JP2004247120A - Electrolyte liquid injection method and electrolyte liquid injection device - Google Patents

Electrolyte liquid injection method and electrolyte liquid injection device Download PDF

Info

Publication number
JP2004247120A
JP2004247120A JP2003034625A JP2003034625A JP2004247120A JP 2004247120 A JP2004247120 A JP 2004247120A JP 2003034625 A JP2003034625 A JP 2003034625A JP 2003034625 A JP2003034625 A JP 2003034625A JP 2004247120 A JP2004247120 A JP 2004247120A
Authority
JP
Japan
Prior art keywords
battery case
liquid
electrolyte
storage chamber
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034625A
Other languages
Japanese (ja)
Inventor
Takehiro Yanagi
岳洋 柳
Akira Akao
晃 赤尾
Takashi Inoue
隆史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003034625A priority Critical patent/JP2004247120A/en
Publication of JP2004247120A publication Critical patent/JP2004247120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection method and an injection device of an electrolyte liquid capable of obtaining a battery with high quality at low cost by reducing liquid loss of the electrolyte liquid, heightening liquid injection accuracy, reducing an impregnating time of the electrolyte liquid into an electrode group, and by preventing the electrolyte liquid from generation of air bubbles. <P>SOLUTION: The pressure of a sealed space of a liquid injection chamber 10, housing a battery case 8 in which an electrode group is stored, is reduced, and the inside of the battery case 8 and a secondary liquid storing chamber 42 having an opening are simultaneously evacuated. A liquid injection port 8a of the battery case 8 is airtightly connected to the opening of the chamber 42 so as to communicate with each other. A fixed amount of electrolyte liquid 2 in a primary liquid storing chamber 12 is transferred to the second chamber 42 through a liquid passage 37 by opening a liquid injection valve 38, and the chamber 42 is kept in an airtight state by closing the liquid injection valve 38. The electrolyte liquid 2 in the chamber 42 is injected in the battery case 8 by reducing an inner cubature of the chamber 42 by the movement of a piston 34 and by directly pressing the electrolyte liquid 2 in the chamber 42 by the piston 34. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として、密閉型電池の製造過程における極板群が収納された電池ケース内に所定量の電解液を注液する工程での電解液注液方法およびその注液方法を具現化した電解液注液装置に関するものである。
【0002】
【従来の技術】
密閉型電池は、電池ケース内に極板群を収納したのちに電解液を注液し、電池ケースの開口部または注液口を密閉状態に閉塞する工程を経て製造されている。電解液の注液工程では、電池ケース内に注入した電解液が、正,負の極板をセパレータを介在させて高密度に積層または積層状態で渦巻状に巻回されてなる極板群の小さな隙間に浸透し難いために、所定量の電解液を極板群に含浸させるまでに長時間を要する。
【0003】
電解液を速やかに極板群に含浸させるために、従来では、電解液を注入した電池ケースの開口部に気密状態で接続した真空ポンプにより電池ケース内を減圧することにより、電池ケース内の減圧に伴って極板群の隙間に存在する空気を気泡として電解液の液面に浮上させることが行われていた。ところが、この注液手段では、電解液の極板群への浸透をある程度促進できるが、極板群の隙間に存在する空気が微細な気泡となるため、この微細な気泡が、極板群の表面に付着したりして電解液の液面に速やかに浮上しないので、電解液の注液時間を十分に短縮することができない。
【0004】
また、電解液の注液時間をさらに短縮するために、上述の減圧手段に加えて、電解液を充填した電池ケースの開口部を閉塞した状態で電池ケース内の電解液を不活性ガスなどで加圧することにより、電解液を極板群に強制的に浸透させるように図った装置も知られている。しかし、この装置は、電池ケースの加圧状態を解除して大気圧に戻した瞬間に、極板群の隙間で加圧されて小さく押し潰されていた気泡が大きく膨張するため、極板群の隙間に一旦含浸させた電解液が電池ケースの外部に飛び出してしまう問題がある。
【0005】
そこで、従来では、上述した問題の解消を図るために、次に説明する種々の注液装置(以下、第1ないし第5の従来技術という)が提案されている。すなわち、第1の従来技術の注液装置は、図13に示すように、極板群61が予め収納された電池ケース60を閉塞シリンダ62によって気密に閉塞し、吸引部63を介して接続された減圧機(図示せず)の駆動によって電池ケース60内を減圧した状態でピストン64を駆動することにより、一時貯液室65内の電解液66を注液管67から電池ケース60内に注液するとともに、減圧機の駆動制御によって電池ケース60内を減圧状態から加圧状態に変えて、電解液66の極板群61への浸透を促進するようになっている(特許文献1参照)。
【0006】
上記注液装置では、注液管67の上端が一時貯液室65内の電解液66の液面よりも上方まで突出されており、一時貯液室65内に注入された電解液66を注液管67に流入させずに貯留した状態において、電池ケース60の内部を減圧したのちに、ピストン64が一時貯液室65内の電解液66の液面を押し上げて電解液66を注液管67の導入口から流入させて注液管67を介し電池ケース60内に注液するようになっている。
【0007】
この注液装置では、閉塞シリンダ62で閉塞した電池ケース60内を減圧機で減圧して電池ケース60内の空気を排気するので、極板群61の隙間に存在する空気も排気される。これにより、電池ケース60に注入した電解液66は、極板群61の微細な隙間への浸透を促進されながら、極板群61に含浸される。そののち、電池ケース60内の圧力が上昇することにより、電解液66が極板群61に強制的に含浸される。
【0008】
また、第2の従来技術の注液装置は、上記第1の従来技術の構成に加えて、電池ケースの開口部に注液ノズルを連結して、閉塞状態の一時貯液室の上部に気泡分離チャンバを設け、この気泡分離チャンバに開口された排気口から一時貯液室内の空気を排気して減圧することにより、一時貯液室に蓄えられている電解液に含まれている気泡を浮上させて気泡分離チャンバで分離し、気泡を分離しながら電解液を注液ノズルを介し電池ケース内に注入するようになっている(特許文献2参照)。この注液装置は、気泡が電解液と共に電池ケース内に注入されるのを防止しようとするものである。
【0009】
また、第3の従来技術の注液装置は、図14に示すように、内部に電池ケース60を着脱自在に保持して昇降可能な保持台68と注液ノズル69とを具備し、開閉自在な密閉容器に形成された注液チャンバ70と、この注液チャンバ70に計量ポンプ71を介して管路接続され、電解液66を貯蔵する電解液タンク72と、注液チャンバ70にそれぞれ電磁弁75,76を介して管路接続された真空チャンバ73および大気開放部74と、注液チャンバ70および真空チャンバ73にそれぞれ電磁弁78,79を介して管路接続された真空ポンプ77とを有している(特許文献3参照)。
【0010】
この注液装置では、注液チャンバ70を密閉状態として、電磁弁75を開くことにより、予め真空ポンプ77の駆動によって内部が低圧に保持されている真空チャンバ73を注液チャンバ70に連通して、注液チャンバ70内に収納されている電池ケース60の内部を真空引きし、そののち、保持台68の上昇によって電池ケース60の注液口60aを注液ノズル69に接続し、注液バルブ80を開いて計量ポンプ71により所定量の電解液66を注液口60aから電池ケース60内に注液し、この注液工程の後に、保持台68の下降により注液口60aを注液ノズル69から分離し、電池弁76を開いて注液チャンバ70内の圧力を大気圧とすることにより、電池ケース60内の電解液66を大気圧で加圧して極板群61の隙間に強制的に浸透させるように図っている。
【0011】
この注液装置では、内部を予め低圧に保持した真空チャンバ73を注液チャンバ70に連通することにより、真空引き時間の短縮化を図って能率的に注液できるようにしている。また、計量ポンプ71を管路を介して注液ノズル69に接続することにより、注液経路において電解液66に空気が混入することによる気泡の発生を防止するようにしている。
【0012】
また、第4の従来技術の注液装置は、電池ケースの開口部を気密に封口する閉塞部と、その一端側が閉塞部に接続されるとともに他端側に電解液が供給される注入ラインと、この注入ラインの途中に設けられ、電池ケース内の極板群に含浸させる所定量の電解液を貯留する貯留部と、この貯留部を第1気圧まで減圧する第1の減圧部と、貯留部内を大気開放する大気開放部と、電池ケース内を第1気圧より低い第2気圧まで減圧する第2の減圧部とを備えている(特許文献4参照)。
【0013】
この注液装置では、貯留部内を第1気圧まで減圧することによって電解液から脱泡し、電池ケース内を貯留部の内部以上の高い真空圧に減圧することによって電解液の極板群への浸透を促進し、貯留部内を大気開放することによって電解液を加圧して電解液の極板群への含浸を促進するように図っている。
【0014】
また、第5の従来技術の注液装置は、所定量の電解液を蓄えた一時貯液室と、極板群を収納した電池ケースとを、個別の貯液室減圧機構およびケース減圧機構により別々に排気して減圧することにより、一時貯液室を電池ケースよりも高い圧力に減圧し、開閉弁を開弁することにより電池ケースと一時貯液室との圧力差によって一時貯液室内の電解液を電池ケース内に充填するようにしている(特許文献5参照)。
【0015】
この注液装置では、電池ケースと一時貯液室とを別々に減圧することにより、電池ケースを充分に減圧して電池ケース内の空気を確実に排気するとともに、一時貯液室を、減圧によって電解液を変質させることなく減圧した上で、電解液をより速やかに効率よく電池ケース内に注液できるように図っている。
【0016】
【特許文献1】
特開平9−99901号公報
【0017】
【特許文献2】
特開平11−26331号公報
【0018】
【特許文献3】
特開2000−182599号公報
【0019】
【特許文献4】
特開平11−73942号公報
【0020】
【特許文献5】
特開2002−274504号公報
【0021】
【発明が解決しようとする課題】
しかしながら、上述した従来の各注液装置には、何れも解決しなければならない問題が残存している。すなわち、図13の第1の従来技術の注液装置では、電解液66の注入に先立って電池ケース60内を減圧機の駆動により真空引きするときに、一時貯液室65における電解液66の液面よりも上方の空間が注液管67を通じて電池ケース60と連通状態になっているので、電池ケース60内を電解液66の蒸気圧以下の真空度に高めることができないだけでなく、一時貯液室65内の電解液66を確実に電池ケース60内に注液することができない。しかも、ピストン64により電解液66を加圧するときに、電池ケース60と注液管67の注液口との間が離間しているので、ピストン64で加えた圧力をそのまま電解液66に伝えることがきないから、電解液66の極板群への含浸を十分に促進することができず、注液時間が長くかかるとともに、電池ケース60内の電解液66が外部にこぼれ出る可能性があり、電解液66が電池材料の中でも高価な材料の一つであることから、経済的損失が大きくなる。これらにより、この注液装置では、電池ケース60への電解液66の注液精度が低下するから、電池容量の低下を招く。
【0022】
また、上記注液装置では、一時貯液室65に蓄えられている電解液66に気泡が存在していると、その後の注液工程において気泡を取り除くことができないので、気泡が電解液66と共に電池ケース60内に注入されてしまい、電池としたときに所要の電気特性が得られないことから、電池の品質低下を招く。さらに、ピストン64によって一時貯液室65内の電解液66を注液管67を介し電池ケース60内に注液するときには、ピストン64による加圧力を電池ケース60内の電解液66に直接的に作用させることができない。何故ならば、電池ケース60と注液管67の注液口との間が離間しているからである。これらにより、この注液装置では、電解液66を極板群61に迅速に浸透させることができず、注液時間を十分に短縮することができないことがある。
【0023】
また、第2の従来技術の注液装置では、一時貯液室に蓄えられている電解液の気泡を浮上させて気泡分離チャンバで分離することにより、気泡を取り除くことができるが、第1の従来技術と同様に、電解液の注入に先立って電池ケース内を減圧機の駆動により真空引きするときに、一時貯液室における電解液の液面よりも上方の空間が注液管を通じて電池ケースと連通状態になっているので、電池ケース内を電解液の蒸気圧以下の真空度に高めることができないから、やはり電解液を極板群に迅速に浸透させることができず、注液時間を十分に短縮することができないとともに、注液精度が条件設定により低い場合がある。
【0024】
さらに、第3の従来技術の注液装置では、一時貯液部を設けずに計量ポンプ71を電池ケース60に管路で密閉状態に直結して、計量ポンプ71と電池ケース60間を電解液66で充満させるようにしているので、精度良く注液するためには、一つの計量ポンプ71で対応する方が好ましい。
【0025】
また、この注液装置では、電池ケース60内を真空引きする時間の短縮化を図っているが、高容量電池では、真空引き時間よりも電池ケース60内の電解液66を加圧して極板群61に浸透させるのに時間がかかる。これに対し、この注液装置では、電解液66を電池ケース60に注入したのち、電池ケース60の注液口60aを注液ノズル69から離間させて、注液チャンバ70内を大気圧とし、この大気圧でのみ電池ケース60内の電解液66を加圧するだけである。このような加圧手段では、電解液66を極板群61に浸透させるのに時間がかかり、特に、多連にした場合には生産性が著しく低下する。
【0026】
さらに、第4の従来技術の注液装置では、大気圧下で貯留部内に注入した電解液を真空引きすることによって液中の気泡を除去するように図っているので、脱泡に時間がかかり過ぎるだけでなく、液中の気泡を完全に除去することが難しい。また、電解液を極板群に浸透させるに際しては、予め減圧した電池ケース内の真空圧と大気圧との差圧のみに頼っているので、電解液を極板群に含浸させるのに長時間を要するだけでなく、大気圧に開放していることから、電解液が極板群に浸透されていく過程において電解液中に気泡を巻き込んでしまい、電解液の含浸時間が逆に長くかかったり、電解液が電池ケースの外部に溢れ出るといった不具合が発生し易い。
【0027】
また、この注液装置では、電解液を極板群の隙間に迅速に浸透させるために、電池ケースを大気圧に開放すると同時にピストンで電池ケース内を加圧する手段も設けているが、この場合には電解液中に気泡が混入し易い。
【0028】
さらにまた、第5の従来技術の注液装置では、電池ケースと一時貯液室とを別々に減圧することにより、電解液中の気泡の除去および注液過程での電解液への気泡の混入を防ぐことができるが、電池ケースと一時貯液室との差圧のみに頼って電解液を電池ケース内に注入しており、電解液を電池ケース内に強制的に注入する手段を備えていないので、電解液の極板群への含浸に時間がかかり、生産性を高めることができないだけでなく、粘性の高い電解液が液供給経路の内壁面に付着残存し易いので、注液精度が低く、また、気泡が生じ易い。
【0029】
しかも、上記注液装置では、電池ケースと一時貯液室とを別々に減圧するために、貯液室減圧機構の内部に一時貯液室を設けた充填シリンダを備え、この充填シリンダの内部にケース減圧機構の気体排気路を有する排気シリンダを配設し、排気シリンダを充填シリンダの内部で軸方向に上下に移動できるように配設するとともに、排気シリンダの下端に開閉弁を設け、排気シリンダを上昇させて開閉弁を開弁し、排気シリンダを下降させて開閉弁を閉弁するといった極めて複雑な構成になっているので、コスト高となる。
【0030】
上述のように、従来の各注液装置には、電解液を極板群に浸透させるのに時間がかかって生産性が低く、電解液中に気泡が混入し易く、あるいは電解液中の気泡を完全に取り除くのが困難であるのに起因して電池の品質が低下し、設備費用が高くついたり、あるいは液ロスが多いのに伴ってコスト高となるだけでなく、多量の液ロスの発生に伴い注液精度が低くなって安定した電池性能を得られないといった問題が残存している。
【0031】
