WO2011086928A1 - Apparatus and method for supplying electrolytic solution - Google Patents

Apparatus and method for supplying electrolytic solution Download PDF

Info

Publication number
WO2011086928A1
WO2011086928A1 PCT/JP2011/000140 JP2011000140W WO2011086928A1 WO 2011086928 A1 WO2011086928 A1 WO 2011086928A1 JP 2011000140 W JP2011000140 W JP 2011000140W WO 2011086928 A1 WO2011086928 A1 WO 2011086928A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
function
signal
needle valve
valve
Prior art date
Application number
PCT/JP2011/000140
Other languages
French (fr)
Japanese (ja)
Inventor
山浦誠司
平井健一
Original Assignee
長野オートメーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長野オートメーション株式会社 filed Critical 長野オートメーション株式会社
Priority to JP2011549939A priority Critical patent/JP5685202B2/en
Publication of WO2011086928A1 publication Critical patent/WO2011086928A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and a method for supplying an electrolytic solution into a battery container.
  • the battery container In the step of supplying the electrolytic solution into the battery container, the battery container is placed in a vacuum atmosphere (reduced pressure atmosphere) for the purpose of shortening the time for the electrolytic solution to penetrate.
  • a vacuum atmosphere reduced pressure atmosphere
  • a step of evacuating the battery case to a degree of vacuum in the range of ⁇ 70 kpa to ⁇ 95 kpa below the boiling point of the organic electrolyte, and a predetermined amount of the organic electrolyte are injected
  • the temporary storage chamber in the injected hopper is evacuated to a degree of vacuum that produces a pressure difference of 0.1 kpa to 5 kpa higher than the pressure in the battery case, and the injection hopper is opened for temporary storage.
  • a method for injecting a lithium secondary battery comprising: injecting an organic electrolyte in a liquid chamber into a battery case via an injection port and an injection nozzle connected to the injection port by a pressure difference is disclosed. .
  • the inside of the battery case is made negative pressure, divided into predetermined amounts (injection), or negative pressure Dispensing in an atmosphere is performed. In any case, it is important to ensure the accuracy of liquid injection (accuracy of the liquid amount).
  • One embodiment of the present invention is a device (a supply device, a liquid injection device) that supplies an electrolytic solution into a battery container (battery case) disposed in a reduced pressure atmosphere (a reduced pressure chamber).
  • the apparatus includes a measuring unit that measures an electrolyte by moving a piston in a space in a cylinder, a dispenser that injects an electrolyte supplied from the measuring unit into the battery container from above, and a control unit that controls the apparatus.
  • the dispenser includes a discharge nozzle disposed in the battery container or near the upper end of the battery container, a needle valve that is disposed inside the discharge nozzle, opens and closes the discharge nozzle, and an actuator that drives the needle valve up and down.
  • the control unit controls the movement of the piston of the metering unit, moves the piston in the direction to expand the space in the cylinder (direction to expand), measures the electrolyte, and moves the piston in the direction to narrow the space (direction to reduce).
  • a first function for supplying the electrolyte solution to the dispenser, and a second function (second function unit) for opening and closing the needle valve by the actuator.
  • the first function for controlling the function includes a signal output function (signal output function unit) that outputs a signal for closing the needle valve in conjunction with moving and stopping the piston in the direction of narrowing the space in the cylinder.
  • the battery container that supplies (injects and dispenses) the electrolyte is placed in a reduced pressure atmosphere (in a reduced pressure chamber).
  • the electrolytic solution is supplied from outside the reduced pressure atmosphere (outside the reduced pressure chamber), typically from the atmospheric pressure atmosphere.
  • the liquid column pressure static pressure, hydraulic pressure
  • the liquid column pressure is put into the battery container. inject. Therefore, the pressure difference due to the reduced pressure and the static pressure of the electrolytic solution are applied to the inlet (tip of the discharge nozzle) to the battery container, and the electrolytic solution is strongly sucked into the decompression chamber side.
  • the device (supply device, liquid injection device) of one aspect of the present invention is provided with a needle valve that opens and closes the discharge nozzle of the dispenser while measuring the electrolyte supplied to the dispenser by the first function by the measuring unit.
  • the accuracy of the amount of liquid injected into the battery container is further improved by closing the needle valve in conjunction with the movement of the piston of the measuring unit to stop by the signal output function.
  • the signal output function for outputting a signal for closing the needle valve in conjunction with moving and stopping the piston in the direction in which the first function is narrowed is performed before the piston is moved and stopped in the direction in which the first function is narrowed. It is desirable to output a signal for closing the needle valve.
  • ⁇ A typical actuator that drives a piston is a servo motor.
  • a typical actuator disposed in the explosion-proof area is driven by a working fluid supplied via a solenoid valve, for example, air.
  • the first function includes a function of outputting a signal for driving the servo motor
  • the signal output function of the second function includes a function of outputting a signal for driving the solenoid valve.
  • the signal output function closes the needle valve in conjunction with the movement of the piston by outputting a signal for controlling (driving) the solenoid valve as a signal for closing the needle valve before moving the piston in the narrowing direction and stopping it. it can.
  • the stop of the piston can be detected by providing means (detector) for detecting the position of the piston.
  • the signal output function can output a signal for closing the needle valve when the detector detects that the position of the piston moving in the narrowing direction becomes the first position before the stop position.
  • the first function may move the piston in the direction of expanding and narrowing the space in the cylinder based on the position of the piston detected by the detector.
  • the position of the piston can be detected by counting the number of pulses. That is, the first function determines the position of the piston based on the number of pulses supplied to the servo motor and moves the piston in the direction of expanding and narrowing, and the signal output function of the second function is in the direction of narrowing while moving. When the number of pulses supplied to the servo motor reaches a predetermined value, a signal for closing the needle valve can be output.
  • the control unit has a third function (third functional unit) that opens and closes the inlet valve.
  • the first function includes a function of driving the piston in a direction in which the piston is expanded after the third function outputs a signal for opening the inlet valve
  • the third function is that the first function activates the piston.
  • the first function includes a function of closing the inlet valve after moving in a widening direction and stopping, and the first function is a function of driving the piston in a narrowing direction after the second function outputs a signal for opening the needle valve. It is desirable to include.
  • Another aspect of the present invention is a method including supplying an electrolytic solution by a supplying device into a battery container disposed in a reduced pressure atmosphere.
  • the supply device includes a metering unit and a dispenser.
  • the dispenser is disposed in the battery container or in the vicinity of the upper end of the battery container, and a needle valve that is disposed inside the discharge nozzle and opens and closes the discharge nozzle.
  • Supplying the electrolytic solution includes the following steps. 1.
  • the movement of the piston is controlled by moving the piston of the metering unit in the direction of expanding the space in the cylinder to measure the electrolyte, and moving the piston in the direction of narrowing the space to supply the electrolyte to the dispenser. 2.
  • Output a signal to close the needle valve to the actuator in conjunction with the piston moving in the direction of narrowing and stopping.
  • the signal to close the needle valve can be output when the detector that detects the position of the piston detects that the position of the piston that is moving in the narrowing direction is the first position before the stop position.
  • the position of the piston is determined by the number of pulses supplied to the servo motor. Judgment can be driven in the direction of expanding and narrowing the piston, and when the number of pulses supplied to the servomotor during the movement in the direction of narrowing reaches a predetermined value, a signal for closing the needle valve can be output. .
  • controlling the movement of the piston includes the following steps. 1a. After outputting a signal to open the inlet valve, drive in the direction to expand the piston. 1b. After stopping by moving the piston in the direction of expanding, output the signal to close the inlet valve and open the needle valve, and then drive the piston in the direction of narrowing.
  • the figure which shows schematic structure of an electrolyte solution supply apparatus (liquid injection apparatus).
  • the timing chart which shows operation
  • An apparatus 1 shown in FIG. 1 is an apparatus (electrolyte supply apparatus, injection apparatus) that supplies (injects) an electrolytic solution 19 into a battery container 200 arranged in a reduced pressure atmosphere 102 inside a reduced pressure chamber 100. .
  • the inside of the decompression chamber 100 is decompressed by the vacuum pump 110 so as to be a predetermined pressure (negative pressure).
  • the supply device 1 includes a weighing unit 10 disposed on an upper wall (top plate) 101 of the decompression chamber 100, a reservoir (reservoir tank) 2 disposed upstream of the weighing unit 10, and a downstream of the weighing unit 10.
  • the dispenser 20 arranged and a control unit 30 for injecting the electrolytic solution 19 by controlling the operation of the metering unit 10 and the dispenser 20 are provided.
  • the typical control unit 30 includes hardware resources including a CPU and a memory, controls the supply device 1 by executing a program (program product), and supplies the electrolytic solution 19 to the battery container 200 in the process of manufacturing the battery. To supply.
  • the thick line indicates the flow path (pipe) of the electrolytic solution 19
  • the thick broken line indicates the flow path (pipe) for control air
  • the thin line with diagonal lines indicates the wiring for transmitting the control electrical signal.
  • Some electrolyte solutions 19 contain a flammable organic solvent, and the area around the decompression chamber 100, that is, the area where the dispenser 20 is installed is generally included in an explosion-proof area H (area surrounded by a one-dot chain line). .
  • the area where the weighing unit 10 of the supply device 1 is installed is also included in the explosion-proof area H, and the servo motor 13 that drives the piston 12 of the weighing unit 10 has an explosion-proof type.
  • the reservoir 2 upstream of the measuring unit 10 is connected to the header 3 of the electrolyte supply means, and temporarily secures the amount of liquid that the measuring unit 10 can dispense several times. Since the reservoir 2 is provided, the weighing unit 10 can operate at high speed.
  • the reservoir 2 also serves as a gas-liquid separation mechanism and can discharge the gas accumulated in the upper portion of the reservoir 2 through the vent valve 4.
  • the vent valve 4 is an air-operated valve (air-driven valve) in consideration of explosion-proof, and the control valve (solenoid valve) 34 provided outside the explosion-proof area H and the control air (working fluid) are supplied by the control unit 30. Controlled through. Note that the control air is supplied via a control air header 39 connected to a compressor.
  • the weighing unit 10 has a cylinder 11 and a piston 12.
  • the cylinder 11 extends vertically, and the piston 12 moves along the vertical direction in the cylinder 11.
  • the area in which the piston 12 in and out of the cylinder 11 enters and exits is the measuring space S, and the electrolyte measured in the measuring space S by controlling the amount (stroke) of the piston 12 to enter and exit.
  • the amount of 19 can be freely controlled (adjusted).
  • the weighing unit 10 further includes a servo motor 13 that drives the piston 12 up and down.
  • a servo motor 13 that drives the piston 12 up and down.
  • the piston 12 can be moved up and down while changing the stroke of the piston 12 or changing the moving speed of the piston 12. That is, the servo motor 13 can move the piston 12 in the direction of expanding the space S in the cylinder 11 to measure the electrolytic solution 19, and move the piston S in the direction of narrowing the space S to supply the electrolytic solution 19 to the dispenser 20.
  • a plunger pump capable of variably controlling the stroke can be used.
  • the stepping motor type servo motor 13 high-capacity variable variable control can be performed by pulse control.
  • a DC servo motor provided with an encoder 18 can be employed instead of the stepping motor. Below, the type provided with the encoder 18 is demonstrated.
  • the encoder 18 is means (detector) for detecting the position of the piston 12 and is electrically connected to the control unit 30 to output (transmit) the detected position of the piston 12 to the control unit 30.
  • the supply device 1 further includes an inlet valve 5 that opens and closes the upstream side of the measuring unit 10 (turns on and off the inflow of the electrolyte 19 into the measuring space S).
  • the inlet valve 5 and the inlet port P1 provided at the lower end S1 of the measuring space S are connected by a pipe line (second pipe line) 42.
  • a pipe line second pipe line
  • the inlet valve 5 and the reservoir 2 are connected by a pipe line 43.
  • an air-operated valve is used and is controlled by the electromagnetic valve 33 and the control unit 30 provided outside the explosion-proof region H through control air.
  • a dispenser 20 that injects the electrolyte 19 supplied from the weighing unit 10 into the battery container 200 from above includes a discharge nozzle 21 disposed in the battery container 200 or in the vicinity of the upper end of the battery container 200, and the discharge nozzle 21 at the lower end.
  • the valve control rod 25 is provided so as to penetrate the valve vertically, and the air-driven actuator 24 that drives the needle valve 23 up and down via the valve control rod 25 to control the opening and closing of the needle valve 23 is included.
  • the needle valve 23 is normally off (normally closed), and the dispenser 20 includes means (for example, a coil spring) 26 that biases the needle valve 23 toward the tip of the discharge nozzle 21 via the valve control rod 25.
  • the syringe 22 penetrates the upper wall 101 of the decompression chamber 100 and extends vertically, and the tip reaches the battery container 200 disposed in the interior 102 of the decompression chamber 100. Accordingly, the periphery of the tip (lower end, discharge nozzle 21) of the syringe 22 is a reduced pressure atmosphere.
  • the tip (lower end, discharge nozzle 21) of the syringe 22 extends to a lower side than the lower end S1 of the measuring space S of the measuring unit 10 disposed on the upper wall 101.
  • valve control rod 25 penetrates the inside of the syringe 22, and a portion along the valve control rod 25 of the syringe 22 is a space through which the electrolytic solution 19 flows. Therefore, by selecting a valve control rod 25 having an appropriate outer diameter with respect to the inner diameter of the syringe 22, the area of the conduit from the measuring unit 10 to the discharge nozzle 21 at the tip of the syringe 22 can be adjusted. For this reason, by selecting a syringe 22 with an appropriate inner diameter and a valve control rod 25 with an appropriate outer diameter, discharge is performed in accordance with the injection conditions such as the viscosity of the electrolyte 19, the internal pressure (negative pressure) of the decompression chamber 100, and the flow rate. The pressure loss up to the nozzle 21 can be controlled. Therefore, using this configuration, it is possible to set conditions under which the electrolytic solution 19 can be smoothly injected into the battery container 200.
  • the valve control rod 25 is for moving a needle valve (cut valve) 23 that opens and closes the inside of the discharge nozzle 21 up and down by an actuator 24.
  • a needle valve 23 is connected to the tip (lower end) of the valve control rod 25, and the other end (upper end) is connected to the actuator 24.
  • the needle valve 23 is normally off (normally closed) by a coil spring 26.
  • the actuator 24 is actuated (driven) by a working fluid supplied via an electromagnetic valve (solenoid valve) 32, for example, air.
  • the needle valve 23 is turned on (opened) by sending control air to the actuator 24 via an electromagnetic valve (solenoid valve) 32, and turned off (closed) by discharging the control air.
  • the dispenser 20 is connected to an outlet port P2 provided at the upper end S2 of the measuring space S of the measuring unit 10 by a pipe line (first pipe line) 41.
  • the first pipe 41 has a first portion 41a extending in the vertical direction to a position corresponding to at least the vicinity of the lower end S1 of the measuring space S, and from the lower end of the first portion 41a toward the upper end of the dispenser 20.
  • a second portion 41b extending in the horizontal direction. That is, the first conduit 41 is formed in an L shape as a whole, and one end of the horizontally extending portion (the end of the second portion 41b) is connected to the side of the syringe 22 so that it is vertical.
  • the other end (the end of the first portion 41a) of the portion extending in the (vertical) direction is connected to the outlet port P2 of the upper end portion S2 of the measuring space S.
  • the back pressure valve 50 is disposed in the middle of the first pipeline 41 and at a position corresponding to the vicinity of the lower end of the measurement space S of the first pipeline 41.
  • the back pressure valve 50 is disposed on the side of the first portion 41 a extending vertically from the corner portion of the first portion 41 a and the second portion 41 b of the first pipe 41.
  • the back pressure valve 50 includes a ball 51 and a coil spring 52 that urges the ball 51 upward and keeps the back pressure valve 50 closed.
  • the coil spring 52 is set so as to apply a pressure to the ball 51 through the back pressure valve 50 so that the electrolyte 19 does not flow unless the piston 12 of the measuring unit 10 is stroked (in this case, moved downward). Yes.
  • the electrolytic solution 19 does not flow even if a differential pressure between the maximum negative pressure (degree of vacuum) in the decompression chamber 102 and the atmospheric pressure is applied as a back pressure.
  • the back pressure valve 50 is reversed in an abnormal situation in which the negative pressure in the decompression chamber 102 breaks to atmospheric pressure, or the internal pressure of the syringe 22 becomes higher than the internal pressure of the measuring space S due to pressurization. Also acts as a stop valve.
  • a typical control unit 30 for controlling the servo motor 13 and the solenoid valves 32 to 34 is a programmable control device including a microcomputer as described above.
  • the control unit 30 may be a wired logic type or a sequencer.
  • the control unit 30 functions to control the servo motor 13 of the measuring unit 10 (first function, first functional unit, servo motor control unit) 30a and the function to control the vent valve 4 via the electromagnetic valve 34 ( (4th function, 4th functional unit, vent valve control unit) 30d and the function (3rd function, 3rd functional unit, inlet valve control unit) 30c which controls the inlet valve 5 via the electromagnetic valve 33 And a function (second function, second function unit, needle valve control unit) 30b for controlling the actuator 24 of the dispenser 20 via the electromagnetic valve 32.
