JP2006105656A - Flow rate measuring device and flow rate measurement method - Google Patents

Flow rate measuring device and flow rate measurement method Download PDF

Info

Publication number
JP2006105656A
JP2006105656A JP2004289741A JP2004289741A JP2006105656A JP 2006105656 A JP2006105656 A JP 2006105656A JP 2004289741 A JP2004289741 A JP 2004289741A JP 2004289741 A JP2004289741 A JP 2004289741A JP 2006105656 A JP2006105656 A JP 2006105656A
Authority
JP
Japan
Prior art keywords
flow rate
sealed chamber
liquid
injection valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289741A
Other languages
Japanese (ja)
Other versions
JP4415260B2 (en
Inventor
Takayoshi Sagara
隆義 相良
Masayoshi Toiyama
正儀 問山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004289741A priority Critical patent/JP4415260B2/en
Publication of JP2006105656A publication Critical patent/JP2006105656A/en
Application granted granted Critical
Publication of JP4415260B2 publication Critical patent/JP4415260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate measuring device and a flow rate measurement method for reducing measurement time and measuring a jetting flow rate precisely. <P>SOLUTION: The flow rate measuring device 10 comprises a housing 12; a pressure sensor 20; a micro syringe 30; and an on/off valve 40. A fuel injection valve 1 is mounted to the housing 12 liquid-tightly. The side of the pressure sensor 20 in a sealed chamber 14 formed inside the housing 12 is filled with a jetted liquid 16, and the space at a side where the fuel injection valve 1 is mounted in the sealed chamber 14 is filled with air 18. The pressure sensor 20 detects a change in the volume of the jetted liquid 16 at the side of the pressure sensor 20 in the sealed chamber 14, in a communicating pipe 100, and in a liquid chamber 26 as a change in pressure. The microsyringe 30 reduces the amount of projection of a piston 36 projecting from a variable capacity chamber 34 each time when the fuel injection valve 1 injects fuel, and increase the volume of the variable capacity chamber 34. When the on/off valve 40 is opened, the boundary surface position between the jetted liquid 16 and air 18 in the sealed chamber 14 is set to an initial position. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

流体噴射弁が噴射する液体の噴射流量を計測する流量計測装置および流量計測方法に関する。   The present invention relates to a flow rate measuring device and a flow rate measuring method for measuring an ejection flow rate of a liquid ejected by a fluid ejection valve.

燃料噴射弁等の流体噴射弁が噴射する液体の噴射流量を計測する装置として、流体噴射弁に噴射液体を供給する供給通路を流れる流体流量を、例えば特許文献1に記載されているように歯車式流量計で計測するものが知られている。
また、流体噴射弁が噴射した液体を容器で受け、噴射した液体の重量を計測することにより流体噴射弁が噴射する液体の流量を計測することが考えられる。
As a device for measuring an injection flow rate of a liquid ejected by a fluid injection valve such as a fuel injection valve, a fluid flow rate flowing through a supply passage for supplying an injection liquid to the fluid injection valve is changed to a gear as described in Patent Document 1, for example. What is measured with a type flow meter is known.
It is also conceivable to measure the flow rate of the liquid ejected by the fluid ejection valve by receiving the liquid ejected by the fluid ejection valve in a container and measuring the weight of the ejected liquid.

実公昭51−38777号公報Japanese Utility Model Publication No. 51-38777

しかしながら、流体噴射弁の上流側に設置され流体噴射弁に噴射液体を供給する供給通路の液体は、通常、実際の噴射圧まで加圧されているので温度が上昇している。このように温度の高い液体は、圧力変動または温度変動の影響を受けて粘性および比重が変化しやすいので、流体噴射弁の噴射流量を高精度に計測することが困難である。   However, the liquid in the supply passage that is installed upstream of the fluid injection valve and supplies the injection liquid to the fluid injection valve is usually pressurized to the actual injection pressure, and thus the temperature is increased. Since the liquid having a high temperature easily changes in viscosity and specific gravity under the influence of pressure fluctuation or temperature fluctuation, it is difficult to measure the injection flow rate of the fluid injection valve with high accuracy.

また、流体噴射弁の上流側に設置された供給通路を流れる噴射液体の流量を計測する場合、流量計として前述した歯車式流量計を用いると、供給通路を連続して流れる液体の流量を計測する必要があるので、計測時間が長くなるという問題がある。
これに対して、流体噴射弁が噴射した液体を容器で受け、噴射した液体の重量を流量噴射弁の下流側で計測する場合、流体噴射弁の上流側よりも圧力の低い大気中に噴射された液体を計測するので、圧力変動および温度変動の影響を受けにくく、噴射された液体を直接計測できる。
Also, when measuring the flow rate of the jet liquid flowing through the supply passage installed upstream of the fluid injection valve, if the gear-type flow meter described above is used as the flow meter, the flow rate of the liquid flowing continuously through the supply passage is measured. Therefore, there is a problem that the measurement time becomes long.
On the other hand, when the liquid ejected by the fluid ejection valve is received by the container and the weight of the ejected liquid is measured downstream of the flow rate ejection valve, the fluid is ejected into the atmosphere at a lower pressure than the upstream side of the fluid ejection valve. Therefore, it is difficult to be affected by pressure fluctuations and temperature fluctuations, and the injected liquid can be directly measured.

しかしながら、大気中に液体を噴射すると、噴射された液体が蒸発し噴射された液体の重量を高精度に計測できない恐れがある。また、微量の噴射量に対し、重量を高精度に計測することは困難である。
本発明は上記問題を解決するためになされたものであり、計測時間を短縮し、高精度に噴射流量を計測する流量計側装置および流量計測方法を提供することを目的とする。
However, when a liquid is ejected into the atmosphere, the ejected liquid may evaporate and the weight of the ejected liquid may not be measured with high accuracy. Moreover, it is difficult to measure the weight with high accuracy for a small amount of injection.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flowmeter side device and a flow rate measurement method that can shorten the measurement time and measure the injection flow rate with high accuracy.

本発明の請求項1から12記載の発明によると、流体噴射弁がハウジングの密封室に噴射した噴射液体の体積変化を検出する。つまり、流体噴射弁の上流側よりも圧力が低く、圧力変動および温度変動の影響を受けにくい流体噴射弁の下流側で、流体噴射弁が噴射した噴射液体の体積変化を検出する。したがって、検出した噴射液体の体積変化から、流体噴射弁の噴射流量を高精度に計測できる。   According to the first to twelfth aspects of the present invention, the fluid injection valve detects a change in the volume of the injection liquid injected into the sealed chamber of the housing. That is, a change in the volume of the ejected liquid ejected by the fluid ejecting valve is detected on the downstream side of the fluid ejecting valve, which has a lower pressure than the upstream side of the fluid ejecting valve and is less susceptible to pressure fluctuations and temperature fluctuations. Therefore, the injection flow rate of the fluid injection valve can be measured with high accuracy from the detected volume change of the injection liquid.

また、密封室に噴射するので、噴射された噴射液体が蒸発しにくい。したがって、噴射液体の体積変化を高精度に検出できる。
また、流体噴射弁に噴射液体を供給する供給通路の流量ではなく、流体噴射弁が噴射した噴射液体の体積変化を検出するので、少ない噴射回数であっても、流体噴射弁の噴射流量を高精度に計測できる。したがって、流体噴射弁毎の計測時間を短縮できる。
Moreover, since it injects to a sealed chamber, the injected injection liquid is hard to evaporate. Therefore, the volume change of the jet liquid can be detected with high accuracy.
In addition, since the volume change of the injection liquid injected by the fluid injection valve is detected instead of the flow rate of the supply passage supplying the injection liquid to the fluid injection valve, the injection flow rate of the fluid injection valve is increased even if the number of injections is small. It can be measured accurately. Therefore, the measurement time for each fluid injection valve can be shortened.

本発明の請求項2および8記載の発明によると、気体で満たされた密封室に液体が噴射されると、噴射された液体の体積分だけ気体が圧縮され、気体の圧力が上昇する。この気体の圧力上昇から噴射された液体の体積変化を検出することにより、流体噴射弁の噴射流量を計測できる。また、密封室の気体中に液体が噴射されるので、気体中に液体を噴射する動作環境の流体噴射弁であれば、類似した環境で噴射できる。したがって、高精度に噴射流量を計測できる。   According to the second and eighth aspects of the present invention, when liquid is injected into the sealed chamber filled with gas, the gas is compressed by the volume of the injected liquid, and the pressure of the gas increases. By detecting the volume change of the liquid ejected from this gas pressure rise, the ejection flow rate of the fluid ejection valve can be measured. Further, since the liquid is injected into the gas in the sealed chamber, a fluid injection valve in an operating environment that injects the liquid into the gas can be injected in a similar environment. Therefore, the injection flow rate can be measured with high accuracy.

本発明の請求項3および9記載の発明によると、圧力の増減により体積の殆ど変化しない液体で満たされた密封室に液体を噴射するので、噴射した液体の体積変化分を位置変位として検出するか、圧力変化として高精度に検出できる。
本発明の請求項4および10記載の発明によると、密封室の流体噴射弁側は気体で満たされているので、流体噴射弁は気体中に液体を噴射する。それ故、気体中に液体を噴射する動作環境の流体噴射弁であれば、類似した環境で噴射できるので、高精度に流量を計測できる。また、密封室の他の部分は液体で満たされているので、流体噴射弁が密封室に噴射した液体の体積変化分を密封室の液体の位置変位として検出するか、圧力変化として検出できる。
According to the third and ninth aspects of the present invention, since the liquid is ejected into the sealed chamber filled with the liquid that hardly changes in volume by increasing or decreasing the pressure, the volume change of the ejected liquid is detected as the position displacement. Alternatively, it can be detected with high accuracy as a pressure change.
According to the fourth and tenth aspects of the present invention, since the fluid injection valve side of the sealed chamber is filled with gas, the fluid injection valve injects liquid into the gas. Therefore, any fluid injection valve in an operating environment that injects liquid into gas can be injected in a similar environment, so that the flow rate can be measured with high accuracy. In addition, since the other part of the sealed chamber is filled with the liquid, the change in volume of the liquid ejected by the fluid ejection valve into the sealed chamber can be detected as the positional displacement of the liquid in the sealed chamber or as a change in pressure.

本発明の請求項5記載の発明によると、請求項4記載の発明の構成において、大気側と密封室との連通を断続する開閉弁をさらに備え、開閉弁が開弁することにより密封室における液体と気体との境界面位置を初期位置に設定する。この構成によれば、例えば、各流体噴射弁の計測をする前に開閉弁を開弁すれば、密封室の気体と液体の境界面を簡単に初期位置に設定できる。   According to the invention described in claim 5 of the present invention, in the configuration of the invention described in claim 4, further comprising an on-off valve for intermittently connecting the atmosphere side and the sealed chamber, and the on-off valve opens to open the sealed chamber. The boundary surface position between the liquid and gas is set to the initial position. According to this configuration, for example, if the on-off valve is opened before measuring each fluid injection valve, the boundary surface between the gas and the liquid in the sealed chamber can be easily set to the initial position.

本発明の請求項6記載の発明によると、流体噴射弁が所定時間開弁して1回あたりに噴射する噴射量を設定噴射量とし、流体噴射弁の噴射回数と設定噴射量との積だけ容積可変装置で可変容積室の容積を増やせば、検出手段で検出する液体の体積変化分と設定噴射量とから、流体噴射弁の噴射量を計測できる。
また、検出手段で検出する噴射液体の体積変化量は、流体噴射弁の噴射回数と設定噴射量との積と、実際に流体噴射弁が噴射した流量との差になるので、検出手段で検出する噴射液体の体積変化量は小さくなる。したがって、微少の体積変化を検出する高精度な検出手段により高精度に噴射液体の体積変化を検出できる。
According to the sixth aspect of the present invention, the fluid injection valve is opened for a predetermined time and the injection amount injected per injection is set as the set injection amount, and only the product of the number of injections of the fluid injection valve and the set injection amount is used. If the volume of the variable volume chamber is increased with the variable volume device, the injection amount of the fluid injection valve can be measured from the change in volume of the liquid detected by the detection means and the set injection amount.
Further, the volume change amount of the ejection liquid detected by the detection means is the difference between the product of the number of injections of the fluid injection valve and the set injection quantity and the flow rate actually injected by the fluid injection valve. The volume change amount of the ejected liquid is small. Therefore, the volume change of the jetted liquid can be detected with high accuracy by the high-precision detection means for detecting a minute volume change.

本発明の請求項12記載の発明によると、流体噴射弁が所定時間開弁して1回あたりに噴射する噴射量を設定噴射量とし、流体噴射弁が複数回噴射する場合、密封室または密封室と連通する空間の容積を噴射回数と設定噴射量との積だけ増加するので、検出される噴射液体の体積変化量は、流体噴射弁の噴射回数と設定噴射量との積と、実際に流体噴射弁が噴射した流量との差になる。したがって、検出される噴射液体の体積変化分と設定噴射量とから、流体噴射弁の噴射流量を計測できる。
また、検出される噴射液体の体積変化量が小さくなるので、微少の体積変化を検出する高精度な検出手段を用いて高精度に液体の体積変化を検出できる。
According to the twelfth aspect of the present invention, when the fluid injection valve opens for a predetermined time and the injection amount injected per time is set as the set injection amount, and the fluid injection valve injects a plurality of times, Since the volume of the space communicating with the chamber is increased by the product of the number of injections and the set injection amount, the detected volume change amount of the injection liquid is actually the product of the number of injections of the fluid injection valve and the set injection amount. It becomes a difference from the flow rate injected by the fluid injection valve. Accordingly, the injection flow rate of the fluid injection valve can be measured from the detected volume change of the injection liquid and the set injection amount.
In addition, since the volume change amount of the jetted liquid to be detected becomes small, it is possible to detect the volume change of the liquid with high accuracy using a high-accuracy detection unit that detects a minute volume change.

以下、本発明の流量計測装置の一実施形態を図に基づいて説明する。
図1に示すように、流量計測装置10は、ハウジング12、圧力センサ20、マイクロシリンジ30、開閉弁40を有している。流体噴射弁である燃料噴射弁1は、例えば内燃機関の燃焼室に燃料を噴射する電磁駆動式の燃料噴射弁である。燃料噴射弁1は、ハウジング12に液密に取り付けられる。
Hereinafter, one embodiment of a flow measuring device of the present invention is described based on figures.
As shown in FIG. 1, the flow rate measuring device 10 includes a housing 12, a pressure sensor 20, a microsyringe 30, and an on-off valve 40. The fuel injection valve 1 that is a fluid injection valve is, for example, an electromagnetically driven fuel injection valve that injects fuel into a combustion chamber of an internal combustion engine. The fuel injection valve 1 is attached to the housing 12 in a liquid-tight manner.

ハウジング12は、内部に密封室14を形成している。密封室14の圧力センサ20側は噴射液体16で満たされており、密封室14の燃料噴射弁1が取り付けられている側の空間は空気18で満たされている。
検出手段としての圧力センサ20は、ハウジング22およびダイヤフラム24を有している。ハウジング22内の空間は、ダイヤフラム24により液体室26と大気室28とに隔離されている。液体室26は連通管100を介して密封室14と連通しており、連通管100内および液体室26は、密封室14の圧力センサ20側と同じく噴射液体16で満たされている。圧力センサ20は、密封室14の圧力センサ20側、連通管100内および液体室26の噴射液体の体積変化を、ダイヤフラム24が変位することにより圧力変化として検出し、圧力信号を電子制御装置(ECU)50に送出する。
The housing 12 forms a sealed chamber 14 therein. The pressure sensor 20 side of the sealed chamber 14 is filled with the injection liquid 16, and the space on the side of the sealed chamber 14 where the fuel injection valve 1 is attached is filled with air 18.
The pressure sensor 20 as a detection means has a housing 22 and a diaphragm 24. A space in the housing 22 is separated into a liquid chamber 26 and an atmospheric chamber 28 by a diaphragm 24. The liquid chamber 26 communicates with the sealed chamber 14 via the communication pipe 100, and the inside of the communication pipe 100 and the liquid chamber 26 are filled with the jet liquid 16 as in the pressure sensor 20 side of the sealed chamber 14. The pressure sensor 20 detects the volume change of the jet liquid in the pressure sensor 20 side of the sealed chamber 14, the communication pipe 100, and the liquid chamber 26 as a pressure change due to the displacement of the diaphragm 24, and the pressure signal is electronically controlled ( ECU) 50.

容積可変装置であるマイクロシリンジ30は、ハウジング32およびハウジング32に摺動自在に支持されるピストン36を有し、ハウジング12の周壁を貫通してハウジング12に取り付けられている。ハウジング32は、密封室14と連通する可変容積室34を形成している。ピストン36の一方の端部は可変容積室34に突出しており、ピストン36の他方の端部は図示しないサーボモータに接続されている。ピストン36が可変容積室34に突出する突出量は、サーボモータにより制御される。   The microsyringe 30 that is a variable volume device has a housing 32 and a piston 36 that is slidably supported by the housing 32, and is attached to the housing 12 through the peripheral wall of the housing 12. The housing 32 forms a variable volume chamber 34 that communicates with the sealed chamber 14. One end of the piston 36 protrudes into the variable volume chamber 34, and the other end of the piston 36 is connected to a servo motor (not shown). The amount by which the piston 36 protrudes into the variable volume chamber 34 is controlled by a servo motor.

開閉弁40は、大気側および密封室14に開口している大気開放管102に設置されている。開閉弁40が開弁および閉弁することにより、密封室14と大気側との連通が断続される。
計測手段としてのECU50は、燃料噴射弁1のコイル2に供給する駆動電流を制御し、燃料噴射弁1を開閉制御する。またECU50は、圧力センサ20から受けた圧力信号に基づき、密封室14に噴射された噴射液体の体積変化、すなわち、燃料噴射弁1から噴射された噴射液体の流量を計測する。またECU50は、サーボモータを制御し、マイクロシリンジ30のピストン36の突出量を調整する。
The on-off valve 40 is installed in the atmosphere-side open pipe 102 opened to the atmosphere side and the sealed chamber 14. As the on-off valve 40 opens and closes, the communication between the sealed chamber 14 and the atmosphere side is interrupted.
The ECU 50 as the measuring means controls the drive current supplied to the coil 2 of the fuel injection valve 1 and controls the opening and closing of the fuel injection valve 1. Further, the ECU 50 measures the volume change of the injected liquid injected into the sealed chamber 14 based on the pressure signal received from the pressure sensor 20, that is, the flow rate of the injected liquid injected from the fuel injection valve 1. The ECU 50 controls the servo motor to adjust the protruding amount of the piston 36 of the microsyringe 30.

次に、流量計測装置10による燃料噴射弁1の流量計測方法について説明する。
(1)まず、サーボモータを制御し、ピストン36を可変容積室34に所定量突出させる。
(2)ハウジング12に燃料噴射弁1を取り付ける。
(3)開閉弁40を開弁し、密封室14を大気開放する。これにより、前回の計測時に密封室14に噴射された噴射液体が大気開放管102から大気側に排出され、密封室14の噴射液体16と空気18との境界面位置が、大気開放管102が密封室14に開口している初期位置に設定される。大気開放管102から大気側に流出する噴射液体16の流れが止まると、開閉弁40を閉弁する。
Next, a method for measuring the flow rate of the fuel injection valve 1 by the flow rate measuring device 10 will be described.
(1) First, the servo motor is controlled to cause the piston 36 to protrude into the variable volume chamber 34 by a predetermined amount.
(2) The fuel injection valve 1 is attached to the housing 12.
(3) Open the on-off valve 40 and open the sealed chamber 14 to the atmosphere. As a result, the jet liquid sprayed into the sealed chamber 14 during the previous measurement is discharged from the atmosphere open pipe 102 to the atmosphere side. The initial position is set to open in the sealed chamber 14. When the flow of the jet liquid 16 flowing out from the atmosphere opening pipe 102 to the atmosphere side stops, the on-off valve 40 is closed.

(4)ECU50は、同じ噴射時間幅で所定回数噴射させるパルス信号を燃料噴射弁1に送出する。このとき、ECU50は、燃料噴射弁1が1回に噴射する噴射量を予め設定して記憶しておき、燃料噴射弁1が1回噴射する毎に、可変容積室34の容積が設定噴射量だけ増加するように、サーボモータを制御してピストン36を図1の左方向に移動させ、可変容積室34に突出するピストン36の突出量を減じる。 (4) The ECU 50 sends to the fuel injection valve 1 a pulse signal for injecting a predetermined number of times with the same injection time width. At this time, the ECU 50 presets and stores the injection amount that the fuel injection valve 1 injects once, and the volume of the variable volume chamber 34 becomes the set injection amount every time the fuel injection valve 1 injects once. The piston 36 is moved in the left direction in FIG. 1 by controlling the servo motor so as to increase only the amount of protrusion of the piston 36 protruding into the variable volume chamber 34.

(5)燃料噴射弁1が所定回数噴射して噴射を停止すると、ECU50は、圧力センサ20が検出した圧力信号を、燃料噴射弁1が密封室14に噴射液体を所定回数噴射したことにより変化した圧力変化ΔPとして認識する。
ここで、噴射中にピストン36を移動することにより、可変容積室34の容積は、設定噴射量Qと噴射回数Nとの積Q×Nだけ増加しているので、燃料噴射弁1の合計噴射量が設定噴射量Qと噴射回数Nとの積Q×Nに等しければ、密封室14の圧力変化ΔPは0のはずである。燃料噴射弁1の合計噴射量とQ×Nとが等しくなければ、その差により密封室14の空気18の圧力が増減する。この空気18の圧力の増減により、密封室14の圧力センサ20側、連通管100内および液体室26の噴射液体16の圧力が増減する。圧力センサ20は、この噴射液体16の圧力の増減を圧力変化ΔPとして検出する。
(6)そして、ECU50は、N回噴射した後の圧力変化ΔP、つまりN回噴射した後の噴射液体の体積変化と設定噴射量とから燃料噴射弁1のN回の合計噴射量を算出し、燃料噴射弁1の1回あたりの噴射流量を計測する。
(5) When the fuel injection valve 1 injects the predetermined number of times and stops the injection, the ECU 50 changes the pressure signal detected by the pressure sensor 20 as the fuel injection valve 1 injects the injection liquid into the sealed chamber 14 the predetermined number of times. Is recognized as a pressure change ΔP.
Here, by moving the piston 36 during the injection, the volume of the variable volume chamber 34 is increased by the product Q × N of the set injection amount Q and the number of injections N, so the total injection of the fuel injection valve 1 If the amount is equal to the product Q × N of the set injection amount Q and the number N of injections, the pressure change ΔP in the sealed chamber 14 should be zero. If the total injection amount of the fuel injection valve 1 and Q × N are not equal, the pressure of the air 18 in the sealed chamber 14 increases or decreases due to the difference. By the increase / decrease of the pressure of the air 18, the pressure of the jet liquid 16 in the sealed chamber 14, the communication pipe 100, and the liquid chamber 26 is increased / decreased. The pressure sensor 20 detects an increase or decrease in the pressure of the jet liquid 16 as a pressure change ΔP.
(6) Then, the ECU 50 calculates the total injection amount N times of the fuel injection valve 1 from the pressure change ΔP after N times of injection, that is, the volume change of the injection liquid after N times of injection and the set injection amount. The injection flow rate per time of the fuel injection valve 1 is measured.

以上説明した、本実施形態の流量計測装置10では、燃料噴射弁1が密封室14の空気中に噴射液体を噴射するので、実際に燃料噴射弁1が燃料を噴射する吸気管または燃焼室と環境が類似している。また、燃料噴射弁1の上流側である加圧された噴射液体の流量ではなく、燃料噴射弁1の下流側において燃料噴射弁1が空気中に噴射した噴射液体の体積変化分を計測するので、圧力変動および温度変動の影響を殆ど受けない。さらに、密封室14に噴射液体を噴射するので、噴射液体の蒸発を防止できる。したがって、燃料噴射弁1が噴射した噴射液体の流量を高精度に計測できる。
また、上記実施形態では、通路を流れる噴射液体の流量ではなく、燃料噴射弁1が密封室14に噴射した噴射液体の体積変化を検出する。燃料噴射弁1が噴射した噴射流体の体積変化は少ない噴射回数で高精度に検出できるので、流量計測時間を短縮できる。噴射流量を計測するための噴射回数は1回でもよい。
In the flow rate measuring device 10 of the present embodiment described above, the fuel injection valve 1 injects the injection liquid into the air in the sealed chamber 14, and therefore the intake pipe or the combustion chamber in which the fuel injection valve 1 actually injects fuel, The environment is similar. Further, not the flow rate of the pressurized injection liquid upstream of the fuel injection valve 1, but the volume change of the injection liquid injected into the air by the fuel injection valve 1 on the downstream side of the fuel injection valve 1 is measured. It is hardly affected by pressure fluctuation and temperature fluctuation. Furthermore, since the injection liquid is injected into the sealed chamber 14, evaporation of the injection liquid can be prevented. Therefore, the flow rate of the injection liquid injected by the fuel injection valve 1 can be measured with high accuracy.
Moreover, in the said embodiment, the volume change of the injection liquid which the fuel injection valve 1 injected into the sealing chamber 14 is detected instead of the flow volume of the injection liquid which flows through a channel | path. Since the volume change of the injection fluid injected by the fuel injection valve 1 can be detected with high accuracy with a small number of injections, the flow rate measurement time can be shortened. The number of injections for measuring the injection flow rate may be one.

(その他の実施形態)
上記実施形態では、密封室14の圧力センサ20側を噴射液体16で満たし、密封室14の燃料噴射弁1側を空気18で満たしたが、密封室14を全て空気18で満たしてもよい。この場合、圧力センサ20のダイヤフラム24は両面ともに空気と接触する。そして、密封室14に噴射液体が噴射されることにより、燃料噴射弁1の実際の噴射量と設定噴射量Qとの差として、圧力センサ20は空気で満たされた密封室14の圧力変化ΔPを検出し、燃料噴射弁1の1回あたりの噴射流量を計測できる。ただし、密封室14を全て空気で満たす場合、空気による圧力変化は小さくなるので、密封室14全体の容積は極力小さいことが望ましい。
また、密封室14を全て噴射液体で満たし、燃料噴射弁1から噴射液体中に噴射液体を噴射してもよい。
(Other embodiments)
In the above embodiment, the pressure sensor 20 side of the sealed chamber 14 is filled with the jet liquid 16 and the fuel injection valve 1 side of the sealed chamber 14 is filled with the air 18, but the sealed chamber 14 may be entirely filled with the air 18. In this case, the diaphragm 24 of the pressure sensor 20 is in contact with air on both sides. As a result of the injection liquid being injected into the sealed chamber 14, the pressure sensor 20 changes the pressure change ΔP of the sealed chamber 14 filled with air as the difference between the actual injection amount of the fuel injection valve 1 and the set injection amount Q. And the injection flow rate per one time of the fuel injection valve 1 can be measured. However, when all of the sealed chamber 14 is filled with air, the pressure change due to air is small, and therefore the volume of the entire sealed chamber 14 is preferably as small as possible.
Alternatively, all of the sealed chamber 14 may be filled with the injection liquid, and the injection liquid may be injected from the fuel injection valve 1 into the injection liquid.

上記実施形態では、燃料噴射弁1が1回噴射する毎に、可変容積室34の容積が設定噴射量だけ増加するように可変容積室34に突出するピストン36の突出量を制御したが、可変容積室34の容積を増加するタイミングは、燃料噴射弁1が噴射する前後、または噴射と同時のいずれでもよい。また、燃料噴射弁1が1回噴射する毎ではく、燃料噴射弁1が複数回噴射する前後に、噴射回数と設定噴射量との積だけまとめて可変容積室34の容積を増加してもよい。
また、マイクロシリンジ30を用いず、燃料噴射弁1が噴射する噴射液体の総量を圧力変化ΔPとして検出し、噴射流量を計測してもよい。
In the above embodiment, each time the fuel injection valve 1 injects once, the protruding amount of the piston 36 protruding into the variable volume chamber 34 is controlled so that the volume of the variable volume chamber 34 increases by the set injection amount. The timing for increasing the volume of the volume chamber 34 may be before or after the fuel injection valve 1 injects, or at the same time as the injection. Further, the volume of the variable volume chamber 34 may be increased by the product of the number of injections and the set injection amount before and after the fuel injection valve 1 injects a plurality of times instead of every time the fuel injection valve 1 injects once. Good.
Alternatively, the injection flow rate may be measured by detecting the total amount of injection liquid injected by the fuel injection valve 1 as the pressure change ΔP without using the microsyringe 30.

また、燃料噴射弁1が噴射した噴射液体の体積変化を圧力センサ20により圧力変化ΔPとして検出したが、燃料噴射弁1が噴射した噴射液体の体積変化を検出部の変位量として検出する位置センサを検出手段として用いてもよい。
上記実施形態では、内燃機関の燃料噴射弁1の流量を計測したが、これに限らず、特に微量の液体を噴射する流体噴射弁の噴射流量を高精度に計測するときに、本発明の流量計測装置または流量計測方法は効果的である。
In addition, the volume change of the injection liquid injected by the fuel injection valve 1 is detected as the pressure change ΔP by the pressure sensor 20, but the position sensor detects the volume change of the injection liquid injected by the fuel injection valve 1 as the displacement amount of the detection unit. May be used as detection means.
In the above embodiment, the flow rate of the fuel injection valve 1 of the internal combustion engine is measured. However, the flow rate of the present invention is not limited to this, and particularly when the injection flow rate of the fluid injection valve that injects a small amount of liquid is measured with high accuracy. The measuring device or the flow rate measuring method is effective.

本実施例による流量計測装置を示す模式的説明図である。It is typical explanatory drawing which shows the flow volume measuring apparatus by a present Example.

符号の説明Explanation of symbols

1 燃料噴射弁(流体噴射弁)、10 流量計測装置、12 ハウジング、14 密封室、20 圧力センサ(検出手段)、30 マイクロシリンジ(容積可変装置)、34 可変容積室、36 ピストン(可動部材)、40 開閉弁、50 ECU(電子制御装置) DESCRIPTION OF SYMBOLS 1 Fuel injection valve (fluid injection valve), 10 Flow measuring device, 12 Housing, 14 Sealing chamber, 20 Pressure sensor (detection means), 30 Micro syringe (volume variable device), 34 Variable volume chamber, 36 Piston (movable member) , 40 On-off valve, 50 ECU (electronic control unit)

Claims (12)

流体噴射弁が噴射する液体の噴射流量を計測する流量計測装置において、
密封室を有し、前記流体噴射弁が前記密封室に液体を噴射するハウジングと、
前記密封室と接続しており、前記流体噴射弁から前記密封室に噴射された液体の体積変化を検出する検出手段と、
を備えることを特徴とする流量計測装置。
In the flow rate measuring device that measures the jet flow rate of the liquid jetted by the fluid jet valve,
A housing having a sealed chamber, wherein the fluid ejection valve ejects liquid into the sealed chamber;
Detecting means connected to the sealed chamber for detecting a volume change of the liquid ejected from the fluid ejection valve to the sealed chamber;
A flow rate measuring device comprising:
計測前の状態において、前記密封室は気体で満たされていることを特徴とする請求項1記載の流量計測装置。   The flow rate measuring device according to claim 1, wherein the sealed chamber is filled with gas in a state before measurement. 計測前の状態において、前記密封室は液体で満たされていることを特徴とする請求項1記載の流量計測装置。   The flow rate measuring device according to claim 1, wherein the sealed chamber is filled with a liquid in a state before measurement. 計測前の状態において、前記密封室の前記検出手段と接続する側は液体で満たされ、前記密封室の前記流体噴射弁側は気体で満たされていることを特徴とする請求項1記載の流量計測装置。   2. The flow rate according to claim 1, wherein in a state before measurement, a side of the sealed chamber connected to the detection means is filled with a liquid, and the fluid injection valve side of the sealed chamber is filled with a gas. Measuring device. 大気側と前記密封室との連通を断続する開閉弁をさらに備え、前記開閉弁が開弁することにより前記密封室における液体と気体との境界面位置は初期位置に設定されることを特徴とする請求項4記載の流量計測装置。   An opening / closing valve for intermittently communicating between the atmosphere side and the sealed chamber, wherein the position of the boundary surface between the liquid and the gas in the sealed chamber is set to an initial position by opening the open / close valve; The flow rate measuring device according to claim 4. 前記密封室と連通する可変容積室と、移動することにより前記可変容積室の容積を増減する可動部材とを有する容積可変装置をさらに備えることを特徴とする請求項1から5のいずれか一項記載の流量計測装置。   6. The variable volume device further comprising: a variable volume chamber communicating with the sealed chamber; and a movable member that increases and decreases a volume of the variable volume chamber by moving. The flow rate measuring device described. 流体噴射弁が噴射する液体の噴射流量を計測する流量計測方法において、
前記流体噴射弁から密封室に液体を噴射し、前記密封室に噴射された液体の体積変化を検出した値に基づいて前記流体噴射弁の噴射流量を計測することを特徴とする流量計測方法。
In the flow rate measurement method for measuring the injection flow rate of the liquid injected by the fluid injection valve,
A flow rate measuring method comprising: injecting a liquid from the fluid injection valve into a sealed chamber, and measuring an injection flow rate of the fluid injection valve based on a value obtained by detecting a volume change of the liquid injected into the sealed chamber.
計測前に前記密封室を気体で満たすことを特徴とする請求項7記載の流量計測方法。   The flow rate measuring method according to claim 7, wherein the sealed chamber is filled with a gas before measurement. 計測前に前記密封室を液体で満たすことを特徴とする請求項7記載の流量計測方法。   The flow rate measuring method according to claim 7, wherein the sealed chamber is filled with a liquid before the measurement. 計測前に前記密封室の前記流体噴射弁側を気体で満たし、前記密封室の他の部分を液体で満たすことを特徴とする請求項7記載の流量計測方法。   The flow rate measuring method according to claim 7, wherein the fluid injection valve side of the sealed chamber is filled with a gas before the measurement, and the other part of the sealed chamber is filled with a liquid. 計測前に前記密封室における液体と気体との境界面位置を初期位置に設定することを特徴とする請求項10記載の流量計測方法。   The flow rate measuring method according to claim 10, wherein a boundary surface position between the liquid and the gas in the sealed chamber is set to an initial position before the measurement. 前記流体噴射弁が所定時間開弁して1回あたりに噴射する噴射量を設定噴射量とし、前記流体噴射弁が複数回噴射する場合、前記密封室または前記密封室と連通する空間の容積を前記設定噴射量と噴射回数との積だけ増加することを特徴とする請求項7から11のいずれか一項記載の流量計測方法。
When the fluid injection valve is opened for a predetermined time and is injected as a set injection amount, and the fluid injection valve injects a plurality of times, the volume of the sealed chamber or the space communicating with the sealed chamber is The flow rate measuring method according to claim 7, wherein the flow rate is increased by a product of the set injection amount and the number of injections.
JP2004289741A 2004-10-01 2004-10-01 Flow rate measuring device and flow rate measuring method Expired - Fee Related JP4415260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289741A JP4415260B2 (en) 2004-10-01 2004-10-01 Flow rate measuring device and flow rate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289741A JP4415260B2 (en) 2004-10-01 2004-10-01 Flow rate measuring device and flow rate measuring method

Publications (2)

Publication Number Publication Date
JP2006105656A true JP2006105656A (en) 2006-04-20
JP4415260B2 JP4415260B2 (en) 2010-02-17

Family

ID=36375588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289741A Expired - Fee Related JP4415260B2 (en) 2004-10-01 2004-10-01 Flow rate measuring device and flow rate measuring method

Country Status (1)

Country Link
JP (1) JP4415260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051057A (en) * 2006-08-28 2008-03-06 Isuzu Motors Ltd Characteristic measuring test device and method for gas injector
CN104454275A (en) * 2014-12-22 2015-03-25 常州博瑞油泵油嘴有限公司 Synchronous oil supply and hold-down device for detecting high-pressure common-rail oil sprayer online and application method thereof
CN111946517A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Variable-range fuel injection law measuring instrument
CN114654386A (en) * 2022-04-14 2022-06-24 一汽解放汽车有限公司 Positioning device and machine tool
CN116335818A (en) * 2023-01-02 2023-06-27 重庆长安汽车股份有限公司 Hydrogen engine nozzle flow measuring device and measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051057A (en) * 2006-08-28 2008-03-06 Isuzu Motors Ltd Characteristic measuring test device and method for gas injector
CN104454275A (en) * 2014-12-22 2015-03-25 常州博瑞油泵油嘴有限公司 Synchronous oil supply and hold-down device for detecting high-pressure common-rail oil sprayer online and application method thereof
CN104454275B (en) * 2014-12-22 2019-08-02 常州博瑞油泵油嘴有限公司 A kind of synchronous fuel feeding of high pressure common rail injector on-line checking and pressing device and its application method
CN111946517A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Variable-range fuel injection law measuring instrument
CN114654386A (en) * 2022-04-14 2022-06-24 一汽解放汽车有限公司 Positioning device and machine tool
CN116335818A (en) * 2023-01-02 2023-06-27 重庆长安汽车股份有限公司 Hydrogen engine nozzle flow measuring device and measuring method
CN116335818B (en) * 2023-01-02 2024-05-14 重庆长安汽车股份有限公司 Hydrogen engine nozzle flow measuring device and measuring method

Also Published As

Publication number Publication date
JP4415260B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP3632282B2 (en) Injection quantity measuring device
US20030000773A1 (en) Additive nebulising device
CN106427248B (en) Method for damping the pressure peak in the pipeline of ink-jet printer ink
JP2015500417A5 (en)
JP5575264B2 (en) System and method for measuring an injection process
US7472586B2 (en) Flow amount measuring device and method therefor
JP4415260B2 (en) Flow rate measuring device and flow rate measuring method
JP2004518867A (en) Method, computer program and apparatus for measuring injection quantity of injection system
US20080011490A1 (en) Alternate foam storage and proportionally mixing device
US20060013704A1 (en) Liquid aeration delivery apparatus
US11022470B2 (en) Free-jet dosing system
CN102137998B (en) Method for analysing the step-by-step injection rate provided by a fuel injection system used in a high power heat engine
CN105020076A (en) Oil injection lasting time measuring device and measuring method of electromagnetic valve type diesel oil injector
JP5685202B2 (en) Apparatus and method for supplying electrolyte
JP2014118952A (en) Fuel injection device
EP1746394A2 (en) Method for measuring the quantity of fluid ejected by an injector and device to effect said measuring
CN105987727A (en) Liquid flow measurement device
KR100940941B1 (en) Sealing gun apparatus injecting a fixed quantity of fluid for sealer coating
JP6163012B2 (en) Injection measuring device
JP6686508B2 (en) Internal combustion engine and fuel injection control method for internal combustion engine
JP2009024532A (en) Differential pressure type flow rate measurement method and device thereof
JPH0681751A (en) Measuring device for fuel injection quantity and fuel injection rate
KR100431092B1 (en) A resin injection pressure control apparatus for resin transfer moulding
JP4569462B2 (en) Fluid polishing method and apparatus
CN108729988B (en) Method for actuating a reducing agent metering valve of a combustion motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090429

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees