体的には、四路切換弁22の接続状態を冷房運転と同様にして(図1の点線で示す接続状態)、圧縮機21から吐出される高圧高温ガス冷媒を、室内熱交換器41を通過させる前に室外熱交換器23に提供し、冷媒の凝縮熱を利用して室外熱交換器23に付着している霜を溶かす。
デフロスト処理では、図22のフローチャートに示すように、以下の各処理が行われる。
ステップS51では、制御部11は、圧縮機21の周波数が所定最低周波数Qmin以上であって所定の冷媒循環量が確保されていること、流動条件判定処理によって電磁誘導加熱を行うことができる程度の冷媒流動量が確保されていること、および、センサ外れ検知処理によって電磁誘導サーミスタ14の取付状態が適正であることを確認し、ステップS52に移行する。
ステップS52では、制御部11は、室外熱交温度センサ29cの検知温度が10℃未満になったか否かを判断する。10℃未満になっている場合には、ステップS53に移行する。10℃未満になっていない場合にはステップS52を繰り返す。
ステップS53では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を停止させた状態にするとともに、デフロスト信号に送信する。
ステップS54では、制御部11は、デフロスト信号が送信された後、四路切換弁22の接続状態を冷房運転の接続状態とし、さらに、四路切換弁22の接続状態が冷房運転の接続状態になってからタイマ95によってデフロスト開始後経過時間をカウントする。
ステップS55では、制御部11は、デフロスト開始後30秒経過したか否か判断する。ここで30秒経過している場合には、ステップS56に移行する。30秒経過していない場合には、ステップS55を繰り返す。
ステップS56では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を所定の最大供給電力Mmax(2kW)としつつ、電磁誘導サーミスタ14の検出温度が目標デフロスト温度である40℃となるように(定常出力処理時の起動時目標アキューム管温度とは異なる)、電磁誘導加熱ユニット6による誘導加熱の頻度をPI制御する。なお、室外熱交温度センサ29aの検知温度が0℃を下回っている場合にはさらにホットガスバイパス回路Hのホットガスバイパス弁27が開けられ、室外機2の底板2bの上面のうち室外ファン26の下方および室外熱交換器23の下方に高温高圧ガス冷媒が供給され、底板2bの上面に生じている氷を除去する。ここで、四路切換弁22の接続状態が冷房運転の状態に切り換えられているため、圧縮機21から吐出された高温高圧ガス冷媒は、室外熱交換器23の分岐合流点23kから合流分岐点23jまで流れて、合流分岐点23jにおいて合流して1本にまとめられることで、分岐配管Kの流量の3倍の流量となって集中的に合流配管Jを流れていく。この合流配管Jは、室外熱交換器23の下端近傍に位置しているので、室外熱交換器23の下端近傍に多くの凝縮熱を集中的に供給することができる。これにより、除霜速度をより迅速化させることができている。
ステップS57では、制御部11は、デフロスト開始後経過時間が10分を超えたか否か判断する。ここで10分を経過していない場合には、ステップS58に移行する。10分を経過している場合には、ステップS59に移行する。これにより、四路切換弁22の接続状態が冷房状態のままで10分以上経過してしまうことを防ぎ、室内温度の低下による不快感が生じにくいようにしている。
ステップS58では、制御部11は、室外熱交温度センサ29cの検知温度が10℃を超えているか否かを判断する。10℃を超えている場合には、ステップS59に移行する。10℃を超えていない場合にはステップS56に戻って繰り返す。
ステップS59では、制御部11は、圧縮機21を停止させて冷凍サイクル内の高低圧を均圧させつつ、電磁誘導加熱ユニット6による誘導加熱を終了する。
ステップS60では、制御部11は、四路切換弁22の接続状態を暖房運転の接続状態に切り換える。
そして、制御部11は、デフロストを終える信号を送信する。さらに、制御部11は、圧縮機21の周波数を所定最低周波数Qmin以上に上げていき、再度デフロスト処理を行う状況になるまで定常出力処理を行う。また、ホットガスバイパス回路Hのホットガスバイパス弁27は、デフロストを終える信号が送信された後、5秒後に閉じられる。
<本実施形態の空気調和装置1の特徴>