そこで、本発明は、上記従来の課題に鑑みてなされたもので、電解液の液ロスを格段に低減して高い注液精度を得ながらも、電解液の極板群への含浸時間の短縮化を図ることができるとともに、気泡の電解液への混入を防止して高品質の電池を得ることができ、さらに、コスト低減を図ることもできる電解液注液方法および電解液注液装置を提供することを目的とするものである。
【0032】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る電解液注液方法は、電解液タンクから定量の電解液を一次貯液室内に供給する電解液供給工程と、極板群を収納した電池ケースを注液チャンバの内部の密閉空間に収容して前記密閉空間内を減圧することにより、前記電池ケースの内部と、中間に注液バルブを介設した液通路を介して前記一次貯液室に連通し、且つ前記密閉空間に向けて開口した二次貯液室の内部とを同時に真空引きする電池ケース排気工程と、内部を真空引きした前記電池ケースの注液口または開口部を前記二次貯液室の開口部に気密状態に連通接続する電池ケース接続工程と、前記注液バルブを開くことにより、前記一次貯液室内の電解液を前記液通路を介して前記二次貯液室に送給する電解液移送工程と、前記一次貯液室内の電解液を前記二次貯液室に送給し終えたのちに前記注液バルブを閉じて前記二次貯液室を密閉状態に保持し、ピストンの作動によって前記二次貯液室の内部容積を縮小していくことにより、前記二次貯液室内の電解液を前記ピストン表面で直接に加圧しながら前記電池ケース内に注入する注液工程とを備えていることを特徴としている。
【0033】
この電解液注液方法では、ピストンの作動で二次貯液室の内部容積を気密状態に保持しながら縮小することにより、加圧ガスなどを介在させることなくピストンで電解液を直接的に加圧しながら、この電解液を、予め真空引きした二次貯液室に連通接続した電池ケースの注液口または開口部を介して予め真空引きした電池ケース内に強制的に注入するので、電解液の極板群への含浸時間を大幅に短縮することができるとともに、一次貯液室から液通路および二次貯液室を介して電池ケースの内部に至る注液通路の何れの箇所においても電解液が大気に触れることがなく、また、ピストンの加圧力を電解液に直接的に作用させていることから、注入過程の電解液中にガスが混入することがないので、加圧開放時に電解液中のガスが気泡となって電解液を溢れさせるといったことが生じるおそれがなく、また、液ロスが減少して注液精度が格段に向上し、電気特性の安定した高品質の電池を得ることができる。
【0034】
上記発明における注液工程において、ピストンによる電解液への加圧力と同等の膨れ防止用加圧力を電池ケースの外面に対し付与することが好ましい。この手段によれば、ピストンの加圧力を電解液に直接的に作用させて電解液を電池ケース内に強制的に注入するにも拘わらず、特に内部に加圧力を受けた場合に外方へ膨れ変形し易い角形の電池ケースに電解液を注液する場合においても、この角形の電池ケースの長辺側板部が外方に膨れ変形するのを防止することができる。したがって、ピストンによる加圧圧力を高く設定して電解液の注液を促進した場合にも、電池ケースの外方への膨れ変形を防止することができる。
【0035】
上記膨れ防止用加圧力を付与する手段として、長方形または長円形の横断面形状を有する角形の電池ケースを、前記電池ケースの外周面との間に少許の隙間を形成できる内周面を有する保形容器内に挿入した状態で注液チャンバの密閉空間内に収容し、前記電池ケースの膨出を阻止する加圧力を前記保形容器の内周面で付与することができる。
【0036】
これにより、極めて簡単な構成としながらも、角形の電池ケースへの外方への膨れ変形を確実に防止できるとともに、ピストンによる加圧力を解除して電池ケースの注液口を二次貯液室から離間したときに、電池ケースが元の形状に復帰するので、電解液の注液済みの電池ケースを保形容器から容易に取り出すことができる。
【0037】
上記膨れ防止用加圧力を付与する他の手段として、注液チャンバの密閉空間内に不活性ガスを供給して、前記密閉空間内の圧力がピストンによる電解液への加圧力とほぼ同等になるように不活性ガスの供給を制御するようにしてもよい。この手段によっても電池ケースへの外方への膨れ変形を効果的に防止することができる。
【0038】
上記発明において、電解液供給工程に先立って電解液タンク内を真空引きすることにより、電解液中の気泡を除去する予備脱泡工程を備えていることが好ましい。これにより、電解液タンク内の電解液をこれに含まれている気泡の大部分を除去した上で一次貯液室内に供給することができる。
【0039】
また、上記発明において、電解液供給工程を経て定量の電解液が供給された一次貯液室内を真空引きして電解液中の気泡を除去する脱泡工程を備えるとともに、電解液移送工程において、注液バルブを開いて前記一次貯液室の電解液の液面の真空圧力と二次貯液室の真空圧力との差圧により前記一次貯液室内の電解液を前記二次貯液室に供給することが好ましい。
【0040】
この手段によれば、一次貯液室内の電解液に残存する気泡を除去したのちに、一次貯液室の電解液の液面の真空圧力と二次貯液室の真空圧力との差圧により一次貯液室内の電解液を二次貯液室に供給するので、電解液が大気に触れることがないことから、電解液に気泡が混入するおそれがなく、且つ電解液の蒸発量を格段に軽減できるから、液ロスが一層低減して注液精度がさらに向上する。
【0041】
上記発明における注液工程においてピストンが所定のストロークだけ作動して停止したのちに、注液バルブを開いて一次貯液室内から液通路を介して二次貯液室に不活性ガスを供給し、前記二次貯液室内に残存する電解液を前記不活性ガスの流通により電池ケース内に注入する第2の注液工程と、電解液の液面が電池ケースの注液口より低くなった時点で前記注液バルブを閉じたのちに、前記電池ケースの注液口を前記二次貯液室から離間させ、注液チャンバ内に供給する不活性ガスの圧力により前記電池ケース内の電解液を加圧する第3の注液工程とを備えていることが好ましい。
【0042】
これにより、ピストンの加圧力を二次貯液室内の電解液に直接的に作用させて、所定量の電解液の殆どを電池ケース内に強制的に注入したのちに、二次貯液室に残存する電解液を、一次貯液室、液通路およびピストンを介して供給した加圧気体で加圧し、さらに、電池ケース内の電解液を注液チャンバの密閉空間に供給した加圧気体で加圧するので、所定量の電解液に残液が生じることなく確実に注入できるので、注液精度が一層向上するとともに、電解液を電池ケース内の極板群に極めて円滑に浸透させることができ、注液時間のさらなる短縮化を図ることができる。
【0043】
同上の発明における第3の注液工程に代えて、第2の注液工程によって電解液の液面が電池ケースの注液口より低くなった後も、この第2の注液工程の状態を保持したまま、一次貯液室、液通路および二次貯液室を通じて電池ケース内に供給する不活性ガスをの圧力により前記電池ケース内の電解液を加圧する第3の注液工程を設けることもできる。
【0044】
この場合にも、所定量の電解液を、電池ケース内の極板群の微細な隙間に極めて効率的に浸透させて、短時間で電池ケース内に充填することができるので、注液時間のさらなる短縮化と、注液精度の一層の向上とを図ることができる。
【0045】
一方、本発明に係る電解液注液装置は、内部が一次貯液室となった密閉容器である一次貯液容器と、定量ポンプの駆動により電解液タンクから供給される定量の電解液を前記一次貯液室に注入する注液ノズルと、前記一次貯液室にそれぞれ管路接続された第1の真空ポンプおよび第1の加圧気体供給部と、ピストンと、上端が前記一次貯液室に連通し、且つ下部がピストンに貫通された液通路と、この液通路の中間に介設された注液バルブとを一体に備えて昇降されるピストン機構と、開閉自在な気密容器である注液チャンバと、前記注液チャンバの内部に設けられて、電解液を注液すべき電池ケースを保持しながら昇降させる電池ケース支持台と、前記注液チャンバの上端部に気密状態で貫通して支持されたシリンダと、このシリンダの内周面に気密状態で摺動される前記ピストンと、前記電池ケース支持台の上昇により前記シリンダの下端面に気密に当接される前記電池ケースの上端面とで囲まれて、閉状態の前記注液バルブで前記液通路が閉塞されることにより密閉空間に形成される二次貯液室とを備えていることを特徴としている。
【0046】
この電解液注液装置では、第1の真空ポンプで一次貯液室内を真空引きすることができ、第1の加圧気体供給部により一次貯液室および液通路を介して二次貯液室内に加圧気体を供給して電解液に作用させることができ、注液バルブの開閉によって一次貯液室と二次貯液室間とを液通路を介し接続および遮断することができ、ピストン機構によって二次貯液室内の電解液を直接的に加圧でき、シリンダとピストンと電池ケースとにより密閉空間の二次貯液室を構成することができるから、本発明の電解液注液方法を忠実に具現化して、当該注液方法の効果を確実に得ることができる。なお、二次貯液室を形成する電池ケースの上端面とは、角形の電池ケースの場合、電池ケースの上端開口部を密閉した封口板における注液口の孔周縁部であり、円筒形の電池ケースの場合、電池ケースの開口端面全体であり、これら何れの場合にも、シリンダの下端面に対し、密閉用パッキンやリングパッキンなどの封止部材を介在して密閉状態に当接される。
【0047】
上記発明において、注液チャンバの内部に設けられて、電解液を注液すべき電池ケースを保持しながら昇降させる電池ケース支持台と、注液チャンバの内部の密閉空間にそれぞれ管路接続された第2の真空ポンプおよび第2の加圧気体供給部とを備えていることが好ましい。
【0048】
この構成によれば、電池ケース支持台の昇降動作により、電池ケースの注液口または開口部を二次貯液室の開口部に対し気密状態に連通接続または離間させることができ、第2の真空ポンプおよび第2の加圧気体供給部によって一次貯液室とは別個に注液チャンバに対し真空引きおよび加圧気体による加圧をそれぞれ行うことができる。
【0049】
上記発明において、ピストンの円筒外周面における少なくとも下端部分に、シリンダの内周面に気密状態で摺動する配置でピストンシールが固着されていることが好ましい。これにより、粘性の高い電解液がシリンダの内面に付着していても、この付着している電解液をピストンシールで拭い取って電池ケース内に注入できるので、これによっても注液精度のさらなる向上を図ることができる。
【0050】
上記発明において、定量ポンプを介在して電解液タンクに管路接続された注液ノズルが、一次貯液室に対し着脱自在に連結される可動式になっている構成を備えていることが好ましい。この構成によれば、装置を多連に配設する場合に、定量ポンプと電池ケースとを一対一で対設する必要がないので、簡単で安価な構成とすることができ、設備コストを含む製造コストを大幅に低減できる。
【0051】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は、本発明の一実施の形態に係る電解液注液方法を具現化した電解液注液装置を示す概略縦断面図である。この実施の形態では、長方形または長円形の横断面形状を有する角形の電池ケース8に電解液2を注液する場合を例示してある。この角形の電池ケース8に注液する場合には、電池ケース8の開口部を閉塞する封口板(図示せず)に設けられた比較的小さな注液口8aから電解液2を注液するので、上端全周が開口した円筒形の電池ケースとは異なり、効率的に電解液2を注入するのが難しい。また、角形の電池ケース8は、内部に圧力が加えられたときに、短辺側板部8cに比べて面積の大きい長辺側板部8bが外方に膨れる状態に変形し易い。
【0052】
上記電解液注液装置は、構成を大別すると、電解液2を貯留する電解液タンク1、この電解液タンク1から定量ポンプ3および注液ノズル4を介して供給された所定量の電解液2を内部の一次貯液室12内に一時的に貯留する一次貯液容器7、この一次貯液容器7から供給された電解液2を収容して電池ケース8内に注入するシリンダ9、シリンダ9内の電解液2を加圧しながら電池ケース8内に注入するピストン機構33および電解液2を注液すべき電池ケース8を収容するための密閉容器である注液チャンバ10を備えて構成されている。
【0053】
上記電解液タンク1に貯留されている電解液2は、この実施の形態においてリチウム二次電池用の電解液であって、EC(エチレンカーボネート)とDMC(ジメチルカーボネート)の混合溶媒にLPFを10wt%溶解したものである。この電解液2の蒸気圧は、2.4kPa(18mmHg、9℃)である。上記定量ポンプ3は、吸入側ヘッドに電解液タンク1が管路接続され、吐出側ヘッドに注液ノズル4が管路接続されている。また、電解液タンク1には、電磁弁5を介在して脱泡用真空ポンプ15が管路接続されているとともに、他の電磁弁16を介在して大気開放部に管路接続されている。
【0054】
上述の電解液タンク1、定量ポンプ3および注液ノズル4は、所定の注液ステーションに固定的に設置されており、これら構成を除く装置本体は、順次搬送されて注液ステーションに位置決め停止される。注液ノズル4は、装置本体が停止して一次貯液容器7の蓋体6が取り外されたときに、一次貯液容器7の内部の一次貯液室12に対し着脱自在に連結される可動式になっている。この一次貯液室12を開閉する蓋体6は、密閉用パッキン24を介して一次貯液室12を気密に密閉する。
【0055】
上記一次貯液室12の上端部の排気兼加圧口に連通して一次貯液容器7に接続された接続管19には、第1の真空ポンプ14が第1の電磁弁13を介在した管路を通じて接続されているとともに、第1の加圧気体供給部18が第2の電磁弁17を介在した管路を通じて接続されている。この第1の加圧気体供給部18は、加圧気体を1MPa以下の圧力で供給するものである。加圧気体としては、窒素、アルゴン、ネオンまたはヘリウムなどの不活性ガスを用いることができるが、この実施の形態ではNを用いている。なお、一次貯液室12の上端部の排気兼加圧口はφ1〜2mm程度の小径に形成されている。
【0056】
一方、上記注液チャンバ10はチャンバ上部体10Aとチャンバ下部体10Bとに分離されている。チャンバ上部体10Aは装置本体に固設され、チャンバ下部体10Bは、昇降自在に設けられて、チャンバ上部体10Aに対し接離するようになっている。この注液チャンバ10は、上昇されたチャンバ下部体10Bがリング状のシール部材21を介在してチャンバ上部体10Aに圧接されることにより、内部が密閉容器に形成される。
【0057】
上記チャンバ下部体10Bの内部には、電池ケース8が挿抜自在に挿入される保形容器25と、この保形容器25を支持する電池ケース支持台22と、この電池ケース支持台22を昇降させる電池ケース昇降機構23とが設けられている。保形容器25は、長方形または長円形の横断面形状を有する角形の電池ケース8の外周面との間全体に少許の隙間を形成できる内周面を有する形状になっており、電池ケース8を容易に挿入および抜脱できるが、電池ケース8が後述する加圧力を受けて膨出されようとしたときに、この膨出を阻止する加圧力を電池ケース8に付与するよう機能する。電池ケース昇降機構23は、図示を省略しているが、バルブを介在した配管を通じてコンプレッサに接続されており、電池ケース支持台22を支持するピストン23aがバルブの切換制御によって所定のストロークで上下動される。
【0058】
上記チャンバ上部体10Aには、これの上面壁を気密状態に貫通した状態で上記シリンダ9が取り付けられている。このシリンダ9の内側下端部は漏斗状に縮径されて、その下端開口は、角形の電池ケース8における比較的小さな注液口8aに対応する径の送液口9aに形成されている。さらに、シリンダ9の下端面には、上記送液口9aを囲む配置で密閉用パッキン27が固着されている。この密閉用パッキン27の材質は、弾力性と密着性に優れたEPDMである。
【0059】
さらに、チャンバ上部体10Aの側面壁に貫通して取り付けられた接続管28には、第2の真空ポンプ29が第3の電磁弁30を介在した管路を通じて接続されているとともに、第2の加圧気体供給部31が第4の電磁弁35を介在した管路を通じて接続されている。上記第2の加圧気体供給部31は加圧気体を1MPa以下の圧力で供給するものである。加圧気体としては、窒素、アルゴン、ネオンまたはヘリウムなどの不活性ガスを用いることができるが、この実施の形態ではNを用いている。
【0060】
上記一次貯液容器7とシリンダ9との間には、ピストン昇降シリンダなどからなるピストン昇降機構32によって昇降されるピストン機構33が設けられている。このピストン機構33は、シリンダ9の内周面に摺動して上下動されるピストン34と、このピストン34に連結された連結体36と、この連結体36およびピストン34にそれぞれ貫通されて上端開口が一次貯液室12に連通した液通路37と、連結体36における液通路37の中間に介設された小形の注液バルブ38とを備えて構成されている。上記液通路37は、φ1〜2mm程度の小径に形成されている。なお、連結体36の上端は、後述の図7〜図11に図示する補助連結体43を介してピストン昇降機構32に連結されており、液通路37は、その補助連結体43を介して一次貯液室12に連通されている。
【0061】
また、ピストン34の外周面には、二つの周方向の環状溝11が上下端に離間して形成されており、この環状溝11には、Oリングからなるピストンシール41が嵌合して固着されている。このピストンシール41は、ピストン34が上下動されるときに、シリンダ9の内周面に気密状態に摺動して、シリンダ9内を常に閉塞状態に保持する。また、ピストン34の下端面は、シリンダ9に対応した漏斗形状に形成されている。
【0062】
上記電池ケース8は、内部に極板群(図示せず)が予め収納されたのち、保形容器25に上方から挿入して保持された状態で電池ケース支持台22上に着脱自在に支持される。この保形容器25内に保持された電池ケース8は、電池ケース昇降機構23が上限位置まで上昇されたときに、同図に示すように、電池ケース8の上端面が密閉用パッキン27に対しこれを0.5mm程度圧縮させる力で押し付けられる。これにより、シリンダ9は、下端の送液口9aを密閉用パッキン27でシールされた状態で電池ケース8により気密に接続され、且つ上部をピストン34およびピストンシール41で閉塞されて、内部に密閉空間である二次貯液室42が形成される。但し、この二次貯液室42は、密閉用パッキン27を介して電池ケース8の内部と連通しており、注液バルブ38が開いたときに液通路37を通じて一次貯液室12と連通する。
【0063】
なお、上記二つの接続管19,28には、それぞれ電磁弁39,40を介設した大気開放用管路が分岐接続されており、チャンバ下部体10Bの下降動作に先立って上記各電磁弁39,40が開かれることにより、一次貯液室12および注液チャンバ10の密閉空間がそれぞれ大気開放されて、上述した加圧気体が外部に放出されるようになっている。
【0064】
つぎに、上記電解液注液装置による注液動作について、その注液工程を順に示した図2ないし図11を参照しながら説明する。これらの図において、定量ポンプ3、各真空ポンプ14,15,29および各加圧気体供給部18,31は、理解を容易にするために、駆動状態時を実線で、且つ非駆動状態時を破線でそれぞれ模式的に図示してある。
【0065】
先ず、図2の電池ケース装着工程では、装置本体が、注液チャンバ10のチャンバ下部体10Bがチャンバ上部体10Aから離間して下方の電池ケース装着位置まで下降された状態で搬送されて、注液ステーションに位置決め停止されると、このチャンバ下部体10B内の保形容器25内に、極板群が予め収納された角形の電池ケース8が挿抜自在に挿入して取り付けられる。このとき、脱泡用真空ポンプ15が実線で図示するように駆動されており、これにより、電解液タンク1内の電解液2中の気泡が予め除去される。
