JP2010219232A - 投影露光装置 - Google Patents

投影露光装置 Download PDF

Info

Publication number
JP2010219232A
JP2010219232A JP2009063219A JP2009063219A JP2010219232A JP 2010219232 A JP2010219232 A JP 2010219232A JP 2009063219 A JP2009063219 A JP 2009063219A JP 2009063219 A JP2009063219 A JP 2009063219A JP 2010219232 A JP2010219232 A JP 2010219232A
Authority
JP
Japan
Prior art keywords
objective lens
lens
objective
focal length
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063219A
Other languages
English (en)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009063219A priority Critical patent/JP2010219232A/ja
Publication of JP2010219232A publication Critical patent/JP2010219232A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】多種のパターンを高精度に露光することが可能な投影露光装置を提供する。
【解決手段】投影露光装置1の投影光学系20は、互いに焦点距離の異なる複数の第1対物レンズ22a,22bを備えた対物レンズユニット21と、ステージ10に支持された被露光基板5の表面に対物レンズユニット21の任意の一つの第1対物レンズ22a,22bと協働して空間光変調素子15のパターンの像を投影する第2対物レンズ25とを有し、対物レンズユニット21は、複数の第1対物レンズ22a,22bのうちいずれか一つを選択的に切り替えて光路上に挿入する切替機構40を有し、第2対物レンズ25は光路上に挿入された第1対物レンズに応じて決定されるパターンの投影倍率を変倍可能であり、投影光学系20は、第2対物レンズ25による変倍に拘わらず、投影光学系20の瞳面23と空間光変調素子15との間の距離が一定となるように構成されている。
【選択図】図1