  • the first function 30 a includes a function (servo motor control signal output unit) 30 y that outputs a signal for driving the servo motor 13.
  • the piston 12 of the measuring unit 10 expands the space S in the cylinder 11 and the space S. Move in the direction of narrowing.
  • the first function 30a detects the piston position by the encoder 18, and moves the piston 12 upward by the servo motor 13 while confirming the position of the piston 12 to widen the space S. Weigh. Thereafter, the first function 30 a supplies the measured electrolyte 19 to the dispenser 20 by moving the piston 12 downward by the servo motor 13 while narrowing the space S while confirming the position of the piston 12.
  • the first function 30 a stops the servo motor 13 and stops the movement of the piston 12 when the piston 12 reaches a position at which the measured electrolytic solution 19 is completely supplied to the dispenser 20.
  • the piston position can be accurately controlled by the number of pulses supplied to the servo motor 13 without using the encoder 18.
  • the first function 30a accurately controls the position of the piston 12 by the number of pulses supplied to the servo motor 13, and moves the piston 12 upward and downward to widen or narrow the space S (enlarge or reduce).
  • the electrolyte 19 can be metered and supplied.
  • the second function 30b includes a function (signal output function, signal output function unit, needle valve actuator control signal output unit) 30x that outputs a signal for driving the solenoid valve 32, and drives the actuator 24 with control air.
  • the needle valve 23 is opened and closed.
  • the signal output function 32x outputs a signal for closing the needle valve 23 before the first function 30a moves and stops the piston 12 in the direction of narrowing the space S (the direction of reduction).
  • the signal output function 30x is configured to reduce the space S, that is, the position of the piston 12 moving downward is a predetermined first position before the stop position. When this occurs, a signal for closing the needle valve 23 is output.
  • the signal output function 30x is a signal for closing the needle valve 23 when the number of pulses supplied to the servo motor 13 to move the piston 12 downward reaches a predetermined value. Is output.
  • the control unit 30 controls the supply device 1 by these functions 30a to 30d, and accurately controls the injection amount of the electrolytic solution 19.
  • FIG. 2 shows a part of the operation when the supply device 1 injects (dispenses) the electrolyte 19 into the battery container 200 in a plurality of times.
  • the vent valve 4 is opened and closed by the fourth function 30d at time t0 when dispensing into the battery container 200 is started, and the reservoir 2 is vented. Since the vent valve 4 is an air operated valve (air drive valve), the vent valve 4 is opened after a slight time difference after the fourth function 30d outputs a drive signal to the solenoid valve 34 at time t0.
  • the inlet valve 5 is opened by the third function 30c, and the reservoir 2 and the measuring space S of the measuring unit 10 are communicated with each other while the needle valve (cut valve) 23 is closed. Since the inlet valve 5 is an air operated valve (air driven valve), the inlet valve 5 opens at time t2 after the third function 30c outputs a drive signal to the solenoid valve 33 at time t1.
  • the first function 30a widens the space S by outputting a signal for driving the piston 12 upward to the servo motor 13 at time t3 after the third function 30c outputs a signal for opening the inlet valve 5.
  • the piston 12 is moved (stroked) in the direction (enlargement direction).
  • a predetermined amount of the electrolytic solution 19 is caused to flow into the measuring space S.
  • the moving speed of the piston 12 is variable by voltage-controlling or pulse-controlling the servomotor 13.
  • angle (theta) 1 which shows the drawing-in speed of the electrolyte solution 19 can be changed arbitrarily. Therefore, in an environment where the drawing speed ⁇ 1 can be increased depending on the characteristics of the electrolytic solution 19 and the drawing conditions, the drawing speed ⁇ 1 can be increased to shorten the liquid injection time.
  • the third function 30c outputs a signal for closing the inlet valve 5 to the solenoid valve 33 after the first function 30a stops the piston 12 at time t4 or at the same time.
  • the inlet valve 5 is closed at time t5 after a delay due to air operation.
  • the second function 30b takes into account a delay time for the operation of the inlet valve 5 after the third function 30c outputs a signal for closing the inlet valve 5, and at the time t6 after the inlet valve 5 is closed, the dispenser 20 A signal for opening the needle valve (cut valve) 23 is output to the solenoid valve 32. At time t7 after a delay due to air operation, the actuator 24 operates and the needle valve 23 opens.
  • the first function 30a takes a delay time for the needle valve 23 to operate after the second function 30b outputs a signal for opening the needle valve 23, and servos at time t8 after the needle valve 23 is opened.
  • a signal for driving the piston 12 downward is output to the motor 13.
  • the metering space S is cut off from the system upstream of the inlet valve 5 thereafter, and the static pressure of the upstream system including the reservoir 2 is not applied to the metering space S. Therefore, it is possible to prevent the static pressure of the system upstream from the inlet valve 5 from being applied to the dispenser 20 when the needle valve 23 is opened at time t7.
  • the cross-sectional area of the measuring space S constituted by the cylinder 11 and the piston 12 is one digit or more, usually two to three digits or more larger than the pipe cross-sectional area.
  • the static pressure of the electrolyte 19 to be dispensed (pressure due to the liquid column) is applied to the needle valve 23 to the minimum. Can be suppressed. Further, in the supply device 1, the pressure applied to the needle valve 23 is further suppressed by the back pressure valve 50. Therefore, it is possible to suppress the electrolytic solution 19 from being scattered from the discharge nozzle 21 when the needle valve 23 is opened.
  • the needle valve 23 is desirably opened after the inlet valve 5 is closed.
  • a signal for opening the needle valve 23 is output after the inlet valve 5 is closed, but a signal for opening the needle valve 23 is taken into consideration from the output of the signal in consideration of a delay in the operation of the inlet valve 5 and the needle valve 23. It may be outputted before the inlet valve 5 is closed, and the time required for valve switching may be shortened.
  • a back pressure valve 50 is provided in the first pipe 41 connecting the upper end S2 of the measuring space S of the measuring unit 10 and the dispenser 20. For this reason, even if the needle valve 23 of the discharge nozzle 21 of the dispenser 20 is simply opened, the electrolytic solution 19 is not discharged at this point. At time t8, the piston 12 moves downward, the measuring space S is narrowed, and a predetermined back pressure is applied to the back pressure valve 50, so that an amount of the electrolyte 19 corresponding to the movement of the piston 12 is accurately supplied from the tip of the discharge nozzle 21. Discharged.
  • the first pipe line 41 provided with the back pressure valve 50 is connected to the outlet port P ⁇ b> 2 of the upper end portion S ⁇ b> 2 of the measuring space S, and the static pressure (liquid level) applied to the back pressure valve 50. Since the pressure by the column is substantially constant, it does not fluctuate even if the position of the piston 12 (vertical position) changes. Therefore, the back pressure valve 50 can be set to open and close in response to the movement of the piston 12 instantly.
  • the signal output function 30x of the second function 30b is the first position Po1 slightly before the position Pos where the first function 30a stops the piston 12 at time t9.
  • a signal for closing the needle valve 23 is output to the solenoid valve 32.
  • the actuator 24 is driven at time t10 when the operation delay time Tdel due to air operation has elapsed from time t9, and the needle valve 23 is closed.
  • the first function 30a stops the movement of the servo motor 13 and stops the piston 12.
  • the liquid injection amount can be controlled with extremely high accuracy by closing the needle valve 23 at the same time as the supply of the electrolyte 19 corresponding to the amount measured in the measuring unit 10 to the dispenser 20 by the piston 12 is completed.
  • the difference ds between the position Pos to be stopped and the first position Po1 at which the signal output function 30x outputs a closing signal is determined according to the environment in which the supply device 1 is installed. It is desirable to adjust the relationship between the timing at which the control unit 30 outputs a signal for closing the needle valve 23 and the first position Po1 of the piston 12 in accordance with the installation environment. It is also possible to measure the time Tdel from when the control unit 30 outputs a signal for closing the needle valve 23 until the needle valve 23 is actually closed, and set it in the memory of the control unit 30.
  • the signal output function 30x determines the timing at which a signal for automatically closing the needle valve 23 is output from the relationship between the speed at which the first function 30a moves the piston 12 downward and the stop position Pos. And a signal for closing the needle valve 23 can be output.
  • the moving speed of the piston 12 can be changed by the servo motor 13 in the same manner as the pulling (upward stroke). Therefore, in FIG. 2, the angle ⁇ 2 indicating the discharge speed of the electrolytic solution 19 can be arbitrarily changed independently of the pull-in speed ⁇ 1. Therefore, the discharge speed ⁇ 2 can be made slower than the draw speed ⁇ 1, and the discharge speed ⁇ 2 can be made faster than the draw speed ⁇ 1, depending on the characteristics of the electrolytic solution 19, the drawing conditions, and the like. Even when the discharge speed ⁇ 2 changes, by setting the delay time Tdel in the control unit 30 in advance so that the first position Po1 of the piston 12 can be automatically obtained, the signal output function 30x has an appropriate timing. Thus, a signal for closing the needle valve 23 can be output.
  • the signal output function 30x may set the timing of outputting the needle valve closing signal with respect to the predicted time by predicting the stop time of the piston 12. Since the amount of stroke of the piston 12 is determined when the electrolyte 19 is measured, the timing at which the piston 12 stops is determined based on the position of the piston 12, and a signal for closing the needle valve is output at an appropriate timing. This method is one of high reliability and easy control logic configuration.
  • the signal output function 30x may determine the timing for issuing a needle valve closing signal from the position of the piston 12 (first position Po1).
  • the position of the piston 12 can be obtained by an encoder 18 which is a detector. If a stepping motor is employed as the servo motor 13, the position of the piston 12 can be obtained by counting drive pulses. It is also possible to use both the output of the encoder 18 and the drive pulse count.
  • the needle valve 23 can be closed substantially simultaneously with the stop of the piston 12, the accuracy of the liquid injection amount can be improved, the liquid can be quickly drained, and the next operation can be performed. For this reason, it is possible to further shorten the injection time while maintaining the accuracy of the injection amount. Therefore, the impregnation time of the electrolytic solution 19 in the battery container 200 can be secured, and the total liquid injection time (tact time) for the battery container 200 can be shortened.
  • a solenoid type can be used directly as the needle valve actuator 24. In that case, a signal for closing the needle valve 23 can be output almost simultaneously with the piston 12 reaching the stop position Pos. If the solenoid type actuator itself has an operation delay time, considering the time, an appropriate first position Po1 is set, and a signal for closing the needle valve 23 in advance is set based on the position of the piston 12. Can be output.
  • the entire amount of the electrolytic solution 19 is not injected at once, but waiting for the electrolytic solution 19 to be impregnated.
  • the operation of injecting (dispensing) the electrolytic solution 19 may be repeated.
  • the amount of electrolyte to be dispensed may be constant or the dispensing amount may be changed.
  • the amount of liquid to be injected can be accurately measured by changing the stroke amount of the piston 12 of the measuring unit 10 by ⁇ q.
  • the timing for outputting the signal for closing the needle valve 23 can be set to the first position Po1 that is separated from the stop position Pos by ds in accordance with the discharge speed ⁇ 2. If the discharge speed ⁇ 2 is the same, it is not necessary to change the first position Po1 once set.
  • a back pressure valve 50 is provided in a pipe line 41 that communicates the dispenser 20 and the measuring unit 10, and liquid is injected by opening and closing the back pressure valve 50 instantaneously due to pressure fluctuation on the measuring unit 10 side.
  • the amount controllability is improved.
  • the piston 12 stops the stroke and closes the needle valve 23 almost simultaneously. With this control, even when the injection destination of the dispenser 20 is a reduced pressure (vacuum) atmosphere, the electrolyte 19 downstream from the back pressure valve 50 is sucked by the reduced pressure atmosphere and drops (leaks out) from the discharge nozzle 21 in advance. Can be prevented.
  • the back pressure valve 50 operates and the static pressure upstream of the back pressure valve 50 can be shut off as the piston 12 stops, the differential pressure applied to the needle valve 23 is reduced, and even if the injection destination is a reduced pressure atmosphere, the needle The electrolyte solution 19 can be easily shut off by the valve 23, and the liquid can be cut off. For this reason, the injection accuracy can be improved, and the time for waiting for the dripping to stop is basically unnecessary, so that the injection time can be shortened.
  • an outlet port P ⁇ b> 2 connected to the first pipe 41 provided with the back pressure valve 50 is provided at the upper end S ⁇ b> 2 of the measuring space S.
  • gas does not easily accumulate in the measurement space S, and bubbles are not easily generated in the measurement space S.
  • the gas is compressible, which affects the measurement accuracy of the measurement space S, and further causes the electrolyte 19 to scatter from the discharge nozzle 21 of the dispenser 20 when the gas expands due to reduced pressure.
  • the supply device 1 can ensure the metering accuracy, that is, the liquid injection accuracy, and can prevent the situation in which the electrolytic solution 19 is scattered in the decompression chamber 102.
  • the battery container 200 to be injected next is moved under the dispenser 20 to perform dispensing one after another.
  • the liquid runs out well, almost no waiting time is required for the dripping to stop, and there is almost no scattering from the discharge nozzle 21. Therefore, the next dispensing can be started with almost no waiting time.
  • a signal for opening the inlet valve 5 is output at time t11 after the movement time of the battery container 200, and thereafter, the dispensing is performed in the same manner as in the above cycle. You can repeat the note.
  • time t14 when the metering unit 10 measures that is, time t14 when the piston 12 moves upward and the metering ends, or time when the inlet valve 5 closes. It is possible to use the battery container 200 for the moving time until t15 and further until time t17 when the needle valve 23 of the dispenser 20 opens. Therefore, it is possible to further shorten the time for injecting.
  • the pull-in speed ⁇ 1 can be changed, the moving time of the piston 12 can be set in synchronization with the moving time of the battery container 200. Therefore, this supply apparatus 1 can respond very flexibly to dispensing of various patterns, and also has high liquid pouring accuracy and can shorten the time required for dispensing.
  • FIG. 3 is a flowchart showing an operation in which the supply device 1 injects the electrolytic solution 19 into the battery container 200 in the process of manufacturing the battery.
  • the operations described below can be provided by being recorded on a suitable recording medium as a program (program product) executed by the control unit 30 of the supply apparatus 1. It is also possible to provide a program via a computer network such as the Internet.
  • the fourth function 30 d of the control unit 30 once opens and closes the vent valve 4 in step 302. Thereby, the gas accumulated in the upper part of the reservoir 2 can be discharged.
  • step 303 the third function 30c of the control unit 30 outputs an inlet valve opening signal to open the inlet valve 5.
  • the first function 30a drives the servo motor 13 to move the piston 12 upward. Stroke to.
  • step 305 when the metering by the piston 12 is completed, the first function 30a of the control unit 30 stops the servo motor 13, and in step 306, the third function 30c outputs a signal for closing the inlet valve, and the inlet valve 5 Close.
  • Step 307 the second function 30b of the control unit 30 outputs a needle valve opening signal to open the needle valve 23.
  • step 308 the first function 30a drives the servo motor 13 to stroke the piston 12 downward.
  • step 309 when the signal output function 30x of the second function 30b obtains from the encoder 18 that the piston 12 has reached the predetermined position (first position) Po1 before stopping, the piston 12 stops in step 310.
  • the needle valve closing signal is output before starting.
  • step 311 if the first function 30a determines that the electrolyte solution 19 measured by the piston 12 has been supplied, the servo motor 13 is stopped and the piston 12 is stopped.
  • the needle valve 23 is closed almost simultaneously with the stop of the servo motor 13 (stop of the piston 12) by the needle valve close signal output in step 310.
  • step 312 If the dispensing is continued in step 312, the battery container 200 is moved in step 313, the process returns to step 303, and dispensing is continued for the next battery container 200.
  • the timing for outputting a signal for closing the needle valve 23 is determined using the position of the piston 12 as an index. For this reason, it is easy to match the timing at which the supply of the electrolyte 19 to the battery container 200 is completed (the timing at which the piston 12 is at the lowest position) and the timing at which the needle valve 23 is closed. Is unlikely to occur.
  • the weighing unit 10 is a type in which the cylinder 11 extends vertically and the piston 12 moves up and down. However, the cylinder 11 is disposed along the left-right direction (horizontal direction), and the piston 12 is moved left-right (horizontal). It may be a type that moves along (direction). It is necessary to arrange the piping so that the electrolytic solution 19 can smoothly flow into and out of the measuring space S. However, since the vertical dimension can be reduced, it is suitable for a more compact supply device.
  • the weighing unit 10 is driven by a servo motor, but the drive method is not limited to a servo motor.
  • the piston can be driven by a solenoid-type actuator if there is no requirement to flexibly change the injection amount.
  • air-operated actuators are employed.
  • electromagnetic valves or solenoid type actuators are employed. It is also possible to use various types of actuators.
  • the ball-type back pressure valve is suitable because it has a simple structure and can be easily incorporated into piping, and the operation is stable.
  • the back pressure valve is a different type such as a diaphragm type. There may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