空気調和装置1では、急速高圧化処理を行うことで、電磁誘導加熱ユニット6による出力を最大供給電力Mmax(2kW)にして、室内熱交換器23に向けて流れる冷媒の高温高圧化を迅速に達成させる処理を行っている。これにより、暖房運転の起動開始からユーザに暖かい空気が提供されるまでに要する時間を短縮化させることが可能になっている。さらに、室内がある程度暖まった状態では定常出力処理を行うことで、電磁誘導加熱ユニット6による出力を最大供給電力Mmax(2kW)より小さく制限した定常供給電力M2(1.4kW)を固定出力値としている。これにより、電磁誘導加熱ユニット6の出力を上げ過ぎることによる制御のオーバーシュートを小さく抑えることが可能になっている。
なお、電磁誘導加熱が行われる場合には、一般に、冷凍サイクルにおいて冷媒の循環状況が変化することによる温度上昇よりも、急激な温度上昇が生じやすい。これに対して、この空気調和装置1の電磁誘導加熱ユニット6では、板バネ16の弾性力によって磁性体管F2に圧接され電磁誘導サーミスタ14は、上述の電磁誘導加熱による定常出力処理において、電磁誘導加熱による迅速な温度変化に対する応答性が良好に維持されている。このため、定常出力処理の応答性を良好にして、制御のオーバーシュートをより小さく抑えることができている。
デフロスト処理では、電磁誘導加熱ユニット6による誘導加熱を最大供給電力Mmax(2kW)で行っているため、除霜処理を迅速化させることが可能になっている。ただし、電磁誘導サーミスタ14の検出温度が目標デフロスト温度である40℃となるようにして、定常出力処理時の起動時目標アキューム管温度よりも低く抑えているので、制御によるオーバーシュートを小さく抑えるようにしている。
<他の実施形態>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(A)
上記実施形態では、電磁誘導加熱ユニット6において最大供給電力Mmax(2kW)での出力を行わせる急速高圧化処理の終了時を、圧力センサ29aの検知圧力が目標高圧圧力Phに達した時点とした場合について例に挙げて説明した。
しかし、本発明はこれに限られるものではない。
例えば、電磁誘導加熱ユニット6において最大供給電力Mmax(2kW)での出力を行わせる急速高圧化処理の終了時は、圧力センサ29a取付部分を通過する目標高圧圧力Phの冷媒に相当する温度に基づいて定まる温度を、電磁誘導サーミスタ14が検知した時としてもよい。
この場合であっても、室内熱交換器23に供給される冷媒温度が十分高いことを確認できるため、暖房運転開始時のユーザへの暖かい調和空気の提供を開始するための判断指標として利用することが可能になる。
なお、このような電磁誘導サーミスタ14については、例えば、図23に示すように、急速高圧化処理の終了時を判断する場合の温度変化の検知は、冷媒流れ方向において、磁性体管F2を有しているアキューム管F2の下流側近傍の温度変化を検知する電磁誘導下流側サーミスタ214の検知温度等であってもよく、アキューム管Fの温度を検知するものに限られない。
(B)
上記実施形態では、電磁誘導加熱ユニット6が停止状態から磁界を生じさせるように変化させることに起因して電磁誘導サーミスタ14の検知温度が変化することを検出することで、電磁誘導サーミスタ14の取付状態が良好であることを確かめる場合について例に挙げて説明した。
しかし、本発明はこれに限られるものではない。
例えば、電磁誘導加熱ユニット6が磁界を発生させている状態から、磁界を発生させない状態に変化させるようにして、電磁誘導サーミスタ14の取付状態を確認するようにしてもよい。この場合には、電磁誘導サーミスタ14の検出温度が低下するという検知温度の変化によって、電磁誘導サーミスタ14の取付状態が良好であることを確かめることができる。
また、単に電磁誘導加熱ユニット6のコイル68に供給する電力を変えることで、生じさせる磁界の大きさを変更させ、これに起因する電磁誘導サーミスタ14の検出温度の変化を調べることで、電磁誘導サーミスタ14の取付状態を確認するようにしてもよい。
(C)
上記実施形態では、アキューム管Fの外側を構成している磁性体管F2の温度を検出する電磁誘導サーミスタ14の検知温度の変化に着目して、電磁誘導サーミスタ14の取付状態が良好であるか否かを判断する場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、所定温度以上であるか所定温度以下であるかを検知するバイメタル等検出機器を用いつつ、検出機器の所定温度がセンサ外れ検知処理の前の温度と後の温度との間の値となるようにすることで、アキューム管Fの温度変化を検出するようにしてもよい。この場合には、センサ外れ検知処理を行う際の具体的な温度を検出できなくても、温度変化を検知することにより、センサの取付状態を確認することができる。