Description

本発明は、基板表面に多種のパターンを投影して露光する投影露光装置に関する。
従来、投影露光装置による微細なパターンの転写には、レチクルと称されるマスクパターンが形成されたマスク基板が用いられる。マスクパターンは、光透過性を有する板材にクロム等の遮光部材を蒸着し、蒸着した遮光部材の一部をエッチングして光を透過させるパターンを形成することにより作られる。そして、このマスクパターンを投影光学系により被露光基板(ウェハや液晶基板等)の表面に縮小転写することで微細なパターンの焼き付けが行われる。
近年、半導体の回路パターンが微細化するのに伴い、露光波長が短くなるためマスク基板の材料として石英等の紫外線の透過性が高い材料を使う必要が生じている。また、大面積のパターンを焼き付けるために投影光学系の縮小倍率がそれほど変化することなく微細化が進んでしまったため、マスク基板上のパターンも微細なものとなり、さらには、超解像技術を導入してマスク基板上のパターンに補助パターンや位相差等を与えるようになったことから、マスク基板の製造に手間がかかりコストも高くなってきている。半導体素子のパターンが確定した量産ラインでは、このような高価なマスク基板を使っても採算がとれるが、研究開発等におけるパイロットラインや少量多品種の半導体素子(または、液晶素子やMEMS(Micro Electro Mechanical System)素子等)を作るラインでは、高価なマスク基板を使ってしまうと採算がとれないという問題が生じている。
このような問題に対して、DMD(Digital Mirror Device)や液晶素子等の空間光変調素子により形成したパターンを縮小投影するいわゆるマスクレス露光機が提案されている(例えば、特許文献1および特許文献2を参照)。マスクレス露光機の場合、空間光変調素子の画素サイズが13μm程度という制限から縮小投影倍率を高くして、細かいパターンを作成できるようにしている。そこで、テレセントリックな縮小投影光学系を構成するには、空間光変調素子側に焦点距離の長いレンズ群を、被露光基板側に焦点距離の短いレンズ群をそれぞれ焦点距離だけ離して配置する必要がある。
空間光変調素子の画素数は、XGA規格の1024×768画素や、UXGA規格の1600×1200画素程度である。上述のように縮小倍率を高くすると、露光できる範囲も小さくなる。そこで、顕微鏡のように、比較的精度の低いパターンでは焦点距離の長いレンズ群に切り替えて縮小倍率を小さくして広い露光面積を露光し、細かいパターンでは焦点距離の短いレンズ群に切り替えて縮小倍率を大きくして細かいパターンを露光できるようにすることが提案されている。ところが、切り替えたレンズ群に焦点距離の誤差があると縮小倍率に誤差が生じ、投影倍率を切り替えた場合や液晶露光における画面継ぎを行う場合にパターンの繋ぎができない等の不都合が生じる。特に、被露光基板側のレンズ群(対物レンズ)は、比較的焦点距離が短く開口数が大きいので、レンズの製造時に焦点距離の誤差が生じやすいが、偏心の精度が厳しいので、倍率調整のための機構を設けることは難しい。
特表2002−520840号公報 特開2004−335639号公報
そこで、空間光変調素子側のレンズ群に倍率調整機構を設け、被露光基板側のレンズ群(対物レンズ)の切り替えに応じて焦点距離を調整し、投影倍率を目標の値にすることが考えられる。しかしながら、構成が簡単な凸凹の2群のレンズ構成を用いた場合、空間光変調素子から投影光学系の瞳面までの距離が変化してしまうため、空間光変調素子の周部近傍から出射した光束が被露光基板側のレンズ群(対物レンズ)に十分に入らなくなり、照度の低下を招いてしまう。
本発明は、このような問題に鑑みてなされたものであり、多種のパターンを高精度に露光可能な投影露光装置を提供することを目的とする。
このような目的達成のため、本発明に係る投影露光装置は、被露光基板を支持するステージと、所定のパターンを形成可能な空間光変調素子と、前記ステージに支持された前記被露光基板の表面に前記パターンの像を投影する投影光学系とを備え、前記投影光学系は、前記ステージと対向するように配設され、互いに焦点距離の異なる複数の第1対物レンズを備えた対物レンズユニットと、前記ステージに支持された前記被露光基板の表面に前記対物レンズユニットの任意の一つの前記第1対物レンズと協働して前記パターンの像を投影する第2対物レンズとを有し、前記対物レンズユニットは、前記複数の第1対物レンズのうちいずれか一つを選択的に切り替えて光路上に挿入する切替機構を有し、前記第2対物レンズは、前記光路上に挿入された前記第1対物レンズに応じて決定される前記パターンの投影倍率を変倍可能であり、前記投影光学系は、前記第2対物レンズによる前記変倍に拘わらず、前記投影光学系の瞳面と前記空間光変調素子との間の距離が一定となるように構成されている。ここで、空間光変調素子とは、例えばDMD(Digital Mirror Device)や液晶素子等、電気的な制御に応じて所定のパターンを形成可能な素子のことをいう。
なお、上述の投影露光装置において、前記第2対物レンズが3つのレンズ群から構成され、前記3つのレンズ群のうち少なくとも1つが正の屈折力を有することが好ましい。
また、上述の投影露光装置において、前記3つのレンズ群のうち最も前記瞳面に近い第1レンズ群の焦点距離をf1とし、前記3つのレンズ群のうち2番目に前記瞳面に近い第2レンズ群の焦点距離をf2とし、前記3つのレンズ群のうち最も前記空間光変調素子に近い第3レンズ群の焦点距離をf3とし、前記第2対物レンズの合成焦点距離をFとし、前記瞳面と前記空間光変調素子との間の距離をTとし、前記第1レンズ群と前記第2レンズ群との間の主点間隔をe1としたとき、次式