Disclosed is an apparatus (1) for supplying an electrolytic solution into a battery container, comprising a measurement unit (10) in which a piston (12) moves in a space (S) in a cylinder (11), a dispenser (20) which injects an electrolytic solution into the battery container (200) from an upper part of the battery container (200) through the measurement unit (10), and a control unit (30). The dispenser (20) comprises a discharge nozzle (21), a needle valve (23) which enables the opening and closing of the discharge nozzle (21), and an actuator (24) which can drive the needle valve (23) up and down. The control unit (30) comprises a first function (30a) which allows the movement of the piston (12) in the cylinder (11) to supply the electrolytic solution (19) to the dispenser (20), and a second function (30b) which allows the opening and closing of the needle valve (23) by means of the actuator (24).

Description

電解液を供給する装置および方法Apparatus and method for supplying electrolyte
 本発明は、バッテリ容器内に電解液を供給する装置および方法に関するものである。 The present invention relates to an apparatus and a method for supplying an electrolytic solution into a battery container.
 バッテリ容器内に電解液を供給する工程において、電解液を浸透させる時間を短縮するなどの目的で、バッテリ容器を真空雰囲気(減圧雰囲気)内に配置することが行われている。 In the step of supplying the electrolytic solution into the battery container, the battery container is placed in a vacuum atmosphere (reduced pressure atmosphere) for the purpose of shortening the time for the electrolytic solution to penetrate.
 日本国特開2008-59973号公報には、電池ケース内を、有機電解液の沸点以下の-70kpa~-95kpaの範囲内の真空度に真空引きする工程と、所定量の有機電解液を注入した注液ホッパー内の一時貯液室を電池ケース内の圧力に対し0.1kpa~5kpaだけ高い圧力差が生じる真空度に真空引きする工程と、注液ホッパーの注液口を開いて一時貯液室内の有機電解液を圧力差により注液口およびこれに連接させた注液ノズルを介して電池ケース内に注液する工程とを有する、リチウム二次電池の注液方法が開示されている。 In Japanese Patent Application Laid-Open No. 2008-59973, a step of evacuating the battery case to a degree of vacuum in the range of −70 kpa to −95 kpa below the boiling point of the organic electrolyte, and a predetermined amount of the organic electrolyte are injected The temporary storage chamber in the injected hopper is evacuated to a degree of vacuum that produces a pressure difference of 0.1 kpa to 5 kpa higher than the pressure in the battery case, and the injection hopper is opened for temporary storage. A method for injecting a lithium secondary battery, comprising: injecting an organic electrolyte in a liquid chamber into a battery case via an injection port and an injection nozzle connected to the injection port by a pressure difference is disclosed. .
 電解液をバッテリ容器(電池ケース)に注入する時間(注液時間)を短縮するために、電池ケース内を負圧にしたり、所定量ずつ分割して注液(分注)したり、負圧雰囲気で分注したりすることが行われている。いずれの場合も、注液精度(液量の精度)を確保することが重要である。 In order to shorten the time (injection time) for injecting the electrolyte into the battery container (battery case), the inside of the battery case is made negative pressure, divided into predetermined amounts (injection), or negative pressure Dispensing in an atmosphere is performed. In any case, it is important to ensure the accuracy of liquid injection (accuracy of the liquid amount).
 本発明の一態様は、減圧雰囲気(減圧室内)に配置されたバッテリ容器(電池ケース)内に電解液を供給する装置(供給装置、注液装置)である。この装置は、シリンダ内の空間をピストンが動いて電解液を計量する計量ユニットと、計量ユニットから供給された電解液をバッテリ容器に対し上方から注入するディスペンサと、当該装置を制御する制御ユニットとを有する。ディスペンサは、バッテリ容器内またはバッテリ容器の上端近傍に配置される吐出ノズルと、吐出ノズルの内側に配置され、吐出ノズルを開閉するニードル弁と、ニードル弁を上下に駆動するアクチュエータとを含む。 One embodiment of the present invention is a device (a supply device, a liquid injection device) that supplies an electrolytic solution into a battery container (battery case) disposed in a reduced pressure atmosphere (a reduced pressure chamber). The apparatus includes a measuring unit that measures an electrolyte by moving a piston in a space in a cylinder, a dispenser that injects an electrolyte supplied from the measuring unit into the battery container from above, and a control unit that controls the apparatus. Have The dispenser includes a discharge nozzle disposed in the battery container or near the upper end of the battery container, a needle valve that is disposed inside the discharge nozzle, opens and closes the discharge nozzle, and an actuator that drives the needle valve up and down.
 制御ユニットは、計量ユニットのピストンの動きを制御し、ピストンをシリンダ内の空間を広げる方向(拡大する方向)に動かして電解液を計量し、ピストンを空間を狭める方向(縮小する方向)に動かして電解液をディスペンサに供給する第1の機能(第1の機能ユニット)と、アクチュエータによりニードル弁を開閉させる第2の機能(第2の機能ユニット)とを含み、第2の機能は、ピストンを制御する第1の機能がシリンダ内の空間を狭める方向にピストンを動かして停止させるのに連動してニードル弁を閉じる信号を出力する信号出力機能(信号出力機能ユニット)を含む。 The control unit controls the movement of the piston of the metering unit, moves the piston in the direction to expand the space in the cylinder (direction to expand), measures the electrolyte, and moves the piston in the direction to narrow the space (direction to reduce). A first function (first function unit) for supplying the electrolyte solution to the dispenser, and a second function (second function unit) for opening and closing the needle valve by the actuator. The first function for controlling the function includes a signal output function (signal output function unit) that outputs a signal for closing the needle valve in conjunction with moving and stopping the piston in the direction of narrowing the space in the cylinder.
 電解液を供給(注入、分注)するバッテリ容器は減圧雰囲気(減圧室内)に配置される。一方、電解液は減圧雰囲気外(減圧室外)、典型的には大気圧雰囲気から供給される。さらに、電解液を供給する装置においては、電解液の飛散を抑制するために、電解液をポンプなどで加圧して注入する代わりに液柱の圧力(静圧、液圧)でバッテリ容器内に注入する。したがって、バッテリ容器への注入口(吐出ノズルの先端)には、減圧されていることによる差圧と、電解液の静圧とが加わり、電解液が減圧室側へ強く吸引される。このため、本発明の一態様の装置(供給装置、注液装置)は、第1の機能によりディスペンサに供給する電解液を計量ユニットで計量するとともに、ディスペンサの吐出ノズルを開閉するニードル弁を設け、信号出力機能により計量ユニットのピストンが停止する動きに連動してニードル弁を閉じることによりバッテリ容器内に注液される液量の精度をさらに向上する。 The battery container that supplies (injects and dispenses) the electrolyte is placed in a reduced pressure atmosphere (in a reduced pressure chamber). On the other hand, the electrolytic solution is supplied from outside the reduced pressure atmosphere (outside the reduced pressure chamber), typically from the atmospheric pressure atmosphere. Furthermore, in an apparatus for supplying an electrolytic solution, in order to suppress scattering of the electrolytic solution, instead of injecting the electrolytic solution by pressurizing it with a pump or the like, the liquid column pressure (static pressure, hydraulic pressure) is put into the battery container. inject. Therefore, the pressure difference due to the reduced pressure and the static pressure of the electrolytic solution are applied to the inlet (tip of the discharge nozzle) to the battery container, and the electrolytic solution is strongly sucked into the decompression chamber side. For this reason, the device (supply device, liquid injection device) of one aspect of the present invention is provided with a needle valve that opens and closes the discharge nozzle of the dispenser while measuring the electrolyte supplied to the dispenser by the first function by the measuring unit. The accuracy of the amount of liquid injected into the battery container is further improved by closing the needle valve in conjunction with the movement of the piston of the measuring unit to stop by the signal output function.
 特に、電解液が可燃性の有機溶媒などを含み、ニードル弁を上下に駆動するアクチュエータが、防爆領域(防爆を考慮しなければならない領域)に含まれる場合は、ニードル弁を駆動するアクチュエータは、電気的に直に、ほとんど時間的な遅れなく制御できるものにすることが難しい。したがって、第1の機能が狭める方向にピストンを動かして停止させるのに連動してニードル弁を閉じる信号を出力する信号出力機能は、第1の機能が狭める方向にピストンを動かして停止させる前に、ニードル弁を閉じる信号を出力することが望ましい。これにより制御ユニットがニードル弁を閉じる信号を出力してから、実際にニードル弁が閉じるまでにある程度の遅延があっても、計量ユニットのピストンが停止するのとほぼ同時にニードル弁を閉じることができる。このため、注液量の精度を確保しやすい。 In particular, when the electrolyte contains a flammable organic solvent and the actuator that drives the needle valve up and down is included in the explosion-proof region (region where explosion protection must be considered), the actuator that drives the needle valve It is difficult to make it controllable electrically and with almost no time delay. Accordingly, the signal output function for outputting a signal for closing the needle valve in conjunction with moving and stopping the piston in the direction in which the first function is narrowed is performed before the piston is moved and stopped in the direction in which the first function is narrowed. It is desirable to output a signal for closing the needle valve. As a result, even if there is a certain delay from when the control unit outputs a signal for closing the needle valve until the needle valve is actually closed, the needle valve can be closed almost simultaneously with the stop of the piston of the metering unit. . For this reason, it is easy to ensure the accuracy of the injection volume.
 ピストンを駆動するアクチュエータの典型的なものはサーボモータである。防爆領域に配置されるアクチュエータの典型的なものはソレノイドバルブを介して供給される作動流体、たとえば、空気により駆動されるものである。この場合、第1の機能は、サーボモータを駆動する信号を出力する機能を含み、第2の機能の信号出力機能は、ソレノイドバルブを駆動する信号を出力する機能を含む。信号出力機能は、ニードル弁を閉じる信号としてソレノイドバルブを制御(駆動)する信号を、狭める方向にピストンを動かして停止させる前に出力することによりニードル弁をピストンの動きに連動させて閉じることができる。 ¡A typical actuator that drives a piston is a servo motor. A typical actuator disposed in the explosion-proof area is driven by a working fluid supplied via a solenoid valve, for example, air. In this case, the first function includes a function of outputting a signal for driving the servo motor, and the signal output function of the second function includes a function of outputting a signal for driving the solenoid valve. The signal output function closes the needle valve in conjunction with the movement of the piston by outputting a signal for controlling (driving) the solenoid valve as a signal for closing the needle valve before moving the piston in the narrowing direction and stopping it. it can.
 ピストンの停止は、ピストンの位置を検出する手段(検出器)を設けることにより検出できる。信号出力機能は、狭める方向に移動中のピストンの位置が停止位置の手前の第1の位置となったことを検出器が検出したときに、ニードル弁を閉じる信号を出力することができる。さらに、第1の機能は、検出器により検出されたピストンの位置に基づきピストンを、シリンダ内の空間を広げる方向と狭める方向とに動かしてもよい。 The stop of the piston can be detected by providing means (detector) for detecting the position of the piston. The signal output function can output a signal for closing the needle valve when the detector detects that the position of the piston moving in the narrowing direction becomes the first position before the stop position. Furthermore, the first function may move the piston in the direction of expanding and narrowing the space in the cylinder based on the position of the piston detected by the detector.
 また、ピストンを駆動するサーボモータがステッピングモータであれば、パルス数をカウントすることによりピストンの位置を検出できる。すなわち、第1の機能は、サーボモータに供給するパルス数によりピストンの位置を判断してピストンを広げる方向と狭める方向とに動かし、第2の機能の信号出力機能は、狭める方向に移動中にサーボモータに供給されたパルス数が所定の値になったときに、ニードル弁を閉じる信号を出力することができる。 If the servo motor that drives the piston is a stepping motor, the position of the piston can be detected by counting the number of pulses. That is, the first function determines the position of the piston based on the number of pulses supplied to the servo motor and moves the piston in the direction of expanding and narrowing, and the signal output function of the second function is in the direction of narrowing while moving. When the number of pulses supplied to the servo motor reaches a predetermined value, a signal for closing the needle valve can be output.
 さらに、この装置が、計量ユニットの上流側を開閉する入口弁をさらに有する場合、制御ユニットは、入口弁を開閉する第3の機能(第3の機能ユニット)を有することが望ましい。この場合、第1の機能は、第3の機能が入口弁を開にする信号を出力した後、ピストンを広げる方向に駆動する機能を含み、第3の機能は、第1の機能がピストンを広げる方向に動かして停止した後、入口弁を閉じる機能を含み、第1の機能は、さらに、第2の機能がニードル弁を開にする信号を出力した後、狭める方向にピストンを駆動する機能を含むことが望ましい。 Furthermore, when this apparatus further has an inlet valve that opens and closes the upstream side of the measuring unit, it is desirable that the control unit has a third function (third functional unit) that opens and closes the inlet valve. In this case, the first function includes a function of driving the piston in a direction in which the piston is expanded after the third function outputs a signal for opening the inlet valve, and the third function is that the first function activates the piston. The first function includes a function of closing the inlet valve after moving in a widening direction and stopping, and the first function is a function of driving the piston in a narrowing direction after the second function outputs a signal for opening the needle valve. It is desirable to include.
 本発明の他の態様は、減圧雰囲気に配置されたバッテリ容器内に、供給装置により電解液を供給することを含む方法である。供給装置は、計量ユニットと、ディスペンサとを有し、ディスペンサは、バッテリ容器内またはバッテリ容器の上端近傍に配置される吐出ノズルと、吐出ノズルの内側に配置され、吐出ノズルを開閉するニードル弁と、ニードル弁を上下に駆動するアクチュエータとを含む。
電解液を供給することは、以下の工程を含む。
1.計量ユニットのピストンをシリンダ内の空間を広げる方向に動かして電解液を計量し、ピストンを空間を狭める方向に動かして電解液をディスペンサに供給するようにピストンの動きを制御すること。
2.ピストンが狭める方向に動いて停止するのに連動してアクチュエータにニードル弁を閉じる信号を出力すること。
Another aspect of the present invention is a method including supplying an electrolytic solution by a supplying device into a battery container disposed in a reduced pressure atmosphere. The supply device includes a metering unit and a dispenser. The dispenser is disposed in the battery container or in the vicinity of the upper end of the battery container, and a needle valve that is disposed inside the discharge nozzle and opens and closes the discharge nozzle. And an actuator for driving the needle valve up and down.
Supplying the electrolytic solution includes the following steps.
1. The movement of the piston is controlled by moving the piston of the metering unit in the direction of expanding the space in the cylinder to measure the electrolyte, and moving the piston in the direction of narrowing the space to supply the electrolyte to the dispenser.
2. Output a signal to close the needle valve to the actuator in conjunction with the piston moving in the direction of narrowing and stopping.
 この方法によれば、バッテリを製造する過程において、減圧雰囲気に配置されたバッテリ容器(バッテリパック)に対し、吸引あるいは液漏れなどにより注入量が変動することを抑制できる。したがって、注液量の制御をさらに精度よく行うことができる。 According to this method, in the process of manufacturing the battery, it is possible to suppress the injection amount from fluctuating due to suction or liquid leakage with respect to the battery container (battery pack) disposed in the reduced pressure atmosphere. Therefore, the amount of injected liquid can be controlled with higher accuracy.
 ニードル弁を閉じる信号は、狭める方向にピストンを動かして停止させる前に、ニードル弁を閉じる信号を出力することが望ましい。これによりディスペンサが防爆領域に配置されるときのニードル弁の動作遅れを抑制できる。 It is desirable to output a signal to close the needle valve before moving the piston in the narrowing direction to stop it. Thereby, the operation | movement delay of a needle valve when a dispenser is arrange | positioned in an explosion-proof area | region can be suppressed.
 ニードル弁を閉じる信号は、ピストンの位置を検出する検出器が、狭める方向に移動中のピストンの位置が停止位置の手前の第1の位置となったことを検出したときに、出力できる。 The signal to close the needle valve can be output when the detector that detects the position of the piston detects that the position of the piston that is moving in the narrowing direction is the first position before the stop position.
 また、ピストンがステッピングモータタイプのサーボモータにより駆動され、ニードル弁を駆動するアクチュエータがソレノイドバルブを介して供給される作動流体で駆動される場合は、サーボモータに供給するパルス数によりピストンの位置を判断してピストンを広げる方向と狭める方向とに駆動でき、狭める方向に移動中にサーボモータに供給されたパルス数が所定の値になったときに、ニードル弁を閉じる信号を出力することができる。 In addition, when the piston is driven by a stepping motor type servo motor and the actuator that drives the needle valve is driven by the working fluid supplied through the solenoid valve, the position of the piston is determined by the number of pulses supplied to the servo motor. Judgment can be driven in the direction of expanding and narrowing the piston, and when the number of pulses supplied to the servomotor during the movement in the direction of narrowing reaches a predetermined value, a signal for closing the needle valve can be output. .
 供給装置が、計量ユニットの上流側を開閉する入口弁をさらに有する場合は、ピストンの動きを制御することは、以下のステップを含む。
1a.入口弁を開にする信号を出力した後、ピストンを広げる方向に駆動すること。
1b.ピストンを広げる方向に動かして停止した後、入口弁を閉じ、ニードル弁を開にする信号を出力した後、狭める方向にピストンを駆動すること。 
If the supply device further comprises an inlet valve that opens and closes the upstream side of the metering unit, controlling the movement of the piston includes the following steps.
1a. After outputting a signal to open the inlet valve, drive in the direction to expand the piston.
1b. After stopping by moving the piston in the direction of expanding, output the signal to close the inlet valve and open the needle valve, and then drive the piston in the direction of narrowing.