(D)
上記実施形態では、定常出力処理では電磁誘導加熱のための電磁誘導加熱ユニット6による出力を70%で固定しつつ、その出力頻度を制御する場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、定常出力処理において、電磁誘導加熱を行う頻度を固定しつつ、電磁誘導加熱ユニット6による出力を、電磁誘導サーミスタ14の検知温度に基づいて制御するようにしてもよい。
また、定常出力処理において、電磁誘導加熱を行う頻度、および、電磁誘導加熱ユニット6による出力の両方を、電磁誘導サーミスタ14の検知温度に基づいて制御するようにしてもよい。
(E)
上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
(F)
上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。
しかし、本発明はこれに限られるものではない。
図24に示すように、例えば、磁性体部材F2aと、2つのストッパーF1aと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、磁性体部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1aは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、磁性体部材F2aの通過は許容しない。これにより、磁性体部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する磁性体部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
(G)
上記他の実施形態(F)で説明した磁性体部材F2aは、ストッパーF1aを用いることなく配管に対して位置が定まるようにしてもよい。
図25に示すように、例えば、銅管F1に二カ所で曲げ部分FWを設け、当該二カ所の曲げ部分FWの間の銅管F1の内側に磁性体部材F2aを配置させてもよい。このようにしても、冷媒を通過させつつ、磁性体部材F2aの移動を抑制させることができる。
(H)
上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
しかし、本発明はこれに限られるものではない。
例えば、図26に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。
この場合には、例えば、図27に示すように、アキューム管Fを貫通させている第1ボビン蓋163および第2ボビン蓋164が、ボビン本体165に対して勘合した状態で配置されていてもよい。
さらに、図28に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図28では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例に挙げたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
<その他>
以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。
本発明を利用すれば、起動時の能力を迅速に確保しつつ、起動後のオーバーシュートを小さく抑えるコトが可能なため、電磁誘導を用いて冷媒を加熱させる電磁誘導加熱ユニットおよび空気調和装置において特に有用である。
1 空気調和装置
6 電磁誘導加熱ユニット
10 冷媒回路
11 制御部
14 電磁誘導サーミスタ(温度検知部)
15 ヒューズ(温度検知部)
16 板バネ(弾性部材)
17 板バネ(弾性部材)
21 圧縮機
22 四路切換弁
23 室外熱交換器(所定流動検知部分)
24 電動膨張弁
25 アキュームレータ
29a 圧力センサ
29b 室外気温センサ
29c 室外熱交温度センサ
41 室内熱交換器
43 室内温度センサ
44 室内熱交温度センサ
65 ボビン本体
68 コイル(磁界発生部)
71〜74 第1フェライトケース〜第4フェライトケース
75 遮蔽カバー
90 コントローラ
95 タイマ
98、99 第1フェライト、第2フェライト
F アキューム管、冷媒配管(所定流動検知部分)
M1 外れ検知供給電力(第1磁界レベル)
M2 定常供給電力(第1磁界制限基準値)
Mmax 最大供給電力(所定最大出力)
特開2000−97510号公報