Figure 2010219232
の条件を満足し、前記第2レンズ群と前記第3レンズ群との間の主点間隔をe2としたとき、次式
Figure 2010219232
の条件を満足し、前記第3レンズ群と前記空間光変調素子との間の主点間隔をe3としたとき、次式
Figure 2010219232
の条件を満足し、前記瞳面と前記第1レンズ群との間の主点間隔をe0としたとき、次式
Figure 2010219232
の条件を満足することが好ましい。
また、上述の投影露光装置において、前記光路上に挿入された前記第1対物レンズに応じて前記投影倍率が所定の倍率となるように前記第2対物レンズを駆動する倍率調整部を備えることが好ましい。
また、上述の投影露光装置において、前記第2対物レンズの焦点距離が前記第1対物レンズの焦点距離よりも長いことが好ましい。
本発明によれば、多種のパターンを高精度に露光することができる。
投影露光装置の構成を示す概略図である。 (a)はマイクロミラーの拡大図であり、(b)はマイクロミラーが一方に傾動した状態を示す図であり、(c)はマイクロミラーが他方に傾動した状態を示す図である。 (a)は本実施形態の投影光学系の光路図であり、(b)は両側テレセントリックでない投影光学系の光路図で周辺光の光束がけられている様子を示す図である。 従来考えられる変倍光学系の構成を示す図である。 本実施形態の変倍光学系(投影光学系)の構成を示す図である。 第2対物レンズの焦点距離を300mmとしたときの収差図である。 第2対物レンズの焦点距離を315mmとしたときの収差図である。 第2対物レンズの焦点距離を285mmとしたときの収差図である。
以下、図面を参照して本発明の好ましい実施形態について説明する。本実施形態の投影露光装置であるマスクレス露光機1を図1に示しており、このマスクレス露光機1は、被露光基板5を支持するステージ10と、露光を行うための露光光源11と、所定のパターンを形成可能な空間光変調素子15と、空間光変調素子15により形成されたパターンをステージ10上の被露光基板5に投影する投影光学系20と、TTL(Through The Lens)アライメント方式の位置合わせ光学系30とを主体に構成される。
ステージ10は、ウェハや液晶基板等の被露光基板5を水平方向および鉛直方向へ移動可能に支持する。このとき、被露光基板5は真空吸着機構(図示せず)によりステージ10上に真空吸着され、図示しない制御装置からの指示によりパターンの焼き付け(露光)が行われる所定の露光位置まで移動される。露光光源11は、例えば436nmの波長を有する露光光を発生させる。露光光源11から発せられた露光光は、コンデンサレンズ12で集光され、空間光変調素子15に所定の入射角度で照射される。
本実施形態における空間光変調素子15は、いわゆるDMD(Digital Mirror Device)であり、図2(a)に示すように、両端にヒンジ15hを有した微小な平面状のマイクロミラー15mが縦横に多数配列されて構成される。各マイクロミラー15mはそれぞれ、図1に示すパターンジェネレータ13からの制御信号によりヒンジ15hを軸として所定の方向へ傾くようにできている。本実施形態において例えば、パターンジェネレータ13からON信号を受けたときに、図2(b)に示すようにマイクロミラー15mが一方に傾動して、露光光源11からの露光光を投影光学系20の方向へ反射させるように設定される。これにより、投影光学系20の方向へ反射させるマイクロミラー15mをパターンの形状に応じて選択するようにすれば、空間光変調素子15において所望の形状の露光パターンを得ることができる。なお、パターンジェネレータ13からOFF信号を受けたとき、図2(c)に示すようにマイクロミラー15mが他方に(すなわち逆方向に)傾動し、露光光源11からの露光光が投影光学系20に入射しない方向へ反射するように設定される。
また、空間光変調素子15は、投影光学系20を構成する第2対物レンズ25の前側合成焦点位置近傍に配置される。そのため、空間光変調素子15上の一点から出た光束は、第2対物レンズ25を通過することによりほぼ平行な光束となる。なお、図1において、空間光変調素子15から第2対物レンズ25に向かって伝播している光束は、空間光変調素子15上の一点から出た光束を示す。
投影光学系20は、ステージ10と対向するように配設された対物レンズユニット21と、ステージ10に支持された被露光基板5の表面に、対物レンズユニット21を介して空間光変調素子15で得られるパターンの像を投影する第2対物レンズ25と、対物レンズユニット21と第2対物レンズ25との間に設けられたダイクロイックミラー29とを有して構成される。対物レンズユニット21は、互いに焦点距離の異なる複数の第1対物レンズ22a,22bと、当該複数の第1対物レンズ22a,22bのうちいずれか一つを選択的に切り替えて光路上に挿入するレボルバ装置24とを有して構成される。
第2対物レンズ25は、被露光基板5の側から順に並んだ、正の屈折力を有する第1レンズ群26と、正の屈折力を有する第2レンズ群27と、負の屈折力を有する第3レンズ群28とから構成される。そして、空間光変調素子15のマイクロミラー15mで反射して第2対物レンズ25に達した露光光は、第3レンズ群28、第2レンズ群27、および第1レンズ群26を順に透過し、ダイクロイックミラー29に達して下方へ反射する。ダイクロイックミラー29で反射した露光光は、光路上に挿入された(いずれかの)第1対物レンズ22a,22bを透過し、各第1対物レンズ22a,22bの焦点面近傍に配置された被露光基板5の表面に達して結像することにより、空間光変調素子15のマイクロミラー15mによるパターンの像が被露光基板5の表面に投影される。
また、光路上に挿入された第1対物レンズ22a,22bに応じて決定されるパターンの投影倍率を変倍できるように、倍率調整機構40によって第1〜第3レンズ群26〜28がそれぞれ光軸に沿って移動するようになっている。なお、倍率調整機構40は、いわゆるズームレンズのような円柱状の鏡筒にカムを切って移動させる方式でもよく、各レンズ群26〜28をリニアガイド(図示せず)に載せて所定の間隔となるように移動させる方式でもよい。
位置合わせ光学系30は、ハロゲンランプ31と、位置合わせ用コンデンサレンズ32と、ハーフミラー33と、結像レンズ34と、撮像素子35とを有して構成される。ハロゲンランプ31は、位置合わせ光学系30の光源であり、例えば480nmよりも長い波長を有する被露光基板5を感光させない照明光を発生させる。ハロゲンランプ31から発せられた照明光は、位置合わせ用コンデンサレンズ32を透過してハーフミラー33で反射され、ダイクロイックミラー29を透過した後、対物レンズユニット21を介してステージ10上の被露光基板5に照射される。被露光基板5で反射した光は、再び対物レンズユニット21を介してダイクロイックミラー29およびハーフミラー33を透過した後、結像レンズ34を透過して撮像素子35の撮像面上で結像する。このような照明光が照射される被露光基板5には位置合わせ用のマークが設けられており、このマークを撮像素子35で検出することにより、ステージ10の移動量が決定される。
ところで、DMDである空間光変調素子15では、マイクロミラー15mの傾斜は全て一様になっているので、各マイクロミラー15mに入射して反射される光束の主光線は平行になっている必要がある。そのため、コンデンサレンズ12の前側焦点位置に露光光源11を配置し、空間光変調素子15をテレセントリックに照明するようになっている。また、投影光学系20では、図3(a)に示すように、第2対物レンズ25の後側焦点位置と対物レンズユニット21の前側焦点位置とを一致させるように配置することにより、テレセントリックな投影ができるようになっている。すなわち、投影光学系20は両側テレセントリックな光学系となる。
本実施形態では、図3に示すように、対物レンズユニット21の瞳面23(すなわち、各第1対物レンズ22a,22bの瞳面23a,23b)に開口絞りが入っていて投影光学系20の開口数を決めている。仮に、図3(b)に示すように、第2対物レンズ25の後側焦点位置と対物レンズユニット21の前側焦点位置とが一致していない場合(例えば、距離δだけ離れた場合)には、空間光変調素子15の周部近傍から出射した光束は対物レンズユニット21の瞳面23(開口絞り)上で横ずれしてしまうため、空間光変調素子15からの光束の一部が対物レンズユニット21を透過できなくなってしまう。このため、空間光変調素子15の周部に行くほど、光量および解像力が低下するという問題が生じる。
図4に示すように、2つのレンズ群26´,27´の間隔を変えると合成焦点距離が変わることを利用して倍率調整機構を構成することは一般的に行われている。2つのレンズ群26´,27´のそれぞれの焦点距離をf1´,f2´とし、合成前側焦点位置FP´と第1のレンズ群26´との間の主点間隔をe0´とし、2つのレンズ群26´,27´同士の間隔をe1´とし、第2のレンズ群27´と合成後側焦点位置RP´との間の主点間隔をe2´としたとき、合成焦点距離をF´とするためには、2つのレンズ群26´,27´同士の間隔e1´は、次の(1)式で表すことができる。
Figure 2010219232
このとき、各レンズ群26´,27´からそれぞれの焦点位置までの距離e0´,e2´はそれぞれ、次の(2)式および(3)式のように表わされる。
Figure 2010219232
Figure 2010219232
そして、合成前側焦点位置FP´から合成後側焦点位置RP´までの全長T´は、各距離e0´,e1´,e2´の和となり、次の(4)式のように表わされる。
Figure 2010219232
つまり、図4の場合、合成焦点距離F´を変えると全長T´が変化してしまうことがわかる。特に、マスクレス露光機のように投影光学系20の投影倍率の縮小比が大きい場合には目標の焦点距離が長くなるため、焦点距離の変化に応じた全長の変化が大きくなって、焦点距離を調整すると周辺の光が大きくけられることになる。例えば、2つのレンズ群26´,27´の合成焦点距離F´を300mmとし、第1のレンズ群26´の焦点距離f1´を200mmとし、第2のレンズ群27´の焦点距離f2´を−300mmとしたとき、上述の(4)式に代入すると、全長T´は650mmとなる。ここで、合成焦点距離F´を5%増やして315mmにすると、全長T´は672.976mmと23mm近くも変化することになる。ここで、合成焦点距離F´と全長T´との関係を表1に示す。
(表1)
F´ f1´ f2´ e0´ e1´ e2´ T´
285 200 -300 390 110.5263 127.5 628.0263
300 200 -300 400 100 150 650
315 200 -300 410 90.47619 172.5 672.9762
投影光学系20の縮小倍率を1/150にするには、第2対物レンズ25の焦点距離を300mmとしたとき、対物レンズユニット21で選択される第1対物レンズ22a,22bの焦点距離が2mmとなる。この場合、投影光学系20の被露光基板5側の開口数が0.90だと、開口(瞳径)がφ3.6mm程度の大きさになる。このとき、図3(b)に示すように、空間光変調素子15の周部近傍から出射した光束は対物レンズユニット21の瞳面23(開口絞り)上で横ずれしてしまう。空間光変調素子15上で5mmの像高の光束の主光線は、瞳面23上でおよそ0.955°(=arcsin(5/300mm))傾斜している。第2対物レンズ25の合成焦点距離が5%増えているとすると、(4)式の計算結果の全長の変化量を用いれば、この傾斜のために瞳面23上では0.38mm(=5/300*23mm)のずれとなり、これは対物レンズユニット21の開口(瞳径)の10%に相当しているので、光量はおよそ80%まで低下してしまう。
そこで、本実施形態においては、前述のように、第2対物レンズ25を3つのレンズ群26〜28からなる構成とし、第2対物レンズ25による投影倍率の調整に拘わらず、投影光学系20の瞳面23と空間光変調素子15との間の距離が一定となるようにした。このとき、図5に示すように、3つのレンズ群26〜28のうち最も瞳面23に近い第1レンズ群26の焦点距離をf1とし、2番目に瞳面23に近い第2レンズ群27の焦点距離をf2とし、最も空間光変調素子15に近い第3レンズ群28の焦点距離をf3とし、第2対物レンズ25の合成焦点距離をFとし、瞳面23と空間光変調素子15との間の距離(すなわち、第2対物レンズ25の合成前側焦点位置FPから合成後側焦点位置RPまでの全長)をTとしたとき、まず、第1レンズ群26と第2レンズ群27との間の主点間隔e1について、次の(5)式で表すことができる。
Figure 2010219232
次に、第2レンズ群27と第3レンズ群28との間の主点間隔e2について、次の(6)式で表すことができる。
Figure 2010219232
続いて、第3レンズ群28と空間光変調素子15との間の主点間隔e3について、次の(7)式で表すことができる。
Figure 2010219232
そして、瞳面23と第1レンズ群26との間の主点間隔e0について、次の(8)式で表すことができる。
Figure 2010219232
このような(5)〜(8)式を用いて、前述と同様に合成焦点距離が300mmの場合にあてはめ、それぞれの主点間隔(e0〜e3)について正となる条件で変化量を求める。ここで、(5)〜(8)式を用いて求めた主点間隔(e0〜e3)の一例を表2に示す。
(表2)
F f1230123
285 320 240 -180 367.2654 153.7836 37.61111 91.33988 650
300 320 240 -180 374.3314 88.81761 35.55087 151.3001 650
315 320 240 -180 378.4119 12.1667 34.96632 224.4551 650
表2の条件で、第2対物レンズ25の合成焦点距離Fを5%変化させても、瞳面23と空間光変調素子15との間の距離Tが一定であることがわかる。この条件でg線(すなわち、露光波長λ=436nm)用の実際のレンズ(第2対物レンズ25)を設計すると、例えば表3のようになる。
(表3)
レンズ曲率 レンズ面間隔 硝材
(F=300mm) (F=315mm) (F=285mm)
(投影光学系瞳)
0 338.51679 342.61469 331.46819
-48.78090 4 E-LAK18
-60.55481 5
-549.34539 3 E-KZFH1
446.18329 8 E-FKH1
-75.90748 113.45572 36.78936 178.40626
112.04231 5 E-FKH1
-358.58127 3 E-KZFH1
∞ 25.85033 25.26578 27.91057
312.60741 4 E-SF8
842.18724 3 E-SK16
44.22568 5
46.63557 4 E-LAK18
74.76380 114.18697 217.34189 84.22670
(空間光変調素子)
なお、本実施形態では、図1において第1〜第3レンズ群26〜28をそれぞれ単レンズの構成としているが、表3からわかるように、第1〜第3レンズ群26〜28をそれぞれ複数のレンズから構成することも可能である。ここで、第2対物レンズ25の合成焦点距離Fを300mm、315mm、および285mmとしたときの収差の状態をそれぞれ、図6、図7、および図8に示す。
以上のように投影光学系20の第2対物レンズ25を構成すると、複数の第1対物レンズ22a,22bによって投影倍率を切り替えても瞳面23a,23bの位置が一定である必要がある。これは、顕微鏡の対物レンズの設計で一般的に行われていることであり、設計可能である。そのため、複数の第1対物レンズ22a,22bによって投影倍率を切り替えることが可能である。このとき、第1対物レンズ22a,22bの製造誤差等で焦点距離の誤差が生じたとしても、その誤差を補正するように第2対物レンズ25の焦点距離を変えて、所定の投影倍率にすることができる。その際、第2対物レンズ25の第1〜第3レンズ群26〜28をそれぞれ、前述の主点間隔の式((5)〜(8)式)に従って移動させればよい。
上述のような構成のマスクレス露光機1を用いて、被露光基板5の露光を行うには、まず、レボルバ装置24により、投影倍率に応じて、複数の第1対物レンズ22a,22bのうちいずれか一つを選択的に切り替えて光路上に挿入する。このとき、図示しないメモリには各第1対物レンズ22a,22bの実際の焦点距離が記憶されており、倍率調整機構40は、光路上に挿入された第1対物レンズの実際の焦点距離(すなわち、前述の焦点距離の誤差)に応じて第2対物レンズ25の焦点距離を変え、所定の投影倍率に調整する。その際、第2対物レンズ25の第1〜第3レンズ群26〜28はそれぞれ、前述の主点間隔の式((5)〜(8)式)を満足するように光軸に沿って移動する。
また、パターンジェネレータ13からの制御信号を受けて、パターンの形状に応じて選択されたマイクロミラー15mがそれぞれ、露光光源11からの露光光を投影光学系20の方向へ反射させるように傾動する。これにより、空間光変調素子15において所定の露光パターンが形成される。
露光パターンの形状および投影倍率が決定されると、ステージ10上に被露光基板5が載置されて真空吸着される。ステージ10に真空吸着された被露光基板5は、制御装置(図示せず)の指示によりパターンの焼き付け(露光)が行われる所定の露光位置まで移動される。なおこのとき、位置合わせ光学系30によって被露光基板5に設けられた位置合わせ用のマークが検出され、ステージ10の移動量が調整される。
所定の露光位置で被露光基板5がステージ10に支持された状態で、露光光源11から露光光を発生させる。露光光源11から発せられた露光光は、コンデンサレンズ12で集光され、空間光変調素子15に所定の入射角度で照射される。このとき、パターンの形状に応じて選択され一方に傾動するマイクロミラー15mで反射した露光光だけが第2対物レンズ25の光軸とほぼ平行な方向に進む。
空間光変調素子15のマイクロミラー15mで反射して第2対物レンズ25に達した露光光は、第3レンズ群28、第2レンズ群27、および第1レンズ群26を順に透過し、ダイクロイックミラー29に達して下方へ反射する。そして、ダイクロイックミラー29で反射した露光光は、光路上に挿入された(いずれかの)第1対物レンズ22a,22bを透過し、各第1対物レンズ22a,22bの焦点面近傍に配置された被露光基板5の表面に達して結像することにより、空間光変調素子15のマイクロミラー15mによるパターンの像が被露光基板5の表面に投影される。
このように、本実施形態によれば、第2対物レンズ25による投影倍率の調整に拘わらず、投影光学系20の瞳面23と空間光変調素子15との間の距離が一定となるように構成されるため、空間光変調素子15の周部近傍から出射した光束が対物レンズユニット21の瞳面23(開口絞り)上で横ずれしてしまうことがなく、照度の低下を防止することができることから、(多種の)パターン全面を高精度に露光することが可能になる。
また、複数の第1対物レンズ22a,22bを切り替えて倍率を可変にする場合に、製造の難しい大きな開口数を有する第1対物レンズで焦点距離の誤差があっても、第2対物レンズ25により倍率を補正しながら使用することができるため、装置全体のコストを抑えることができる。
さらに、半導体製造工程のように、被露光基板5に薄膜を蒸着したりエッチングしたりすることにより被露光基板5が応力を受けて、被露光面が伸びたり縮んだりするような場合でも、位置合わせ光学系30等により所定のマーク位置を測定することにより、投影倍率を調整して被露光基板5上に作られたパターンに新たなパターンを正確に重ねて転写することができる。
なお、第2対物レンズ25が3つのレンズ群26〜28から構成されることで、最小限のレンズ群の構成で、投影光学系20の瞳面23と空間光変調素子15との間の距離を一定にすることができる。
また、(5)〜(8)式を満足するように各レンズ群26〜28の主点間隔を決定すれば、確実に投影光学系20の瞳面23と空間光変調素子15との間の距離を一定にすることができる。
また、光路上に挿入された第1対物レンズ22a,22bに応じて投影倍率が所定の倍率となるように第2対物レンズ25を駆動する倍率調整機構40を備えることで、第2対物レンズ25による投影倍率の調整を自動的に行うことができる。
また、本実施形態のように、第2対物レンズ25の焦点距離が各第1対物レンズ22a,22bの焦点距離よりも長い方が効果的であり、具体的には、第1対物レンズ22a,22bの焦点距離と第2対物レンズ25の焦点距離との比が、1:10〜1:200の範囲であることが好ましい。この比が1:200より大きくなると開口が小さくなりすぎてしまうが、1:10より大きければ投影光学系20の瞳面23と空間光変調素子15との位置関係を精度よく決めることができる。例えば、前述のように、第1対物レンズの焦点距離を2mmとし、第2対物レンズの焦点距離を300mmとし、開口数を0.90としたとき(すなわち、1:150のとき)、開口(瞳径)がφ3.6mm程度の大きさになる。また、第1対物レンズの焦点距離を20mmとし、第2対物レンズの焦点距離を300mmとし、開口数を0.30としたとき(すなわち、1:15のとき)、開口(瞳径)がφ12mm程度の大きさになる。
なお、上述の実施形態において、空間光変調素子15としてDMDを使用しているが、これに限られるものではなく、例えば、空間光変調素子として液晶素子を使用することも可能である。
また、上述の実施形態において、露光光源11が436nmの波長を有する露光光を発生させているが、これに限られるものではなく、例えば、他の波長域の可視光や紫外光を用いるようにしてもよく、被露光基板5を露光可能な光を用いるようにすればよい。
また、上述の実施形態において、第1レンズ群26、第2レンズ群27、および第3レンズ群28がそれぞれ、正・正・負の屈折力を有しているが、これに限られるものではなく、例えば、負・正・負の屈折力や、正・負・正の屈折力を有していてもよく、3つのレンズ群のうち少なくとも1つが正の屈折力を有していればよい。
1 マスクレス露光機(投影露光装置)
5 被露光基板 10 ステージ
15 空間光変調素子(15m マイクロミラー、15h ヒンジ)
20 投影光学系 21 対物レンズユニット
22a,22b 第1対物レンズ 23a,23b 瞳面
24 レボルバ装置(切替機構)
25 第2対物レンズ 26 第1レンズ群
27 第2レンズ群 28 第3レンズ群
40 倍率調整機構(倍率調整部)

Claims (5)

  1. 被露光基板を支持するステージと、
    所定のパターンを形成可能な空間光変調素子と、
    前記ステージに支持された前記被露光基板の表面に前記パターンの像を投影する投影光学系とを備え、
    前記投影光学系は、前記ステージと対向するように配設され、互いに焦点距離の異なる複数の第1対物レンズを備えた対物レンズユニットと、前記ステージに支持された前記被露光基板の表面に前記対物レンズユニットの任意の一つの前記第1対物レンズと協働して前記パターンの像を投影する第2対物レンズとを有し、
    前記対物レンズユニットは、前記複数の第1対物レンズのうちいずれか一つを選択的に切り替えて光路上に挿入する切替機構を有し、
    前記第2対物レンズは、前記光路上に挿入された前記第1対物レンズに応じて決定される前記パターンの投影倍率を変倍可能であり、
    前記投影光学系は、前記第2対物レンズによる前記変倍に拘わらず、前記投影光学系の瞳面と前記空間光変調素子との間の距離が一定となるように構成されていることを特徴とする投影露光装置。
  2. 前記第2対物レンズが3つのレンズ群から構成され、前記3つのレンズ群のうち少なくとも1つが正の屈折力を有することを特徴とする請求項1に記載の投影露光装置。
  3. 前記3つのレンズ群のうち最も前記瞳面に近い第1レンズ群の焦点距離をf1とし、前記3つのレンズ群のうち2番目に前記瞳面に近い第2レンズ群の焦点距離をf2とし、前記3つのレンズ群のうち最も前記空間光変調素子に近い第3レンズ群の焦点距離をf3とし、前記第2対物レンズの合成焦点距離をFとし、前記瞳面と前記空間光変調素子との間の距離をTとし、前記第1レンズ群と前記第2レンズ群との間の主点間隔をe1としたとき、次式
    Figure 2010219232
    の条件を満足し、
    前記第2レンズ群と前記第3レンズ群との間の主点間隔をe2としたとき、次式
    Figure 2010219232
    の条件を満足し、
    前記第3レンズ群と前記空間光変調素子との間の主点間隔をe3としたとき、次式
    Figure 2010219232
    の条件を満足し、
    前記瞳面と前記第1レンズ群との間の主点間隔をe0としたとき、次式
    Figure 2010219232
    の条件を満足することを特徴とする請求項2に記載の投影露光装置。
  4. 前記光路上に挿入された前記第1対物レンズに応じて前記投影倍率が所定の倍率となるように前記第2対物レンズを駆動する倍率調整部を備えることを特徴とする請求項1から3のいずれか一項に記載の投影露光装置。
  5. 前記第2対物レンズの焦点距離が前記第1対物レンズの焦点距離よりも長いことを特徴とする請求項1から4のいずれか一項に記載の投影露光装置。
JP2009063219A 2009-03-16 2009-03-16 投影露光装置 Pending JP2010219232A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063219A JP2010219232A (ja) 2009-03-16 2009-03-16 投影露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063219A JP2010219232A (ja) 2009-03-16 2009-03-16 投影露光装置

Publications (1)

Publication Number Publication Date
JP2010219232A true JP2010219232A (ja) 2010-09-30

Family

ID=42977759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063219A Pending JP2010219232A (ja) 2009-03-16 2009-03-16 投影露光装置

Country Status (1)

Country Link
JP (1) JP2010219232A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080004A (ja) * 2010-10-05 2012-04-19 Nikon Corp 露光装置、デバイス製造方法及び基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080004A (ja) * 2010-10-05 2012-04-19 Nikon Corp 露光装置、デバイス製造方法及び基板

Similar Documents

Publication Publication Date Title
TWI479271B (zh) An exposure apparatus and an exposure method, and an element manufacturing method
JP5626433B2 (ja) 照明光学系、露光装置、光学素子およびその製造方法、並びにデバイス製造方法
JP2010004008A (ja) 光学ユニット、照明光学装置、露光装置、露光方法、およびデバイス製造方法
JP2006235533A (ja) 露光装置及びマイクロデバイスの製造方法
JP2007194600A (ja) リソグラフィ装置およびデバイス製造方法
JP4195915B2 (ja) Pcプロジェクターを用いた任意パターン転写装置
TWI658333B (zh) Exposure device, exposure method, and article manufacturing method
JP5531955B2 (ja) 照明装置、露光装置及びデバイス製造方法
JP2010219232A (ja) 投影露光装置
JP2014195048A (ja) 照明光学系、露光装置及びデバイスの製造方法
KR101783076B1 (ko) 노광 방법, 노광 장치 및 물품의 제조 방법
JP2010272631A (ja) 照明装置、露光装置、及びデバイス製造方法
JP2008026695A (ja) 投影露光装置
JP5353408B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
JP4055471B2 (ja) 光学装置、位置検出装置、露光装置及びマイクロデバイスの製造方法
JP2005079470A (ja) 照明光学系の調整方法、露光装置及び方法、並びにデバイス製造方法
JP6970548B2 (ja) 照明光学系、露光装置、及び物品製造方法
JP2010118383A (ja) 照明装置、露光装置、及びデバイス製造方法
JP2006078283A (ja) 位置計測装置、該位置計測装置を備えた露光装置及び該位置計測装置を使用する露光方法
JP2005024814A (ja) 投影光学系、露光装置および露光方法
JP2012146701A (ja) 露光方法及び露光装置
JP2012146702A (ja) 露光方法及び露光装置
JP2009117672A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2005116848A (ja) 投影露光装置及びデバイスの製造方法
JP2001126971A5 (ja) 投影露光装置