JP2010212227A - Method of manufacturing battery or capacitor - Google Patents

Method of manufacturing battery or capacitor Download PDF

Info

Publication number
JP2010212227A
JP2010212227A JP2009253559A JP2009253559A JP2010212227A JP 2010212227 A JP2010212227 A JP 2010212227A JP 2009253559 A JP2009253559 A JP 2009253559A JP 2009253559 A JP2009253559 A JP 2009253559A JP 2010212227 A JP2010212227 A JP 2010212227A
Authority
JP
Japan
Prior art keywords
pressure
electrode plate
battery
plate group
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009253559A
Other languages
Japanese (ja)
Other versions
JP4859972B2 (en
Inventor
Kazutaka Nishikawa
和孝 西川
Koichi Yamazaki
幸一 山崎
Norihiro Kanetani
典大 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009253559A priority Critical patent/JP4859972B2/en
Priority to CN2010100054268A priority patent/CN101807712B/en
Publication of JP2010212227A publication Critical patent/JP2010212227A/en
Application granted granted Critical
Publication of JP4859972B2 publication Critical patent/JP4859972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a battery or a capacitor, wherein electrolytic solution can be impregnated in an electrode plate group in a short time. <P>SOLUTION: Before filling the electrolytic solution, a case into which the electrode plate group is inserted is pressurized with a prescribed pressure P [MPa] in a pressurization process S2, and thereafter, in an atmosphere opening process S3, the inside of the case is atmosphere-opened for a time t [sec] becoming "P/t≥0.5 [MPa/s]". Accordingly, the electrolyte solution is impregnated into the electrode plate group in a filling and impregnation process S4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、電池ケースに挿入して所定量の電解液を注液した電池、または電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入して電解液を注液したコンデンサの製造方法に関するものである。   The present invention relates to a battery in which a separator is interposed between a positive electrode plate and a negative electrode plate, and the electrode plate group formed by winding in a stacked state or a stacked state is inserted into a battery case and injected with a predetermined amount of electrolyte, or between electrode plates The present invention relates to a method for manufacturing a capacitor in which an electrode plate group formed by interposing a separator and winding in a laminated state or a laminated state is inserted into an outer case and an electrolytic solution is injected.

通常、電池は電池ケース内に極板群を収納した後、電解液を注液し、電池ケースの開口部及びまたは注液口を密閉する工程を経て製造される。
ここで、極板群は、正極板と負極板の間にセパレータを介在させ、高密度に積層または積層状態で渦巻状に捲回したものであり、電解液の注液工程では、極板群の小さな隙間に電解液を浸透させにくく、所定量の電解液を極板群に含浸させるまで長時間を要していた。
In general, a battery is manufactured through a process in which an electrode group is accommodated in a battery case, and then an electrolytic solution is injected to seal an opening and / or an injection port of the battery case.
Here, the electrode plate group is formed by interposing a separator between the positive electrode plate and the negative electrode plate, and is densely laminated or spirally wound in a laminated state. In the electrolyte injection process, the electrode plate group is small. It was difficult for the electrolytic solution to penetrate into the gap, and it took a long time to impregnate the electrode group with a predetermined amount of the electrolytic solution.

電解液を極板群に含浸させる方法として、従来では電解液を注入した電池ケースの開口部に真空ポンプを接続し、電池ケース内を減圧することで、極板群の隙間に存在する空気を気泡として電解液の液面に浮上させる方法がとられている。   As a method of impregnating the electrode group into the electrode plate group, conventionally, a vacuum pump is connected to the opening of the battery case into which the electrolyte solution has been injected, and the air present in the gap between the electrode plate group is reduced by reducing the pressure inside the battery case. A method is used in which bubbles are floated on the liquid surface of the electrolytic solution.

ところが、この製造方法では、極板群の隙間で生じた気泡が極板群の表面に付着して電解液の液面に速やかに浮上しないため、電解液を極板群に含浸させるまでの時間の短縮が十分ではない。   However, in this manufacturing method, since the bubbles generated in the gaps between the electrode plate groups adhere to the surface of the electrode plate group and do not quickly float on the surface of the electrolyte solution, the time until the electrolyte plate group is impregnated with the electrolyte solution. The shortening is not enough.

そこで、含浸時間を更に短縮させるため、種々の製造方法が提案されている。
特許文献1などには、常圧下で電解液を注液した後、減圧下で電解液を含浸させる処理を複数回繰り返して、電解液の注入を行うものである。具体的には、電解液が注液された電池ケースを減圧ブース内に配置させ、電池ケースに第1真空圧力による第1減圧処理を施した後、減圧解除処理を施す工程と、電池ケースに前記第1真空圧力の真空度よりも真空度が高い第2真空圧力による第2減圧処理を施した後、減圧解除処理を施す工程を有したものである。
Therefore, various production methods have been proposed in order to further reduce the impregnation time.
In Patent Document 1, for example, an electrolytic solution is injected by repeatedly injecting an electrolytic solution under normal pressure and then impregnating the electrolytic solution under reduced pressure a plurality of times. Specifically, the battery case into which the electrolytic solution is injected is placed in a decompression booth, the first decompression process using the first vacuum pressure is performed on the battery case, and then the decompression release process is performed. After performing the 2nd pressure reduction process by the 2nd vacuum pressure whose vacuum degree is higher than the vacuum degree of the said 1st vacuum pressure, it has the process of giving the pressure reduction cancellation | release process.

この製造方法では、第1真空圧力よりも第2真空圧力の真空度を高く設定することにより、電池ケースに注液された電解液が、電池ケースの上部から溢れ出るのを阻止しており、常圧下における含浸処理に比較して、含浸時間の短縮化を図っている。   In this manufacturing method, by setting the vacuum degree of the second vacuum pressure higher than the first vacuum pressure, the electrolyte injected into the battery case is prevented from overflowing from the upper part of the battery case, Compared with the impregnation treatment under normal pressure, the impregnation time is shortened.

特許文献2などには、極板群を収納した電池ケース内を減圧し、減圧状態を維持したまま電解液を注入し、その後、大気解放もしくは加圧を行うことで電解液を極板群へ完全に含浸させる方法が開示されている。   In Patent Document 2, etc., the inside of the battery case containing the electrode plate group is depressurized, the electrolyte solution is injected while maintaining the depressurized state, and then the atmosphere is released or pressurized to bring the electrolyte solution into the electrode plate group. A method of complete impregnation is disclosed.

図14は特許文献2に記載された製造方法を実現するための装置を示す。
電池は電池ケース101と極板群102で構成されている。
まず、電池を減圧・加圧槽103に入れ、ヘッダー104を装着する。
FIG. 14 shows an apparatus for realizing the manufacturing method described in Patent Document 2.
The battery includes a battery case 101 and an electrode plate group 102.
First, the battery is placed in the decompression / pressure tank 103 and the header 104 is attached.

次に、減圧・加圧槽103内を5〜6torr程度まで真空排気した後、注液口105よりヘッダー104を通してヘッダー104及び電池内に所定量の電解液を注入する。この時、ヘッダー104内に電解液面106が形成され、液封状態になるように電解液の少なくとも一部がヘッダー104内に保持される。   Next, after the inside of the decompression / pressurization tank 103 is evacuated to about 5 to 6 torr, a predetermined amount of electrolytic solution is injected into the header 104 and the battery through the header 104 from the injection port 105. At this time, an electrolytic solution surface 106 is formed in the header 104, and at least a part of the electrolytic solution is held in the header 104 so as to be in a liquid-sealed state.

その後、大気圧以上のN2またはドライエアなどのガスを減圧・加圧槽103内に導入し、大気圧以上に加圧する。加圧圧力は、通常1〜3kg/cm程度で充分とされている。 Thereafter, a gas such as N 2 or dry air having a pressure equal to or higher than the atmospheric pressure is introduced into the decompression / pressurization tank 103 and the pressure is increased to a pressure equal to or higher than the atmospheric pressure. A pressure of about 1 to 3 kg / cm 2 is usually sufficient.

ヘッダー104内の電解液面106は、電解液が極板群102に吸収されるに従って下がり、やがて電池ケース101内まで到達するとともに、極板群102は所定量の電解液を吸収し、含浸を終了する。   The electrolyte surface 106 in the header 104 decreases as the electrolyte is absorbed by the electrode plate group 102 and eventually reaches the inside of the battery case 101, and the electrode plate group 102 absorbs a predetermined amount of electrolyte and impregnates. finish.

含浸終了後、減圧・加圧槽103内を大気圧とし、電池をヘッダー104から外し、取り出し、次工程へ送り出している。   After the impregnation, the inside of the decompression / pressurization tank 103 is set to atmospheric pressure, the battery is removed from the header 104, taken out, and sent to the next process.

特開平11−339770号公報JP 11-339770 A 特開平2−172158号公報JP-A-2-172158

しかしながら、近年、電池の高容量化に伴い、極板群が高密度で捲回されているため、以下のような問題がある。
特許文献1の製造方法では、電解液を注液後、電池ケースに減圧処理を施す際に、極板群内に存在するエアが容易に抜けず、電解液が極板群に含浸するのを妨げるため、所定量の電解液を含浸させるために、長時間を要するという課題を有している。
However, in recent years, as the capacity of the battery is increased, the electrode plate group is wound at a high density, so that there are the following problems.
In the manufacturing method of Patent Document 1, when the battery case is subjected to a decompression treatment after injecting the electrolytic solution, the air present in the electrode plate group does not easily escape, and the electrolyte solution impregnates the electrode plate group. Therefore, there is a problem that it takes a long time to impregnate a predetermined amount of the electrolyte.

特許文献2の製造方法では、減圧・加圧槽103内を真空・排気する際に、極板群102内の空気が抜けきらず、電解液が極板群102内に入りにくい、もしくは、入ったとしても、減圧・加圧槽103内を大気圧にした際に、極板群102内で圧縮されていた空気が、電解液を押し返し、結果として極板群102は所定量の電解液を吸収できないという課題を有している。   In the manufacturing method of Patent Document 2, when the inside of the decompression / pressurization tank 103 is evacuated / exhausted, the air in the electrode plate group 102 is not completely removed, and the electrolyte does not easily enter or enters the electrode plate group 102. However, when the pressure in the decompression / pressurization tank 103 is changed to atmospheric pressure, the air compressed in the electrode plate group 102 pushes back the electrolyte solution, and as a result, the electrode plate group 102 absorbs a predetermined amount of the electrolyte solution. It has a problem that it cannot be done.

なお、電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入して電解液を注液したコンデンサの製造においても同様の課題を有している。   In addition, there is a similar problem in the manufacture of a capacitor in which a separator is interposed between electrode plates and the electrode plate group formed by laminating or winding in a laminated state is inserted into an outer case to inject an electrolyte. .

本発明は、前記従来の課題を解決するもので、高密度で捲回されている極板群であっても、電解液が極板群内に入りやすく短時間で電解液を含浸させることができる電池またはコンデンサの製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and even in an electrode plate group wound at high density, the electrolyte solution can easily enter the electrode plate group and can be impregnated with the electrolyte solution in a short time. An object of the present invention is to provide a method for manufacturing a battery or a capacitor that can be used.

本発明の電池の製造方法は、正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、電池ケースに挿入した後、所定量の電解液を注液して電池を製造するに際し、電解液を注液する前に、極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧し、その後に大気開放に要する時間t[sec]を、P/t ≧ 0.5[MPa/s]となるように大気開放することを特徴とする。好ましくは、前記加圧と大気開放を、複数回繰り返すことを特徴とする。また、前記加圧から大気開放の過程を、複数回に分けて実施、または途中で大気開放速度を変化させて実施することを特徴とする。   In the battery manufacturing method of the present invention, a separator is interposed between a positive electrode plate and a negative electrode plate, and an electrode plate group formed by laminating or winding in a laminated state is inserted into a battery case, and then a predetermined amount of electrolyte is injected. When the battery is manufactured, before the electrolyte is injected, the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and then the time t [sec] required for opening to the atmosphere. Is opened to the atmosphere so that P / t ≧ 0.5 [MPa / s]. Preferably, the pressurization and release to the atmosphere are repeated a plurality of times. In addition, the process from the pressurization to the atmosphere release is performed in a plurality of times, or is performed by changing the atmosphere release speed in the middle.

本発明の電池の製造方法は、正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、電池ケースに挿入した後、所定量の電解液を注液して電池を製造するに際し、電解液を注液する前に、極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧し、その後に大気圧よりも低い圧力に開放に要する時間t[sec]を、P/t ≧ 0.5[MPa/s]となるように開放することを特徴とする。好ましくは、前記加圧から大気圧よりも低い圧力に開放する過程を、複数回に分けて実施、または途中で開放速度を変化させて実施することを特徴とする。   In the battery manufacturing method of the present invention, a separator is interposed between a positive electrode plate and a negative electrode plate, and an electrode plate group formed by laminating or winding in a laminated state is inserted into a battery case, and then a predetermined amount of electrolyte is injected. When manufacturing the battery, before injecting the electrolyte, the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and then released to a pressure lower than the atmospheric pressure. The required time t [sec] is opened so that P / t ≧ 0.5 [MPa / s]. Preferably, the process of releasing the pressure from the pressure to a pressure lower than the atmospheric pressure is performed in a plurality of times, or is performed by changing the opening speed in the middle.

本発明の電池の製造方法は、上記において極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧する期間が、0.05[sec]以上であることを特徴とする。
本発明のコンデンサの製造方法は、電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入した後、所定量の電解液を注液してコンデンサを製造するに際し、電解液を注液する前に、極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧し、その後に大気開放に要する時間t[sec]を、P/t ≧ 0.5[MPa/s]となるように大気開放することを特徴とする。好ましくは、前記加圧と大気開放を、複数回繰り返すことを特徴とする。また、前記加圧から大気開放の過程を、複数回に分けて実施、または途中で大気開放速度を変化させて実施することを特徴とする。
The battery manufacturing method of the present invention is characterized in that the period during which the inside of the battery case into which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa] is 0.05 [sec] or more.
According to the method of manufacturing a capacitor of the present invention, a separator is interposed between electrode plates, and an electrode plate group formed by laminating or winding in a laminated state is inserted into an outer case, and then a predetermined amount of electrolytic solution is injected into the capacitor. When the electrolyte is injected, the inside of the outer case into which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and then the time t [sec] required for opening to the atmosphere is set to P It is characterized by opening to the atmosphere so that /t≧0.5 [MPa / s]. Preferably, the pressurization and release to the atmosphere are repeated a plurality of times. In addition, the process from the pressurization to the atmosphere release is performed in a plurality of times, or is performed by changing the atmosphere release speed in the middle.

本発明のコンデンサの製造方法は、電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入した後、所定量の電解液を注液してコンデンサを製造するに際し、電解液を注液する前に、極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧し、大気圧よりも低い圧力に開放に要する時間t[sec]を、P/t ≧ 0.5[MPa/s]となるように開放することを特徴とする。好ましくは、前記加圧から大気圧よりも低い圧力に開放する過程を、複数回に分けて実施、または途中で開放速度を変化させて実施することを特徴とする。   According to the method of manufacturing a capacitor of the present invention, a separator is interposed between electrode plates, and an electrode plate group formed by laminating or winding in a laminated state is inserted into an outer case, and then a predetermined amount of electrolytic solution is injected into the capacitor. When injecting the electrolyte, before injecting the electrolyte solution, the inside of the outer case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and the time t [sec required for opening to a pressure lower than the atmospheric pressure is obtained. ] Is released so that P / t ≧ 0.5 [MPa / s]. Preferably, the process of releasing the pressure from the pressure to a pressure lower than the atmospheric pressure is performed in a plurality of times, or is performed by changing the opening speed in the middle.

本発明のコンデンサの製造方法は、上記において極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧する期間が、0.05[sec]以上であることを特徴とする。   The method for manufacturing a capacitor according to the present invention is characterized in that a period during which the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa] is 0.05 [sec] or more.

この構成によると、電池またはコンデンサの極板群内にすみやかに電解液を含浸させることが可能となる。結果として、電解液が揮発する量を減らすことができる。   According to this configuration, it is possible to immediately impregnate the electrolyte in the electrode plate group of the battery or capacitor. As a result, the amount of the electrolytic solution volatilized can be reduced.

本発明の実施の形態1における電池の製造方法のフロー図Flow chart of battery manufacturing method according to Embodiment 1 of the present invention 同実施の形態において実施した実験で用いた加圧装置の概略斜視図Schematic perspective view of the pressure device used in the experiment conducted in the same embodiment 加圧保持時間に対する電池の含浸性評価実験の結果とそのグラフResults and graph of battery impregnation evaluation test against pressure holding time 加圧力に対する電池の含浸性評価実験の結果とそのグラフResults and graphs of battery impregnation evaluation test for applied pressure 大気開放速度に対する電池の含浸性評価実験の結果とそのグラフResults and graphs of battery impregnation evaluation tests for air release rate. 大気開放速度に対する電池の含浸性評価実験の結果とそのグラフResults and graphs of battery impregnation evaluation tests for air release rate. 加圧回数に対する電池の含浸性評価実験の結果とそのグラフResults and graph of battery impregnation evaluation test against number of pressurization 同実施の形態において実施した実験での圧力プロファイルの概略図Schematic of pressure profile in experiment conducted in the same embodiment 同実施の形態における大気開放時の別の圧力プロファイルの概略図Schematic of another pressure profile when the atmosphere is released in the same embodiment 本発明の実施の形態2における電池の製造方法の加圧保持時間に対する電池の含浸性評価実験の結果一覧と加圧保持時間に対する電池の含浸性評価実験の結果とそのグラフList of results of battery impregnation evaluation test for pressurization holding time of battery manufacturing method according to Embodiment 2 of the present invention, results of battery impregnation evaluation experiment for pressurization holding time, and graph thereof 同実施の形態において実施した実験で用いた加圧装置の概略斜視図Schematic perspective view of the pressure device used in the experiment conducted in the same embodiment 短時間の加圧保持時間に対する電池の含浸性評価実験の結果一覧とそのグラフList of results and graphs of battery impregnation evaluation tests for short pressure holding times 同実施の形態の加圧回数に対する電池の含浸性評価実験の結果一覧とそのグラフList of results and graph of impregnation evaluation test of battery against number of pressurizations of same embodiment 特許文献2に記載の製造装置の概略図Schematic of the manufacturing apparatus described in Patent Document 2

以下、本発明の製造方法を図1〜図13に示す具体例に基づいて説明する。
(実施の形態1)
図1は本発明の実施の形態1における電池の製造方法のフロー図を示す。
Hereinafter, the manufacturing method of this invention is demonstrated based on the specific example shown in FIGS.
(Embodiment 1)
FIG. 1 shows a flow chart of a battery manufacturing method according to Embodiment 1 of the present invention.

ケース挿入工程S1では、正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を電池ケースに挿入する。
加圧工程S2では、極板群を挿入した電池ケースの内部を圧力P[MPa]に加圧する。
In the case insertion step S1, an electrode plate group formed by interposing a separator between a positive electrode plate and a negative electrode plate and winding in a laminated state or a laminated state is inserted into a battery case.
In the pressurizing step S2, the inside of the battery case in which the electrode plate group is inserted is pressurized to a pressure P [MPa].

大気開放工程S3では、加圧している電池ケース内部を大気圧に戻す。
注液・含浸工程S4では、大気開放工程S3の後に、所定量の電解液を極板群内に含浸させる。
In the air release step S3, the pressurized battery case is returned to atmospheric pressure.
In the liquid injection / impregnation step S4, a predetermined amount of electrolytic solution is impregnated in the electrode plate group after the air release step S3.

この製造工程における大気開放工程S3では、大気開放に要する時間t[sec]を“P/t ≧ 0.5[MPa/s]”に設定して実施している。
ここで効果を確認するため、以下のような実験を行った。
In the air release step S3 in this manufacturing process, the time t [sec] required for air release is set to “P / t ≧ 0.5 [MPa / s]”.
Here, in order to confirm the effect, the following experiment was conducted.

図2は、本実験で用いた加圧装置の槽を開放した状態を示している。
加圧槽1には、給気口2と排気口3が設けられており、電池4を収納後に加圧槽1を閉じて、給気口2から高圧エアを吹き込むことで加圧槽1の内部および電池4を所定の圧力に加圧し、その後、排気口3から大気開放できるようになっている。排気口3には弁(図示せず)を設けており、大気開放時の圧力変化の速度を調節できるようになっている。電池4には、外径18mm、長さ65mmの円筒形リチウムイオン二次電池を用いた。
FIG. 2 shows a state where the tank of the pressurizing apparatus used in this experiment is opened.
The pressurization tank 1 is provided with an air supply port 2 and an exhaust port 3. After the battery 4 is stored, the pressurization tank 1 is closed and high-pressure air is blown from the air supply port 2. The inside and the battery 4 are pressurized to a predetermined pressure, and then can be opened to the atmosphere from the exhaust port 3. The exhaust port 3 is provided with a valve (not shown) so that the speed of pressure change when the atmosphere is released can be adjusted. As the battery 4, a cylindrical lithium ion secondary battery having an outer diameter of 18 mm and a length of 65 mm was used.

含浸性の評価については、定量的に比較を行うため、以下のように行った。
まず、大気圧下で電池に1.25ccの電解液を注入し、真空引きを行って、電池内に残った空気を抜き出した。この操作を合計3回繰り返し、最後の真空引き後、大気圧中で静置し、極板群上に残っている電解液が、極板群内に含浸して、目視で液面が確認できなくなるまでの時間を測定し、これを含浸時間と定義した。
The impregnation evaluation was performed as follows in order to make a quantitative comparison.
First, 1.25 cc of an electrolyte was injected into the battery under atmospheric pressure, and evacuation was performed to extract air remaining in the battery. This operation is repeated a total of 3 times. After the last vacuuming, it is allowed to stand at atmospheric pressure, and the electrolyte remaining on the electrode plate group is impregnated in the electrode plate group, so that the liquid level can be confirmed visually. The time to disappear was measured and defined as the impregnation time.

さらに、本発明を実施していない電池の含浸時間を基準とし、短縮できた含浸時間の割合を良化率として算出した。なお、算出の式は以下のとおりである。
良化率 = 〔(未加圧の電池の含浸時間)−(加圧した電池の含浸時間)〕/(未加圧の電池の含浸時間)
最初に、加圧槽1内の圧力を0.8MPaとし、その加圧状態を維持する時間(加圧保持時間)を変えた電池で実験を行った。加圧保持時間は1秒、5秒、10秒、20秒の4パターンで実験を行った。
Furthermore, based on the impregnation time of a battery not carrying out the present invention, the ratio of the impregnation time that could be shortened was calculated as the improvement rate. The calculation formula is as follows.
Improvement rate = [(impregnation time of unpressurized battery)-(impregnation time of pressurized battery)] / (impregnation time of unpressurized battery)
First, an experiment was performed using a battery in which the pressure in the pressurizing tank 1 was 0.8 MPa, and the time for maintaining the pressurized state (pressurization holding time) was changed. The experiment was performed in four patterns of pressurizing and holding times of 1 second, 5 seconds, 10 seconds, and 20 seconds.

図3(a)(b)に実験結果を示す。
図3(a)は詳細な実験条件と結果の一覧であり、図3(b)は横軸に加圧保持時間、縦軸に良化率をとったグラフである。
An experimental result is shown to Fig.3 (a) (b).
FIG. 3A is a list of detailed experimental conditions and results, and FIG. 3B is a graph in which the horizontal axis represents the pressure holding time and the vertical axis represents the improvement rate.

大気開放時間は、排気口3を解放後、加圧槽1内の圧力が大気圧に戻るまでの時間を測定したものである。この結果より、加圧状態は長時間保持しても、含浸性に影響しないことが判る。   The air release time is a time measured after the exhaust port 3 is released until the pressure in the pressurized tank 1 returns to atmospheric pressure. From this result, it can be seen that the impregnation is not affected even if the pressurized state is maintained for a long time.

次に、加圧時の圧力を変えた電池で実験を行った。圧力は0.4MPa、0.6MPa、0.8MPa、1.0MPa、1.2MPa、1.4MPaの6パターンで実験を行った。ここでは各圧力に達した後、その加圧状態を維持する時間(加圧保持時間)を1秒に固定して実験を行った。   Next, an experiment was performed using a battery in which the pressure during pressurization was changed. The experiment was conducted with six pressure patterns of 0.4 MPa, 0.6 MPa, 0.8 MPa, 1.0 MPa, 1.2 MPa, and 1.4 MPa. Here, after reaching each pressure, the experiment was conducted with the time for maintaining the pressurized state (pressurized holding time) fixed to 1 second.

図4(a)(b)に実験結果を示す。
図4(a)は詳細な実験条件と結果の一覧であり、図4(b)は横軸に圧力、縦軸に良化率をとったグラフである。
4 (a) and 4 (b) show the experimental results.
4A is a list of detailed experimental conditions and results, and FIG. 4B is a graph in which the horizontal axis represents pressure and the vertical axis represents the improvement rate.

ここで、大気開放の際には、排気口3の弁を全開にしているため、圧力が大きいほど、大気開放時間は長くなっている。大気開放速度は、圧力を大気開放時間で割って算出したものであり、算出式は
大気開放速度 = (加圧槽内の圧力)/(大気開放時間)
である。
Here, since the valve of the exhaust port 3 is fully opened when the atmosphere is released, the larger the pressure is, the longer the atmosphere release time is. The air release speed is calculated by dividing the pressure by the air release time. The calculation formula is the air release speed = (pressure in the pressurized tank) / (air release time)
It is.

図4(b)のグラフより、加圧力が高いほど、含浸性が良化するが、圧力が0.8MPa以上では、良化率に大差がないように見られた。
そこで、含浸性と大気開放速度との相関を見るため、横軸に大気開放速度、縦軸に良化率をとってプロットをした。そのグラフを図5に示す。
From the graph of FIG. 4B, the higher the applied pressure, the better the impregnation property. However, when the pressure was 0.8 MPa or more, it was seen that there was no significant difference in the improvement rate.
Therefore, in order to see the correlation between the impregnation property and the air release rate, a plot was made with the air release rate on the horizontal axis and the improvement rate on the vertical axis. The graph is shown in FIG.

この結果から、大気開放速度が速いほど良化率が高くなる傾向にあることが予測できる。
そこで、確証を得るため、圧力を0.8MPaにし、排気口3の弁の開口率を調整し、大気開放時間を変えた電池で実験を行った。
From this result, it can be predicted that the improvement rate tends to increase as the air release speed increases.
Therefore, in order to obtain confirmation, an experiment was conducted with a battery in which the pressure was set to 0.8 MPa, the opening ratio of the valve of the exhaust port 3 was adjusted, and the open time to the atmosphere was changed.

図6(a)(b)に実験結果を示す。
図6(a)はその詳細な実験条件と結果の一覧であり、図6(b)は図5のグラフに、図6(a)のデータを加えたグラフである。
6 (a) and 6 (b) show the experimental results.
FIG. 6A is a list of detailed experimental conditions and results, and FIG. 6B is a graph obtained by adding the data of FIG. 6A to the graph of FIG.

この結果より、大気開放速度が速いほど、良化率が高くなる傾向にあることは確実であり、加えて、一定の大気開放速度以下では含浸性が悪化することが判る。
そのため、電池の極板群の捲回状態や極板の状態によって含浸性に差が生じることを考慮すると、全ての電池において含浸性を良化させるためには、図6(b)より大気開放速度を0.5MPa/s以上にする必要があると判る。
From this result, it can be seen that the higher the air release speed, the higher the improvement rate tends to be, and in addition, the impregnation property deteriorates below a certain air release speed.
Therefore, considering that the impregnation property varies depending on the winding state of the electrode plate group and the state of the electrode plate, in order to improve the impregnation property in all the batteries, the atmosphere is released from FIG. 6 (b). It can be seen that the speed needs to be 0.5 MPa / s or more.

最後に、加圧および大気開放の操作を繰り返し、その回数と含浸性との相関を調べた。
図7(a)はその詳細な実験条件と結果の一覧であり、図7(b)は横軸に加圧回数、縦軸に良化率をとったグラフである。
Finally, the operation of pressurization and release to the atmosphere was repeated, and the correlation between the number of times and the impregnation property was examined.
FIG. 7A is a list of detailed experimental conditions and results, and FIG. 7B is a graph in which the horizontal axis represents the number of pressurizations and the vertical axis represents the improvement rate.

この結果より、加圧および大気開放の操作を繰り返すことで、含浸性をより良化させることができることが判る。
以上の実験結果から、電池を所定圧まで加圧後、大気開放速度が0.5MPa/s以上となるように大気開放を行うことで、含浸性を良化させることができる。
From this result, it is understood that the impregnation property can be further improved by repeating the operations of pressurization and release to the atmosphere.
From the above experimental results, it is possible to improve the impregnation property by pressurizing the battery to a predetermined pressure and then releasing the atmosphere so that the atmospheric release speed is 0.5 MPa / s or more.

また、加圧と大気開放の操作を繰り返すことで、さらなる含浸性の向上を見込むことができ、良化率を考慮して回数を調整することで、生産性の向上に繋げることができる。
なお、上記の実験において、大気開放の操作は一回で大気圧に戻しているため、圧力プロファイルは図8に示すような形になる。
Further, by repeating the operations of pressurization and release to the atmosphere, further improvement in impregnation can be expected, and by adjusting the number of times in consideration of the improvement rate, productivity can be improved.
In the above experiment, since the operation for releasing the atmosphere is returned to the atmospheric pressure once, the pressure profile is as shown in FIG.

ここで、大気開放時間は所定圧力から大気圧に戻るまでの時間で規定しているため、図8に示した部分になる。
しかし、本発明の効果が表れているのは、急激に圧力が変化している時であり、急激な圧力変化を起こしていれば、大気開放の操作を複数回に分けても良く、途中で大気開放速度を変化させても良い。
Here, since the open time to the atmosphere is defined by the time required to return from the predetermined pressure to the atmospheric pressure, it becomes the portion shown in FIG.
However, the effect of the present invention is manifested when the pressure is suddenly changing. If a sudden pressure change has occurred, the air release operation may be divided into multiple times. The air release speed may be changed.

一例として、大気開放の操作を複数回に分けた場合の圧力プロファイルを図9(a)に、緩やかに除圧後、急激に大気開放を行った場合の圧力プロファイルを図9(b)に、急激に除圧をした後、緩やかに大気開放を行った場合の圧力プロファイルを図9(c)に示す。   As an example, FIG. 9 (a) shows the pressure profile when the air release operation is divided into a plurality of times, and FIG. 9 (b) shows the pressure profile when the air is released suddenly after the pressure is gradually released. FIG. 9 (c) shows a pressure profile when the pressure is released suddenly and then gradually released into the atmosphere.

なお、大気開放の操作を複数回に分けた場合は圧力変化を生じている時間の合計を大気開放時間とし、途中で大気開放速度を変化させる場合は、圧力変化の勾配が最大の部分を大気開放速度とする。   When the release operation is divided into multiple times, the total time during which the pressure change has occurred is defined as the release time, and when the release rate is changed halfway, the portion with the maximum pressure change gradient is The opening speed.

また、本実施例では大気開放を行っているが、一気に真空状態まで引いても良く、本発明は大気圧に限定されるものではない。
(実施の形態2)
図10〜図13は本発明の実施の形態を示す。
In this embodiment, the atmosphere is opened to the atmosphere, but the vacuum may be drawn at once, and the present invention is not limited to atmospheric pressure.
(Embodiment 2)
10 to 13 show an embodiment of the present invention.

実施の形態1では、電解液を注液する前に、極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧し、その後に大気開放に要する時間t[sec]について検討したが、この実施の形態2では極板群を挿入した前記電池ケース内を所定の圧力P[MPa]図1の加圧工程S2で加圧して大気開放を開始するまでの加圧保持時間t0について検討している。   In the first embodiment, before injecting the electrolytic solution, the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and then the time t [sec] required for opening to the atmosphere is examined. However, in the second embodiment, the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa] in the pressurizing step S2 in FIG. Are considering.

実施の形態1では、最初に、加圧槽1内の圧力を0.4MPa、0.6MPa、0.8MPa、1.0MPa、1.2MPa、1.4MPaの6条件とし、各圧力に達した後、その加圧状態を維持する時間(加圧保持時間)を1秒に固定して実験を行ったが、この実施の形態2では、加圧槽1内の圧力を0.8MPaとし、加圧保持時間を変えた電池で実験を行った。加圧保持時間は1秒、5秒、10秒、20秒の4条件で実験を行った。電池の寸法ならびに加圧装置などは実施の形態1と同じである。   In Embodiment 1, first, the pressure in the pressurizing tank 1 was set to 6 conditions of 0.4 MPa, 0.6 MPa, 0.8 MPa, 1.0 MPa, 1.2 MPa, and 1.4 MPa, and each pressure was reached. Thereafter, the experiment was conducted with the time for maintaining the pressurized state (pressurization holding time) fixed to 1 second. In the second embodiment, the pressure in the pressurizing tank 1 was set to 0.8 MPa, and the pressure was increased. Experiments were performed using batteries with different pressure holding times. The experiment was conducted under four holding conditions of 1 second, 5 seconds, 10 seconds, and 20 seconds. The dimensions of the battery and the pressure device are the same as in the first embodiment.

図10(a)は詳細な実験条件と結果の一覧であり、図10(b)は横軸に加圧保持時間、縦軸に良化率をとったグラフである。大気開放時間は、排気口3を解放後、加圧槽1内の圧力が大気圧に戻るまでの時間を測定したものである。この結果より、加圧状態は1秒以上保持しても、含浸性に影響しないことが判る。   FIG. 10A is a list of detailed experimental conditions and results, and FIG. 10B is a graph in which the horizontal axis represents the pressure holding time and the vertical axis represents the improvement rate. The air release time is a time measured after the exhaust port 3 is released until the pressure in the pressurized tank 1 returns to atmospheric pressure. From this result, it can be seen that the impregnation is not affected even if the pressurized state is maintained for 1 second or more.

そこで、加圧槽1内の圧力を、より短時間で変動させることができるよう、図11に示すように電池を1個ずつ処理が可能な、加圧槽1よりも小容積の加圧槽5を作成し、実験を行った。   Accordingly, the pressure tank having a smaller volume than the pressure tank 1 can be processed one by one as shown in FIG. 11 so that the pressure in the pressure tank 1 can be changed in a shorter time. 5 was made and experimented.

加圧槽5にも、給気口2と排気口3が設けられており、電池4を収納後、給気口2から高圧エアを吹き込むことで加圧槽5の内部および電池4を所定の圧力に加圧し、その後、排気口3から大気開放をすることができるようになっている。また、排気口3には弁(図示せず)を設けており、大気開放時の圧力変化の速度を調節できるようになっている。   The pressurization tank 5 is also provided with an air supply port 2 and an exhaust port 3, and after storing the battery 4, high pressure air is blown from the air supply port 2 so that the inside of the pressurization tank 5 and the battery 4 are kept in a predetermined state. The pressure is increased, and then the atmosphere can be released from the exhaust port 3. The exhaust port 3 is provided with a valve (not shown) so that the speed of pressure change when the atmosphere is released can be adjusted.

また、含浸時間の測定については、1.25cc電解液を注入し、加圧処理を行って電解液を押し込み、上記の操作を3回繰り返し、最後の電解液注入後、加圧処理を開始してから、電解液の液面が極板群内に含浸して、目視で液面が確認できなくなるまでの時間を測定した。   For the measurement of the impregnation time, a 1.25 cc electrolyte solution was injected, pressure treatment was performed, the electrolyte solution was pushed in, the above operation was repeated three times, and after the last electrolyte solution injection, the pressure treatment was started. Then, the time until the liquid level of the electrolytic solution was impregnated in the electrode plate group and the liquid level could not be visually confirmed was measured.

なお、評価においては、これまでと同様、良化率で評価しているが、本方法では±5%の測定誤差を生じることが確認されている。実験では、圧力変化を短時間で行うため、圧力を0.5MPaに設定して行った。   In the evaluation, the evaluation is performed with the improvement rate as before, but it has been confirmed that a measurement error of ± 5% is generated in this method. In the experiment, in order to change the pressure in a short time, the pressure was set to 0.5 MPa.

図12(a)は詳細な実験条件と結果の一覧であり、図12(b)は横軸に加圧保持時間、縦軸に良化率をとったグラフである。なお、実験に際しては、加圧の開始時点から大気開放を開始するまでの時間を設定し、加圧保持時間はデータロガーで測定した圧力プロファイルから実際に読み取った値を用いている。   FIG. 12A is a list of detailed experimental conditions and results, and FIG. 12B is a graph in which the horizontal axis represents the pressure holding time and the vertical axis represents the improvement rate. In the experiment, the time from the start of pressurization to the start of air release is set, and the pressurization holding time uses a value actually read from a pressure profile measured by a data logger.

この結果より、加圧保持時間が0.05sec以上で確実に含浸性を良化できることが判る。なお、図12(a)のデータより良化率に±5%程度のばらつきが認められるため、ばらつきを考慮し、5%以上の良化率が確認できる点として、0.05secのデータで6.70%に着目し、図12(b)のグラフを併せて考えると、0.05secを切った場合は、良化率が0のものも発生すると予想される。以上から、限界値を0.05secとしている。   From this result, it can be seen that the impregnation property can be reliably improved when the pressure holding time is 0.05 sec or more. In addition, since the variation of about ± 5% is recognized in the improvement rate from the data of FIG. 12A, considering the variation, the improvement rate of 5% or more can be confirmed. When focusing on .70% and considering the graph of FIG. 12 (b) together, it is expected that even when the period is less than 0.05 sec, the one with the improvement rate of 0 is also generated. From the above, the limit value is set to 0.05 sec.

また、図12(b)から加圧保持時間が0.85sec以上において、量化率が横ばいになることが判る。このことから、より効率的に含浸性を向上させるためには、加圧保持時間を0.85secにすることが望ましいと言える。ただし、本実験は外径18mm、長さ65mmの円筒形リチウムイオン二次電池を用いたものであり、より大きいサイズの電池であれば、極板群内部の圧力を充分に上昇させるため、より長時間の加圧保持時間を設ける必要がある。   In addition, it can be seen from FIG. 12B that the quantification rate becomes flat when the pressure holding time is 0.85 sec or more. From this, it can be said that it is desirable to set the pressure holding time to 0.85 sec in order to improve the impregnation property more efficiently. However, this experiment uses a cylindrical lithium ion secondary battery having an outer diameter of 18 mm and a length of 65 mm. If the battery has a larger size, the pressure inside the electrode plate group is sufficiently increased. It is necessary to provide a long pressure holding time.

最後に、加圧および大気開放の操作を繰り返しを実施して製造する場合には、図1の加圧工程S2で加圧して大気開放を開始するまでの加圧保持時間t0だけ加圧圧力を維持して大気開放を開始することを繰り返し実行することで、含浸性をより良化させることができる。   Finally, in the case of manufacturing by repeating the operation of pressurization and release to the atmosphere, the pressurization pressure is maintained for the pressurization holding time t0 from the pressurization step S2 in FIG. The impregnation property can be further improved by repeatedly performing the maintenance and starting the opening to the atmosphere.

この実施の形態2の場合も、実施の形態1の場合と同様に、図8に示した圧力プロファイルだけでなく、図9(a),図9(b),図9(c)の何れの圧力プロファイルでも実施できる。また、本実施例では大気開放を行っているが、一気に真空状態まで引いても良く、本発明は大気圧に限定されるものではない。   In the case of the second embodiment, as well as the case of the first embodiment, not only the pressure profile shown in FIG. 8 but any one of FIG. 9A, FIG. 9B, and FIG. It can also be implemented with a pressure profile. In this embodiment, the atmosphere is opened to the atmosphere, but the vacuum may be drawn at once, and the present invention is not limited to atmospheric pressure.

(実施の形態3)
上記の各実施の形態では、電池の製造方法を例に挙げて説明したが、コンデンサの製造方法においても同様の効果を得ることができる。
(Embodiment 3)
In each of the above embodiments, the method for manufacturing a battery has been described as an example, but the same effect can be obtained in a method for manufacturing a capacitor.

具体的には、電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入した後、所定量の電解液を注液してコンデンサを製造するに際し、電解液を注液する前に、極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧し、大気開放に要する時間t[sec]を、“P/t ≧ 0.5[MPa/s]”となるように大気開放することによって、電解液を極板群にすみやかに含浸させることができ、結果として、高密度で捲回された極板群の隙間が広がり、電解液を注入する際、極板群内に電解液をすみやかに含浸させることが可能となり、電解液が揮発する量を減らすことができる。好適には、前記加圧と大気開放を、複数回繰り返すことが望ましい。また、実施の形態2のように加圧保持時間t0を0.05sec以上で確実に含浸性を良化できる。   Specifically, when a separator is interposed between electrode plates and the electrode plate group formed by laminating or winding in a laminated state is inserted into an outer case, a predetermined amount of electrolyte is injected to manufacture a capacitor. Before injecting the electrolytic solution, the inside of the outer case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and the time t [sec] required for opening to the atmosphere is expressed as “P / t ≧ 0. 5 [MPa / s] "by opening to the atmosphere so that the electrolyte solution can be immediately impregnated into the electrode plate group, and as a result, the gap between the electrode plate group wound at high density is widened, When injecting the electrolytic solution, the electrolytic solution can be immediately impregnated into the electrode plate group, and the amount of the electrolytic solution volatilized can be reduced. Preferably, the pressurization and release to the atmosphere are repeated a plurality of times. Further, as in the second embodiment, the impregnation property can be reliably improved when the pressure holding time t0 is 0.05 sec or more.

本発明の製造方法は、電池またはコンデンサの製造時間の短縮に寄与でき、量産化における生産効率の向上に寄与できる。   The production method of the present invention can contribute to shortening the production time of a battery or a capacitor, and can contribute to the improvement of production efficiency in mass production.

S1 ケース挿入工程
S2 加圧工程
S3 大気開放工程
S4 注液・含浸工程
t0 加圧保持時間
t 大気開放に要する時間
P 所定の圧力
S1 Case insertion process S2 Pressurization process S3 Atmospheric release process S4 Injection / impregnation process t0 Pressurization holding time t Time required for atmospheric release P Predetermined pressure

Claims (12)

正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、電池ケースに挿入した後、所定量の電解液を注液して電池を製造するに際し、
電解液を注液する前に、極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧し、その後に大気開放に要する時間t[sec]を、
P/t ≧ 0.5[MPa/s]
となるように大気開放する
電池の製造方法。
When a battery is manufactured by injecting a predetermined amount of electrolyte after inserting an electrode plate group formed by interposing a separator between a positive electrode plate and a negative electrode plate and laminating or winding in a laminated state into a battery case,
Before injecting the electrolytic solution, the inside of the battery case in which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa], and then the time t [sec] required for opening to the atmosphere is
P / t ≧ 0.5 [MPa / s]
A method for manufacturing a battery that is opened to the atmosphere so that
前記加圧と大気開放を、複数回繰り返すことを特徴とする
請求項1に記載の電池の製造方法。
The method of manufacturing a battery according to claim 1, wherein the pressurization and release to the atmosphere are repeated a plurality of times.
前記加圧から大気開放の過程を、複数回に分けて実施、または途中で大気開放速度を変化させて実施することを特徴とする
請求項1に記載の電池の製造方法。
The method for manufacturing a battery according to claim 1, wherein the process from the pressurization to the air release is performed in a plurality of times, or the air release speed is changed during the process.
正極板と負極板にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、電池ケースに挿入した後、所定量の電解液を注液して電池を製造するに際し、
電解液を注液する前に、極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧し、その後に大気圧よりも低い圧力に開放に要する時間t[sec]を、
P/t ≧ 0.5[MPa/s]
となるように開放する
電池の製造方法。
When a battery is manufactured by injecting a predetermined amount of electrolyte after inserting an electrode plate group formed by interposing a separator between a positive electrode plate and a negative electrode plate and laminating or winding in a laminated state into a battery case,
Before injecting the electrolytic solution, pressurize the battery case in which the electrode plate group is inserted at a predetermined pressure P [MPa], and then set a time t [sec] required for opening to a pressure lower than the atmospheric pressure,
P / t ≧ 0.5 [MPa / s]
The manufacturing method of the battery open | released so that it may become.
前記加圧から大気圧よりも低い圧力に開放する過程を、複数回に分けて実施、または途中で開放速度を変化させて実施することを特徴とする
請求項4に記載の電池の製造方法。
The method for manufacturing a battery according to claim 4, wherein the process of releasing the pressure from the pressure to a pressure lower than the atmospheric pressure is performed in a plurality of times or by changing the opening speed in the middle.
極板群を挿入した前記電池ケース内を所定の圧力P[MPa]で加圧する期間が、0.05[sec]以上である
請求項1〜請求項5の何れかに記載の電池の製造方法。
The battery manufacturing method according to any one of claims 1 to 5, wherein a period during which the inside of the battery case into which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa] is 0.05 [sec] or more. .
電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入した後、所定量の電解液を注液してコンデンサを製造するに際し、
電解液を注液する前に、極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧し、その後に大気開放に要する時間t[sec]を、
P/t ≧ 0.5[MPa/s]
となるように大気開放する
コンデンサの製造方法。
When manufacturing a capacitor by injecting a predetermined amount of electrolytic solution after inserting an electrode plate group formed by interposing a separator between electrode plates and laminating or winding in a laminated state into an outer case,
Before injecting the electrolytic solution, the inside of the outer case into which the electrode plate group has been inserted is pressurized at a predetermined pressure P [MPa], and then a time t [sec] required for opening to the atmosphere is
P / t ≧ 0.5 [MPa / s]
A capacitor manufacturing method that opens to the atmosphere so that
前記加圧と大気開放を、複数回繰り返すことを特徴とする
請求項7に記載のコンデンサの製造方法。
The method for manufacturing a capacitor according to claim 7, wherein the pressurization and release to the atmosphere are repeated a plurality of times.
前記加圧から大気開放の過程を、複数回に分けて実施、または途中で大気開放速度を変化させて実施することを特徴とする
請求項7に記載のコンデンサの製造方法。
The method for manufacturing a capacitor according to claim 7, wherein the process from the pressurization to the air release is performed in a plurality of times, or the air release speed is changed during the process.
電極板の間にセパレータを介在させ、積層または積層状態で捲回させて成る極板群を、外装ケースに挿入した後、所定量の電解液を注液してコンデンサを製造するに際し、
電解液を注液する前に、極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧し、大気圧よりも低い圧力に開放に要する時間t[sec]を、
P/t ≧ 0.5[MPa/s]
となるように開放する
コンデンサの製造方法。
When manufacturing a capacitor by injecting a predetermined amount of electrolytic solution after inserting an electrode plate group formed by interposing a separator between electrode plates and laminating or winding in a laminated state into an outer case,
Before injecting the electrolytic solution, pressurize the inside of the outer case into which the electrode plate group is inserted at a predetermined pressure P [MPa], and set a time t [sec] required for opening to a pressure lower than atmospheric pressure.
P / t ≧ 0.5 [MPa / s]
A capacitor manufacturing method that opens so that
前記加圧から大気圧よりも低い圧力に開放する過程を、複数回に分けて実施、または途中で開放速度を変化させて実施することを特徴とする
請求項10に記載のコンデンサの製造方法。
The method for manufacturing a capacitor according to claim 10, wherein the process of releasing the pressure from the pressure to a pressure lower than the atmospheric pressure is performed in a plurality of times or by changing the opening speed in the middle.
極板群を挿入した前記外装ケース内を所定の圧力P[MPa]で加圧する期間が、0.05[sec]以上である
請求項7〜請求項11の何れかに記載のコンデンサの製造方法。
The method for manufacturing a capacitor according to any one of claims 7 to 11, wherein a period during which the inside of the outer case into which the electrode plate group is inserted is pressurized at a predetermined pressure P [MPa] is 0.05 [sec] or more. .
JP2009253559A 2009-02-13 2009-11-05 Method for manufacturing cylindrical battery Active JP4859972B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009253559A JP4859972B2 (en) 2009-02-13 2009-11-05 Method for manufacturing cylindrical battery
CN2010100054268A CN101807712B (en) 2009-02-13 2010-01-14 Method for making cell and capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009030566 2009-02-13
JP2009030566 2009-02-13
JP2009253559A JP4859972B2 (en) 2009-02-13 2009-11-05 Method for manufacturing cylindrical battery

Publications (2)

Publication Number Publication Date
JP2010212227A true JP2010212227A (en) 2010-09-24
JP4859972B2 JP4859972B2 (en) 2012-01-25

Family

ID=42972166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253559A Active JP4859972B2 (en) 2009-02-13 2009-11-05 Method for manufacturing cylindrical battery

Country Status (1)

Country Link
JP (1) JP4859972B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039335A1 (en) 2010-09-22 2012-03-29 三菱重工業株式会社 Battery module and battery system
JP2014022336A (en) * 2012-07-23 2014-02-03 Sharp Corp Liquid injection device and liquid injection method for nonaqueous secondary battery
WO2015146076A1 (en) * 2014-03-27 2015-10-01 三洋電機株式会社 Non-aqueous electrolytic solution secondary battery and production method therefor
JP2018106816A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Method for manufacturing battery
JP2023528908A (en) * 2021-03-09 2023-07-06 無錫先導智能装備股▲ふん▼有限公司 Sealed box and stationary device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799050A (en) * 1993-09-29 1995-04-11 Toshiba Corp Electrolyte filling device in manufacturing battery
JP2000340215A (en) * 1999-05-26 2000-12-08 Sony Corp Injecting method for electrolyte in manufacturing battery, and electrolyte injecting device
JP2000357639A (en) * 1999-06-17 2000-12-26 Nippon Chemicon Corp Method and system for impregnating electrolytic capacitor element
JP2001110401A (en) * 1999-10-12 2001-04-20 Sony Corp Liquid injection method and liquid injection apparatus
JP2005285584A (en) * 2004-03-30 2005-10-13 Tdk Corp Liquid impregnation method and device
JP2007165170A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd Method of manufacturing secondary battery and device of manufacturing same
JP2007173063A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Method of manufacturing flat battery and its manufacturing device
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery
JP2008059973A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Electrolyte pouring method and electrolyte pouring device of lithium secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799050A (en) * 1993-09-29 1995-04-11 Toshiba Corp Electrolyte filling device in manufacturing battery
JP2000340215A (en) * 1999-05-26 2000-12-08 Sony Corp Injecting method for electrolyte in manufacturing battery, and electrolyte injecting device
JP2000357639A (en) * 1999-06-17 2000-12-26 Nippon Chemicon Corp Method and system for impregnating electrolytic capacitor element
JP2001110401A (en) * 1999-10-12 2001-04-20 Sony Corp Liquid injection method and liquid injection apparatus
JP2005285584A (en) * 2004-03-30 2005-10-13 Tdk Corp Liquid impregnation method and device
JP2007165170A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd Method of manufacturing secondary battery and device of manufacturing same
JP2007173063A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Method of manufacturing flat battery and its manufacturing device
JP2007335181A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Manufacturing method and device for nonaqueous electrolyte secondary battery
JP2008059973A (en) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd Electrolyte pouring method and electrolyte pouring device of lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039335A1 (en) 2010-09-22 2012-03-29 三菱重工業株式会社 Battery module and battery system
JP2014022336A (en) * 2012-07-23 2014-02-03 Sharp Corp Liquid injection device and liquid injection method for nonaqueous secondary battery
WO2015146076A1 (en) * 2014-03-27 2015-10-01 三洋電機株式会社 Non-aqueous electrolytic solution secondary battery and production method therefor
JPWO2015146076A1 (en) * 2014-03-27 2017-04-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US10249909B2 (en) 2014-03-27 2019-04-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018106816A (en) * 2016-12-22 2018-07-05 トヨタ自動車株式会社 Method for manufacturing battery
JP2023528908A (en) * 2021-03-09 2023-07-06 無錫先導智能装備股▲ふん▼有限公司 Sealed box and stationary device
JP7443573B2 (en) 2021-03-09 2024-03-05 無錫先導智能装備股▲ふん▼有限公司 Sealed box and stationary device

Also Published As

Publication number Publication date
JP4859972B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4859972B2 (en) Method for manufacturing cylindrical battery
JP2007335181A (en) Manufacturing method and device for nonaqueous electrolyte secondary battery
KR101082496B1 (en) Method of preparation of lithium ion polymer battery, dry cell and lithium ion polymer battery the same
CN107403945B (en) A kind of soft package lithium ion power battery chemical conversion rolling method
JP2004247120A (en) Electrolyte liquid injection method and electrolyte liquid injection device
JP2012134047A (en) Method of manufacturing secondary battery and electrolyte injection device
CN104253262B (en) A kind of electrolyte filling method of lithium ion battery
WO2015073620A1 (en) Percolated microstructures for multi-modal transport enhancement in porous active materials
JP2013152834A (en) Manufacturing method of battery
CN110783631A (en) Electrolyte infiltration method for lithium battery
CN112821017A (en) Liquid injection method of lithium ion battery
US20130081264A1 (en) Method of fabricating secondary battery
JP2015079578A (en) Method of manufacturing secondary battery
KR20160068929A (en) Secondary cell production method
JP2015022861A5 (en)
JP2015527696A (en) Self-limiting electrolyte filling method
JP7004203B2 (en) Electrolyte injection device for storage batteries
JP4291194B2 (en) Liquid impregnation method and liquid impregnation apparatus
CN106654373A (en) Device for infiltrating electric core
JP2009252433A (en) Manufacturing method and manufacturing device of control valve type lead acid battery
US8834656B2 (en) Manufacturing method of porous composite film
JP7265711B2 (en) Battery manufacturing method
JP6542754B2 (en) Method of manufacturing secondary battery
JP2003059485A (en) Electrolyte filling method and device
KR102019828B1 (en) Method of inpregnating an electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R151 Written notification of patent or utility model registration

Ref document number: 4859972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3