Claims (11)

  1. 冷媒配管(F)および/または前記冷媒配管(F)中を流れる冷媒と熱的接触をする部材の誘導加熱を行い、冷媒を循環させる圧縮機構(21)を含んだ冷凍サイクルを利用する、空気調和装置(1)であって、
    前記誘導加熱の加熱対象部分(F2)を誘導加熱させるために磁界を発生させる磁界発生部(68)と、
    前記冷凍サイクルの少なくとも一部である所定状態量検知部分(F)を流れる冷媒に関する状態量を検知する冷媒状態量検知部(14、29a)と、
    前記冷凍サイクルで暖房運転を行う起動時において、前記磁界発生部(68)による出力を所定最大出力(Mmax)とする状態を、前記圧縮機構が駆動状態となっている時から開始して前記冷媒状態量検知部(14、29a)が検知する状態量が第1所定目標状態量(Pr)に到達した時に終了させる起動時磁界発生制御、および、
    前記所定最大出力(Mmax)よりも低い第1磁界制限基準値(M2)を前記磁界発生部(68)の出力の上限として制約をかける状態を、前記起動時磁界発生制御が終了した後に行う起動後磁界発生制御、
    を少なくとも行う制御部(11)と、
    を備えた空気調和装置(1)。
  2. 前記誘導加熱の加熱対象部分(F2)は、磁性体材料を含んでいる、
    請求項1に記載の空気調和装置(1)。
  3. 前記所定状態量検知部分(F)は、前記磁界発生部(68)によって磁界が生じている部分である、
    請求項1または2に記載の空気調和装置(1)。
  4. 前記冷媒状態量検知部(14、29a)が検知する状態量は、前記所定状態量検知部分(F)を流れる冷媒に関する温度および圧力の少なくとも何れか一方である、
    請求項1から3のいずれか1項に記載の空気調和装置(1)。
  5. 前記冷媒状態量検知部(14、29a)は、前記所定状態量検知部分(F)を流れる冷媒に関する温度を検知する温度検知部(14)であって、
    前記制御部(11)は、前記起動後磁界発生制御では、前記温度検知部(14)が検知する温度が目標維持温度で維持されるように前記磁界発生部(68)に発生させる磁界の大きさおよび/または前記磁界発生部(68)に磁界を発生させる頻度をPI制御する起動後磁界発生PI制御を行う、
    請求項1から4のいずれか1項に記載の空気調和装置(1)。
  6. 前記冷媒状態量検知部(14、29a)は、前記所定状態量検知部分(F)を流れる冷媒に関する温度を検知する温度検知部(14)であって、
    前記制御部(11)は、前記磁界発生部(68)に発生させる前記磁界のレベルを前記所定最大出力(Mmax)よりも低い範囲内で上げるもしくは下げるという磁界レベル変化処理を行うことで前記温度検知部(14)の検知温度に変化があることもしくは前記温度検知部(14)が温度変化を検知することの磁界レベル増加条件を満たした後に、前記起動時磁界発生制御を実行する、
    請求項1から5のいずれか1項に記載の空気調和装置(1)。
  7. 前記磁界レベル変化処理で出力される最大の前記磁界レベルは(M1)は、前記第1磁界制限基準値(M2)よりも小さい値である、
    請求項6に記載の空気調和装置(1)。
  8. 前記冷媒状態量検知部(14、29a)は、前記所定状態量検知部分(F)を流れる冷媒に関する温度を検知する温度検知部(14)であって、