電解液供給装置(注液装置)の概略構成を示す図。The figure which shows schematic structure of an electrolyte solution supply apparatus (liquid injection apparatus). 注液装置の動作を示すタイミングチャート。The timing chart which shows operation | movement of a liquid injection apparatus. 電解液供給装置の動作を説明するフローチャート。The flowchart explaining operation | movement of an electrolyte solution supply apparatus.
 図1に示す装置1は、減圧室100の内側の減圧雰囲気102に配置されたバッテリ容器200の内部に電解液19を供給(注液)する装置(電解液供給装置、注液装置)である。減圧室100の内部は、真空ポンプ110により所定の圧力(負圧)になるように減圧される。 An apparatus 1 shown in FIG. 1 is an apparatus (electrolyte supply apparatus, injection apparatus) that supplies (injects) an electrolytic solution 19 into a battery container 200 arranged in a reduced pressure atmosphere 102 inside a reduced pressure chamber 100. . The inside of the decompression chamber 100 is decompressed by the vacuum pump 110 so as to be a predetermined pressure (negative pressure).
 供給装置1は、減圧室100の上壁(天板)101の上に配置される計量ユニット10と、計量ユニット10の上流に配置されたリザーバー(リザーバータンク)2と、計量ユニット10の下流に配置されたディスペンサ20と、計量ユニット10およびディスペンサ20の動作を制御して電解液19を注入する制御ユニット30とを備えている。典型的な制御ユニット30は、CPUおよびメモリを含むハードウェア資源を備え、プログラム(プログラム製品)を実行することにより供給装置1を制御し、バッテリを製造する過程においてバッテリ容器200に電解液19を供給するものである。 The supply device 1 includes a weighing unit 10 disposed on an upper wall (top plate) 101 of the decompression chamber 100, a reservoir (reservoir tank) 2 disposed upstream of the weighing unit 10, and a downstream of the weighing unit 10. The dispenser 20 arranged and a control unit 30 for injecting the electrolytic solution 19 by controlling the operation of the metering unit 10 and the dispenser 20 are provided. The typical control unit 30 includes hardware resources including a CPU and a memory, controls the supply device 1 by executing a program (program product), and supplies the electrolytic solution 19 to the battery container 200 in the process of manufacturing the battery. To supply.
 図1において、太線は電解液19の流路(管路)、太い破線は制御用空気の流路(管路)、斜線付きの細線は制御用の電気信号を伝達する配線をそれぞれ示す。電解液19は可燃性の有機溶媒を含むものがあり、減圧室100の周囲、すなわち、ディスペンサ20が設置される領域は、一般的に防爆領域H(一点鎖線で囲まれた領域)に含まれる。この例では、供給装置1の計量ユニット10が設置される領域も防爆領域Hに含まれており、計量ユニット10のピストン12を駆動するサーボモータ13には防爆仕様のものが用いられている。 In FIG. 1, the thick line indicates the flow path (pipe) of the electrolytic solution 19, the thick broken line indicates the flow path (pipe) for control air, and the thin line with diagonal lines indicates the wiring for transmitting the control electrical signal. Some electrolyte solutions 19 contain a flammable organic solvent, and the area around the decompression chamber 100, that is, the area where the dispenser 20 is installed is generally included in an explosion-proof area H (area surrounded by a one-dot chain line). . In this example, the area where the weighing unit 10 of the supply device 1 is installed is also included in the explosion-proof area H, and the servo motor 13 that drives the piston 12 of the weighing unit 10 has an explosion-proof type.
 計量ユニット10の上流のリザーバー2は、電解液供給手段のヘッダー3に接続され、計量ユニット10が数回分注するだけの液量を一時的に確保する。リザーバー2が設けられているため、計量ユニット10は高速に動作できる。また、リザーバー2は、気液分離機構を兼ねており、ベント弁4を介してリザーバー2の上部に溜まった気体を排出できる。ベント弁4は、防爆を考慮し、空気作動弁(エアー駆動弁)が用いられ、防爆領域H外に設けられた電磁弁(ソレノイドバルブ)34および制御ユニット30により制御用空気(作動流体)を介して制御される。なお、制御用空気は、コンプレッサーに繋がった制御用空気ヘッダー39を介して供給される。 The reservoir 2 upstream of the measuring unit 10 is connected to the header 3 of the electrolyte supply means, and temporarily secures the amount of liquid that the measuring unit 10 can dispense several times. Since the reservoir 2 is provided, the weighing unit 10 can operate at high speed. The reservoir 2 also serves as a gas-liquid separation mechanism and can discharge the gas accumulated in the upper portion of the reservoir 2 through the vent valve 4. The vent valve 4 is an air-operated valve (air-driven valve) in consideration of explosion-proof, and the control valve (solenoid valve) 34 provided outside the explosion-proof area H and the control air (working fluid) are supplied by the control unit 30. Controlled through. Note that the control air is supplied via a control air header 39 connected to a compressor.
 計量ユニット10は、シリンダ11とピストン12とを有する。シリンダ11は上下に延びており、シリンダ11内をピストン12が上下方向(鉛直方向)に沿って動く。細い破線で示すように、シリンダ11の内部のピストン12が出入りする領域が計量空間Sとなっており、ピストン12の出入りする量(ストローク)を制御することにより計量空間Sで計量される電解液19の量を自在に制御(調整)できる。 The weighing unit 10 has a cylinder 11 and a piston 12. The cylinder 11 extends vertically, and the piston 12 moves along the vertical direction in the cylinder 11. As shown by a thin broken line, the area in which the piston 12 in and out of the cylinder 11 enters and exits is the measuring space S, and the electrolyte measured in the measuring space S by controlling the amount (stroke) of the piston 12 to enter and exit. The amount of 19 can be freely controlled (adjusted).
 計量ユニット10は、さらに、ピストン12を上下に駆動するサーボモータ13を含む。サーボモータ13の回転量、回転速度および回転方向を制御ユニット30によって制御することにより、ピストン12のストロークを変えたり、ピストン12の移動速度を変えたりしながらピストン12を上下に移動できる。すなわち、サーボモータ13によりピストン12をシリンダ11内の空間Sを広げる方向に動かして電解液19を計量し、空間Sを狭める方向に動かして電解液19をディスペンサ20に供給することができる。 The weighing unit 10 further includes a servo motor 13 that drives the piston 12 up and down. By controlling the rotation amount, rotation speed, and rotation direction of the servo motor 13 by the control unit 30, the piston 12 can be moved up and down while changing the stroke of the piston 12 or changing the moving speed of the piston 12. That is, the servo motor 13 can move the piston 12 in the direction of expanding the space S in the cylinder 11 to measure the electrolytic solution 19, and move the piston S in the direction of narrowing the space S to supply the electrolytic solution 19 to the dispenser 20.
 計量ユニット10としては、ストロークを可変制御可能なプランジャーポンプを用いることができる。ステッピングモータタイプのサーボモータ13を用いると、パルス制御することにより高分解能な容量可変制御を行うことができる。ステッピングモータの代わりにエンコーダ18を備えた直流サーボモータを採用することができる。以下では、エンコーダ18を備えたタイプを説明する。エンコーダ18はピストン12の位置を検出する手段(検出器)であり、制御ユニット30と電気的に接続され、検出したピストン12の位置を制御ユニット30に出力(伝達)する。 As the weighing unit 10, a plunger pump capable of variably controlling the stroke can be used. When the stepping motor type servo motor 13 is used, high-capacity variable variable control can be performed by pulse control. A DC servo motor provided with an encoder 18 can be employed instead of the stepping motor. Below, the type provided with the encoder 18 is demonstrated. The encoder 18 is means (detector) for detecting the position of the piston 12 and is electrically connected to the control unit 30 to output (transmit) the detected position of the piston 12 to the control unit 30.
 供給装置1は、さらに、計量ユニット10の上流側を開閉する(計量空間Sへの電解液19の流入をオンオフする)入口弁5を含む。入口弁5と計量空間Sの下端部S1に設けられた入口ポートP1とは管路(第2の管路)42により接続されている。入口弁5を入口ポートP1の近傍に配置することにより、第2の管路42をできるだけ短くし、計量空間Sにおける計量精度の低下を抑制している。入口弁5とリザーバー2とは管路43により接続されている。入口弁5も、防爆領域H内であることを考慮し、空気作動弁が用いられ、防爆領域H外に設けられた電磁弁33および制御ユニット30により制御用空気を介して制御される。 The supply device 1 further includes an inlet valve 5 that opens and closes the upstream side of the measuring unit 10 (turns on and off the inflow of the electrolyte 19 into the measuring space S). The inlet valve 5 and the inlet port P1 provided at the lower end S1 of the measuring space S are connected by a pipe line (second pipe line) 42. By disposing the inlet valve 5 in the vicinity of the inlet port P1, the second pipe line 42 is made as short as possible, and a decrease in measuring accuracy in the measuring space S is suppressed. The inlet valve 5 and the reservoir 2 are connected by a pipe line 43. In consideration of the fact that the inlet valve 5 is also in the explosion-proof region H, an air-operated valve is used and is controlled by the electromagnetic valve 33 and the control unit 30 provided outside the explosion-proof region H through control air.
 計量ユニット10から供給された電解液19をバッテリ容器200に対し上方から注入するディスペンサ20は、バッテリ容器200内またはバッテリ容器200の上端近傍に配置される吐出ノズル21と、この吐出ノズル21が下端に装着された単管(円筒またはシリンジ、以降においてはシリンジ)22と、吐出ノズル21の内側に配置されてこの吐出ノズル21の先端を開閉するニードル弁(カット弁)23と、シリンジ22の内部を上下に貫通するように設けられた弁制御棒25と、弁制御棒25を介してニードル弁23を上下に駆動し、ニードル弁23を開閉制御する空気駆動型のアクチュエータ24とを含む。ニードル弁23はノーマルオフ(ノーマルクローズ)であり、ディスペンサ20は、弁制御棒25を介してニードル弁23を吐出ノズル21の先端に付勢する手段(例えば、コイルばね)26を含む。 A dispenser 20 that injects the electrolyte 19 supplied from the weighing unit 10 into the battery container 200 from above includes a discharge nozzle 21 disposed in the battery container 200 or in the vicinity of the upper end of the battery container 200, and the discharge nozzle 21 at the lower end. A single tube (cylindrical or syringe, hereinafter referred to as a syringe) 22 mounted on the needle, a needle valve (cut valve) 23 that is arranged inside the discharge nozzle 21 and opens and closes the tip of the discharge nozzle 21, and the inside of the syringe 22 The valve control rod 25 is provided so as to penetrate the valve vertically, and the air-driven actuator 24 that drives the needle valve 23 up and down via the valve control rod 25 to control the opening and closing of the needle valve 23 is included. The needle valve 23 is normally off (normally closed), and the dispenser 20 includes means (for example, a coil spring) 26 that biases the needle valve 23 toward the tip of the discharge nozzle 21 via the valve control rod 25.
 シリンジ22は、減圧室100の上壁101を貫通して上下に延びており、先端は減圧室100の内部102に配置されたバッテリ容器200に到達している。したがって、シリンジ22の先端(下端、吐出ノズル21)の周りは、減圧雰囲気となっている。シリンジ22の先端(下端、吐出ノズル21)は、上壁101の上に配置された計量ユニット10の計量空間Sの下端部S1よりも下側まで延びている。 The syringe 22 penetrates the upper wall 101 of the decompression chamber 100 and extends vertically, and the tip reaches the battery container 200 disposed in the interior 102 of the decompression chamber 100. Accordingly, the periphery of the tip (lower end, discharge nozzle 21) of the syringe 22 is a reduced pressure atmosphere. The tip (lower end, discharge nozzle 21) of the syringe 22 extends to a lower side than the lower end S1 of the measuring space S of the measuring unit 10 disposed on the upper wall 101.
 このディスペンサ20においては、シリンジ22の内部を弁制御棒25が貫通しており、シリンジ22の弁制御棒25に沿った部分が、電解液19が流れる空間となっている。したがって、シリンジ22の内径に対し、適当な外径の弁制御棒25を選択することにより、計量ユニット10からシリンジ22の先端の吐出ノズル21に至る管路の面積を調整できる。このため、適切な内径のシリンジ22と適切な外径の弁制御棒25を選択することにより、電解液19の粘度、減圧室100の内圧(負圧)、流量などの注入条件に合わせて吐出ノズル21までの圧力損失を制御できる。したがって、この構成を用いて、バッテリ容器200にスムーズに電解液19を注入できる条件を設定できる。 In this dispenser 20, the valve control rod 25 penetrates the inside of the syringe 22, and a portion along the valve control rod 25 of the syringe 22 is a space through which the electrolytic solution 19 flows. Therefore, by selecting a valve control rod 25 having an appropriate outer diameter with respect to the inner diameter of the syringe 22, the area of the conduit from the measuring unit 10 to the discharge nozzle 21 at the tip of the syringe 22 can be adjusted. For this reason, by selecting a syringe 22 with an appropriate inner diameter and a valve control rod 25 with an appropriate outer diameter, discharge is performed in accordance with the injection conditions such as the viscosity of the electrolyte 19, the internal pressure (negative pressure) of the decompression chamber 100, and the flow rate. The pressure loss up to the nozzle 21 can be controlled. Therefore, using this configuration, it is possible to set conditions under which the electrolytic solution 19 can be smoothly injected into the battery container 200.
 弁制御棒25は、吐出ノズル21の内側を開閉するニードル弁(カット弁)23をアクチュエータ24により上下に動かすためのものである。弁制御棒25の先端(下端)にニードル弁23が接続され、他端(上端)がアクチュエータ24と接続されている。ニードル弁23は、コイルばね26によりノーマルオフ(ノーマルクローズ)に設定されている。アクチュエータ24は、電磁弁(ソレノイドバルブ)32を介して供給される動作流体、例えば、空気で作動(駆動)する。ニードル弁23は、電磁弁(ソレノイドバルブ)32を介してアクチュエータ24に制御空気を送ることによりオン(開)され、制御空気を排出することによりオフ(閉)される。シリンジ22の内部に設けられたニードル弁23によって吐出ノズル21の直上を閉じることにより、吐出ノズル21が減圧雰囲気に面している場合においても、吐出ノズル21からの電解液19の液漏れを抑制でき、液切れを改善できる。 The valve control rod 25 is for moving a needle valve (cut valve) 23 that opens and closes the inside of the discharge nozzle 21 up and down by an actuator 24. A needle valve 23 is connected to the tip (lower end) of the valve control rod 25, and the other end (upper end) is connected to the actuator 24. The needle valve 23 is normally off (normally closed) by a coil spring 26. The actuator 24 is actuated (driven) by a working fluid supplied via an electromagnetic valve (solenoid valve) 32, for example, air. The needle valve 23 is turned on (opened) by sending control air to the actuator 24 via an electromagnetic valve (solenoid valve) 32, and turned off (closed) by discharging the control air. By closing the top of the discharge nozzle 21 with the needle valve 23 provided inside the syringe 22, even when the discharge nozzle 21 faces a reduced pressure atmosphere, the leakage of the electrolyte 19 from the discharge nozzle 21 is suppressed. Can improve the drainage.
 ディスペンサ20は、計量ユニット10の計量空間Sの上端部S2に設けられた出口ポートP2と管路(第1の管路)41により接続されている。この第1の管路41は、少なくとも計量空間Sの下端部S1の近傍に相当する位置まで鉛直方向に延びる第1の部分41aと、第1の部分41aの下端からディスペンサ20の上端に向かって水平方向に延びる第2の部分41bとを有する。すなわち、第1の管路41は、全体としてL字型に形成されており、水平に延びた部分の一方の端(第2の部分41bの端)がシリンジ22の側方に接続され、垂直(鉛直)に延びた部分の他方の端(第1の部分41aの端)が計量空間Sの上端部S2の出口ポートP2に接続されている。 The dispenser 20 is connected to an outlet port P2 provided at the upper end S2 of the measuring space S of the measuring unit 10 by a pipe line (first pipe line) 41. The first pipe 41 has a first portion 41a extending in the vertical direction to a position corresponding to at least the vicinity of the lower end S1 of the measuring space S, and from the lower end of the first portion 41a toward the upper end of the dispenser 20. And a second portion 41b extending in the horizontal direction. That is, the first conduit 41 is formed in an L shape as a whole, and one end of the horizontally extending portion (the end of the second portion 41b) is connected to the side of the syringe 22 so that it is vertical. The other end (the end of the first portion 41a) of the portion extending in the (vertical) direction is connected to the outlet port P2 of the upper end portion S2 of the measuring space S.
 第1の管路41の途中であって、第1の管路41の計量空間Sの下端部の近傍に相当する位置に、背圧弁50が配置されている。本例では、背圧弁50は、第1の管路41の第1の部分41aと第2の部分41bとのコーナー部分の、上下に延びた第1の部分41aの側に配置されている。背圧弁50は、ボール51と、このボール51を上方に付勢し、この背圧弁50を閉に維持するコイルばね52とを含む。コイルばね52は、計量ユニット10のピストン12がストローク(この場合は下側に移動)しない限り、背圧弁50を介して電解液19が流れない程度の圧力をボール51に与えるように設定されている。例えば、減圧室内102の最大負圧(真空度)と大気圧との差圧が背圧として加わっても電解液19が流れない設定になっている。この背圧弁50は、減圧室内102の負圧がブレークして大気圧となったり、あるいは逆に加圧されることによる、シリンジ22の内圧が計量空間Sの内圧よりも高くなる異常事態では逆止弁としても作用する。 The back pressure valve 50 is disposed in the middle of the first pipeline 41 and at a position corresponding to the vicinity of the lower end of the measurement space S of the first pipeline 41. In this example, the back pressure valve 50 is disposed on the side of the first portion 41 a extending vertically from the corner portion of the first portion 41 a and the second portion 41 b of the first pipe 41. The back pressure valve 50 includes a ball 51 and a coil spring 52 that urges the ball 51 upward and keeps the back pressure valve 50 closed. The coil spring 52 is set so as to apply a pressure to the ball 51 through the back pressure valve 50 so that the electrolyte 19 does not flow unless the piston 12 of the measuring unit 10 is stroked (in this case, moved downward). Yes. For example, the electrolytic solution 19 does not flow even if a differential pressure between the maximum negative pressure (degree of vacuum) in the decompression chamber 102 and the atmospheric pressure is applied as a back pressure. The back pressure valve 50 is reversed in an abnormal situation in which the negative pressure in the decompression chamber 102 breaks to atmospheric pressure, or the internal pressure of the syringe 22 becomes higher than the internal pressure of the measuring space S due to pressurization. Also acts as a stop valve.
 サーボモータ13、ソレノイドバルブ32~34を制御する制御ユニット30の典型的なものは、上述したようにマイクロコンピュータを含むプログラマブルな制御装置である。制御ユニット30はワイヤードロジックタイプであってもよく、シーケンサであってもよい。 A typical control unit 30 for controlling the servo motor 13 and the solenoid valves 32 to 34 is a programmable control device including a microcomputer as described above. The control unit 30 may be a wired logic type or a sequencer.