【0066】
続いて、図3に示すように、電池ケース8が電池ケース支持台22上の保形容器25内に取り付けられたチャンバ下部体10Bは、上昇されることにより、シール部材21を介在してチャンバ上部体10Aに気密に密着されて、チャンバ上部体10Aと共に注液チャンバ10を形成する。この注液チャンバ10は、注液バルブ38が閉じられていることにより、内部が密閉空間となる。また、電池ケース8の内部は、注液口8aを通じて注液チャンバ10の密閉空間に連通している。
【0067】
上述のようにして注液チャンバ10が構成されたならば、第3の電磁弁30が開かれたのちに第2の真空ポンプ29が実線で図示するように駆動されることにより、注液チャンバ10密閉空間および下方に開口状態の二次貯液室42が0.3〜1.3kPaまで減圧される。このとき、注液チャンバ10の密閉空間および二次貯液室42は、閉弁状態の注液バルブ38によって一次貯液室12に対し遮断されているから、第2の真空ポンプ29に設定した圧力に確実、且つ迅速に減圧される。
【0068】
電池ケース8の内部は、注液口8aを介して注液チャンバ10の密閉空間に連通しているので、上述のように注液チャンバ10の密閉空間が0.3〜1.3kPaまで減圧されるのに伴って電池ケース8の内部もほぼ同圧に真空引きされる。これの実施例の実測結果を示すと、電池ケース8の内部は、第2の真空ポンプ29を30秒間駆動したときに、0.3〜1.3kPaの真空度まで減圧することができた。これにより、電池ケース8内の極板群の小さな隙間に存在する空気は、内部が比較的高い真空度に減圧されるのに伴ってスムーズに外部に排気される。
【0069】
一方、一次貯液容器7では、蓋体6が取り外されて一次貯液室12の上方が開口され、この一次貯液室12に注液ノズル4が着脱自在に連結される。続いて、定量ポンプ3が実線で図示のように駆動されることにより、一次貯液室12内に、定量(この実施の形態では2.0g±0.1)の電解液2が電解液タンク1から定量ポンプ3および注液ノズル4を介して供給される。ここで、電解液2は、電解液タンク1において真空引きされて予め脱泡されていることが好ましい。
【0070】
この電解液注液装置では、単一の定量ポンプ3および注液ノズル4が設けられた注液ステーションに各装置本体が順次搬送されて、注液ステーションに位置決め停止された装置本体の一次貯液室12に注液ノズル4が順次接続されて電解液2の供給が行われる。したがって、装置本体を多連に配設する場合には、定量ポンプ3および注液ノズル4の設置台数を大幅に減らすことができる。
【0071】
一次貯液室12内に所定量の電解液2が供給されたならば、図4に示すように、第1の電磁弁13が予め開かれたのちに第1の真空ポンプ14が実線で図示するように駆動されて、一次貯液室12内が13.3kPaの減圧雰囲気まで減圧される。これにより、電解液2中に含まれている気泡は、液面に浮上したのち、排気される。この電解液2の脱泡工程を実施したときの実測結果を示すと、第1の真空ポンプ14を30秒間駆動したときに、電解液2の減圧度が13.3kPaであった。一次貯液室12は、閉弁状態の注液バルブ38によって注液チャンバ10の密閉空間とは遮断されているから、注液チャンバ10の減圧用の第2の真空ポンプ29とは別の第1の真空ポンプ14によって、注液チャンバ10の密閉空間の圧力とは異なる設定圧力に確実に減圧できる。すなわち、この電解液注液装置では、極めて簡単な構成により、一次貯液室12と注液チャンバ10の密閉空間とを別々に真空引きして、互いに異なる設定圧力に確実に減圧できる。
【0072】
また、電解液2の脱泡工程では、一次貯液室12が電池ケース8への電解液2の注液量とほぼ等しい内容積に設定されていることと、一次貯液室12における接続管19が接続される排気兼加圧口がφ1〜2mmの小径に設定されていることとにより、第1の真空ポンプ14の駆動により電解液2を真空引きする際の電解液2の蒸発を抑制して液ロスを格段に低減できるから、高精度な注液を行うことが可能となる。また、この脱泡工程では、従来のように電池ケース内に注入された電解液を真空引きして行う手段とは異なり、一次貯液室12内の電解液2に対して真空引きするので、電解液2中の気泡をほぼ確実に除去することが可能となる。
【0073】
一方、注液チャンバ10では、第2の真空ポンプ29の駆動によって電池ケース8の内部が所定の真空度に真空引きされたのちに、電池ケース昇降機構23がピストン23aを所定ストロークだけ吐出するよう駆動されて電池ケース支持台22を上限位置まで上昇させるので、電池ケース支持台22上の保形容器25に保持されている電池ケース8は、その上端面が密閉用パッキン27に対し0.5mm程度圧縮させる状態に押し付けられて、この密閉用パッキン27で気密にシールされてシリンダ9の下端面に密着され、シリンダ9の送液口9aと電池ケース8の注液口8aとが気密状態に連通される。これにより、シリンダ9の内部には、閉じた状態の注液バルブ38と電池ケース8とピストン34とピストンシール41とにより密閉された二次貯液室42が形成され、この二次貯液室42に電池ケース8の内部が連通している。
【0074】
つぎに、図5に示すように、注液バルブ38が開かれて、一次貯液室12と二次貯液室42とが液通路37を介して連通される。したがって、一次貯液室12内の電解液2は、一次貯液室12内の電解液2の液面上の圧力と二次貯液室42の圧力の差圧(この実施の形態では13.3kPa−0.3〜1.3kPa)によって二次貯液室42内に供給され、さらに、二次貯液室42と同圧に保持されている電池ケース8の内部に送液口9aおよび注液口8aを通じて注入されていく。この一次貯液室12から二次貯液室42への電解液2の供給は、上述のように双方の圧力の差圧を利用して行うことから、注液バルブ38を開いても電解液2が大気に触れることがないので、電解液2中に気泡が混入しないとともに、二次貯液室42が0.3〜1.3kPaの比較的高い真空度に保持されていたことから、電解液2の供給が短時間で終了し、また、一次貯液室12を13.3kPaの比較的低い真空度に設定したので、電解液2の沸騰が発生するおそれがない。
【0075】
一次貯液室12内の電解液2が二次貯液室42内に供給され終えたならば、第1の注液工程に移行する。すなわち、図6に示すように、第1の真空ポンプ14の駆動により一次貯液室12および液通路37が真空引きされている状態で注液バルブ38が再び閉じられて、二次貯液室42と一次貯液室12とが遮断される。そののち、図7に示すように、ピストン昇降機構32が駆動されてピストン機構33が下降動作を開始する。このピストン機構33のピストン34は、下降動作に伴って、二次貯液室42内の電解液2に対し0.75MPaの圧力で直接的に加圧する。
【0076】
これにより、二次貯液室42内の電解液2の大部分は、電池ケース8内に強制的に注入されたのち、極板群の微細の隙間に迅速に浸透するように効果的に促進される。また、ピストン34は、ピストンシール41によってシリンダ9に対し気密状態を保持しながら下降動作を行うので、電解液2は、ピストン34によって直接的に加圧されるにも拘わらず、大気に触れることがないから、気泡が混入することがない。しかも、粘性の高い電解液2がシリンダ9の内周面に付着していても、この付着している電解液2をピストンシール41が確実に拭い取っていくので、高い注液精度で注液することができる。
【0077】
ピストン34の直接的な加圧を受けて電解液2が電池ケース8内に強制的に注入され始めたならば、角形の電池ケース8は、ピストン34の下降動作による加圧力を直接的に受けて極めて迅速に注入される電解液2により内部圧力が高まり、これにより、電池ケース8における特に変形し易い長辺側板部8bが外方へ膨れ出ようとする。ところが、角形の電池ケース8は、これの外形よりも僅かに大きな内周面を有する保形容器25内に挿入されているので、長辺側板部8bの膨出が保形容器25の内面に当接して阻止され、電池ケース8の外方への膨らみ変形が防止される。なお、このとき、第4の電磁弁35を開いて第2の加圧気体供給部31を駆動することにより、第2の加圧気体供給部31から供給される不活性ガスの圧力によって電池ケース8の外方への膨らみ変形をさらに確実に防止することが好ましい。
【0078】
図8に示すように、ピストン34が下限位置まで下降された時点では、ピストン34の円筒外周面を除く下部テーパー外面とシリンダ9の下部テーパー内面とが密接状態に接触して、二次貯液室42が消滅した状態となり、液通路37の下端部分に電解液2が残存する。このピストン34を下限位置に停止させた状態において、第2の注液工程が開始される。すなわち、注液バルブ38が開弁され、且つ第2の電磁弁17が開かれたのちに、第1の加圧気体供給部18が実線で図示のように駆動される。第1の加圧気体供給部18から供給される加圧気体としてのNは、一次貯液室12および液通路37を通って、液通路37内に残存する電解液2を0.75MPaの圧力で直接的に加圧するので、この電解液2の電池ケース8内への注入が効果的に促進される。また、ピストン34は、PTFEを形成材料として形成されており、電解液2が付着し難い。これにより、電解液2の液ロスをさらに抑制することができる。
【0079】
そして、図9に示すように、加圧気体による加圧によって電解液2の液面が電池ケース8の上端面の注液口8aより低下したならば、第2の注液工程が終了し、続いて、図10に示す第3の注液工程に移行する。すなわち、注液バルブ38を閉じて二次貯液室42と一次貯液室12との間を遮断し、且つ第1の加圧気体供給部18の駆動を停止するとともに、第2の加圧気体供給部31の駆動を継続して、注液チャンバ10の密閉空間を1MPaの圧力に保持する。なお、上述の電解液2の液面が電池ケース8の注液口8aより低下した状態は、例えば、注液開始時から計時を開始して経過時間を監視しながら、注液開始時から所定時間が経過した時点により検知される。上記所定時間は予め実験的に求められて設定されたものである。
【0080】
これと同時に、電池ケース昇降機構23がピストン23aを所定ストロークだけ吸引するよう駆動されて電池ケース支持台22を下限位置まで下降させるので、電池ケース支持台22上に保持されている電池ケース8はシリンダ9から離間する。これにより、電池ケース8内に注入された電解液2は、注液チャンバ10の密閉空間の1MPaの圧力により加圧されて、極板群の小さな隙間に効率良く浸透されていく。
【0081】
上述のように、第1の各注液工程では、ピストン34の下降動作による0.75MPaの比較的大きな加圧力を電解液2に直接的に作用させ、第2の注液工程では、第1の加圧気体供給部18からの加圧気体による0.75MPaの比較的大きな加圧力を電解液2に直接的に作用させ、第3の注液工程では、第2の加圧気体供給部31からの加圧気体による1MPaの比較的大きな加圧力を電解液2に直接的に作用させているので、所定量の電解液2を、電池ケース8内の極板群の微細な隙間に極めて効率的に浸透させて、短時間で電池ケース8内に充填することができる。
【0082】
上述のようにして注液が終了したならば、図1の電磁弁39,40が開弁されて、一次貯液室12内および注液チャンバ10内の加圧気体が外部に放出される。最後に、図11に示すように、注液チャンバ10のチャンバ下部体10Bが所定位置まで下降されて、電解液2の注液が終了した電池ケース8が保形容器25から取り出される。このとき、ピストン34による電解液2への直接的な加圧力が既に解除されているので、電池ケース8における一旦膨出した長辺側板部8bが元の状態に復帰しており、電池ケース8を容易に取り出すことができる。
【0083】
上記電解液注液装置では、角形の電池ケース8を保形容器25に挿入するだけの簡単な構成としながらも、ピストン34により電解液2を電池ケース8内に強制的に注液する際の長辺側板部8bの膨出変形を確実に防止することができるが、上記保形容器25により電池ケース8の膨出変形を防止する手段に代えて、電池ケース8を電池ケース支持台22上に保持して、ピストン34を作動させる第1の注液工程時に、第2の加圧気体供給部31から注液チャンバ10の密閉空間内に加圧気体を供給して、その密閉空間内の圧力がピストン34による電解液2への加圧力とほぼ同等になるように加圧気体の供給を制御するようにしても、角形の電池ケース8の膨れ変形を防止することができる。また、電池ケース8の膨出変形の防止手段として、上述の手段保形容器25を備えるとともに、第2の加圧気体供給部31から注液チャンバ10の密閉空間内に加圧気体を供給するようにすれば、電池ケース8の膨れ変形を一層確実に防止することができる。
【0084】
なお、上記第3の注液工程では、第2の加圧気体供給部31からの加圧気体による加圧力を電解液2に直接的に作用させるようにしたが、この第3の注液工程に代えて、第2の注液工程の終了後も、この第2の注液工程をそのまま継続して、これを第3の注液工程としてもよい。すなわち、第3の注液工程では、第1の加圧気体供給部18から供給される加圧気体を一次貯液室12および液通路37を通じて電池ケース8内の電解液2を直接的に加圧させる。この場合にも、所定量の電解液2を、電池ケース8内の極板群の微細な隙間に極めて効率的に浸透させて、短時間で電池ケース8内に充填することができる。
【0085】
図12は本発明の他の実施の形態に係る電解液注液装置を示し、同図において、図1と同一若しくは同等のものには同一の符号を付して、重複する説明を省略し、図1と相違する構成についてのみ説明する。この電解液注液装置では、円筒形の電池ケース44に注液する場合を例示してあり、この電池ケース44は、一実施の形態のように保形容器25内に挿入されることなく、電池ケース支持台22上に保持されている。円筒形の電池ケース44は上端全体が開口されており、この円筒形の電池ケース44に対応して、ピストン49における液通路37の下端から送液口49aまでの部分には、下方に向け拡開する円錐形の断面形状を有する逃げ孔49bが形成されている。また、シリンダ9の下端面には、リングパッキン50が貼着されている。
【0086】
この電解液注液装置における基本的な注液工程は上述の一実施の形態と同様であり、異なるのは、電池ケース接続工程において、電池ケース昇降機構の作動により電池ケース支持台22が上昇されたときに、円筒形の電池ケース44の上端面がリングパッキン50に気密状態に密着されて、円筒形の電池ケース44の上端開口部が二次貯液室42に連通される。これにより、円筒形の電池ケース44は、その上端全体の開口部が二次貯液室42に支障無く気密状態に連通接続される。
【0087】
また、ピストン49が下降する第1の注液工程時には、第2の加圧気体供給部31から加圧気体が注液チャンバ10の密閉空間内に供給されて、密閉空間内の圧力がピストン49による電解液2への加圧力とほぼ同等になるように加圧気体の供給が制御される。これにより、円筒形の電池ケース44は、注液チャンバ10の密閉空間内の加圧気体の圧力により外面を加圧されて、内部の電解液2の加圧力に抗して外方への膨らみ変形が防止される。
【0088】
【発明の効果】
以上のように本発明の電解液注液方法によれば、ピストンの作動で二次貯液室の内部容積を気密状態に保持しながら縮小することにより、加圧ガスなどを介在させることなくピストンで電解液を直接的に加圧しながら、この電解液を、予め真空引きした二次貯液室に気密に連通接続した電池ケースの注液口または開口部を介して予め真空引きした電池ケース内に強制的に注入するので、電解液の極板群への含浸時間を大幅に短縮することができるとともに、一次貯液室から液通路および二次貯液室を介して電池ケースの内部に至る注液通路の何れの箇所においても電解液が大気に触れることがなく、また、ピストンの加圧力を電解液に直接的に作用させていることから、注入過程の電解液中に気泡が混入するおそれがなく、電解液の蒸発量を格段に軽減できるとともに、電解液中にガスが混入することがないので、加圧開放時に電解液中のガスが気泡となって電解液を溢れさせるといったことが生じるおそれがなく、また、液ロスが減少して注液精度が格段に向上し、電気特性の安定した高品質の電池を得ることができる。
【0089】
また、本発明の電解液注液装置によれば、第1の真空ポンプで一次貯液室内を真空引きすることができ、第1の加圧気体供給部により一次貯液室および液通路を介して二次貯液室内に加圧気体を供給して作用させることができ、注液バルブの開閉によって一次貯液室と二次貯液室間とを液通路を介して接続および遮断することができ、ピストン機構によって二次貯液室内の電解液を加圧でき、シリンダとピストンと電池ケースとにより密閉空間の二次貯液室を構成することができるから、本発明の電解液注液方法を忠実に具現化して、当該注液方法の効果を確実に得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電解液注液方法を具現化した電解液注液装置を示す概略縦断面図。
【図2】同上の電解液注液装置の電池ケース装着工程における概略縦断面図。
【図3】同上の電解液注液装置の電池ケース排気工程における概略縦断面図。
【図4】同上の電解液注液装置の電解液脱泡および電池ケース接続工程における概略縦断面図。
【図5】同上の電解液注液装置の電解液移送工程における概略縦断面図。
【図6】同上の電解液注液装置の第1の注液工程の開始の準備状態における概略縦断面図。
【図7】同上の電解液注液装置の第1の注液工程の開始状態における概略縦断面図。
【図8】同上の電解液注液装置の第2の注液工程の開状態における概略縦断面図。
【図9】同上の電解液注液装置の第2の注液工程の終了状態における概略縦断面図。
【図10】同上の電解液注液装置の第3の注液工程における概略縦断面図。
【図11】同上の電解液注液装置の電池ケース装着工程における概略縦断面図。
【図12】本発明の他の実施の形態に係る電解液注液装置を示す概略縦断面図。
【図13】従来の注液装置を示す断面図。
【図14】従来の他の注液装置を示す概略構成図。
【符号の説明】
1 電解液タンク
2 電解液
3 定量ポンプ
4 注液ノズル
7 一次貯液容器
8 電池ケース
8a 注液口
9 シリンダ
10 注液チャンバ
12 一次貯液室
14 第1の真空ポンプ
18 第1の加圧気体供給部
22 電池ケース支持台
25 保形容器
29 第2の真空ポンプ
31 第2の加圧気体供給部
33 ピストン機構
34 ピストン
37 液通路
38 注液バルブ
41 ピストンシール
42 二次貯液室
44 電池ケース
49 ピストン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention mainly embodies an electrolyte injection method and a method for injecting a predetermined amount of electrolyte into a battery case containing a group of electrodes in a manufacturing process of a sealed battery. The present invention relates to an electrolyte injection device.
[0002]
[Prior art]
2. Description of the Related Art A sealed battery is manufactured through a process in which an electrode group is housed in a battery case, an electrolyte is injected, and an opening or a liquid inlet of the battery case is closed in a sealed state. In the electrolyte injection process, the electrolyte injected into the battery case is formed by stacking positive and negative electrode plates at high density with separators interposed between them, or spirally wound in a stacked state. Since it is difficult to penetrate into the small gap, it takes a long time to impregnate the electrode group with a predetermined amount of the electrolytic solution.
[0003]
Conventionally, in order to quickly impregnate the electrode group with the electrolytic solution, the pressure inside the battery case is reduced by depressurizing the inside of the battery case by a vacuum pump connected in an air-tight manner to the opening of the battery case into which the electrolytic solution has been injected. As a result, air existing in the gaps between the electrode groups is caused to float as bubbles on the liquid surface of the electrolytic solution. However, with this liquid injection means, the penetration of the electrolytic solution into the electrode group can be promoted to some extent, but since the air present in the gaps between the electrode groups becomes fine bubbles, the fine bubbles are formed in the electrode group. Since the liquid does not quickly float on the surface of the electrolytic solution due to adhesion to the surface, the time for injecting the electrolytic solution cannot be sufficiently reduced.
[0004]
In addition, in order to further reduce the electrolyte injection time, in addition to the above-described decompression means, the electrolyte in the battery case is filled with an inert gas or the like while the opening of the battery case filled with the electrolyte is closed. There is also known an apparatus in which an electrolytic solution is forcibly penetrated into an electrode plate group by applying pressure. However, in this device, at the moment when the pressurized state of the battery case is released and the pressure is returned to the atmospheric pressure, the bubbles that have been pressurized in the gaps between the electrode plates and crushed small are greatly expanded. There is a problem that the electrolyte once impregnated in the gap of the battery may jump out of the battery case.
[0005]
Therefore, conventionally, in order to solve the above-mentioned problem, various liquid injection devices described below (hereinafter, referred to as first to fifth conventional techniques) have been proposed. That is, in the liquid injection device of the first prior art, as shown in FIG. 13, the battery case 60 in which the electrode plate group 61 is stored in advance is hermetically closed by the closing cylinder 62, and is connected via the suction portion 63. The electrolytic solution 66 in the temporary storage chamber 65 is injected into the battery case 60 from the injection pipe 67 by driving the piston 64 in a state where the inside of the battery case 60 is depressurized by driving the pressure reducing device (not shown). At the same time, the inside of the battery case 60 is changed from a reduced pressure state to a pressurized state by drive control of a pressure reducer to promote the penetration of the electrolyte 66 into the electrode group 61 (see Patent Document 1). .
[0006]
In the above liquid injection device, the upper end of the liquid injection pipe 67 protrudes above the level of the electrolytic solution 66 in the temporary liquid storage chamber 65, and the electrolyte 66 injected into the temporary liquid storage chamber 65 is injected. In a state where the battery 66 is stored without flowing into the liquid pipe 67, the pressure inside the battery case 60 is reduced, and then the piston 64 pushes up the liquid surface of the electrolyte 66 in the temporary storage chamber 65 and the electrolyte 66 is injected into the liquid pipe 67. The liquid flows into the battery case 60 through the liquid inlet pipe 67 through the inlet of the battery 67.
[0007]
In this liquid injection device, the inside of the battery case 60 closed by the closing cylinder 62 is decompressed by the pressure reducer to exhaust the air in the battery case 60, so that the air existing in the gap between the electrode groups 61 is also exhausted. Thus, the electrolyte solution 66 injected into the battery case 60 is impregnated into the electrode group 61 while promoting penetration into the minute gaps of the electrode group 61. Thereafter, the electrolyte solution 66 is forcibly impregnated into the electrode plate group 61 by increasing the pressure in the battery case 60.
[0008]
In addition, in addition to the configuration of the first prior art, the liquid injection device of the second prior art has a liquid injection nozzle connected to the opening of the battery case, and a bubble is formed above the closed temporary storage chamber. A separation chamber is provided, and air in the temporary storage chamber is exhausted from an exhaust port opened to the bubble separation chamber to reduce the pressure, thereby floating bubbles contained in the electrolyte stored in the temporary storage chamber. Then, the mixture is separated in a bubble separation chamber, and the electrolytic solution is injected into the battery case through a liquid injection nozzle while separating the bubbles (see Patent Document 2). This liquid injection device is intended to prevent bubbles from being injected into the battery case together with the electrolytic solution.
[0009]
Further, as shown in FIG. 14, the third prior art liquid injection apparatus includes a holding table 68 and a liquid injection nozzle 69 which can hold the battery case 60 in a detachable manner and can be moved up and down. An injection chamber 70 formed in a simple closed container, an electrolyte tank 72 that is connected to the injection chamber 70 via a metering pump 71 and stores an electrolyte 66, and an electromagnetic valve provided in the injection chamber 70. A vacuum chamber 73 and an atmosphere opening portion 74 are connected to each other via lines 75 and 76, and a vacuum pump 77 is connected to the liquid injection chamber 70 and the vacuum chamber 73 through electromagnetic valves 78 and 79, respectively. (See Patent Document 3).
[0010]
In the liquid injection device, the liquid injection chamber 70 is closed, and the electromagnetic valve 75 is opened, so that the vacuum chamber 73, whose inside is maintained at a low pressure in advance by driving the vacuum pump 77, communicates with the liquid injection chamber 70. Then, the inside of the battery case 60 housed in the liquid injection chamber 70 is evacuated, and thereafter, the liquid inlet 60 a of the battery case 60 is connected to the liquid injection nozzle 69 by raising the holding table 68, and the liquid injection valve is opened. 80 is opened, a predetermined amount of the electrolyte 66 is injected into the battery case 60 from the injection port 60a by the metering pump 71, and after the injection step, the holding table 68 is lowered to set the injection port 60a to the injection nozzle. Separated from the battery case 69, the battery valve 76 is opened and the pressure in the liquid injection chamber 70 is set to the atmospheric pressure, so that the electrolytic solution 66 in the battery case 60 is pressurized at the atmospheric pressure and forced into the gap between the electrode group 61. To It is aimed to allow-tight.
[0011]
In this liquid injection device, the vacuum chamber 73 whose inside is kept at a low pressure in advance is connected to the liquid injection chamber 70, so that the evacuation time can be shortened and the liquid can be injected efficiently. Further, by connecting the metering pump 71 to the liquid injection nozzle 69 via a pipe line, generation of air bubbles due to air being mixed into the electrolyte 66 in the liquid injection path is prevented.
[0012]
Further, the fourth prior art liquid injection device has a closing portion that hermetically seals the opening of the battery case, and an injection line that is connected to the closing portion at one end and is supplied with the electrolytic solution at the other end. A storage unit provided in the middle of the injection line for storing a predetermined amount of electrolyte to be impregnated into the electrode group in the battery case; a first pressure reducing unit configured to reduce the pressure of the storage unit to a first atmospheric pressure; There is provided an atmosphere opening section that opens the inside of the battery to the atmosphere, and a second pressure reducing section that reduces the pressure inside the battery case to a second pressure lower than the first pressure (see Patent Document 4).
[0013]
In this liquid injection device, defoaming from the electrolytic solution is performed by reducing the pressure in the storage section to the first atmospheric pressure, and the inside of the battery case is reduced to a higher vacuum pressure than the inside of the storage section, whereby the electrolyte solution is applied to the electrode group. The electrolyte is pressurized by promoting permeation and opening the inside of the reservoir to the atmosphere, thereby promoting impregnation of the electrolyte into the electrode plate group.
[0014]
Further, the fifth prior art liquid injection device is configured such that a temporary storage chamber storing a predetermined amount of electrolyte and a battery case accommodating the electrode plate group are separated by a separate storage chamber decompression mechanism and a case decompression mechanism. By separately evacuating and reducing the pressure, the temporary storage chamber is depressurized to a higher pressure than the battery case, and by opening the on-off valve, the pressure difference between the battery case and the temporary storage chamber causes An electrolyte is filled in the battery case (see Patent Document 5).
[0015]
In this liquid injection device, the pressure in the battery case and the temporary storage chamber are separately reduced, so that the battery case is sufficiently depressurized and the air in the battery case is reliably exhausted. After the pressure is reduced without deteriorating the electrolyte, the electrolyte is more quickly and efficiently injected into the battery case.
[0016]
[Patent Document 1]
JP-A-9-99901
[0017]
[Patent Document 2]
JP-A-11-26331
[0018]
[Patent Document 3]
JP-A-2000-182599
[0019]
[Patent Document 4]
JP-A-11-73942
[0020]
[Patent Document 5]
JP 2002-274504 A
[0021]
[Problems to be solved by the invention]
However, each of the above-described conventional liquid injection devices has a problem that must be solved. That is, in the liquid injection device of the first prior art in FIG. 13, when the inside of the battery case 60 is evacuated by driving the pressure reducer prior to the injection of the electrolyte 66, the electrolyte 66 in the temporary storage chamber 65 is discharged. Since the space above the liquid level is in communication with the battery case 60 through the liquid injection pipe 67, the inside of the battery case 60 cannot be raised to a degree of vacuum equal to or lower than the vapor pressure of the electrolyte solution 66, and also temporarily. The electrolyte 66 in the storage chamber 65 cannot be reliably injected into the battery case 60. In addition, when the electrolytic solution 66 is pressurized by the piston 64, the gap between the battery case 60 and the injection port of the injection tube 67 is separated, so that the pressure applied by the piston 64 is directly transmitted to the electrolytic solution 66. Therefore, the impregnation of the electrode plate group with the electrolyte solution 66 cannot be sufficiently promoted, and the injection time is long, and the electrolyte solution 66 in the battery case 60 may spill outside. Since the electrolyte 66 is one of the more expensive materials among the battery materials, the economic loss is increased. As a result, in this liquid injection device, the accuracy of injection of the electrolytic solution 66 into the battery case 60 is reduced, so that the battery capacity is reduced.
[0022]
In addition, in the above liquid injection device, if bubbles exist in the electrolyte solution 66 stored in the temporary storage chamber 65, the bubbles cannot be removed in the subsequent liquid injection process. Since the battery is injected into the battery case 60 and the required electrical characteristics cannot be obtained when the battery is used, the quality of the battery deteriorates. Further, when the electrolytic solution 66 in the temporary storage chamber 65 is injected into the battery case 60 through the injection pipe 67 by the piston 64, the pressing force of the piston 64 is directly applied to the electrolytic solution 66 in the battery case 60. Cannot work. This is because the battery case 60 and the liquid injection port of the liquid injection pipe 67 are separated from each other. As a result, in this liquid injection device, the electrolyte 66 cannot be quickly penetrated into the electrode plate group 61, and the injection time may not be sufficiently reduced.
[0023]
In the liquid injection device of the second prior art, the bubbles of the electrolytic solution stored in the temporary liquid storage chamber can be removed by floating them and separating them in the bubble separation chamber. As in the prior art, when the inside of the battery case is evacuated by driving the pressure reducer prior to the injection of the electrolyte, the space above the liquid surface of the electrolyte in the temporary storage chamber is filled with the battery case through the injection tube. Because the battery case cannot be raised to a degree of vacuum lower than the vapor pressure of the electrolyte, the electrolyte cannot be quickly penetrated into the electrode group, and the injection time is reduced. In addition to being unable to shorten sufficiently, the injection accuracy may be low depending on the condition setting.
[0024]
Further, in the third prior art liquid injection device, the measuring pump 71 is directly connected to the battery case 60 in a sealed state without a temporary liquid storage section by a pipe, and the space between the measuring pump 71 and the battery case 60 is filled with the electrolytic solution. Since the liquid is filled with 66, it is preferable that one measuring pump 71 is used to inject the liquid with high accuracy.
[0025]
Further, in this liquid injection device, the time for evacuating the battery case 60 is shortened. However, in the case of a high-capacity battery, the electrolytic solution 66 in the battery case 60 is pressurized more than the evacuation time and the electrode plate is pressed. It takes time to penetrate the group 61. On the other hand, in this liquid injection device, after the electrolyte 66 is injected into the battery case 60, the injection port 60a of the battery case 60 is separated from the injection nozzle 69, and the inside of the injection chamber 70 is set to the atmospheric pressure. It is only necessary to pressurize the electrolyte 66 in the battery case 60 at this atmospheric pressure. With such a pressurizing means, it takes time for the electrolyte 66 to penetrate into the electrode plate group 61, and the productivity is remarkably reduced particularly when multiple electrodes are used.
[0026]
Further, in the liquid injection device of the fourth prior art, the electrolytic solution injected into the reservoir under the atmospheric pressure is evacuated to remove bubbles in the liquid. In addition, it is difficult to completely remove bubbles in the liquid. Also, when the electrolyte is made to permeate the electrode group, only the differential pressure between the vacuum pressure in the battery case and the atmospheric pressure that has been reduced in advance is relied on, so it takes a long time to impregnate the electrode group with the electrolyte. In addition to the fact that the electrolyte is open to the atmospheric pressure, air bubbles are entrained in the electrolyte during the process of infiltration into the electrode plate group, and the impregnation time of the electrolyte takes a long time. In addition, a problem that the electrolyte overflows outside the battery case is likely to occur.
[0027]
In addition, in this liquid injection device, in order to allow the electrolyte to quickly penetrate into the gap between the electrode groups, a means for releasing the battery case to atmospheric pressure and simultaneously pressurizing the inside of the battery case with a piston is provided. Bubbles easily mix in the electrolyte.
[0028]
Furthermore, in the liquid injection device of the fifth prior art, the pressure in the battery case and the temporary storage chamber are separately reduced, so that bubbles in the electrolyte are removed and bubbles are mixed into the electrolyte during the injection process. However, the electrolyte is injected into the battery case only by relying on the pressure difference between the battery case and the temporary storage chamber, and a means for forcibly injecting the electrolyte into the battery case is provided. Since it is not necessary, it takes a long time to impregnate the electrode group with the electrolytic solution, which not only cannot improve the productivity, but also highly viscous electrolytic solution easily adheres and remains on the inner wall surface of the liquid supply path. And air bubbles are easily generated.
[0029]
In addition, in the above liquid injection device, in order to separately reduce the pressure in the battery case and the temporary liquid storage chamber, a filling cylinder provided with a temporary liquid storage chamber inside the liquid storage chamber pressure reducing mechanism is provided. An exhaust cylinder having a gas exhaust path for the case depressurizing mechanism is arranged, the exhaust cylinder is arranged so as to be able to move up and down in the axial direction inside the filling cylinder, and an open / close valve is provided at a lower end of the exhaust cylinder. , The on-off valve is opened, and the exhaust cylinder is lowered to close the on-off valve, resulting in high cost.
[0030]
As described above, in each conventional injection device, it takes time to infiltrate the electrolyte into the electrode plate group, and the productivity is low, bubbles are easily mixed in the electrolyte, or bubbles in the electrolyte are It is difficult to completely remove the battery, the quality of the battery deteriorates, the cost of equipment increases, or the cost increases due to the large amount of liquid loss. However, there remains a problem that the accuracy of liquid injection is reduced due to the occurrence and stable battery performance cannot be obtained.
[0031]
In view of the above, the present invention has been made in view of the above-mentioned conventional problems, and while reducing the liquid loss of the electrolytic solution to achieve high injection accuracy, the impregnation time of the electrolytic solution into the electrode plate group is reduced. An electrolyte injection method and an electrolyte injection device that can achieve high quality by preventing bubbles from being mixed into the electrolyte while achieving high quality batteries, and can also reduce costs. It is intended to provide.
[0032]
[Means for Solving the Problems]
In order to achieve the above object, an electrolyte injection method according to the present invention includes an electrolyte supply step of supplying a fixed amount of electrolyte from an electrolyte tank into a primary storage chamber, and a battery case containing an electrode plate group. By being housed in a closed space inside the liquid injection chamber and reducing the pressure in the closed space, the inside of the battery case is communicated with the primary liquid storage chamber through a liquid passage provided with a liquid injection valve in the middle. A battery case exhausting step of simultaneously evacuating the interior of the secondary storage chamber opened toward the closed space, and a liquid inlet or opening of the battery case whose interior is evacuated to the secondary storage chamber. A battery case connection step of air-tightly communicating with the opening of the liquid chamber, and opening the injection valve to send the electrolytic solution in the primary storage chamber to the secondary storage chamber via the liquid passage. Supplying electrolyte solution, and supplying the primary solution in the primary storage chamber. After the solution has been supplied to the secondary storage chamber, the injection valve is closed to keep the secondary storage chamber in a sealed state, and the internal volume of the secondary storage chamber is operated by operating a piston. And injecting the electrolytic solution in the secondary storage chamber into the battery case while directly pressurizing the electrolytic solution on the piston surface.
[0033]
In this electrolyte injection method, the piston is operated to reduce the internal volume of the secondary storage chamber while keeping the internal volume of the secondary storage chamber airtight, so that the electrolyte is directly injected by the piston without any intervening pressurized gas or the like. While pressurizing, the electrolyte is forcibly injected into the pre-evacuated battery case through a liquid inlet or opening of the battery case connected to the pre-evacuated secondary storage chamber. The time required for impregnation of the electrode group can be greatly reduced, and the electrolytic solution can be applied to any part of the liquid injection passage from the primary storage chamber through the liquid passage and the secondary storage chamber to the inside of the battery case. Since the solution does not come into contact with the atmosphere and the pressure of the piston acts directly on the electrolyte, no gas is mixed into the electrolyte during the injection process. The gas in the liquid becomes bubbles There is no possibility that things like flooding the solution liquid occurs, also be pouring accuracy is greatly improved liquid loss is reduced, obtaining a stable high-quality battery electrical properties.
[0034]
In the liquid injection step in the above invention, it is preferable to apply a pressure for preventing swelling equal to the pressure applied to the electrolytic solution by the piston to the outer surface of the battery case. According to this means, in spite of forcibly injecting the electrolytic solution into the battery case by applying the pressing force of the piston directly to the electrolytic solution, particularly when the pressing force is applied to the inside, the electrolytic solution moves outward. Even when the electrolytic solution is injected into a square battery case that is likely to swell and deform, the long side plate portion of the square battery case can be prevented from swelling and deforming outward. Therefore, even when the injection pressure of the electrolytic solution is promoted by setting the pressurizing pressure by the piston high, it is possible to prevent the battery case from bulging outward.
[0035]
As means for applying the pressure for preventing swelling, a rectangular battery case having a rectangular or elliptical cross-sectional shape may be provided by holding a battery case having an inner peripheral surface capable of forming a small gap with the outer peripheral surface of the battery case. The battery case is housed in the closed space of the liquid injection chamber while being inserted into the shape container, and a pressing force for preventing the battery case from expanding can be applied to the inner peripheral surface of the shape holding container.
[0036]
This makes it possible to reliably prevent outward swelling of the rectangular battery case, while having a very simple configuration, and to release the pressure applied by the piston to allow the battery case to be filled with the secondary storage chamber. When the battery case is separated from the battery case, the battery case returns to the original shape, so that the battery case in which the electrolyte has been injected can be easily taken out of the shape-retaining container.
[0037]
As another means for applying the pressure for preventing swelling, an inert gas is supplied into the closed space of the liquid injection chamber, and the pressure in the closed space becomes substantially equal to the pressure applied to the electrolytic solution by the piston. The supply of the inert gas may be controlled as described above. This means can also effectively prevent outward bulging deformation of the battery case.
[0038]
In the above invention, it is preferable that a preliminary defoaming step of removing bubbles in the electrolytic solution by evacuating the inside of the electrolytic solution tank prior to the electrolytic solution supplying step is preferable. Thereby, the electrolytic solution in the electrolytic solution tank can be supplied to the primary storage chamber after removing most of the bubbles contained therein.
[0039]
Further, in the above invention, while comprising a defoaming step of removing air bubbles in the electrolyte by evacuating the primary storage chamber to which a fixed amount of the electrolyte has been supplied through the electrolyte supply step, in the electrolyte transfer step, Open the injection valve and transfer the electrolyte in the primary storage chamber to the secondary storage chamber by the differential pressure between the vacuum pressure of the liquid level of the electrolyte in the primary storage chamber and the vacuum pressure in the secondary storage chamber. It is preferred to supply.
[0040]
According to this means, after removing bubbles remaining in the electrolyte in the primary storage chamber, the difference in pressure between the vacuum pressure of the electrolyte in the primary storage chamber and the vacuum pressure in the secondary storage chamber is obtained. Since the electrolyte in the primary storage chamber is supplied to the secondary storage chamber, the electrolyte does not come into contact with the atmosphere, so there is no risk of bubbles entering the electrolyte and the amount of evaporation of the electrolyte is significantly reduced. Since this can be reduced, the liquid loss is further reduced, and the injection accuracy is further improved.
[0041]
After the piston is operated for a predetermined stroke and stopped in the liquid injection step in the above invention, the liquid injection valve is opened to supply an inert gas from the primary liquid storage chamber to the secondary liquid storage chamber via the liquid passage, A second injection step of injecting the electrolyte remaining in the secondary storage chamber into the battery case by the flow of the inert gas, and a time when the liquid level of the electrolyte becomes lower than the injection port of the battery case; After closing the liquid injection valve, the liquid inlet of the battery case is separated from the secondary storage chamber, and the pressure of the inert gas supplied into the liquid injection chamber causes the electrolyte in the battery case to be discharged. Preferably, a third liquid injection step of applying pressure is provided.
[0042]
Thereby, the pressure of the piston is directly applied to the electrolyte in the secondary storage chamber, and almost all of the predetermined amount of the electrolyte is forcibly injected into the battery case. The remaining electrolyte is pressurized by pressurized gas supplied through the primary storage chamber, the liquid passage, and the piston, and the electrolyte in the battery case is further pressurized by pressurized gas supplied to the closed space of the injection chamber. Since the pressure is applied, it is possible to reliably inject a predetermined amount of the electrolyte solution without any residual solution, so that the injection accuracy is further improved, and the electrolyte solution can be very smoothly penetrated into the electrode group in the battery case, The injection time can be further reduced.
[0043]
Instead of the third injection step in the above invention, even after the liquid level of the electrolytic solution becomes lower than the injection port of the battery case by the second injection step, the state of the second injection step is changed. Providing a third injection step of pressurizing the electrolyte in the battery case by the pressure of the inert gas supplied into the battery case through the primary storage chamber, the liquid passage, and the secondary storage chamber while holding the battery; You can also.
[0044]
Also in this case, a predetermined amount of the electrolyte can be very efficiently penetrated into the minute gaps between the electrode plates in the battery case, and can be filled in the battery case in a short time. Further shortening and further improvement of injection accuracy can be achieved.
[0045]
On the other hand, the electrolyte injection device according to the present invention, the primary storage container is a sealed container inside the primary storage chamber, and the fixed amount of the electrolyte supplied from the electrolyte tank by driving the metering pump, A liquid injection nozzle for injecting the liquid into the primary storage chamber, a first vacuum pump and a first pressurized gas supply unit each connected to the primary storage chamber by a pipe, a piston, and an upper end provided in the primary storage chamber. A liquid passage having a lower part penetrated by a piston, a liquid injection valve interposed in the middle of the liquid path, and a piston mechanism which is lifted and lowered integrally; A liquid chamber, a battery case support base provided inside the liquid injection chamber, and raised and lowered while holding a battery case into which an electrolyte is to be injected, and penetrating the upper end of the liquid injection chamber in an airtight state. The supported cylinder and the The piston is slid in an airtight state on a surface thereof, and the upper end surface of the battery case is hermetically contacted with a lower end surface of the cylinder by raising the battery case support base. A secondary storage chamber formed in a closed space by closing the liquid passage with a liquid valve.
[0046]
In this electrolyte injection device, the primary storage chamber can be evacuated by the first vacuum pump, and the first pressurized gas supply unit supplies the secondary storage chamber through the primary storage chamber and the liquid passage. A pressurized gas can be supplied to the electrode to act on the electrolyte, and by opening and closing the injection valve, the connection between the primary storage chamber and the secondary storage chamber can be connected and disconnected via the liquid passage, and the piston mechanism By this, the electrolyte in the secondary storage chamber can be directly pressurized, and the cylinder, piston, and battery case can form a secondary storage chamber in a closed space. It can be embodied faithfully and the effect of the injection method can be reliably obtained. In the case of a rectangular battery case, the upper end surface of the battery case forming the secondary storage chamber is a peripheral edge of a hole of a liquid inlet in a sealing plate that seals an upper end opening of the battery case, and has a cylindrical shape. In the case of a battery case, it is the entire open end surface of the battery case, and in any case, the lower end surface of the cylinder is brought into tight contact with the lower end surface of the cylinder via a sealing member such as a sealing packing or a ring packing. .
[0047]
In the above invention, the battery case support is provided inside the liquid injection chamber and moves up and down while holding the battery case into which the electrolyte is to be injected, and the pipes are respectively connected to the closed space inside the liquid injection chamber. It is preferable to include a second vacuum pump and a second pressurized gas supply unit.
[0048]
According to this configuration, the liquid port or opening of the battery case can be connected to or separated from the opening of the secondary storage chamber in an airtight manner by the raising and lowering operation of the battery case support. The vacuum pump and the second pressurized gas supply unit can perform evacuation and pressurization by the pressurized gas separately from the primary storage chamber with respect to the injection chamber.
[0049]
In the above invention, the piston Cylindrical It is preferable that a piston seal is fixed to at least a lower end portion of the outer peripheral surface so as to slide in an airtight manner with the inner peripheral surface of the cylinder. As a result, even if a highly viscous electrolytic solution adheres to the inner surface of the cylinder, the adhered electrolytic solution can be wiped off with the piston seal and injected into the battery case, thereby further improving the accuracy of liquid injection. Can be achieved.
[0050]
In the above invention, it is preferable that the injection nozzle, which is pipe-connected to the electrolyte tank via the metering pump, is provided with a movable type that is detachably connected to the primary storage chamber. . According to this configuration, when the devices are arranged in multiple units, it is not necessary to connect the metering pump and the battery case in a one-to-one correspondence, so that a simple and inexpensive configuration can be achieved, and equipment costs are included. Manufacturing costs can be significantly reduced.
[0051]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing an electrolyte injection device embodying an electrolyte injection method according to one embodiment of the present invention. This embodiment exemplifies a case in which the electrolytic solution 2 is injected into a rectangular battery case 8 having a rectangular or oval cross-sectional shape. When injecting the rectangular battery case 8, the electrolyte 2 is injected from a relatively small inlet 8 a provided in a sealing plate (not shown) for closing the opening of the battery case 8. Unlike the cylindrical battery case in which the entire upper end is open, it is difficult to inject the electrolyte 2 efficiently. Further, when pressure is applied to the inside of the rectangular battery case 8, the long side plate portion 8b having a larger area than the short side plate portion 8c is easily deformed so as to bulge outward.
[0052]
The electrolytic solution injecting device is roughly classified into an electrolytic solution tank 1 for storing an electrolytic solution 2, a predetermined amount of electrolytic solution supplied from the electrolytic solution tank 1 via a metering pump 3 and an injection nozzle 4. A primary storage container 7 for temporarily storing the electrolyte solution 2 in an internal primary storage chamber 12, a cylinder 9 for storing the electrolyte solution 2 supplied from the primary storage container 7 and injecting the electrolyte solution 2 into a battery case 8, A piston mechanism 33 for injecting the electrolyte 2 into the battery case 8 while pressurizing the electrolyte 2 therein, and an injection chamber 10 which is a closed container for accommodating the battery case 8 into which the electrolyte 2 is to be injected. ing.
[0053]
The electrolytic solution 2 stored in the electrolytic solution tank 1 is an electrolytic solution for a lithium secondary battery in this embodiment, and is a mixed solvent of EC (ethylene carbonate) and DMC (dimethyl carbonate). i PF 6 Was dissolved at 10 wt%. The vapor pressure of this electrolytic solution 2 is 2.4 kPa (18 mmHg, 9 ° C.). In the metering pump 3, the electrolyte tank 1 is connected to the suction-side head by a pipe, and the injection nozzle 4 is connected to the discharge-side head by a pipe. A vacuum pump 15 for defoaming is connected to the electrolytic solution tank 1 via a solenoid valve 5 and connected to the atmosphere opening via another solenoid valve 16. .
[0054]
The above-mentioned electrolytic solution tank 1, metering pump 3 and injection nozzle 4 are fixedly installed at a predetermined injection station. The apparatus main body excluding these components is sequentially transported and stopped at the injection station. You. The liquid injection nozzle 4 is movable so as to be detachably connected to the primary liquid storage chamber 12 inside the primary liquid storage container 7 when the apparatus main body is stopped and the lid 6 of the primary liquid storage container 7 is removed. It is an expression. The lid 6 that opens and closes the primary storage chamber 12 hermetically seals the primary storage chamber 12 via a sealing packing 24.
[0055]
A first vacuum pump 14 has a first solenoid valve 13 interposed in a connection pipe 19 connected to the primary storage container 7 by communicating with an exhaust / pressurization port at the upper end of the primary storage chamber 12. The first pressurized gas supply unit 18 is connected through a pipe via a second solenoid valve 17 while being connected through a pipe. The first pressurized gas supply unit 18 supplies a pressurized gas at a pressure of 1 MPa or less. As the pressurized gas, an inert gas such as nitrogen, argon, neon, or helium can be used. 2 Is used. The exhaust / pressurization port at the upper end of the primary liquid storage chamber 12 is formed to have a small diameter of about φ1 to 2 mm.
[0056]
On the other hand, the liquid injection chamber 10 is separated into a chamber upper body 10A and a chamber lower body 10B. The chamber upper body 10A is fixed to the apparatus main body, and the chamber lower body 10B is provided so as to be able to move up and down so as to come into contact with and separate from the chamber upper body 10A. The interior of the injection chamber 10 is formed in a closed container by pressing the raised chamber lower body 10B against the chamber upper body 10A with a ring-shaped seal member 21 interposed therebetween.
[0057]
Inside the lower chamber body 10B, a shape-retaining container 25 into which the battery case 8 can be inserted and removed, a battery case support 22 for supporting the shape-retainer 25, and the battery case support 22 are raised and lowered. A battery case elevating mechanism 23 is provided. The shape-retaining container 25 has a shape having an inner peripheral surface capable of forming a small gap entirely with the outer peripheral surface of the rectangular battery case 8 having a rectangular or oval cross-sectional shape. Although the battery case 8 can be easily inserted and removed, when the battery case 8 is to be expanded by receiving a pressing force described later, it functions to apply a pressing force to the battery case 8 to prevent the expansion. Although not shown, the battery case elevating mechanism 23 is connected to the compressor through a pipe having a valve interposed therebetween, and the piston 23a supporting the battery case support base 22 moves up and down at a predetermined stroke by switching control of the valve. Is done.
[0058]
The cylinder 9 is attached to the chamber upper body 10A so as to penetrate the upper wall of the chamber upper body in an airtight state. The inner lower end of the cylinder 9 has a funnel-shaped reduced diameter, and the lower end opening is formed in a liquid feed port 9 a having a diameter corresponding to a relatively small liquid inlet 8 a in the rectangular battery case 8. Further, a sealing gasket 27 is fixed to the lower end surface of the cylinder 9 so as to surround the liquid feed port 9a. The material of the sealing gasket 27 is EPDM having excellent elasticity and adhesion.
[0059]
Further, a second vacuum pump 29 is connected to a connection pipe 28 that is attached to a side wall of the chamber upper body 10A through a third electromagnetic valve 30 and a second vacuum pump 29. The pressurized gas supply unit 31 is connected through a pipe with a fourth solenoid valve 35 interposed. The second pressurized gas supply unit 31 supplies a pressurized gas at a pressure of 1 MPa or less. As the pressurized gas, an inert gas such as nitrogen, argon, neon, or helium can be used. 2 Is used.
[0060]
Between the primary storage container 7 and the cylinder 9, there is provided a piston mechanism 33 which is raised and lowered by a piston lifting mechanism 32 including a piston lifting cylinder. The piston mechanism 33 slides on the inner peripheral surface of the cylinder 9 and moves up and down, a connecting body 36 connected to the piston 34, and an upper end which is penetrated by the connecting body 36 and the piston 34, respectively. An opening is provided with a liquid passage 37 communicating with the primary liquid storage chamber 12, and a small injection valve 38 provided at an intermediate portion of the liquid passage 37 in the connecting body 36. The liquid passage 37 has a small diameter of about 1 to 2 mm. The upper end of the connecting body 36 is connected to the piston lifting / lowering mechanism 32 via an auxiliary connecting body 43 shown in FIGS. 7 to 11 described later, and the liquid passage 37 is connected to the primary through the auxiliary connecting body 43. It is communicated with the liquid storage chamber 12.
[0061]
On the outer peripheral surface of the piston 34, two circumferential annular grooves 11 are formed at upper and lower ends of the piston 34, and a piston seal 41 made of an O-ring is fitted and fixed in the annular grooves 11. Have been. When the piston 34 is moved up and down, the piston seal 41 slides in an airtight manner on the inner peripheral surface of the cylinder 9 to keep the inside of the cylinder 9 always closed. Further, the lower end surface of the piston 34 is formed in a funnel shape corresponding to the cylinder 9.
[0062]
The battery case 8 is removably supported on the battery case support 22 in a state where the electrode plate group (not shown) is previously housed therein, and then inserted and held in the shape-retaining container 25 from above. You. When the battery case lifting / lowering mechanism 23 is raised to the upper limit position, the upper end surface of the battery case 8 is held against the sealing gasket 27 as shown in FIG. It is pressed with a force to compress it by about 0.5 mm. As a result, the cylinder 9 is airtightly connected to the battery case 8 with the lower end liquid supply port 9a sealed with the sealing gasket 27, and the upper part is closed with the piston 34 and the piston seal 41, and the cylinder 9 is sealed inside. A secondary storage chamber 42, which is a space, is formed. However, the secondary storage chamber 42 communicates with the inside of the battery case 8 via the sealing gasket 27, and communicates with the primary storage chamber 12 through the liquid passage 37 when the injection valve 38 is opened. .
[0063]
The two connecting pipes 19 and 28 are branched and connected to an atmosphere opening pipe provided with solenoid valves 39 and 40, respectively, so that the solenoid valves 39 and 40 can be moved prior to the lowering operation of the lower chamber body 10B. , 40 are opened, the closed spaces of the primary storage chamber 12 and the injection chamber 10 are each opened to the atmosphere, and the above-described pressurized gas is released to the outside.
[0064]
Next, the injection operation by the above-mentioned electrolyte injection device will be described with reference to FIGS. In these figures, in order to facilitate understanding, the metering pump 3, the vacuum pumps 14, 15, 29 and the pressurized gas supply units 18, 31 are indicated by a solid line in the driving state and in a non-driving state. Each is schematically illustrated by a broken line.
[0065]
First, in the battery case mounting step of FIG. 2, the apparatus main body is conveyed in a state where the lower chamber body 10B of the liquid injection chamber 10 is separated from the upper chamber body 10A and lowered to the lower battery case mounting position, and the injection is performed. When the positioning at the liquid station is stopped, the rectangular battery case 8 in which the electrode plate group is stored in advance is inserted into and removed from the shape retaining container 25 in the lower chamber body 10B. At this time, the defoaming vacuum pump 15 is driven as shown by a solid line, whereby bubbles in the electrolytic solution 2 in the electrolytic solution tank 1 are removed in advance.
[0066]
Subsequently, as shown in FIG. 3, the lower chamber body 10 </ b> B in which the battery case 8 is mounted in the shape-retaining container 25 on the battery case support base 22 is raised, so that the chamber lower body 10 </ b> B The liquid injection chamber 10 is formed in tight contact with the upper body 10A, together with the chamber upper body 10A. The interior of the injection chamber 10 becomes a closed space by closing the injection valve 38. The inside of the battery case 8 communicates with the closed space of the liquid injection chamber 10 through the liquid injection port 8a.
[0067]
When the liquid injection chamber 10 is configured as described above, the second vacuum pump 29 is driven as shown by a solid line after the third solenoid valve 30 is opened, and thereby the liquid injection chamber 10 is formed. The pressure in the closed space 10 and the secondary storage chamber 42 which is open downward is reduced to 0.3 to 1.3 kPa. At this time, the closed space of the liquid injection chamber 10 and the secondary liquid storage chamber 42 are shut off from the primary liquid storage chamber 12 by the liquid injection valve 38 in the closed state. The pressure is reduced reliably and quickly.
[0068]
Since the inside of the battery case 8 communicates with the closed space of the injection chamber 10 through the injection port 8a, the pressure of the closed space of the injection chamber 10 is reduced to 0.3 to 1.3 kPa as described above. With this, the inside of the battery case 8 is also evacuated to substantially the same pressure. According to the measurement results of these examples, when the second vacuum pump 29 was driven for 30 seconds, the pressure inside the battery case 8 could be reduced to a degree of vacuum of 0.3 to 1.3 kPa. Thereby, the air existing in the small gaps between the electrode groups in the battery case 8 is smoothly exhausted to the outside as the inside is reduced to a relatively high degree of vacuum.
[0069]
On the other hand, in the primary storage container 7, the lid 6 is removed and the upper part of the primary storage chamber 12 is opened, and the injection nozzle 4 is detachably connected to the primary storage chamber 12. Subsequently, when the metering pump 3 is driven as shown by the solid line, a fixed amount (2.0 g ± 0.1 in this embodiment) of the electrolyte 2 is stored in the primary storage chamber 12. 1 through the metering pump 3 and the injection nozzle 4. Here, it is preferable that the electrolytic solution 2 is evacuated in the electrolytic solution tank 1 and defoamed in advance.
[0070]
In this electrolytic solution injection device, each device main body is sequentially conveyed to an injection station provided with a single metering pump 3 and an injection nozzle 4, and the primary storage of the device body stopped at the injection station. The injection nozzles 4 are sequentially connected to the chamber 12 to supply the electrolytic solution 2. Therefore, when the apparatus main bodies are arranged in multiple units, the number of metering pumps 3 and liquid injection nozzles 4 to be installed can be greatly reduced.
[0071]
When a predetermined amount of the electrolytic solution 2 is supplied into the primary storage chamber 12, as shown in FIG. 4, after the first solenoid valve 13 is opened in advance, the first vacuum pump 14 is shown by a solid line. And the pressure in the primary storage chamber 12 is reduced to a reduced pressure atmosphere of 13.3 kPa. As a result, the bubbles contained in the electrolyte 2 float on the liquid surface and are then exhausted. The results of actual measurement when the defoaming step of the electrolytic solution 2 was performed showed that when the first vacuum pump 14 was driven for 30 seconds, the degree of pressure reduction of the electrolytic solution 2 was 13.3 kPa. Since the primary storage chamber 12 is isolated from the closed space of the injection chamber 10 by the injection valve 38 in the closed state, the second storage chamber 12 is different from the second vacuum pump 29 for reducing the pressure of the injection chamber 10. The one vacuum pump 14 can surely reduce the pressure to a set pressure different from the pressure in the closed space of the liquid injection chamber 10. That is, in the electrolyte injection device, the primary storage chamber 12 and the closed space of the injection chamber 10 can be separately evacuated and reliably reduced to different set pressures by an extremely simple configuration.
[0072]
In the defoaming step of the electrolytic solution 2, the primary storage chamber 12 is set to have an internal volume substantially equal to the amount of the electrolyte solution 2 injected into the battery case 8, and Since the exhaust / pressurization port to which the connection 19 is connected is set to a small diameter of φ1 to 2 mm, the evaporation of the electrolyte 2 when the electrolyte 2 is evacuated by driving the first vacuum pump 14 is suppressed. As a result, the liquid loss can be significantly reduced, so that highly accurate liquid injection can be performed. Also, in this defoaming step, unlike the conventional means for evacuating the electrolyte injected into the battery case, the electrolyte 2 in the primary storage chamber 12 is evacuated. Bubbles in the electrolytic solution 2 can be almost certainly removed.
[0073]
On the other hand, in the liquid injection chamber 10, after the inside of the battery case 8 is evacuated to a predetermined degree of vacuum by driving the second vacuum pump 29, the battery case elevating mechanism 23 discharges the piston 23a by a predetermined stroke. Since the battery case 8 is driven to raise the battery case support 22 to the upper limit position, the upper end surface of the battery case 8 held in the shape-retaining container 25 on the battery case support 22 is 0.5 mm with respect to the sealing gasket 27. It is pressed to a state where it is compressed to a degree, and is hermetically sealed by the sealing gasket 27 and is in close contact with the lower end surface of the cylinder 9. Communicated. Thereby, a secondary liquid storage chamber 42 sealed by the liquid injection valve 38, the battery case 8, the piston 34, and the piston seal 41 in a closed state is formed inside the cylinder 9. The inside of the battery case 8 communicates with 42.
[0074]
Next, as shown in FIG. 5, the injection valve 38 is opened, and the primary storage chamber 12 and the secondary storage chamber 42 are communicated via the liquid passage 37. Therefore, the electrolytic solution 2 in the primary storage chamber 12 has a pressure difference between the pressure on the liquid surface of the electrolytic solution 2 in the primary storage chamber 12 and the pressure in the secondary storage chamber 42 (13. (3 kPa-0.3 to 1.3 kPa), and is supplied into the secondary storage chamber 42 and further into the battery case 8 which is maintained at the same pressure as the secondary storage chamber 42 and the liquid supply port 9a and the injection port. It is injected through the liquid port 8a. The supply of the electrolytic solution 2 from the primary storage chamber 12 to the secondary storage chamber 42 is performed using the pressure difference between the two pressures as described above. 2 does not come into contact with the atmosphere, so that no bubbles are mixed into the electrolytic solution 2 and the secondary storage chamber 42 is maintained at a relatively high vacuum of 0.3 to 1.3 kPa. Since the supply of the liquid 2 is completed in a short time and the primary storage chamber 12 is set to a relatively low vacuum of 13.3 kPa, there is no possibility that the electrolyte 2 will be boiled.
[0075]
When the supply of the electrolytic solution 2 in the primary storage chamber 12 into the secondary storage chamber 42 is completed, the process proceeds to a first injection step. That is, as shown in FIG. 6, when the first liquid storage chamber 12 and the liquid passage 37 are evacuated by driving the first vacuum pump 14, the injection valve 38 is closed again, and the secondary liquid storage chamber is closed. 42 and the primary storage chamber 12 are shut off. Thereafter, as shown in FIG. 7, the piston elevating mechanism 32 is driven, and the piston mechanism 33 starts the lowering operation. The piston 34 of the piston mechanism 33 directly pressurizes the electrolytic solution 2 in the secondary storage chamber 42 at a pressure of 0.75 MPa with the descending operation.
[0076]
Thereby, most of the electrolytic solution 2 in the secondary storage chamber 42 is forcibly injected into the battery case 8 and then effectively promoted to quickly penetrate into the minute gaps of the electrode plate group. Is done. Further, since the piston 34 performs a descending operation while maintaining the airtight state with respect to the cylinder 9 by the piston seal 41, the electrolytic solution 2 is exposed to the atmosphere despite being directly pressurized by the piston 34. Since there is no air bubble, no air bubbles are mixed. Moreover, even if the highly viscous electrolytic solution 2 adheres to the inner peripheral surface of the cylinder 9, the adhered electrolytic solution 2 is reliably wiped off by the piston seal 41, so that the liquid is injected with high injection accuracy. can do.
[0077]
If the electrolytic solution 2 starts to be forcibly injected into the battery case 8 due to the direct pressurization of the piston 34, the rectangular battery case 8 directly receives the pressing force due to the downward movement of the piston 34. As a result, the internal pressure is increased by the electrolyte solution 2 that is injected very quickly, and the long-side plate portion 8b of the battery case 8 that is particularly easily deformed tends to swell outward. However, since the rectangular battery case 8 is inserted into the shape-retaining container 25 having an inner peripheral surface slightly larger than the outer shape of the battery case 8, the bulging of the long-side plate portion 8 b causes the inner surface of the shape-retaining container 25 to bulge. This prevents the battery case 8 from bulging and deforming outward. At this time, by opening the fourth solenoid valve 35 and driving the second pressurized gas supply unit 31, the battery case is activated by the pressure of the inert gas supplied from the second pressurized gas supply unit 31. It is preferable to further surely prevent outward bulging deformation of 8.
[0078]
As shown in FIG. 8, when the piston 34 is lowered to the lower limit position, the outer surface of the lower taper of the piston 34 except for the outer peripheral surface of the cylinder and the inner surface of the lower taper of the cylinder 9 come into close contact with each other, and the secondary liquid is stored. The chamber 42 has disappeared, and the electrolytic solution 2 remains at the lower end of the liquid passage 37. In a state where the piston 34 is stopped at the lower limit position, the second liquid injection step is started. That is, after the injection valve 38 is opened and the second solenoid valve 17 is opened, the first pressurized gas supply unit 18 is driven as shown by a solid line. N as the pressurized gas supplied from the first pressurized gas supply unit 18 2 Passes through the primary storage chamber 12 and the liquid passage 37 and directly pressurizes the electrolyte 2 remaining in the liquid passage 37 at a pressure of 0.75 MPa, so that the electrolyte 2 is injected into the battery case 8. Infusion is effectively promoted. Further, the piston 34 is formed using PTFE as a forming material, and the electrolytic solution 2 does not easily adhere thereto. Thereby, the liquid loss of the electrolytic solution 2 can be further suppressed.
[0079]
Then, as shown in FIG. 9, if the liquid level of the electrolytic solution 2 drops below the liquid inlet 8 a on the upper end surface of the battery case 8 due to pressurization by the pressurized gas, the second liquid injection step ends. Subsequently, the process proceeds to a third liquid injection step shown in FIG. That is, the injection valve 38 is closed to shut off the connection between the secondary storage chamber 42 and the primary storage chamber 12, the drive of the first pressurized gas supply unit 18 is stopped, and the second pressurization is performed. The driving of the gas supply unit 31 is continued, and the sealed space of the liquid injection chamber 10 is maintained at a pressure of 1 MPa. The state in which the liquid level of the electrolytic solution 2 has dropped below the injection port 8a of the battery case 8 is, for example, a case where the timing is started from the start of the injection and the elapsed time is monitored, and the predetermined time from the start of the injection It is detected when the time has elapsed. The predetermined time is determined in advance by experiment.
[0080]
At the same time, the battery case lifting / lowering mechanism 23 is driven to suck the piston 23a by a predetermined stroke to lower the battery case support 22 to the lower limit position, so that the battery case 8 held on the battery case support 22 is Move away from the cylinder 9. As a result, the electrolytic solution 2 injected into the battery case 8 is pressurized by the pressure of 1 MPa in the closed space of the liquid injection chamber 10 and efficiently penetrates into the small gaps of the electrode group.
[0081]
As described above, in each of the first injection steps, a relatively large pressing force of 0.75 MPa due to the lowering operation of the piston 34 is directly applied to the electrolytic solution 2, and in the second injection step, the first injection step is performed. A relatively large pressing force of 0.75 MPa by the pressurized gas from the pressurized gas supply unit 18 is directly applied to the electrolytic solution 2, and in the third injection step, the second pressurized gas supply unit 31 Since a relatively large pressing force of 1 MPa by the pressurized gas from the battery is directly applied to the electrolytic solution 2, a predetermined amount of the electrolytic solution 2 is extremely efficiently applied to the minute gaps between the electrode plates in the battery case 8. The battery case 8 in a short time.
[0082]
When the injection is completed as described above, the solenoid valves 39 and 40 in FIG. 1 are opened, and the pressurized gas in the primary storage chamber 12 and the injection chamber 10 is discharged to the outside. Finally, as shown in FIG. 11, the lower chamber body 10 </ b> B of the liquid injection chamber 10 is lowered to a predetermined position, and the battery case 8 in which the injection of the electrolytic solution 2 has been completed is taken out of the shape retaining container 25. At this time, since the direct pressing force on the electrolytic solution 2 by the piston 34 has already been released, the long side plate portion 8b that has once bulged out of the battery case 8 has returned to the original state, and the battery case 8 Can be easily taken out.
[0083]
In the above-described electrolytic solution injection device, while the simple configuration in which the rectangular battery case 8 is simply inserted into the shape-retaining container 25 is employed, the piston 34 is used to forcibly inject the electrolytic solution 2 into the battery case 8. The swelling deformation of the long side plate portion 8b can be reliably prevented. However, instead of the means for preventing the swelling deformation of the battery case 8 by the shape retaining container 25, the battery case 8 is placed on the battery case support base 22. And pressurized gas is supplied from the second pressurized gas supply unit 31 into the closed space of the liquid injection chamber 10 during the first liquid injection step in which the piston 34 is operated. Even when the supply of the pressurized gas is controlled so that the pressure is substantially equal to the pressure applied to the electrolytic solution 2 by the piston 34, the swelling deformation of the rectangular battery case 8 can be prevented. Further, as means for preventing the battery case 8 from bulging and deforming, the above-mentioned means holding container 25 is provided, and a pressurized gas is supplied from the second pressurized gas supply unit 31 into the closed space of the liquid injection chamber 10. By doing so, the swelling deformation of the battery case 8 can be more reliably prevented.
[0084]
In the third injection step, the pressing force of the pressurized gas from the second pressurized gas supply unit 31 is directly applied to the electrolytic solution 2. However, in the third injection step, Alternatively, after the second liquid injection step is completed, the second liquid injection step may be continued as it is, and this may be set as a third liquid injection step. That is, in the third liquid injection step, the pressurized gas supplied from the first pressurized gas supply unit 18 is directly added to the electrolytic solution 2 in the battery case 8 through the primary storage chamber 12 and the liquid passage 37. Press. Also in this case, the predetermined amount of the electrolyte solution 2 can be extremely efficiently penetrated into the minute gaps between the electrode plates in the battery case 8 and can be filled in the battery case 8 in a short time.
[0085]
FIG. 12 shows an electrolyte injection device according to another embodiment of the present invention. In FIG. 12, the same or equivalent components as those in FIG. Only the configuration different from FIG. 1 will be described. In this electrolytic solution injection device, a case where liquid is injected into a cylindrical battery case 44 is illustrated, and the battery case 44 is not inserted into the shape retaining container 25 as in the embodiment, It is held on a battery case support 22. The entire upper end of the cylindrical battery case 44 is open. Corresponding to the cylindrical battery case 44, a portion of the piston 49 extending from the lower end of the liquid passage 37 to the liquid feed port 49a extends downward. An escape hole 49b having an open conical cross section is formed. A ring packing 50 is attached to a lower end surface of the cylinder 9.
[0086]
The basic pouring process in this electrolytic solution pouring apparatus is the same as that of the above-described embodiment, except that the battery case supporting table 22 is raised by the operation of the battery case elevating mechanism in the battery case connecting step. In this case, the upper end surface of the cylindrical battery case 44 is air-tightly attached to the ring packing 50, and the upper end opening of the cylindrical battery case 44 communicates with the secondary storage chamber 42. Thereby, the opening of the entire upper end of the cylindrical battery case 44 is connected to the secondary storage chamber 42 in an airtight state without any trouble.
[0087]
Also, during the first liquid injection step in which the piston 49 descends, pressurized gas is supplied from the second pressurized gas supply unit 31 into the closed space of the liquid injection chamber 10, and the pressure in the closed space is reduced by the piston 49. The supply of the pressurized gas is controlled so as to be substantially equal to the pressure applied to the electrolytic solution 2 by the pressure. As a result, the outer surface of the cylindrical battery case 44 is pressurized by the pressure of the pressurized gas in the closed space of the injection chamber 10, and swells outward against the pressing force of the electrolytic solution 2 inside. Deformation is prevented.
[0088]
【The invention's effect】
As described above, according to the electrolytic solution injection method of the present invention, by reducing the internal volume of the secondary storage chamber while maintaining the internal volume in an airtight state by operating the piston, the piston can be operated without pressurized gas or the like. While the electrolyte is directly pressurized in the battery case, the electrolyte is evacuated in advance through a liquid inlet or an opening of the battery case which is connected in a gas-tight manner to a pre-evacuated secondary storage chamber. Forcibly injects the electrolyte solution into the battery case through the primary storage chamber through the liquid passage and the secondary storage chamber, while greatly shortening the time of impregnation of the electrolyte into the electrode group. Since the electrolyte does not come into contact with the atmosphere in any part of the injection passage and the pressure of the piston acts directly on the electrolyte, bubbles are mixed into the electrolyte during the injection process. There is no fear that the amount of electrolyte Since the gas can be reduced to a lower level and gas does not mix into the electrolyte, there is no danger that the gas in the electrolyte becomes bubbles when the pressure is released and overflows the electrolyte. , The injection accuracy is remarkably improved, and a high-quality battery with stable electric characteristics can be obtained.
[0089]
Further, according to the electrolytic solution injection device of the present invention, the primary vacuum chamber can be evacuated by the first vacuum pump, and the first pressurized gas supply unit allows the primary fluid chamber to communicate with the primary fluid chamber and the liquid passage. Pressurized gas can be supplied to the secondary storage chamber to act on it, and the connection and cutoff between the primary storage chamber and the secondary storage chamber via the liquid passage can be performed by opening and closing the injection valve. The electrolyte solution in the secondary storage chamber can be pressurized by the piston mechanism, and the secondary storage chamber in a closed space can be configured by the cylinder, the piston, and the battery case. And the effect of the liquid injection method can be reliably obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an electrolyte injection device embodying an electrolyte injection method according to an embodiment of the present invention.
FIG. 2 is a schematic vertical sectional view of the electrolyte injection device in the battery case mounting step.
FIG. 3 is a schematic vertical cross-sectional view in a battery case exhausting step of the electrolytic solution injecting apparatus.
FIG. 4 is a schematic longitudinal sectional view of the electrolytic solution injection device in the electrolytic solution defoaming and battery case connecting steps.
FIG. 5 is a schematic vertical cross-sectional view of an electrolytic solution injecting apparatus in the electrolytic solution transferring step.
FIG. 6 is a schematic longitudinal sectional view of the electrolyte injection device in the same state in a preparation state for starting a first injection step.
FIG. 7 is a schematic longitudinal sectional view of the electrolyte injection device in the same state in a first injection step.
FIG. 8 is a diagram illustrating an opening of a second injection step of the electrolyte injection device according to the first embodiment. Beginning FIG. 3 is a schematic longitudinal sectional view in a state.
FIG. 9 is a schematic vertical cross-sectional view of the above-described electrolytic solution injection device in a state where a second injection step is completed.
FIG. 10 is a schematic longitudinal sectional view in a third injection step of the electrolyte injection device of the above.
FIG. 11 is a schematic longitudinal sectional view of the electrolyte injection device in the battery case mounting step.
FIG. 12 is a schematic longitudinal sectional view showing an electrolyte injection device according to another embodiment of the present invention.
FIG. 13 is a sectional view showing a conventional liquid injection device.
FIG. 14 is a schematic configuration diagram showing another conventional liquid injection device.
[Explanation of symbols]
1 Electrolyte tank
2 Electrolyte
3 Metering pump
4 Injection nozzle
7 Primary storage container
8 Battery case
8a Filling port
9 cylinders
10 Injection chamber
12 Primary storage chamber
14 First vacuum pump
18 First pressurized gas supply unit
22 Battery case support
25 Shape-keeping containers
29 Second vacuum pump
31 Second pressurized gas supply unit
33 piston mechanism
34 piston
37 liquid passage
38 Injection valve
41 Piston seal
42 Secondary storage chamber
44 Battery case
49 piston

Claims (12)

電解液タンクから定量の電解液を一次貯液室内に供給する電解液供給工程と、
極板群を収納した電池ケースを注液チャンバの内部の密閉空間に収容して前記密閉空間内を減圧することにより、前記電池ケースの内部と、中間に注液バルブを介設した液通路を介して前記一次貯液室に連通し、且つ前記密閉空間に向けて開口した二次貯液室の内部とを同時に真空引きする電池ケース排気工程と、
内部を真空引きした前記電池ケースの注液口または開口部を前記二次貯液室の開口部に気密状態に連通接続する電池ケース接続工程と、
前記注液バルブを開くことにより、前記一次貯液室内の電解液を前記液通路を介して前記二次貯液室に送給する電解液移送工程と、
前記一次貯液室内の電解液を前記二次貯液室に送給し終えたのちに前記注液バルブを閉じて前記二次貯液室を密閉状態に保持し、ピストンの作動によって前記二次貯液室の内部容積を縮小していくことにより、前記二次貯液室内の電解液を前記ピストン表面で直接に加圧しながら前記電池ケース内に注入する注液工程とを備えていることを特徴とする電解液注液方法。
An electrolyte supply step of supplying a fixed amount of electrolyte from the electrolyte tank into the primary storage chamber,
The battery case accommodating the electrode plate group is housed in a sealed space inside the injection chamber and the inside of the sealed space is decompressed, so that the inside of the battery case and a liquid passage provided with an injection valve in the middle are formed. A battery case exhausting step of simultaneously evacuating the interior of the secondary storage chamber, which communicates with the primary storage chamber through, and opens toward the sealed space,
A battery case connection step of connecting the liquid inlet or opening of the battery case whose interior has been evacuated to the opening of the secondary storage chamber in an airtight manner
By opening the injection valve, an electrolyte transfer step of feeding the electrolyte in the primary storage chamber to the secondary storage chamber through the liquid passage,
After the supply of the electrolytic solution in the primary storage chamber to the secondary storage chamber is completed, the injection valve is closed to hold the secondary storage chamber in a sealed state, and the secondary operation is performed by operating a piston. A liquid injection step of injecting the electrolyte in the secondary storage chamber into the battery case while directly pressurizing the electrolyte in the secondary storage chamber by reducing the internal volume of the storage chamber. Characteristic electrolyte injection method.
注液工程において、ピストンによる電解液への加圧力と同等の膨れ防止用加圧力を電池ケースの外面に対し付与するようにした請求項1に記載の電解液注液方法。2. The electrolyte injection method according to claim 1, wherein in the injection step, a pressure for preventing swelling equivalent to a pressure applied to the electrolyte by the piston is applied to the outer surface of the battery case. 長方形または長円形の横断面形状を有する角形の電池ケースを、前記電池ケースの外周面との間に少許の隙間を形成できる内周面を有する保形容器内に挿入した状態で注液チャンバの密閉空間内に収容し、前記電池ケースの膨出を阻止する加圧力を前記保形容器の内周面で付与するようにした請求項2に記載の電解液注液方法。With the rectangular battery case having a rectangular or elliptical cross-sectional shape inserted into a shape-retaining container having an inner peripheral surface capable of forming a small gap between the outer peripheral surface of the battery case and the injection chamber, The electrolytic solution injection method according to claim 2, wherein a pressurizing force that is accommodated in a closed space and that prevents swelling of the battery case is applied to an inner peripheral surface of the shape-retaining container. 注液チャンバの密閉空間内に不活性ガスを供給して、前記密閉空間内の圧力がピストンによる電解液への加圧力とほぼ同等になるように不活性ガスの供給を制御するようにした請求項2または3に記載の電解液注液方法。An inert gas is supplied into the closed space of the liquid injection chamber, and the supply of the inert gas is controlled so that the pressure in the closed space is substantially equal to the pressure applied to the electrolytic solution by the piston. Item 4. The method for injecting an electrolytic solution according to Item 2 or 3. 電解液供給工程に先立って電解液タンク内を真空引きすることにより、電解液中の気泡を除去する予備脱泡工程を備えている請求項1ないし4の何れかに記載の電解液注液方法。5. The method for injecting an electrolytic solution according to claim 1, further comprising a preliminary defoaming step for removing bubbles in the electrolytic solution by evacuating the electrolytic solution tank prior to the electrolytic solution supplying step. . 電解液供給工程を経て定量の電解液が供給された一次貯液室内を真空引きして電解液中の気泡を除去する脱泡工程を備えるとともに、電解液移送工程において、注液バルブを開いて前記一次貯液室の電解液の液面の真空圧力と二次貯液室の真空圧力との差圧により前記一次貯液室内の電解液を前記二次貯液室に供給するようにした請求項1ないし5の何れかに記載の電解液注液方法。In addition to having a defoaming step of removing air bubbles in the electrolyte by evacuating the primary storage chamber to which a fixed amount of the electrolyte has been supplied through the electrolyte supply step, in the electrolyte transfer step, the injection valve is opened. The electrolyte in the primary storage chamber is supplied to the secondary storage chamber by a differential pressure between the vacuum pressure of the liquid level of the electrolyte in the primary storage chamber and the vacuum pressure in the secondary storage chamber. Item 6. The method for injecting an electrolytic solution according to any one of Items 1 to 5. 注液工程においてピストンが所定のストロークだけ作動して停止したのちに、注液バルブを開いて一次貯液室内から液通路を介して二次貯液室に不活性ガスを供給し、前記二次貯液室内に残存する電解液を前記不活性ガスの流通により電池ケース内に注入する第2の注液工程と、
電解液の液面が電池ケースの注液口より低くなった時点で前記注液バルブを閉じたのちに、前記電池ケースの注液口を前記二次貯液室から離間させ、注液チャンバ内に供給する不活性ガスの圧力により前記電池ケース内の電解液を加圧する第3の注液工程とを備えている請求項1ないし6の何れかに記載の電解液注液方法。
In the liquid injection step, after the piston operates and stops for a predetermined stroke, the liquid injection valve is opened to supply an inert gas from the primary liquid storage chamber to the secondary liquid storage chamber through the liquid passage, and A second injection step of injecting the electrolyte remaining in the storage chamber into the battery case by flowing the inert gas;
When the liquid level of the electrolytic solution becomes lower than the liquid inlet of the battery case, after closing the liquid injection valve, the liquid inlet of the battery case is separated from the secondary storage chamber, and the inside of the liquid inlet chamber is 7. The method according to claim 1, further comprising: a third injection step of pressurizing the electrolyte in the battery case with a pressure of an inert gas supplied to the battery case.
請求項7に記載の第3の注液工程に代えて、第2の注液工程によって電解液の液面が電池ケースの注液口より低くなった後も、この第2の注液工程の状態を保持したまま、一次貯液室、液通路および二次貯液室を通じて電池ケース内に供給する不活性ガスをの圧力により前記電池ケース内の電解液を加圧する第3の注液工程を設けた請求項7に記載の電解液注液方法。In place of the third liquid injection step according to claim 7, even after the liquid level of the electrolytic solution becomes lower than the liquid inlet of the battery case by the second liquid injection step, the second liquid injection step is performed in the second liquid injection step. A third injection step of pressurizing the electrolyte in the battery case by the pressure of the inert gas supplied into the battery case through the primary storage chamber, the liquid passage, and the secondary storage chamber while maintaining the state. The method for injecting an electrolytic solution according to claim 7 provided. 内部が一次貯液室となった密閉容器の一次貯液容器と、
定量ポンプの駆動により電解液タンクから供給される定量の電解液を前記一次貯液室に注入する注液ノズルと、
前記一次貯液室にそれぞれ管路接続された第1の真空ポンプおよび第1の加圧気体供給部と、
ピストンと、上端が前記一次貯液室に連通し、且つ下部がピストンに貫通された液通路と、この液通路の中間に介設された注液バルブとを一体に備えて昇降されるピストン機構と、
開閉自在な気密容器である注液チャンバと、
前記注液チャンバの上端部に気密状態で貫通して支持されたシリンダと、このシリンダの内周面に気密状態で摺動される前記ピストンと、前記電池ケース支持台の上昇により前記シリンダの下端面に気密に当接される前記電池ケースの上端面の注液口とで囲まれて、閉状態の前記注液バルブで前記液通路が閉塞されることにより密閉空間に形成される二次貯液室とを備えていることを特徴とする電解液注液装置。
A primary storage container in a closed container with an internal primary storage chamber,
A liquid injection nozzle for injecting a fixed amount of electrolyte supplied from the electrolyte tank by driving a metering pump into the primary storage chamber,
A first vacuum pump and a first pressurized gas supply unit each connected to the primary storage chamber by a pipe,
A piston mechanism which is integrally provided with a piston, a liquid passage having an upper end communicating with the primary storage chamber and a lower part penetrated by the piston, and a liquid injection valve interposed in the middle of the liquid passage, and being moved up and down. When,
An injection chamber that is an airtight container that can be opened and closed,
A cylinder which is supported in an airtight manner at the upper end of the liquid injection chamber, the piston which is slid in an airtight manner on an inner peripheral surface of the cylinder, and a lower portion of the cylinder when the battery case support is raised. A secondary storage formed in a closed space by being enclosed by a liquid inlet of an upper end surface of the battery case which is in air-tight contact with an end surface and closed by the liquid passage by the liquid injection valve in a closed state. An electrolyte injection device, comprising: a liquid chamber.
注液チャンバの内部に設けられて、電解液を注液すべき電池ケースを保持しながら昇降させる電池ケース支持台と、注液チャンバの内部の密閉空間にそれぞれ管路接続された第2の真空ポンプおよび第2の加圧気体供給部とを備えている請求項9に記載の電解液注液装置。A battery case support base provided inside the liquid injection chamber for raising and lowering while holding the battery case into which the electrolyte is to be injected, and a second vacuum pipe connected to a closed space inside the liquid injection chamber, respectively. The electrolytic solution injection device according to claim 9, further comprising a pump and a second pressurized gas supply unit. ピストンの円筒外周面における少なくとも下端部分に、シリンダの内周面に気密状態で摺動する配置でピストンシールが固着されている請求項10に記載の電解液注液装置。The electrolytic solution injection device according to claim 10, wherein a piston seal is fixed to at least a lower end portion of the outer peripheral surface of the piston in an airtight manner with respect to an inner peripheral surface of the cylinder. 定量ポンプを介在して電解液タンクに管路接続された注液ノズルが、一次貯液室に対し着脱自在に連結される可動式になっている請求項9または10に記載の電解液注液装置。The electrolyte injection liquid according to claim 9 or 10, wherein the injection nozzle connected to the electrolyte tank via a metering pump is detachably connected to the primary storage chamber. apparatus.
JP2003034625A 2003-02-13 2003-02-13 Electrolyte liquid injection method and electrolyte liquid injection device Pending JP2004247120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034625A JP2004247120A (en) 2003-02-13 2003-02-13 Electrolyte liquid injection method and electrolyte liquid injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034625A JP2004247120A (en) 2003-02-13 2003-02-13 Electrolyte liquid injection method and electrolyte liquid injection device

Publications (1)

Publication Number Publication Date
JP2004247120A true JP2004247120A (en) 2004-09-02

Family

ID=33020248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034625A Pending JP2004247120A (en) 2003-02-13 2003-02-13 Electrolyte liquid injection method and electrolyte liquid injection device

Country Status (1)

Country Link
JP (1) JP2004247120A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
KR100735657B1 (en) * 2005-09-16 2007-07-04 (주)지멕스 electrolyte injection apparatus and method of secondary battery
WO2008093125A1 (en) * 2007-02-02 2008-08-07 G24 Innovations Limited Injecting fluids
WO2011080918A1 (en) * 2009-12-28 2011-07-07 長野オートメーション株式会社 Apparatus for supplying electrolytic solution
WO2011086928A1 (en) * 2010-01-15 2011-07-21 長野オートメーション株式会社 Apparatus and method for supplying electrolytic solution
CN102169975A (en) * 2011-03-30 2011-08-31 广州力柏能源科技有限公司 Battery injection and formation control device
KR101222337B1 (en) * 2006-03-09 2013-01-16 삼성에스디아이 주식회사 Apparatus for electrolyte injection
KR101222324B1 (en) * 2006-03-09 2013-01-16 삼성에스디아이 주식회사 Injecting head of high speed electrolyte injecting device
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
CN102903885A (en) * 2012-10-18 2013-01-30 双登集团股份有限公司 Constant-liquid-injection device for electrolyte
JP2013109855A (en) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd Manufacturing method and manufacturing apparatus of electric device and electric device
KR101285955B1 (en) * 2006-03-09 2013-07-12 삼성에스디아이 주식회사 High speed electrolyte injecting device
CN103325989A (en) * 2012-03-22 2013-09-25 株式会社东芝 Manufacturing device and manufacturing method for battery
CN103441235A (en) * 2013-08-29 2013-12-11 嘉德力电源科技(苏州)有限公司 Circulation-type liquid storage device for liquid injection procedure of lithium-ion battery
CN105314171A (en) * 2014-08-05 2016-02-10 嘉兴市尤纳特电子科技有限公司 Vacuum sealer for hot plate
CN106654142A (en) * 2016-12-16 2017-05-10 宁德时代新能源科技股份有限公司 Liquid injection device
KR101742186B1 (en) 2015-06-24 2017-06-01 주식회사 비츠로셀 Jig for impregnating high density electrolyte
KR20170112187A (en) * 2016-03-31 2017-10-12 주식회사 엘지화학 Device for electrolyte injection
KR20180010393A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
KR101860386B1 (en) * 2017-08-31 2018-06-29 주식회사 에스와이티컴퍼니 Supplying device of electrolyte for battery
CN108400280A (en) * 2018-05-16 2018-08-14 江门市朗达锂电池有限公司 A kind of glove box
CN108400279A (en) * 2017-02-08 2018-08-14 深圳市铂纳特斯自动化科技有限公司 nailing device
CN108630881A (en) * 2018-06-12 2018-10-09 宁德嘉拓智能设备有限公司 A kind of double cup priming devices
CN108878761A (en) * 2018-06-12 2018-11-23 宁德嘉拓智能设备有限公司 A kind of equipressure priming device
CN109037581A (en) * 2018-07-27 2018-12-18 东莞市德瑞精密设备有限公司 Fluid reservoir and lithium battery liquid injection system
CN109449364A (en) * 2018-12-19 2019-03-08 大连智云新能源装备技术有限公司 Vacuum electrolyte filling device
CN109473688A (en) * 2018-12-29 2019-03-15 德州铭玉自动化科技有限公司 A kind of electrolyte permeability platform in li-Mn button cell dry production
CN109687034A (en) * 2019-01-11 2019-04-26 深圳吉阳智能科技有限公司 A kind of electrolyte infiltration apparatus for lithium battery
CN109860505A (en) * 2019-02-25 2019-06-07 合肥国轩高科动力能源有限公司 A kind of liquid-filling machine for battery
JP2019145235A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Liquid injection apparatus
CN111540875A (en) * 2020-04-30 2020-08-14 惠州市多科达科技有限公司 Battery liquid filling machine
CN112736376A (en) * 2021-01-27 2021-04-30 湖北亿纬动力有限公司 Liquid injection device and liquid injection method for battery
CN112768850A (en) * 2021-01-05 2021-05-07 深圳市易德微扣科技有限公司 Vacuum liquid injection sealing system and method for battery assembly
CN113555651A (en) * 2021-07-21 2021-10-26 深圳市铂纳特斯自动化科技有限公司 Cavity type liquid injection impregnation equipment
CN114421100A (en) * 2021-10-15 2022-04-29 芜湖天弋能源科技有限公司 Liquid injection hole correction and injection device for lithium battery
CN114583418A (en) * 2022-03-02 2022-06-03 上海兰钧新能源科技有限公司 Lithium battery liquid injection production method, liquid injection mechanism and liquid injection production equipment
CN114628168A (en) * 2020-12-12 2022-06-14 丰宾电子(深圳)有限公司 Quantitative vacuum impregnation mechanism
CN114628867A (en) * 2020-12-14 2022-06-14 纪顺机电工业股份有限公司 Electrolyte injection method for lithium battery
CN114865248A (en) * 2022-05-26 2022-08-05 安徽力源新能源有限公司 Lithium ion battery liquid injection machine
CN114883761A (en) * 2022-06-06 2022-08-09 浙江华荣电池股份有限公司 Rotatory injection device of alkaline dry battery electrolyte
CN115207580A (en) * 2022-08-01 2022-10-18 中航锂电(洛阳)有限公司 Battery shell side surface depression repairing method and battery fixing device
CN116435723A (en) * 2023-05-26 2023-07-14 江苏智泰新能源科技有限公司 Electrolyte filling device with overflow-preventing function for sodium ion battery production and method
EP4249129A1 (en) * 2022-03-21 2023-09-27 Shenzhen Greensun Technology Co., Ltd. Centrifugal battery liquid injection mechanism and liquid injection method thereof
CN117317537A (en) * 2023-09-05 2023-12-29 浙江恒威电池股份有限公司 Centrifugal absorption device for alkaline battery electrolyte and use method

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
KR100735657B1 (en) * 2005-09-16 2007-07-04 (주)지멕스 electrolyte injection apparatus and method of secondary battery
KR101222337B1 (en) * 2006-03-09 2013-01-16 삼성에스디아이 주식회사 Apparatus for electrolyte injection
KR101285955B1 (en) * 2006-03-09 2013-07-12 삼성에스디아이 주식회사 High speed electrolyte injecting device
KR101222324B1 (en) * 2006-03-09 2013-01-16 삼성에스디아이 주식회사 Injecting head of high speed electrolyte injecting device
WO2008093125A1 (en) * 2007-02-02 2008-08-07 G24 Innovations Limited Injecting fluids
WO2011080918A1 (en) * 2009-12-28 2011-07-07 長野オートメーション株式会社 Apparatus for supplying electrolytic solution
JP5661649B2 (en) * 2009-12-28 2015-01-28 長野オートメーション株式会社 Device for supplying electrolyte
US8910671B2 (en) 2009-12-28 2014-12-16 Nagano Automation Co., Ltd. Apparatus for supplying electrolyte
WO2011086928A1 (en) * 2010-01-15 2011-07-21 長野オートメーション株式会社 Apparatus and method for supplying electrolytic solution
CN102169975A (en) * 2011-03-30 2011-08-31 广州力柏能源科技有限公司 Battery injection and formation control device
JP2013012340A (en) * 2011-06-28 2013-01-17 Nagano Automation Kk Liquid supply device
JP2013109855A (en) * 2011-11-17 2013-06-06 Nissan Motor Co Ltd Manufacturing method and manufacturing apparatus of electric device and electric device
CN103325989A (en) * 2012-03-22 2013-09-25 株式会社东芝 Manufacturing device and manufacturing method for battery
US20130247364A1 (en) * 2012-03-22 2013-09-26 Kabushiki Kaisha Toshiba Manufacturing device and manufacturing method for battery
US9692081B2 (en) * 2012-03-22 2017-06-27 Kabushiki Kaisha Toshiba Manufacturing device and manufacturing method for battery
US20170237108A1 (en) * 2012-03-22 2017-08-17 Kabushiki Kaisha Toshiba Manufacturing device and manufacturing method for battery
CN102903885A (en) * 2012-10-18 2013-01-30 双登集团股份有限公司 Constant-liquid-injection device for electrolyte
CN103441235A (en) * 2013-08-29 2013-12-11 嘉德力电源科技(苏州)有限公司 Circulation-type liquid storage device for liquid injection procedure of lithium-ion battery
CN105314171A (en) * 2014-08-05 2016-02-10 嘉兴市尤纳特电子科技有限公司 Vacuum sealer for hot plate
KR101742186B1 (en) 2015-06-24 2017-06-01 주식회사 비츠로셀 Jig for impregnating high density electrolyte
KR20170112187A (en) * 2016-03-31 2017-10-12 주식회사 엘지화학 Device for electrolyte injection
KR102104491B1 (en) 2016-03-31 2020-04-24 주식회사 엘지화학 Device for electrolyte injection
KR102234989B1 (en) * 2016-07-21 2021-04-01 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
KR20180010393A (en) * 2016-07-21 2018-01-31 주식회사 엘지화학 Electrolyte Injection Apparatus for Prismatic Battery and Electrolyte Injection Method Using The Same
CN106654142A (en) * 2016-12-16 2017-05-10 宁德时代新能源科技股份有限公司 Liquid injection device
CN106654142B (en) * 2016-12-16 2022-09-23 宁德时代新能源科技股份有限公司 Liquid injection device
CN108400279A (en) * 2017-02-08 2018-08-14 深圳市铂纳特斯自动化科技有限公司 nailing device
CN108400279B (en) * 2017-02-08 2024-03-01 深圳市铂纳特斯智能装备股份有限公司 Nailing device
KR101860386B1 (en) * 2017-08-31 2018-06-29 주식회사 에스와이티컴퍼니 Supplying device of electrolyte for battery
JP2019145235A (en) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 Liquid injection apparatus
CN108400280A (en) * 2018-05-16 2018-08-14 江门市朗达锂电池有限公司 A kind of glove box
CN108630881A (en) * 2018-06-12 2018-10-09 宁德嘉拓智能设备有限公司 A kind of double cup priming devices
CN108878761A (en) * 2018-06-12 2018-11-23 宁德嘉拓智能设备有限公司 A kind of equipressure priming device
CN109037581A (en) * 2018-07-27 2018-12-18 东莞市德瑞精密设备有限公司 Fluid reservoir and lithium battery liquid injection system
CN109449364A (en) * 2018-12-19 2019-03-08 大连智云新能源装备技术有限公司 Vacuum electrolyte filling device
CN109473688A (en) * 2018-12-29 2019-03-15 德州铭玉自动化科技有限公司 A kind of electrolyte permeability platform in li-Mn button cell dry production
CN109687034A (en) * 2019-01-11 2019-04-26 深圳吉阳智能科技有限公司 A kind of electrolyte infiltration apparatus for lithium battery
CN109687034B (en) * 2019-01-11 2024-03-26 深圳吉阳智能科技有限公司 Electrolyte infiltration device for lithium battery
CN109860505A (en) * 2019-02-25 2019-06-07 合肥国轩高科动力能源有限公司 A kind of liquid-filling machine for battery
CN111540875A (en) * 2020-04-30 2020-08-14 惠州市多科达科技有限公司 Battery liquid filling machine
CN111540875B (en) * 2020-04-30 2022-11-11 惠州市多科达科技有限公司 Battery liquid filling machine
CN114628168B (en) * 2020-12-12 2023-06-30 丰宾电子科技股份有限公司 Quantitative vacuum impregnation mechanism
CN114628168A (en) * 2020-12-12 2022-06-14 丰宾电子(深圳)有限公司 Quantitative vacuum impregnation mechanism
CN114628867A (en) * 2020-12-14 2022-06-14 纪顺机电工业股份有限公司 Electrolyte injection method for lithium battery
CN112768850A (en) * 2021-01-05 2021-05-07 深圳市易德微扣科技有限公司 Vacuum liquid injection sealing system and method for battery assembly
CN112768850B (en) * 2021-01-05 2023-05-09 深圳市易德微扣科技有限公司 Vacuum liquid injection sealing system and method for battery assembly
CN112736376B (en) * 2021-01-27 2023-04-07 湖北亿纬动力有限公司 Liquid injection device and liquid injection method for battery
CN112736376A (en) * 2021-01-27 2021-04-30 湖北亿纬动力有限公司 Liquid injection device and liquid injection method for battery
CN113555651A (en) * 2021-07-21 2021-10-26 深圳市铂纳特斯自动化科技有限公司 Cavity type liquid injection impregnation equipment
CN113555651B (en) * 2021-07-21 2023-06-27 深圳市铂纳特斯自动化科技有限公司 Cavity type liquid injection impregnation equipment
CN114421100B (en) * 2021-10-15 2023-08-01 芜湖天弋能源科技有限公司 Lithium battery annotates liquid Kong Jiaozheng annotates liquid device
CN114421100A (en) * 2021-10-15 2022-04-29 芜湖天弋能源科技有限公司 Liquid injection hole correction and injection device for lithium battery
CN114583418A (en) * 2022-03-02 2022-06-03 上海兰钧新能源科技有限公司 Lithium battery liquid injection production method, liquid injection mechanism and liquid injection production equipment
CN114583418B (en) * 2022-03-02 2023-07-04 上海兰钧新能源科技有限公司 Lithium battery liquid injection production method, liquid injection mechanism and liquid injection production equipment
EP4249129A1 (en) * 2022-03-21 2023-09-27 Shenzhen Greensun Technology Co., Ltd. Centrifugal battery liquid injection mechanism and liquid injection method thereof
CN114865248A (en) * 2022-05-26 2022-08-05 安徽力源新能源有限公司 Lithium ion battery liquid injection machine
CN114865248B (en) * 2022-05-26 2023-09-08 广州纱溪机电工程技术有限公司 Lithium ion battery annotates liquid machine
CN114883761B (en) * 2022-06-06 2022-10-21 浙江华荣电池股份有限公司 Rotatory injection device of alkaline dry battery electrolyte
CN114883761A (en) * 2022-06-06 2022-08-09 浙江华荣电池股份有限公司 Rotatory injection device of alkaline dry battery electrolyte
CN115207580A (en) * 2022-08-01 2022-10-18 中航锂电(洛阳)有限公司 Battery shell side surface depression repairing method and battery fixing device
CN116435723A (en) * 2023-05-26 2023-07-14 江苏智泰新能源科技有限公司 Electrolyte filling device with overflow-preventing function for sodium ion battery production and method
CN116435723B (en) * 2023-05-26 2023-12-15 江苏智泰新能源科技有限公司 Electrolyte filling device with overflow-preventing function for sodium ion battery production and method
CN117317537A (en) * 2023-09-05 2023-12-29 浙江恒威电池股份有限公司 Centrifugal absorption device for alkaline battery electrolyte and use method

Similar Documents

Publication Publication Date Title
JP2004247120A (en) Electrolyte liquid injection method and electrolyte liquid injection device
US8047241B2 (en) Method for filling electrolyte into battery cell and apparatus for carrying out the method
JP5683938B2 (en) Secondary battery manufacturing method and electrolyte injection device
JP2001110400A (en) Device and method for puring electrolyte
JP6409274B2 (en) Power storage device manufacturing method and power storage device electrolyte injection device
JP3467135B2 (en) Filling method of electrolyte
CN104201422B (en) Vacuum withdraw device and method thereof in a kind of film of soft-package battery
WO2014006660A1 (en) Method for electrolyte injection and injection device for same
JP4222868B2 (en) Electrolyte injection method and electrolyte injection device for sealed battery
JPH08298110A (en) Electrolyte injecting method and device thereof
KR100735657B1 (en) electrolyte injection apparatus and method of secondary battery
CN110694852A (en) Positive and negative pressure impregnation equipment and method for porous material
JPH08130004A (en) Decompression filling method for cylindrical battery and equipment
JP5114842B2 (en) Method for manufacturing flat battery and apparatus for manufacturing the same
JP2007095707A (en) Manufacturing method of fluid injector and battery
CN102522223B (en) Controllable filling method for vacuum filling
CN216648548U (en) Cavity device and annotate liquid machine stews
JP2004055238A (en) Filling method and filling device of electrolytic solution
JP4008058B2 (en) Method of filling the case with electrolyte from the small-diameter filling hole
JP3939820B2 (en) Electrolyte filling method and filling device
CN114865248A (en) Lithium ion battery liquid injection machine
KR100822192B1 (en) Injecting method of electrolyte
KR100382950B1 (en) Method of charging electrolyte and charging device used in this method
JPH08250107A (en) Liquid impregnating device and liquid impregnating method
JPH09122994A (en) Dry process isostatic pressure molding device and dry process isostatic pressure molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007