    前記制御部(11)は、第1圧縮機構状態と前記第1圧縮機構状態よりも出力レベルの高い第2圧縮機構状態との前記圧縮機構の出力が異なる両方の圧縮機構状態を前記圧縮機構に実現させた際に、前記第1圧縮機構状態と前記第2圧縮機構状態とで前記温度検知部(14)の検知温度に変化があるという流動条件を満たした後に、前記磁界レベル増加条件の判定を実行する、
    請求項1から7のいずれか1項に記載の空気調和装置(1)。
  9. 前記冷媒状態量検知部(14、29a)は、前記所定状態量検知部分(F)を流れる冷媒に関する温度を検知する温度検知部(14)であって、
    前記制御部(11)は、前記起動後磁界発生制御を開始した後であって、前記冷凍サイクルに前記暖房運転とは異なる除霜運転を実行させている時には、前記磁界発生部(68)の出力の上限を前記所定最大出力(Mmax)として、前記温度検知部(14)の検知温度に基づいて前記磁界発生部(68)による出力を制御する除霜運転出力制御を行う、
    請求項1から8のいずれか1項に記載の空気調和装置(1)。
  10. 前記制御部(11)は、前記除霜運転出力制御時には、前記温度検知部(14)が検知する温度が前記第1所定目標温度よりも低い第2所定目標温度で維持されるようにPI制御する除霜PI制御を行う、
    請求項9に記載の空気調和装置(1)。
  11. 前記冷媒状態量検知部(14、29a)は、前記所定状態量検知部分(F)を流れる冷媒に関する温度を検知する温度検知部(14)であって、
    前記温度検知部(14)に対して弾性力を与える弾性部材(16、17)をさらに備え、
    前記温度検知部(14)は、前記弾性部材(16、17)による前記弾性力によって前記所定状態量検知部分(F)に圧接している、
    請求項1から10のいずれか1項に記載の空気調和装置(1)。
JP2009069132A 2009-03-19 2009-03-19 空気調和装置 Expired - Fee Related JP4826643B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009069132A JP4826643B2 (ja) 2009-03-19 2009-03-19 空気調和装置
PCT/JP2010/001942 WO2010106805A1 (ja) 2009-03-19 2010-03-18 空気調和装置
KR1020117024510A KR101233903B1 (ko) 2009-03-19 2010-03-18 공기 조화 장치
EP10753301A EP2410262A1 (en) 2009-03-19 2010-03-18 Air conditioner
CN2010800127619A CN102348943A (zh) 2009-03-19 2010-03-18 空调装置
RU2011142193/06A RU2484390C1 (ru) 2009-03-19 2010-03-18 Кондиционер
AU2010225944A AU2010225944B2 (en) 2009-03-19 2010-03-18 Air conditioning apparatus
US13/256,480 US20120006040A1 (en) 2009-03-19 2010-03-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069132A JP4826643B2 (ja) 2009-03-19 2009-03-19 空気調和装置