 制御ユニット30は、計量ユニット10のサーボモータ13を制御する機能(第1の機能、第1の機能ユニット、サーボモータ制御ユニット)30aと、電磁弁34を介してベント弁4を制御する機能(第4の機能、第4の機能ユニット、ベント弁制御ユニット)30dと、電磁弁33を介して入口弁5を制御する機能(第3の機能、第3の機能ユニット、入口弁制御ユニット)30cと、電磁弁32を介してディスペンサ20のアクチュエータ24を制御する機能(第2の機能、第2の機能ユニット、ニードル弁制御ユニット)30bとを含む。 The control unit 30 functions to control the servo motor 13 of the measuring unit 10 (first function, first functional unit, servo motor control unit) 30a and the function to control the vent valve 4 via the electromagnetic valve 34 ( (4th function, 4th functional unit, vent valve control unit) 30d and the function (3rd function, 3rd functional unit, inlet valve control unit) 30c which controls the inlet valve 5 via the electromagnetic valve 33 And a function (second function, second function unit, needle valve control unit) 30b for controlling the actuator 24 of the dispenser 20 via the electromagnetic valve 32.
 第1の機能30aは、サーボモータ13を駆動する信号を出力する機能(サーボモータ制御信号出力ユニット)30yを含み、計量ユニット10のピストン12をシリンダ11内の空間Sを広げる方向と空間Sを狭める方向とに動かす。第1の機能30aは、エンコーダ18によりピストン位置を検出し、ピストン12の位置を確認しながらサーボモータ13によりピストン12を上側に動かして空間Sを広げることにより、所定の量の電解液19を計量する。その後、第1の機能30aは、ピストン12の位置を確認しながらサーボモータ13によりピストン12を下側に動かして空間Sを狭めることにより、計量された電解液19をディスペンサ20に供給する。そして、第1の機能30aは、計量された電解液19をディスペンサ20に供給し終わる位置にピストン12が到達するとサーボモータ13を停止し、ピストン12の動きを停止させる。 The first function 30 a includes a function (servo motor control signal output unit) 30 y that outputs a signal for driving the servo motor 13. The piston 12 of the measuring unit 10 expands the space S in the cylinder 11 and the space S. Move in the direction of narrowing. The first function 30a detects the piston position by the encoder 18, and moves the piston 12 upward by the servo motor 13 while confirming the position of the piston 12 to widen the space S. Weigh. Thereafter, the first function 30 a supplies the measured electrolyte 19 to the dispenser 20 by moving the piston 12 downward by the servo motor 13 while narrowing the space S while confirming the position of the piston 12. The first function 30 a stops the servo motor 13 and stops the movement of the piston 12 when the piston 12 reaches a position at which the measured electrolytic solution 19 is completely supplied to the dispenser 20.
 なお、サーボモータ13としてステッピングモータを用いることにより、エンコーダ18を用いなくとも、サーボモータ13に供給するパルス数によりピストン位置を精度よく制御できる。この場合、第1の機能30aは、サーボモータ13に供給するパルス数によりピストン12の位置を精度よく制御し、ピストン12を上方および下方に動かして空間Sを広げたり狭めたり(拡大したり縮小したり)して、電解液19を計量および供給することができる。 In addition, by using a stepping motor as the servo motor 13, the piston position can be accurately controlled by the number of pulses supplied to the servo motor 13 without using the encoder 18. In this case, the first function 30a accurately controls the position of the piston 12 by the number of pulses supplied to the servo motor 13, and moves the piston 12 upward and downward to widen or narrow the space S (enlarge or reduce). The electrolyte 19 can be metered and supplied.
 第2の機能30bは、ソレノイドバルブ32を駆動する信号を出力する機能(信号出力機能、信号出力機能ユニット、ニードル弁アクチュエータ制御信号出力ユニット)30xを含み、制御用空気によりアクチュエータ24を駆動し、ニードル弁23を開閉させる。信号出力機能32xは、第1の機能30aが空間Sを狭める方向(縮小する方向)にピストン12を動かして停止させる前に、ニードル弁23を閉じる信号を出力する。エンコーダ18を備えている供給装置1の場合は、信号出力機能30xは、空間Sを狭める方向、すなわち、下方に移動中のピストン12の位置が停止位置の手前の所定の第1の位置となったときに、ニードル弁23を閉じる信号を出力する。サーボモータ13がステッピングモータであれば、信号出力機能30xは、ピストン12を下方に移動させるためにサーボモータ13に供給されたパルス数が所定の値になったときに、ニードル弁23を閉じる信号を出力する。 The second function 30b includes a function (signal output function, signal output function unit, needle valve actuator control signal output unit) 30x that outputs a signal for driving the solenoid valve 32, and drives the actuator 24 with control air. The needle valve 23 is opened and closed. The signal output function 32x outputs a signal for closing the needle valve 23 before the first function 30a moves and stops the piston 12 in the direction of narrowing the space S (the direction of reduction). In the case of the supply device 1 including the encoder 18, the signal output function 30x is configured to reduce the space S, that is, the position of the piston 12 moving downward is a predetermined first position before the stop position. When this occurs, a signal for closing the needle valve 23 is output. If the servo motor 13 is a stepping motor, the signal output function 30x is a signal for closing the needle valve 23 when the number of pulses supplied to the servo motor 13 to move the piston 12 downward reaches a predetermined value. Is output.
 制御ユニット30はこれらの機能30a~30dにより供給装置1を制御し、電解液19の注液量を精度よく制御する。 The control unit 30 controls the supply device 1 by these functions 30a to 30d, and accurately controls the injection amount of the electrolytic solution 19.
 図2に、供給装置1によりバッテリ容器200に電解液19を複数回に分けて注入(分注)するときの動作の一部を示している。まず、第4の機能30dにより、バッテリ容器200に分注を開始する時刻t0にベント弁4を開閉し、リザーバー2をベントする。ベント弁4は空気作動弁(エアー駆動弁)なので、時刻t0に第4の機能30dがソレノイドバルブ34に駆動信号を出力した後、若干の時間差があってからベント弁4が開く。 FIG. 2 shows a part of the operation when the supply device 1 injects (dispenses) the electrolyte 19 into the battery container 200 in a plurality of times. First, the vent valve 4 is opened and closed by the fourth function 30d at time t0 when dispensing into the battery container 200 is started, and the reservoir 2 is vented. Since the vent valve 4 is an air operated valve (air drive valve), the vent valve 4 is opened after a slight time difference after the fourth function 30d outputs a drive signal to the solenoid valve 34 at time t0.
 時刻t1に、第3の機能30cにより入口弁5を開き、ニードル弁(カット弁)23が閉じた状態で、リザーバー2と計量ユニット10の計量空間Sとを連通させる。入口弁5は空気作動弁(エアー駆動弁)なので、時刻t1に第3の機能30cがソレノイドバルブ33に駆動信号を出力した後の時刻t2に入口弁5が開く。 At time t1, the inlet valve 5 is opened by the third function 30c, and the reservoir 2 and the measuring space S of the measuring unit 10 are communicated with each other while the needle valve (cut valve) 23 is closed. Since the inlet valve 5 is an air operated valve (air driven valve), the inlet valve 5 opens at time t2 after the third function 30c outputs a drive signal to the solenoid valve 33 at time t1.
 第1の機能30aは、第3の機能30cが入口弁5を開にする信号を出力した後の時刻t3にピストン12を上方に駆動する信号をサーボモータ13に出力して、空間Sを広げる方向(拡大する方向)にピストン12を動かす(ストロークさせる)。時刻t4にピストン12のストロークを停止することにより、所定の量の電解液19を計量空間S内に流入させる。この供給装置1においては、サーボモータ13を電圧制御またはパルス制御することによりピストン12の移動速度は可変である。このため、図2において電解液19の引き込み速度を示す角度θ1を任意に変えることができる。したがって、電解液19の特性や引き込み条件などにより引き込み速度θ1を上昇できる環境であれば、引き込み速度θ1を早くして注液時間を短縮できる。 The first function 30a widens the space S by outputting a signal for driving the piston 12 upward to the servo motor 13 at time t3 after the third function 30c outputs a signal for opening the inlet valve 5. The piston 12 is moved (stroked) in the direction (enlargement direction). By stopping the stroke of the piston 12 at time t4, a predetermined amount of the electrolytic solution 19 is caused to flow into the measuring space S. In this supply device 1, the moving speed of the piston 12 is variable by voltage-controlling or pulse-controlling the servomotor 13. For this reason, in FIG. 2, angle (theta) 1 which shows the drawing-in speed of the electrolyte solution 19 can be changed arbitrarily. Therefore, in an environment where the drawing speed θ1 can be increased depending on the characteristics of the electrolytic solution 19 and the drawing conditions, the drawing speed θ1 can be increased to shorten the liquid injection time.
 第3の機能30cは、第1の機能30aがピストン12を時刻t4に停止した後、または同時に、入口弁5を閉じる信号をソレノイドバルブ33に対して出力する。空気作動による遅延を経た時刻t5に入口弁5は閉じる。 The third function 30c outputs a signal for closing the inlet valve 5 to the solenoid valve 33 after the first function 30a stops the piston 12 at time t4 or at the same time. The inlet valve 5 is closed at time t5 after a delay due to air operation.
 第2の機能30bは、第3の機能30cが入口弁5を閉じる信号を出力した後、入口弁5が動作する遅延時間を考慮し、入口弁5が閉じた後の時刻t6にディスペンサ20のニードル弁(カット弁)23を開ける信号をソレノイドバルブ32に対して出力する。空気作動による遅延を経た時刻t7にアクチュエータ24が動作し、ニードル弁23が開く。 The second function 30b takes into account a delay time for the operation of the inlet valve 5 after the third function 30c outputs a signal for closing the inlet valve 5, and at the time t6 after the inlet valve 5 is closed, the dispenser 20 A signal for opening the needle valve (cut valve) 23 is output to the solenoid valve 32. At time t7 after a delay due to air operation, the actuator 24 operates and the needle valve 23 opens.
 第1の機能30aは、第2の機能30bがニードル弁23を開にする信号を出力した後、ニードル弁23が動作する遅延時間を考慮し、ニードル弁23が開いた後の時刻t8にサーボモータ13に対しピストン12を下方に駆動する信号を出力する。 The first function 30a takes a delay time for the needle valve 23 to operate after the second function 30b outputs a signal for opening the needle valve 23, and servos at time t8 after the needle valve 23 is opened. A signal for driving the piston 12 downward is output to the motor 13.
 時刻t5において入口弁5を閉じたため、それ以降においては、計量空間Sは入口弁5の上流の系から遮断され、リザーバー2を含む上流の系の静圧は計量空間Sに加わらない。したがって、時刻t7にニードル弁23が開になったときに、入口弁5より上流のシステムの静圧がディスペンサ20に印加されるのを防止できる。また、シリンダ11およびピストン12により構成される計量空間Sの断面積は、配管の断面積の1桁以上、通常は2桁~3桁以上大きい。したがって、分注する電解液19を断面積の大きな計量空間Sにいったん蓄積することにより分注する電解液19の静圧(液柱による圧力)がニードル弁23に印加されるのを最小限に抑えることができる。さらに、この供給装置1においては、背圧弁50によりニードル弁23に加わる圧力をさらに抑制している。したがって、ニードル弁23を開いたときに電解液19が吐出ノズル21から飛散することを抑制できる。 Since the inlet valve 5 is closed at time t5, the metering space S is cut off from the system upstream of the inlet valve 5 thereafter, and the static pressure of the upstream system including the reservoir 2 is not applied to the metering space S. Therefore, it is possible to prevent the static pressure of the system upstream from the inlet valve 5 from being applied to the dispenser 20 when the needle valve 23 is opened at time t7. Further, the cross-sectional area of the measuring space S constituted by the cylinder 11 and the piston 12 is one digit or more, usually two to three digits or more larger than the pipe cross-sectional area. Therefore, by temporarily accumulating the electrolyte 19 to be dispensed in the measuring space S having a large cross-sectional area, the static pressure of the electrolyte 19 to be dispensed (pressure due to the liquid column) is applied to the needle valve 23 to the minimum. Can be suppressed. Further, in the supply device 1, the pressure applied to the needle valve 23 is further suppressed by the back pressure valve 50. Therefore, it is possible to suppress the electrolytic solution 19 from being scattered from the discharge nozzle 21 when the needle valve 23 is opened.
 このようにニードル弁23は、入口弁5が閉じた後に開くことが望ましい。本例では、ニードル弁23を開く信号を入口弁5が閉じた後に出力しているが、信号の出力から入口弁5およびニードル弁23が作動する遅れを考慮し、ニードル弁23を開く信号を入口弁5が閉じる前に出力し、弁切り替えに要する時間を短縮するようにしてもよい。 Thus, the needle valve 23 is desirably opened after the inlet valve 5 is closed. In this example, a signal for opening the needle valve 23 is output after the inlet valve 5 is closed, but a signal for opening the needle valve 23 is taken into consideration from the output of the signal in consideration of a delay in the operation of the inlet valve 5 and the needle valve 23. It may be outputted before the inlet valve 5 is closed, and the time required for valve switching may be shortened.
 さらに、計量ユニット10の計量空間Sの上端部S2とディスペンサ20とをつなぐ第1の管路41に背圧弁50を設けている。このため、ディスペンサ20の吐出ノズル21のニードル弁23を単に開いても、この時点では電解液19は吐出されない。時刻t8にピストン12が下方に動いて計量空間Sが狭められ背圧弁50に所定の背圧が加わることにより、ピストン12の動きに対応する量の電解液19が吐出ノズル21の先端から精度良く吐出される。特に、この供給装置1においては、背圧弁50が設けられた第1の管路41は、計量空間Sの上端部S2の出口ポートP2に接続されており、背圧弁50に加わる静圧(液柱による圧力)はほぼ一定しているので、ピストン12の位置(上下の位置)が変化しても変動しない。したがって、背圧弁50をピストン12の動きに瞬時に反応して開閉するように設定できる。 Furthermore, a back pressure valve 50 is provided in the first pipe 41 connecting the upper end S2 of the measuring space S of the measuring unit 10 and the dispenser 20. For this reason, even if the needle valve 23 of the discharge nozzle 21 of the dispenser 20 is simply opened, the electrolytic solution 19 is not discharged at this point. At time t8, the piston 12 moves downward, the measuring space S is narrowed, and a predetermined back pressure is applied to the back pressure valve 50, so that an amount of the electrolyte 19 corresponding to the movement of the piston 12 is accurately supplied from the tip of the discharge nozzle 21. Discharged. In particular, in the supply device 1, the first pipe line 41 provided with the back pressure valve 50 is connected to the outlet port P <b> 2 of the upper end portion S <b> 2 of the measuring space S, and the static pressure (liquid level) applied to the back pressure valve 50. Since the pressure by the column is substantially constant, it does not fluctuate even if the position of the piston 12 (vertical position) changes. Therefore, the back pressure valve 50 can be set to open and close in response to the movement of the piston 12 instantly.
 時刻t8にピストン12を下方に動かした後、第2の機能30bの信号出力機能30xは、時刻t9に、第1の機能30aがピストン12を停止させる位置Posより若干前の第1の位置Po1にピストン12が到達したと判断すると、ニードル弁23を閉じる信号をソレノイドバルブ32に出力する。この信号により、時刻t9より空気作動による動作遅延時間Tdelが経過した時刻t10にアクチュエータ24が駆動され、ニードル弁23が閉じる。また、ほぼ同じ時刻t10に、ピストン12が停止位置Posに達するので、第1の機能30aはサーボモータ13の動きを停止させ、ピストン12を停止する。計量ユニット10において計量した分だけの電解液19をピストン12でディスペンサ20に供給し終わると同時にニードル弁23を閉じることにより、極めて精度よく注液量を制御できる。 After moving the piston 12 downward at time t8, the signal output function 30x of the second function 30b is the first position Po1 slightly before the position Pos where the first function 30a stops the piston 12 at time t9. When it is determined that the piston 12 has reached the position, a signal for closing the needle valve 23 is output to the solenoid valve 32. By this signal, the actuator 24 is driven at time t10 when the operation delay time Tdel due to air operation has elapsed from time t9, and the needle valve 23 is closed. Further, since the piston 12 reaches the stop position Pos at substantially the same time t10, the first function 30a stops the movement of the servo motor 13 and stops the piston 12. The liquid injection amount can be controlled with extremely high accuracy by closing the needle valve 23 at the same time as the supply of the electrolyte 19 corresponding to the amount measured in the measuring unit 10 to the dispenser 20 by the piston 12 is completed.
 注液精度を向上させるためには、ピストン12のストロークが停止することと、ニードル弁23が実際に閉じることとをほぼ同時に行うことが望ましい。そのために、停止させる位置Posと信号出力機能30xが閉信号を出力する第1の位置Po1との差dsは、供給装置1が設置された環境に合わせて決定される。制御ユニット30がニードル弁23を閉じる信号を出力させるタイミングと、ピストン12の第1の位置Po1との関係を設置環境に合わせて調整することが望ましい。また、制御ユニット30がニードル弁23を閉じる信号を出力してからニードル弁23が実際に閉じるまでの時間Tdelを測定して制御ユニット30のメモリに設定しておくことも可能である。信号出力機能30xは、第1の機能30aがピストン12を下方に動かす速度と停止位置Posとの関係から、自動的にニードル弁23を閉じる信号を出力するタイミングをピストン12の第1の位置Po1として求め、ニードル弁23を閉じる信号を出力することができる。 In order to improve the accuracy of liquid injection, it is desirable to stop the stroke of the piston 12 and to close the needle valve 23 almost simultaneously. Therefore, the difference ds between the position Pos to be stopped and the first position Po1 at which the signal output function 30x outputs a closing signal is determined according to the environment in which the supply device 1 is installed. It is desirable to adjust the relationship between the timing at which the control unit 30 outputs a signal for closing the needle valve 23 and the first position Po1 of the piston 12 in accordance with the installation environment. It is also possible to measure the time Tdel from when the control unit 30 outputs a signal for closing the needle valve 23 until the needle valve 23 is actually closed, and set it in the memory of the control unit 30. The signal output function 30x determines the timing at which a signal for automatically closing the needle valve 23 is output from the relationship between the speed at which the first function 30a moves the piston 12 downward and the stop position Pos. And a signal for closing the needle valve 23 can be output.
 この供給装置1においては、引き上げ(上方ストローク)と同様に、サーボモータ13によりピストン12の移動速度を変更できる。このため、図2において電解液19の吐出速度を示す角度θ2を任意に、引き込み速度θ1とは独立して変えることができる。したがって、電解液19の特性、引き込み条件などにより引き込み速度θ1に対して吐出速度θ2を遅くすることも可能であり、また、吐出速度θ2を引き込み速度θ1に対して早くすることも可能である。吐出速度θ2が変わった場合でも、制御ユニット30に遅延時間Tdelを予め設定し、ピストン12の第1の位置Po1を自動的に求められるようにしておくことにより、信号出力機能30xは適切なタイミングでニードル弁23を閉じる信号を出力できる。 In this supply device 1, the moving speed of the piston 12 can be changed by the servo motor 13 in the same manner as the pulling (upward stroke). Therefore, in FIG. 2, the angle θ2 indicating the discharge speed of the electrolytic solution 19 can be arbitrarily changed independently of the pull-in speed θ1. Therefore, the discharge speed θ2 can be made slower than the draw speed θ1, and the discharge speed θ2 can be made faster than the draw speed θ1, depending on the characteristics of the electrolytic solution 19, the drawing conditions, and the like. Even when the discharge speed θ2 changes, by setting the delay time Tdel in the control unit 30 in advance so that the first position Po1 of the piston 12 can be automatically obtained, the signal output function 30x has an appropriate timing. Thus, a signal for closing the needle valve 23 can be output.
 信号出力機能30xは、ニードル弁閉の信号を出力するタイミングを、ピストン12の停止時刻を予想し、その予想時刻に対して設定してもよい。ピストン12のストロークの量は電解液19を計量する段階で決まっているので、ピストン12の位置に基づきピストン12が停止するタイミングを判断し、それに対して適当なタイミングでニードル弁閉の信号を出力する方法は、信頼性が高く、制御ロジックの構成も容易な方法の1つである。信号出力機能30xは、ニードル弁閉の信号を出すためのタイミングをピストン12の位置(第1の位置Po1)から決定してもよい。この供給装置1では検出器であるエンコーダ18によりピストン12の位置を得ることができる。また、ステッピングモータがサーボモータ13として採用されていれば、駆動パルスをカウントすることによりピストン12の位置を得ることができる。また、エンコーダ18の出力および駆動パルスカウントの両方を用いることも可能である。 The signal output function 30x may set the timing of outputting the needle valve closing signal with respect to the predicted time by predicting the stop time of the piston 12. Since the amount of stroke of the piston 12 is determined when the electrolyte 19 is measured, the timing at which the piston 12 stops is determined based on the position of the piston 12, and a signal for closing the needle valve is output at an appropriate timing. This method is one of high reliability and easy control logic configuration. The signal output function 30x may determine the timing for issuing a needle valve closing signal from the position of the piston 12 (first position Po1). In this supply device 1, the position of the piston 12 can be obtained by an encoder 18 which is a detector. If a stepping motor is employed as the servo motor 13, the position of the piston 12 can be obtained by counting drive pulses. It is also possible to use both the output of the encoder 18 and the drive pulse count.
 この供給装置1においては、ピストン12を停止するのと実質的に同時にニードル弁23を閉にできるので、注液量の精度を向上できるとともに素早く液切りでき、次の動作に移行できる。このため、注液量の精度を維持しながら注液時間をさらに短縮することが可能である。したがって、バッテリ容器200における電解液19の含浸時間を確保したり、バッテリ容器200に対するトータルの注液時間(タクトタイム)を短縮できる。 In this supply device 1, since the needle valve 23 can be closed substantially simultaneously with the stop of the piston 12, the accuracy of the liquid injection amount can be improved, the liquid can be quickly drained, and the next operation can be performed. For this reason, it is possible to further shorten the injection time while maintaining the accuracy of the injection amount. Therefore, the impregnation time of the electrolytic solution 19 in the battery container 200 can be secured, and the total liquid injection time (tact time) for the battery container 200 can be shortened.
 なお、電解液19に可燃性の成分が含まれていない環境においては、ニードル弁のアクチュエータ24としてソレノイドタイプを直に用いることが可能である。その場合は、ニードル弁23を閉じる信号をピストン12が停止位置Posに達したのとほぼ同時に出力することが可能である。また、ソレノイドタイプのアクチュエータ自身に動作遅延の時間がある場合は、その時間を考慮して、適当な第1の位置Po1を設定し、事前にニードル弁23を閉じる信号をピストン12の位置に基づき出力することができる。 In an environment where the electrolyte solution 19 does not contain a combustible component, a solenoid type can be used directly as the needle valve actuator 24. In that case, a signal for closing the needle valve 23 can be output almost simultaneously with the piston 12 reaching the stop position Pos. If the solenoid type actuator itself has an operation delay time, considering the time, an appropriate first position Po1 is set, and a signal for closing the needle valve 23 in advance is set based on the position of the piston 12. Can be output.
 バッテリを製造する過程で、バッテリ容器200に電解液19を注液する工程においては、一度に電解液19を全量注液するのではなく、電解液19が含浸するのを待って、所定の量の電解液19を注液(分注)するといった作業を繰り返すことがある。分注する電解液の量(分注量)は一定でもよく、分注量を変えてもよい。この供給装置1においては、図2に示すように、計量ユニット10のピストン12のストローク量をΔqだけ変えることにより精度よく注液する量を計量できる。さらに、ニードル弁23を閉じる信号を出力するタイミングを、吐出速度θ2に合わせて停止位置Posからdsだけ離れた第1の位置Po1に設定することができる。なお、吐出速度θ2が同じであれば、一旦設定した上記第1の位置Po1は変える必要はない。 In the process of injecting the electrolytic solution 19 into the battery container 200 in the process of manufacturing the battery, the entire amount of the electrolytic solution 19 is not injected at once, but waiting for the electrolytic solution 19 to be impregnated. The operation of injecting (dispensing) the electrolytic solution 19 may be repeated. The amount of electrolyte to be dispensed (dispensing amount) may be constant or the dispensing amount may be changed. In the supply device 1, as shown in FIG. 2, the amount of liquid to be injected can be accurately measured by changing the stroke amount of the piston 12 of the measuring unit 10 by Δq. Furthermore, the timing for outputting the signal for closing the needle valve 23 can be set to the first position Po1 that is separated from the stop position Pos by ds in accordance with the discharge speed θ2. If the discharge speed θ2 is the same, it is not necessary to change the first position Po1 once set.
 この供給装置1においては、ディスペンサ20と計量ユニット10とを連通する管路41に背圧弁50を設け、計量ユニット10の側の圧力変動により背圧弁50を瞬時に開閉させることにより注入される液量の制御性を向上している。さらに、この供給装置1においては、ピストン12がストロークを停止するとともに、ほぼ同時にニードル弁23を閉にする。この制御により、ディスペンサ20の注入先が減圧(真空)雰囲気であっても、背圧弁50から下流側の電解液19が減圧雰囲気により吸引されて吐出ノズル21から滴下する(漏れ出す)ことを未然に防止できる。また、ピストン12の停止とともに、背圧弁50が動作して背圧弁50の上流の静圧を遮断できるので、ニードル弁23に加わる差圧も小さくなり、注入先が減圧雰囲気であっても、ニードル弁23で電解液19を遮断しやすく、液切れもよい。このため、注液精度を改善でき、さらに液だれが止まるのを待つ時間が基本的には不要なので、注液時間も短縮できる。 In this supply device 1, a back pressure valve 50 is provided in a pipe line 41 that communicates the dispenser 20 and the measuring unit 10, and liquid is injected by opening and closing the back pressure valve 50 instantaneously due to pressure fluctuation on the measuring unit 10 side. The amount controllability is improved. Furthermore, in this supply device 1, the piston 12 stops the stroke and closes the needle valve 23 almost simultaneously. With this control, even when the injection destination of the dispenser 20 is a reduced pressure (vacuum) atmosphere, the electrolyte 19 downstream from the back pressure valve 50 is sucked by the reduced pressure atmosphere and drops (leaks out) from the discharge nozzle 21 in advance. Can be prevented. Further, since the back pressure valve 50 operates and the static pressure upstream of the back pressure valve 50 can be shut off as the piston 12 stops, the differential pressure applied to the needle valve 23 is reduced, and even if the injection destination is a reduced pressure atmosphere, the needle The electrolyte solution 19 can be easily shut off by the valve 23, and the liquid can be cut off. For this reason, the injection accuracy can be improved, and the time for waiting for the dripping to stop is basically unnecessary, so that the injection time can be shortened.
 さらに、この供給装置1においては、背圧弁50が設けられた第1の管路41に繋がる出口ポートP2を計量空間Sの上端部S2に設けている。このため、計量空間Sには気体が溜まりにくく、計量空間Sには気泡が生成されにくい。気泡が生成されると、気体は圧縮性なので、計量空間Sの計量精度に影響を与え、さらに、減圧により気体が膨張するとディスペンサ20の吐出ノズル21から電解液19が飛散する要因となる。この点でも、この供給装置1は、計量精度、すなわち注液精度を確保でき、さらに、電解液19が減圧室内102で飛散するような事態も未然に防止できる。 Furthermore, in this supply device 1, an outlet port P <b> 2 connected to the first pipe 41 provided with the back pressure valve 50 is provided at the upper end S <b> 2 of the measuring space S. For this reason, gas does not easily accumulate in the measurement space S, and bubbles are not easily generated in the measurement space S. When bubbles are generated, the gas is compressible, which affects the measurement accuracy of the measurement space S, and further causes the electrolyte 19 to scatter from the discharge nozzle 21 of the dispenser 20 when the gas expands due to reduced pressure. Also in this respect, the supply device 1 can ensure the metering accuracy, that is, the liquid injection accuracy, and can prevent the situation in which the electrolytic solution 19 is scattered in the decompression chamber 102.
 減圧室内102に複数のバッテリ容器200がセットされている場合には、ディスペンサ20の下に次に注液するバッテリ容器200を移動することにより、供給装置1による分注が次々と行われる。この供給装置1においては、液切れがよく、液だれが停止する待ち時間が殆ど不要であり、さらに、吐出ノズル21からの飛散も殆どない。したがって、殆ど待ち時間なしに次の分注を開始できる。たとえば、時刻t10に前のバッテリ容器200への分注が終了すると、バッテリ容器200の移動時間をおいて、時刻t11に入口弁5を開ける信号を出力し、以降、上記のサイクルと同様に分注を繰り返すことができる。 When a plurality of battery containers 200 are set in the decompression chamber 102, the battery container 200 to be injected next is moved under the dispenser 20 to perform dispensing one after another. In this supply device 1, the liquid runs out well, almost no waiting time is required for the dripping to stop, and there is almost no scattering from the discharge nozzle 21. Therefore, the next dispensing can be started with almost no waiting time. For example, when dispensing to the previous battery container 200 is completed at time t10, a signal for opening the inlet valve 5 is output at time t11 after the movement time of the battery container 200, and thereafter, the dispensing is performed in the same manner as in the above cycle. You can repeat the note.
 さらに、吐出ノズル21の先からの液漏れが基本的にないので、計量ユニット10で計量している間、すなわち、ピストン12が上方に動いて計量を終了する時刻t14あるいは入口弁5が閉じる時刻t15、さらにはディスペンサ20のニードル弁23が開く時刻t17までをバッテリ容器200の移動時間に使用することが可能である。したがって、さらに注液時間を短縮することが可能となる。また、引き込み速度θ1を変更することは可能なので、バッテリ容器200の移動時間と同期させてピストン12の移動時間を設定することも可能である。したがって、この供給装置1は、様々なパターンの分注に対し極めてフレキシブルに対応でき、さらに、注液精度も高く、分注に要する時間も短縮できる。 Furthermore, since there is basically no liquid leakage from the tip of the discharge nozzle 21, time t14 when the metering unit 10 measures, that is, time t14 when the piston 12 moves upward and the metering ends, or time when the inlet valve 5 closes. It is possible to use the battery container 200 for the moving time until t15 and further until time t17 when the needle valve 23 of the dispenser 20 opens. Therefore, it is possible to further shorten the time for injecting. In addition, since the pull-in speed θ1 can be changed, the moving time of the piston 12 can be set in synchronization with the moving time of the battery container 200. Therefore, this supply apparatus 1 can respond very flexibly to dispensing of various patterns, and also has high liquid pouring accuracy and can shorten the time required for dispensing.
 図3に、バッテリを製造する過程において、供給装置1がバッテリ容器200に電解液19を注入する操作をフローチャートにより示す。以下に示す操作は、供給装置1の制御ユニット30により実行されるプログラム(プログラム製品)として適当な記録媒体に記録して提供することが可能である。また、インターネットなどのコンピュータネットワークを介してプログラムを提供することも可能である。 FIG. 3 is a flowchart showing an operation in which the supply device 1 injects the electrolytic solution 19 into the battery container 200 in the process of manufacturing the battery. The operations described below can be provided by being recorded on a suitable recording medium as a program (program product) executed by the control unit 30 of the supply apparatus 1. It is also possible to provide a program via a computer network such as the Internet.
 まず、ステップ301において分注が開始されると、制御ユニット30の第4の機能30dがステップ302においてベント弁4を一旦開いて閉じる。これにより、リザーバー2の上部に溜まった気体を排出できる。 First, when dispensing is started in step 301, the fourth function 30 d of the control unit 30 once opens and closes the vent valve 4 in step 302. Thereby, the gas accumulated in the upper part of the reservoir 2 can be discharged.
 ステップ303において、制御ユニット30の第3の機能30cが入口弁開の信号を出力して入口弁5を開き、ステップ304において、第1の機能30aがサーボモータ13を駆動してピストン12を上方へストロークさせる。ステップ305において、ピストン12による計量が終了すると、制御ユニット30の第1の機能30aがサーボモータ13を停止し、ステップ306において、第3の機能30cが入口弁閉の信号を出して入口弁5を閉じる。それと前後して、ステップ307において、制御ユニット30の第2の機能30bがニードル弁開の信号を出してニードル弁23を開く。 In step 303, the third function 30c of the control unit 30 outputs an inlet valve opening signal to open the inlet valve 5. In step 304, the first function 30a drives the servo motor 13 to move the piston 12 upward. Stroke to. In step 305, when the metering by the piston 12 is completed, the first function 30a of the control unit 30 stops the servo motor 13, and in step 306, the third function 30c outputs a signal for closing the inlet valve, and the inlet valve 5 Close. Before and after that, in Step 307, the second function 30b of the control unit 30 outputs a needle valve opening signal to open the needle valve 23.
 ステップ308において、第1の機能30aがサーボモータ13を駆動してピストン12を下方へストロークさせる。ステップ309において、第2の機能30bの信号出力機能30xが、ピストン12が停止前の所定位置(第1の位置)Po1に達したことをエンコーダ18から得ると、ステップ310において、ピストン12が停止する前にニードル弁閉の信号を出力する。ステップ311において、第1の機能30aが、ピストン12が計量した分の電解液19を供給したと判断すると、サーボモータ13を停止しピストン12を停止する。ステップ310において出力されているニードル弁閉の信号により、サーボモータ13の停止(ピストン12の停止)とほぼ同時にニードル弁23が閉になる。 In step 308, the first function 30a drives the servo motor 13 to stroke the piston 12 downward. In step 309, when the signal output function 30x of the second function 30b obtains from the encoder 18 that the piston 12 has reached the predetermined position (first position) Po1 before stopping, the piston 12 stops in step 310. The needle valve closing signal is output before starting. In step 311, if the first function 30a determines that the electrolyte solution 19 measured by the piston 12 has been supplied, the servo motor 13 is stopped and the piston 12 is stopped. The needle valve 23 is closed almost simultaneously with the stop of the servo motor 13 (stop of the piston 12) by the needle valve close signal output in step 310.
 ステップ312において分注を続ける場合には、ステップ313でバッテリ容器200を移動して、ステップ303に戻り、次のバッテリ容器200に対し分注を続ける。 If the dispensing is continued in step 312, the battery container 200 is moved in step 313, the process returns to step 303, and dispensing is continued for the next battery container 200.
 この供給装置1およびその制御方法によれば、ピストン12の位置を指標として、ニードル弁23を閉じる信号を出力するタイミングを決定している。このため、電解液19のバッテリ容器200への供給が完了するタイミング(ピストン12が最下位置となるタイミング)と、ニードル弁23が閉じるタイミングを一致させやすく、液漏れなどによる注液量の誤差が生じ難い。 According to this supply device 1 and its control method, the timing for outputting a signal for closing the needle valve 23 is determined using the position of the piston 12 as an index. For this reason, it is easy to match the timing at which the supply of the electrolyte 19 to the battery container 200 is completed (the timing at which the piston 12 is at the lowest position) and the timing at which the needle valve 23 is closed. Is unlikely to occur.
 なお、上記の計量ユニット10は、シリンダ11が上下に延び、ピストン12が上下に移動するタイプであるが、シリンダ11が左右方向(水平方向)に沿って配置され、ピストン12を左右方向(水平方向)に沿って移動するタイプであってもよい。計量空間Sへの電解液19の流入および流出をスムーズに行えるように配管をアレンジする必要があるが、上下方向の寸法を小さくできるので、よりコンパクトな供給装置に適している。 The weighing unit 10 is a type in which the cylinder 11 extends vertically and the piston 12 moves up and down. However, the cylinder 11 is disposed along the left-right direction (horizontal direction), and the piston 12 is moved left-right (horizontal). It may be a type that moves along (direction). It is necessary to arrange the piping so that the electrolytic solution 19 can smoothly flow into and out of the measuring space S. However, since the vertical dimension can be reduced, it is suitable for a more compact supply device.
 また、上記の計量ユニット10は、サーボモータ駆動であるが、駆動方式はサーボモータに限定されない。注液量をフレキシブルに可変させる要求がなければ、ピストンをソレノイドタイプのアクチュエータで駆動することも可能である。さらに、上記の入口弁、ベント弁およびニードル弁は、防爆領域であることを考慮し、空気作動のアクチュエータを採用しているが、防爆領域でなければ、電磁弁あるいはソレノイドタイプのアクチュエータを採用することも可能であり、アクチュエータには様々なタイプのものを使用できる。上記の装置(システム)において、ボールタイプの背圧弁は簡易な構造で配管への組み込みが容易であり、動作も安定しているので好適であるが、背圧弁はダイアフラムタイプなどの他のタイプであってもよい。 The weighing unit 10 is driven by a servo motor, but the drive method is not limited to a servo motor. The piston can be driven by a solenoid-type actuator if there is no requirement to flexibly change the injection amount. Furthermore, considering that the inlet valve, vent valve and needle valve are in an explosion-proof region, air-operated actuators are employed. However, if they are not in the explosion-proof region, electromagnetic valves or solenoid type actuators are employed. It is also possible to use various types of actuators. In the above device (system), the ball-type back pressure valve is suitable because it has a simple structure and can be easily incorporated into piping, and the operation is stable. However, the back pressure valve is a different type such as a diaphragm type. There may be.

Claims (11)

  1.  減圧雰囲気に配置されたバッテリ容器内に電解液を供給する装置であって、
     シリンダ内の空間をピストンが動いて電解液を計量する計量ユニットと、
     前記計量ユニットから供給された電解液を前記バッテリ容器に対し上方から注入するディスペンサと、
     当該装置を制御する制御ユニットとを有し、
     前記ディスペンサは、
     前記バッテリ容器内または前記バッテリ容器の上端近傍に配置される吐出ノズルと、
     前記吐出ノズルの内側に配置され、前記吐出ノズルを開閉するニードル弁と、
     前記ニードル弁を上下に駆動するアクチュエータとを含み、
     前記制御ユニットは、
     前記計量ユニットの前記ピストンの動きを制御し、前記ピストンを前記シリンダ内の空間を広げる方向に動かして電解液を計量し、前記ピストンを前記空間を狭める方向に動かして電解液を前記ディスペンサに供給する第1の機能と、
     前記アクチュエータにより前記ニードル弁を開閉させる第2の機能とを含み、前記第2の機能は、前記第1の機能が前記ピストンを前記狭める方向に動かして停止させるのに連動して前記ニードル弁を閉じる信号を出力する信号出力機能を含む、装置。
    An apparatus for supplying an electrolytic solution into a battery container disposed in a reduced-pressure atmosphere,
    A weighing unit that measures the electrolyte as the piston moves through the space in the cylinder;
    A dispenser for pouring the electrolyte supplied from the weighing unit into the battery container from above;
    A control unit for controlling the device,
    The dispenser is
    A discharge nozzle disposed in the battery container or near the upper end of the battery container;
    A needle valve disposed inside the discharge nozzle and opening and closing the discharge nozzle;
    An actuator for driving the needle valve up and down,
    The control unit is
    Control the movement of the piston of the metering unit, move the piston in the direction to expand the space in the cylinder, measure the electrolyte, and move the piston in the direction to narrow the space to supply the electrolyte to the dispenser A first function to
    A second function for opening and closing the needle valve by the actuator, and the second function operates the needle valve in conjunction with the first function moving and stopping the piston in the narrowing direction. A device including a signal output function for outputting a close signal.
  2.  請求項1において、
     前記信号出力機能は、前記第1の機能が前記ピストンを前記狭める方向に動かして停止させる前に、前記ニードル弁を閉じる信号を出力する、装置。
    In claim 1,
    The signal output function is an apparatus for outputting a signal for closing the needle valve before the first function moves and stops the piston in the narrowing direction.
  3.  請求項2において、
     前記計量ユニットは、前記ピストンを駆動するサーボモータを含み、
     前記ニードル弁を駆動する前記アクチュエータは、ソレノイドバルブを介して供給される作動流体で駆動され、
     前記第1の機能は、前記サーボモータを駆動する信号を出力する機能を含み、
     前記信号出力機能は、前記ソレノイドバルブを駆動する信号を出力する、装置。
    In claim 2,
    The weighing unit includes a servo motor that drives the piston,
    The actuator that drives the needle valve is driven by a working fluid supplied via a solenoid valve,
    The first function includes a function of outputting a signal for driving the servo motor,
    The signal output function outputs a signal for driving the solenoid valve.
  4.  請求項2または3において、
     前記ピストンの位置を検出する検出器をさらに有し、
     前記信号出力機能は、前記狭める方向に移動中の前記ピストンの位置が停止位置の手前の第1の位置となったことを前記検出器が検出したときに、前記閉じる信号を出力する、装置。
    In claim 2 or 3,
    A detector for detecting the position of the piston;
    The signal output function is a device that outputs the closing signal when the detector detects that the position of the piston moving in the narrowing direction is a first position before a stop position.
  5.  請求項3において、
     前記サーボモータは、ステッピングモータであり、
     前記第1の機能は、前記サーボモータに供給するパルス数によりピストンの位置を判断して前記ピストンを前記広げる方向と前記狭める方向とに動かし、
     前記信号出力機能は、前記ピストンが前記狭める方向に移動中に前記サーボモータに供給されたパルス数が所定の値になったときに、前記閉じる信号を出力する、装置。
    In claim 3,
    The servo motor is a stepping motor,
    The first function is to determine the position of the piston based on the number of pulses supplied to the servo motor and move the piston in the expanding direction and the narrowing direction,
    The signal output function outputs the close signal when the number of pulses supplied to the servomotor reaches a predetermined value while the piston moves in the narrowing direction.
  6.  請求項1において、
     前記計量ユニットの上流側を開閉する入口弁をさらに有し、
     前記制御ユニットは、前記入口弁を開閉する第3の機能を含み、
     前記第1の機能は、前記第3の機能が前記入口弁を開にする信号を出力した後、前記ピストンを前記広げる方向に駆動する機能を含み、
     前記第3の機能は、前記第1の機能が前記ピストンを前記広げる方向に動かして停止した後、前記入口弁を閉じる機能を含み、
     前記第1の機能は、前記第2の機能が前記ニードル弁を開にする信号を出力した後、前記ピストンを前記狭める方向に駆動する機能を含む、装置。
    In claim 1,
    An inlet valve that opens and closes the upstream side of the weighing unit;
    The control unit includes a third function for opening and closing the inlet valve,
    The first function includes a function of driving the piston in the expanding direction after the third function outputs a signal for opening the inlet valve,
    The third function includes a function of closing the inlet valve after the first function is stopped by moving the piston in the expanding direction,
    The first function includes a function of driving the piston in the narrowing direction after the second function outputs a signal for opening the needle valve.
  7.  減圧雰囲気に配置されたバッテリ容器内に、供給装置により電解液を供給することを含む方法であって、
     前記供給装置は、
     シリンダ内の空間をピストンが動き、電解液を計量する計量ユニットと、
     前記計量ユニットから供給された電解液を前記バッテリ容器に対し上方から注入するディスペンサとを有し、
     前記ディスペンサは、
     前記バッテリ容器内または前記バッテリ容器の上端近傍に配置される吐出ノズルと、
     前記吐出ノズルの内側に配置され、前記吐出ノズルを開閉するニードル弁と、
     前記ニードル弁を上下に駆動するアクチュエータとを含み、
     前記電解液を供給することは、
     制御ユニットが、前記計量ユニットの前記ピストンを前記シリンダ内の空間を広げる方向に動かして電解液を計量した後、前記ピストンを前記空間を狭める方向に動かして電解液を前記ディスペンサに供給することと、
     前記ピストンが前記狭める方向に動いて停止するのに連動して前記アクチュエータに前記ニードル弁を閉じる信号を出力することとを含む、方法。
    A method comprising supplying an electrolyte solution by a supply device into a battery container disposed in a reduced-pressure atmosphere,
    The supply device includes:
    A measuring unit that measures the electrolyte by moving the piston in the space in the cylinder;
    A dispenser that injects the electrolyte supplied from the weighing unit into the battery container from above,
    The dispenser is
    A discharge nozzle disposed in the battery container or near the upper end of the battery container;
    A needle valve disposed inside the discharge nozzle and opening and closing the discharge nozzle;
    An actuator for driving the needle valve up and down,
    Supplying the electrolyte solution
    A control unit moves the piston of the metering unit in a direction to widen the space in the cylinder and measures the electrolyte, and then moves the piston in a direction to narrow the space and supplies the electrolyte to the dispenser; ,
    Outputting a signal to close the needle valve to the actuator in conjunction with the piston moving and stopping in the narrowing direction.
  8.  請求項7において、
     前記ニードル弁を閉じる信号を出力することは、前記ピストンを前記狭める方向に動かして停止させる前に、前記ニードル弁を閉じる信号を出力することを含む、方法。
    In claim 7,
    Outputting the signal to close the needle valve includes outputting a signal to close the needle valve before moving the piston in the narrowing direction to stop.
  9.  請求項8において、
     前記装置は、前記ピストンの位置を検出する検出器をさらに有し、
     前記ニードル弁を閉じる信号を出力することは、前記狭める方向に移動中の前記ピストンの位置が停止位置の手前の第1の位置となったことを前記検出器が検出したときに、前記閉じる信号を出力することを含む、方法。
    In claim 8,
    The apparatus further comprises a detector for detecting the position of the piston;
    Outputting a signal to close the needle valve means that when the detector detects that the position of the piston moving in the narrowing direction is the first position before the stop position, the close signal Outputting the method.
  10.  請求項8において、
     前記計量ユニットは、前記ピストンを駆動するステッピングモータ型のサーボモータを含み、前記ニードル弁を駆動する前記アクチュエータは、ソレノイドバルブを介して供給される作動流体で駆動され、
     前記ピストンの動きを制御することは、前記サーボモータに供給するパルス数によりピストンの位置を判断して前記ピストンを前記広げる方向と前記狭める方向とに駆動することを含み、
     前記ニードル弁を閉じる信号を出力することは、前記ピストンが前記狭める方向に移動中に前記サーボモータに供給されたパルス数が所定の値になったときに、前記ソレノイドバルブを駆動する信号を出力することを含む、方法。
    In claim 8,
    The metering unit includes a stepping motor type servo motor that drives the piston, and the actuator that drives the needle valve is driven by a working fluid supplied via a solenoid valve,
    Controlling the movement of the piston includes determining the position of the piston based on the number of pulses supplied to the servo motor and driving the piston in the expanding direction and the narrowing direction,
    Outputting a signal for closing the needle valve outputs a signal for driving the solenoid valve when the number of pulses supplied to the servomotor reaches a predetermined value while the piston moves in the narrowing direction. A method comprising:
  11.  請求項7ないし10のいずれかにおいて、
     前記装置は、前記計量ユニットの上流側を開閉する入口弁をさらに有し、
     前記ピストンの動きを制御することは、
     前記入口弁を開にする信号を出力した後、前記ピストンを前記広げる方向に駆動することと、
     前記ピストンを前記広げる方向に動かして停止した後、前記入口弁を閉じ、前記ニードル弁を開にする信号を出力した後、前記ピストンを前記狭める方向に駆動することとを含む、方法。
    In any of claims 7 to 10,
    The apparatus further includes an inlet valve that opens and closes the upstream side of the weighing unit,
    Controlling the movement of the piston
    Driving the piston in the expanding direction after outputting a signal to open the inlet valve;
    Moving the piston in the expanding direction and then stopping, then closing the inlet valve, outputting a signal to open the needle valve, and then driving the piston in the narrowing direction.
PCT/JP2011/000140 2010-01-15 2011-01-13 Apparatus and method for supplying electrolytic solution WO2011086928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011549939A JP5685202B2 (en) 2010-01-15 2011-01-13 Apparatus and method for supplying electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006476 2010-01-15
JP2010-006476 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011086928A1 true WO2011086928A1 (en) 2011-07-21

Family

ID=44304204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000140 WO2011086928A1 (en) 2010-01-15 2011-01-13 Apparatus and method for supplying electrolytic solution

Country Status (2)

Country Link
JP (1) JP5685202B2 (en)
WO (1) WO2011086928A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058143A (en) * 2016-08-19 2016-10-26 重庆市中欣维动力科技有限公司 Lithium battery electrolyte injection system having electrolyte volatile gas absorption function
CN106159186A (en) * 2016-08-19 2016-11-23 重庆市中欣维动力科技有限公司 Lithium battery electrolytes liquid injection system with self-checking function
JP2017208182A (en) * 2016-05-17 2017-11-24 日産自動車株式会社 Electrolyte solution injection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3026013A1 (en) * 2016-07-01 2018-01-04 Carlsberg Breweries A/S Refined cereal-based beverages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055238A (en) * 2002-07-17 2004-02-19 Awa Eng Co Filling method and filling device of electrolytic solution
JP2004247120A (en) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd Electrolyte liquid injection method and electrolyte liquid injection device
JP2007173062A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Method and apparatus of producing flat battery
JP2007213816A (en) * 2006-02-07 2007-08-23 Shin Kobe Electric Mach Co Ltd Electrolyte injection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055238A (en) * 2002-07-17 2004-02-19 Awa Eng Co Filling method and filling device of electrolytic solution
JP2004247120A (en) * 2003-02-13 2004-09-02 Matsushita Electric Ind Co Ltd Electrolyte liquid injection method and electrolyte liquid injection device
JP2007173062A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Method and apparatus of producing flat battery
JP2007213816A (en) * 2006-02-07 2007-08-23 Shin Kobe Electric Mach Co Ltd Electrolyte injection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208182A (en) * 2016-05-17 2017-11-24 日産自動車株式会社 Electrolyte solution injection method
CN106058143A (en) * 2016-08-19 2016-10-26 重庆市中欣维动力科技有限公司 Lithium battery electrolyte injection system having electrolyte volatile gas absorption function
CN106159186A (en) * 2016-08-19 2016-11-23 重庆市中欣维动力科技有限公司 Lithium battery electrolytes liquid injection system with self-checking function

Also Published As

Publication number Publication date
JP5685202B2 (en) 2015-03-18
JPWO2011086928A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5661649B2 (en) Device for supplying electrolyte
JP5595985B2 (en) Liquid supply device
JP5685202B2 (en) Apparatus and method for supplying electrolyte
JP7100719B2 (en) Dispense control equipment and its discharge control method
CN103261591B (en) For the valving of weight feed fluid
WO2012154292A1 (en) Time volumetric fluid dispensing apparatus
JP6967818B2 (en) Device to supply liquid
IT201800005562A1 (en) FILLING NOZZLE FOR FILLING MACHINES, IN PARTICULAR WEIGHT, OF CONTAINERS SUCH AS DRUMS, BOTTLES, CANS AND / OR SIMILAR.
US20220228897A1 (en) Dosing unit and method for dosing a liquid
CN102137998A (en) Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
CN110159616A (en) A kind of metallurgy hydraulic cylinder performance test system and its test method
EP2792421B1 (en) Dispensing device for a viscous product with automatic volume adjustment
JP4970794B2 (en) Liquid preparation equipment
JP2021023956A (en) Control device for die cast machine, and device and method for acquiring index value used in setting control parameter
US8087549B2 (en) Liquid supply apparatus and method of detecting fault thereof
JP2006105656A (en) Flow rate measuring device and flow rate measurement method
RU2536331C1 (en) Group batcher
CN201325864Y (en) Multi-ported valve combined syringe and metering mechanism of liquid storage
CN111013200A (en) Injection pump bubble removal device and method for instrument analysis
JP2006232309A (en) Liquid filling method, and liquid filling apparatus
WO2014184124A1 (en) Dosage apparatus and operating method for a dosage apparatus
ITVI940050A1 (en) DEVICE AND METHOD FOR PNEUMATIC DOSAGE OF LIQUIDS.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011549939

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11732801

Country of ref document: EP

Kind code of ref document: A1