Publications (2)

Publication Number Publication Date
JP2010223459A true JP2010223459A (ja) 2010-10-07
JP4826643B2 JP4826643B2 (ja) 2011-11-30

Family

ID=42739473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069132A Expired - Fee Related JP4826643B2 (ja) 2009-03-19 2009-03-19 空気調和装置

Country Status (8)

Country Link
US (1) US20120006040A1 (ja)
EP (1) EP2410262A1 (ja)
JP (1) JP4826643B2 (ja)
KR (1) KR101233903B1 (ja)
CN (1) CN102348943A (ja)
AU (1) AU2010225944B2 (ja)
RU (1) RU2484390C1 (ja)
WO (1) WO2010106805A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075767A (ja) * 2015-10-16 2017-04-20 ダイキン工業株式会社 ヒートポンプ式加熱装置
WO2020207220A1 (zh) * 2019-04-08 2020-10-15 广东美的暖通设备有限公司 加热组件及其空调

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102356283B (zh) * 2009-03-19 2014-04-16 大金工业株式会社 空调装置
EP2437009B1 (en) * 2010-09-29 2017-09-27 Panasonic Corporation Air conditioner
KR101387541B1 (ko) 2011-10-12 2014-04-21 엘지전자 주식회사 공기조화기 및 공기조화기의 제상방법
US9528865B2 (en) 2012-11-02 2016-12-27 Johnson Controls Technology Company Methods and systems for determining flow direction using a bidirectional pressure sensor
US20150114018A1 (en) * 2013-10-30 2015-04-30 Denso International America, Inc. Viscous heater for heat pump system
CN105571228A (zh) * 2016-01-18 2016-05-11 珠海格力电器股份有限公司 压缩机系统及压缩机频率检测和调频方法
CN112797706B (zh) * 2019-11-14 2022-09-23 青岛海尔电冰箱有限公司 一种冰箱及其化霜控制方法
CN113357848B (zh) * 2020-03-06 2023-08-18 青岛海尔智能技术研发有限公司 换热器和家电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277574A (ja) * 1985-09-30 1987-04-09 株式会社東芝 冷凍サイクル
JPH0415446A (ja) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd 冷媒加熱装置を具備した空気調和機
JP2000097510A (ja) * 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP2001255025A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd ヒートポンプ装置
JP2007178114A (ja) * 2005-12-02 2007-07-12 Daikin Ind Ltd 冷媒加熱装置
JP2007212036A (ja) * 2006-02-08 2007-08-23 Daikin Ind Ltd 冷媒加熱装置およびその加熱容量制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2027125C1 (ru) * 1992-08-27 1995-01-20 Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана Парокомпрессионная холодильная установка с дроссельным регулятором расхода хладагента
CN2302446Y (zh) * 1997-04-29 1998-12-30 李文山 燃气热泵空调机
JP2001174055A (ja) 1999-12-14 2001-06-29 Daikin Ind Ltd 誘導加熱装置
CN2444194Y (zh) * 2000-09-29 2001-08-22 邓兆山 热管热泵冷暖空调机
CN1389693A (zh) * 2001-06-06 2003-01-08 邓兆山 热泵空调热管辅助加热器装置
JP3801006B2 (ja) * 2001-06-11 2006-07-26 ダイキン工業株式会社 冷媒回路
RU2241911C1 (ru) * 2003-06-26 2004-12-10 Ивакин Олег Александрович Способ дистанционного контроля работы кондиционеров и/или холодильных машин
CN201196507Y (zh) * 2008-05-01 2009-02-18 杨迈 数码变频电磁热泵空调加热装置
CN101270939A (zh) * 2008-05-16 2008-09-24 王全龄 反馈辅热式低温空气源热泵空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277574A (ja) * 1985-09-30 1987-04-09 株式会社東芝 冷凍サイクル
JPH0415446A (ja) * 1990-05-07 1992-01-20 Matsushita Electric Ind Co Ltd 冷媒加熱装置を具備した空気調和機
JP2000097510A (ja) * 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP2001255025A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd ヒートポンプ装置
JP2007178114A (ja) * 2005-12-02 2007-07-12 Daikin Ind Ltd 冷媒加熱装置
JP2007212036A (ja) * 2006-02-08 2007-08-23 Daikin Ind Ltd 冷媒加熱装置およびその加熱容量制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075767A (ja) * 2015-10-16 2017-04-20 ダイキン工業株式会社 ヒートポンプ式加熱装置
WO2020207220A1 (zh) * 2019-04-08 2020-10-15 广东美的暖通设备有限公司 加热组件及其空调

Also Published As

Publication number Publication date
WO2010106805A1 (ja) 2010-09-23
KR20110139288A (ko) 2011-12-28
CN102348943A (zh) 2012-02-08
JP4826643B2 (ja) 2011-11-30
US20120006040A1 (en) 2012-01-12
EP2410262A1 (en) 2012-01-25
RU2484390C1 (ru) 2013-06-10
RU2011142193A (ru) 2013-04-27
AU2010225944B2 (en) 2012-11-15
AU2010225944A1 (en) 2011-11-03
KR101233903B1 (ko) 2013-02-15

Similar Documents

Publication Publication Date Title
JP4826643B2 (ja) 空気調和装置
JP4605306B2 (ja) 空気調和装置
JP5370474B2 (ja) 空気調和装置
JP5647396B2 (ja) 空気調和装置
JP5067505B2 (ja) 空気調和装置
WO2010106821A1 (ja) 空気調和装置
JP2011002190A (ja) 冷凍装置
WO2010106803A1 (ja) 空気調和装置
JP2011002189A (ja) 冷凍装置
JP2012167824A (ja) 冷凍装置
JP2010243149A (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees